Sample records for auditory threshold

  1. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  2. [The discomfort threshold studied in operators at the control consoles in automated production with a view to its use in job selection].

    PubMed

    Tsaneva, L

    1993-01-01

    The results from the investigation of the threshold of discomfort in 385 operators from firm "Kremikovtsi" are discussed. The most expressed changes are found in operators with increased tonal auditory threshold up to 45 and above 50 dB, in high confidential probability. The observed changes in the threshold of discomfort are classified into 3 groups: 1). Raised tonal auditory threshold (up to 30 dB) without decrease in the threshold of discomfort; 2). Decreased threshold of discomfort (with about 15-20 dB) in raised tonal auditory threshold (up to 45 dB); 3). Decreased threshold of discomfort on the background of raised (above 50 dB) tonal auditory threshold. On 4 figures are represented audiograms, illustrating the state of tonal auditory threshold, the field of hearing and the threshold of discomfort. The field of hearing of the operators from the III and IV groups is narrowed, and in the latter also deformed. The explanation of this pathophysiological phenomenon is related to the increased effect of the sound irritation and the presence of recruitment phenomenon with possible engagement of the central end of the auditory analyser. It is underlined, that the threshold of discomfort is sensitive index for the state of the individual norms of each operator for the speech-sound-noise discomfort.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae).

    PubMed

    Penna, Mario; Velásquez, Nelson; Solís, Rigoberto

    2008-04-01

    Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31-52 dB RMS SPL), measured at the subjects' position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18-39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41-51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7-2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39-47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.

  4. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    PubMed

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  5. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  6. Assessment of the discomfort threshold of command board operators in automated productions with respect to its application in professional selection.

    PubMed

    Tzaneva, L

    1996-09-01

    The discomfort threshold problem is not yet clear from the audiological point of view. Its significance for work physiology and hygiene is not enough clarified. This paper discussed the results of a study of the discomfort threshold, performed including 385 operators from the State Company "Kremikovtzi", divided into 4 groups (3 groups according to length of service and one control group). The most prominent changes were found in operators with increased tonal auditory threshold up to 45 and over 50 dB with high confidential probability. The observed changes are distributed in 3 groups: 1. increased tonal auditory threshold (up to 30 dB) without decrease of the discomfort threshold; 2. decreased discomfort threshold (with about 15-20 dB) at increased tonal auditory threshold (up to 45 dB); 3. decreased discomfort threshold at increased (over 50 dB) tonal auditory threshold. The auditory scope of the operators, belonging to groups III and IV (with the longest length of service) is narrowed, being distorted for the latter. This pathophysiological phenomenon can be explained by an enhanced effect of sound irritation and the presence of a recruitment phenomenon with possible engagement of the central part of the auditory analyzer. It is concluded that the discomfort threshold is a sensitive indicator for the state of the individual norms for speech-sound-noise discomfort. The comparison of the discomfort threshold with the hygienic standards and the noise levels at each particular working place can be used as a criterion for the professional selection for work in conditions of masking noise effect and its tolerance with respect to achieving the individual discomfort level depending on the intensity of the speech-sound-noise signals at a particular working place.

  7. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  8. Auditory-motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict.

    PubMed

    Kagerer, Florian A; Viswanathan, Priya; Contreras-Vidal, Jose L; Whitall, Jill

    2014-04-01

    Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (nine per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high-threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set. Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier sub-cortical circuitry in those with higher thresholds.

  9. Auditory-motor integration of subliminal phase shifts in tapping: Better than auditory discrimination would predict

    PubMed Central

    Kagerer, Florian A.; Viswanathan, Priya; Contreras-Vidal, Jose L.; Whitall, Jill

    2014-01-01

    Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (9 per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set (p=0.05). Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier subcortical circuitry in those with higher thresholds. PMID:24449013

  10. Lutein and zeaxanthin status and auditory thresholds in a sample of young healthy adults.

    PubMed

    Wong, Jennifer C; Kaplan, Holly S; Hammond, Billy R

    2017-01-01

    Dietary carotenoids lutein (L) and zeaxanthin (Z) have been linked to improved visual and cognitive function. These effects are thought to be mediated by the presence of these pigments in critical regions of the retina and brain. There, it has been postulated that L and Z mediate improved performance by enhancing neural efficiency. The auditory system also relies on efficient segregating of signals and noise and LZ are also found in the auditory cortex. The purpose of the present study was to investigate the influence of LZ status (as assessed by the measuring levels in retina) on auditory thresholds in young non-smokers (N = 32, M = 20.72 ± 3.28 years). LZ status was determined by measuring macular pigment (MP) optical density using a standardized psychophysical technique (customized heterochromatic flicker photometry). Auditory thresholds were assessed with puretone thresholds and puretone auditory thresholds in white noise. MP density was related to many, but not all, of the puretone thresholds we tested: 250 Hz (F(6,32) = 4.36, P < 0.01), 500 Hz (F(6,32) = 2.25, P < 0.05), 1000 Hz (F(6,32) = 3.22, P < 0.05), and 6000 Hz (F(6,32) = 2.56, P < 0.05). The overall pattern of results is consistent with a role for L and Z in maintaining optimal auditory function.

  11. Auditory Processing Efficiency and Temporal Resolution in Children and Adults.

    ERIC Educational Resources Information Center

    Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.

    2004-01-01

    Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…

  12. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.

    PubMed

    Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-07-01

    We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.

  13. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    PubMed Central

    Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten

    2017-01-01

    In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652

  14. In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    USGS Publications Warehouse

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Therrien, Ronald E.; Yannuzzi, Sally E.; Carr, Catherine E.

    2016-01-01

    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000−3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.

  15. In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds.

    PubMed

    Crowell, Sara E; Wells-Berlin, Alicia M; Therrien, Ronald E; Yannuzzi, Sally E; Carr, Catherine E

    2016-05-01

    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.

  16. [Value of cumulative electrodermal responses in subliminal auditory perception. A preliminary study].

    PubMed

    Borgeat, F; Pannetier, M F

    1982-01-01

    This exploratory study examined the usefulness of averaging electrodermal potential responses for research on subliminal auditory perception. Eighteen female subjects were exposed to three kinds (emotional, neutral and 1000 Hz tone) of auditory stimulation which were repeated six times at three intensities (detection threshold, 10 dB under this threshold and 10 dB above identification threshold). Analysis of electrodermal potential responses showed that the number of responses was related to the emotionality of subliminal stimuli presented at detection threshold but not at 10 dB under it. The data interpretation proposed refers to perceptual defence theory. This study indicates that electrodermal response count constitutes a useful measure for subliminal auditory perception research, but averaging those responses was not shown to bring additional information.

  17. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    PubMed

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  18. Air and Bone Conduction Frequency-specific Auditory Brainstem Response in Children with Agenesis of the External Auditory Canal

    PubMed Central

    Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar dos Santos

    2017-01-01

    Introduction  The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective  The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method  The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results  The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion  The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months. PMID:29018492

  19. Marijuana and Human Performance: An Annotated Bibliography (1970-1975)

    DTIC Science & Technology

    1976-03-01

    Research 5 6 9 20 22 48 56 61 62 72 73 128 131 132 134 163 Auditory Related Research 22 70 I’l 130 134 169 175 IV MEDICAL COMMENTS AND RESEARCH CRITIQUES... Auditory and visual threshold effects of marihuana in man. Perceptual & Motor Skills, 1969, 29, 755-759. Auditory and visual thresholds were measured...a "high." Results indicated no effect on visual acuity, whereas one of three auditory measurements differentiated between marihuana and control

  20. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    PubMed

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Perspectives on the Pure-Tone Audiogram.

    PubMed

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient. American Academy of Audiology

  2. Auditory steady-state response in cochlear implant patients.

    PubMed

    Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo

    2018-03-19

    Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Threshold changes of ABR results in toddlers and children.

    PubMed

    Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria

    2016-06-01

    Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cochlear neuropathy and the coding of supra-threshold sound.

    PubMed

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  5. The relative impact of generic head-related transfer functions on auditory speech thresholds: implications for the design of three-dimensional audio displays.

    PubMed

    Arrabito, G R; McFadden, S M; Crabtree, R B

    2001-07-01

    Auditory speech thresholds were measured in this study. Subjects were required to discriminate a female voice recording of three-digit numbers in the presence of diotic speech babble. The voice stimulus was spatialized at 11 static azimuth positions on the horizontal plane using three different head-related transfer functions (HRTFs) measured on individuals who did not participate in this study. The diotic presentation of the voice stimulus served as the control condition. The results showed that two of the HRTFS performed similarly and had significantly lower auditory speech thresholds than the third HRTF. All three HRTFs yielded significantly lower auditory speech thresholds compared with the diotic presentation of the voice stimulus, with the largest difference at 60 degrees azimuth. The practical implications of these results suggest that lower headphone levels of the communication system in military aircraft can be achieved without sacrificing intelligibility, thereby lessening the risk of hearing loss.

  6. Assessment of central auditory processing in a group of workers exposed to solvents.

    PubMed

    Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan

    2006-12-01

    Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.

  7. Sensation seeking, augmenting-reducing, and absolute auditory threshold: a strength-of-the-nervous-system perspective.

    PubMed

    Goldman, D; Kohn, P M; Hunt, R W

    1983-08-01

    The following measures were obtained from 42 student volunteers: the General and the Disinhibition subscales of the Sensation Seeking Scale (Form IV), the Reducer-Augmenter Scale, and the Absolute Auditory Threshold. General sensation seeking correlated significantly with the Reducer-Augmenter Scale, r(40) = .59, p less than .001, and the Absolute Auditory Threshold, r(40) = .45, p less than .005. Both results proved general across sex. These findings, that high-sensation seekers tend to be reducers and to lack sensitivity to weak stimulation, were interpreted as supporting strength-of-the-nervous-system theory more than the formulation of Zuckerman and his associates.

  8. Auditory steady state response in sound field.

    PubMed

    Hernández-Pérez, H; Torres-Fortuny, A

    2013-02-01

    Physiological and behavioral responses were compared in normal-hearing subjects via analyses of the auditory steady-state response (ASSR) and conventional audiometry under sound field conditions. The auditory stimuli, presented through a loudspeaker, consisted of four carrier tones (500, 1000, 2000, and 4000 Hz), presented singly for behavioral testing but combined (multiple frequency technique), to estimate thresholds using the ASSR. Twenty normal-hearing adults were examined. The average differences between the physiological and behavioral thresholds were between 17 and 22 dB HL. The Spearman rank correlation between ASSR and behavioral thresholds was significant for all frequencies (p < 0.05). Significant differences were found in the ASSR amplitude among frequencies, and strong correlations between the ASSR amplitude and the stimulus level (p < 0.05). The ASSR in sound field testing was found to yield hearing threshold estimates deemed to be reasonably well correlated with behaviorally assessed thresholds.

  9. Automated cortical auditory evoked potentials threshold estimation in neonates.

    PubMed

    Oliveira, Lilian Sanches; Didoné, Dayane Domeneghini; Durante, Alessandra Spada

    2018-02-02

    The evaluation of Cortical Auditory Evoked Potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. To analyze the latency, amplitude and thresholds of Cortical Auditory Evoked Potential using an automatic response detection device in a neonatal population. This is a cross-sectional, observational study. Cortical Auditory Evoked Potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000Hz presented in an intensity range between 0 and 80dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T 2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. With the protocol used, Cortical Auditory Evoked Potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8±10.4dB NA, 25±9.0dB NA, 28±7.8dB NA and 29.4±6.6dB HL for 500, 1000, 2000 and 4000Hz, respectively. Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Inconsistent Effect of Arousal on Early Auditory Perception

    PubMed Central

    Bolders, Anna C.; Band, Guido P. H.; Stallen, Pieter Jan M.

    2017-01-01

    Mood has been shown to influence cognitive performance. However, little is known about the influence of mood on sensory processing, specifically in the auditory domain. With the current study, we sought to investigate how auditory processing of neutral sounds is affected by the mood state of the listener. This was tested in two experiments by measuring masked-auditory detection thresholds before and after a standard mood-induction procedure. In the first experiment (N = 76), mood was induced by imagining a mood-appropriate event combined with listening to mood inducing music. In the second experiment (N = 80), imagining was combined with affective picture viewing to exclude any possibility of confounding the results by acoustic properties of the music. In both experiments, the thresholds were determined by means of an adaptive staircase tracking method in a two-interval forced-choice task. Masked detection thresholds were compared between participants in four different moods (calm, happy, sad, and anxious), which enabled differentiation of mood effects along the dimensions arousal and pleasure. Results of the two experiments were analyzed both in separate analyses and in a combined analysis. The first experiment showed that, while there was no impact of pleasure level on the masked threshold, lower arousal was associated with lower threshold (higher masked sensitivity). However, as indicated by an interaction effect between experiment and arousal, arousal did have a different effect on the threshold in Experiment 2. Experiment 2 showed a trend of arousal in opposite direction. These results show that the effect of arousal on auditory-masked sensitivity may depend on the modality of the mood-inducing stimuli. As clear conclusions regarding the genuineness of the arousal effect on the masked threshold cannot be drawn, suggestions for further research that could clarify this issue are provided. PMID:28424639

  11. Effect of Mild Cognitive Impairment and Alzheimer Disease on Auditory Steady-State Responses

    PubMed Central

    Shahmiri, Elaheh; Jafari, Zahra; Noroozian, Maryam; Zendehbad, Azadeh; Haddadzadeh Niri, Hassan; Yoonessi, Ali

    2017-01-01

    Introduction: Mild Cognitive Impairment (MCI), a disorder of the elderly people, is difficult to diagnose and often progresses to Alzheimer Disease (AD). Temporal region is one of the initial areas, which gets impaired in the early stage of AD. Therefore, auditory cortical evoked potential could be a valuable neuromarker for detecting MCI and AD. Methods: In this study, the thresholds of Auditory Steady-State Response (ASSR) to 40 Hz and 80 Hz were compared between Alzheimer Disease (AD), MCI, and control groups. A total of 42 patients (12 with AD, 15 with MCI, and 15 elderly normal controls) were tested for ASSR. Hearing thresholds at 500, 1000, and 2000 Hz in both ears with modulation rates of 40 and 80 Hz were obtained. Results: Significant differences in normal subjects were observed in estimated ASSR thresholds with 2 modulation rates in 3 frequencies in both ears. However, the difference was significant only in 500 Hz in the MCI group, and no significant differences were observed in the AD group. In addition, significant differences were observed between the normal subjects and AD patients with regard to the estimated ASSR thresholds with 2 modulation rates and 3 frequencies in both ears. A significant difference was observed between the normal and MCI groups at 2000 Hz, too. An increase in estimated 40 Hz ASSR thresholds in patients with AD and MCI suggests neural changes in auditory cortex compared to that in normal ageing. Conclusion: Auditory threshold estimation with low and high modulation rates by ASSR test could be a potentially helpful test for detecting cognitive impairment. PMID:29158880

  12. Underwater temporary threshold shift in pinnipeds: effects of noise level and duration.

    PubMed

    Kastak, David; Southall, Brandon L; Schusterman, Ronald J; Kastak, Colleen Reichmuth

    2005-11-01

    Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.

  13. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  15. INDIVIDUAL DIFFERENCES IN AUDITORY PROCESSING IN SPECIFIC LANGUAGE IMPAIRMENT: A FOLLOW-UP STUDY USING EVENT-RELATED POTENTIALS AND BEHAVIOURAL THRESHOLDS

    PubMed Central

    Bishop, Dorothy V.M.; McArthur, Genevieve M.

    2005-01-01

    It has frequently been claimed that children with specific language impairment (SLI) have impaired auditory perception, but there is much controversy about the role of such deficits in causing their language problems, and it has been difficult to establish solid, replicable findings in this area. Discrepancies in this field may arise because (a) a focus on mean results obscures the heterogeneity in the population and (b) insufficient attention has been paid to maturational aspects of auditory processing. We conducted a study of 16 young people with specific language impairment (SLI) and 16 control participants, 24 of whom had had auditory event-related potentials (ERPs) and frequency discrimination thresholds assessed 18 months previously. When originally assessed, around one third of the listeners with SLI had poor behavioural frequency discrimination thresholds, and these tended to be the younger participants. However, most of the SLI group had age-inappropriate late components of the auditory ERP, regardless of their frequency discrimination. At follow-up, the behavioural thresholds of those with poor frequency discrimination improved, though some remained outside the control range. At follow-up, ERPs for many of the individuals in the SLI group were still not age-appropriate. In several cases, waveforms of individuals in the SLI group resembled those of younger typically-developing children, though in other cases the waveform was unlike that of control cases at any age. Electrophysiological methods may reveal underlying immaturity or other abnormality of auditory processing even when behavioural thresholds look normal. This study emphasises the variability seen in SLI, and the importance of studying individual cases rather than focusing on group means. PMID:15871598

  16. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  17. Auditory-steady-state response reliability in the audiological diagnosis after neonatal hearing screening.

    PubMed

    Núñez-Batalla, Faustino; Noriega-Iglesias, Sabel; Guntín-García, Maite; Carro-Fernández, Pilar; Llorente-Pendás, José Luis

    2016-01-01

    Conventional audiometry is the gold standard for quantifying and describing hearing loss. Alternative methods become necessary to assess subjects who are too young to respond reliably. Auditory evoked potentials constitute the most widely used method for determining hearing thresholds objectively; however, this stimulus is not frequency specific. The advent of the auditory steady-state response (ASSR) leads to more specific threshold determination. The current study describes and compares ASSR, auditory brainstem response (ABR) and conventional behavioural tone audiometry thresholds in a group of infants with various degrees of hearing loss. A comparison was made between ASSR, ABR and behavioural hearing thresholds in 35 infants detected in the neonatal hearing screening program. Mean difference scores (±SD) between ABR and high frequency ABR thresholds were 11.2 dB (±13) and 10.2 dB (±11). Pearson correlations between the ASSR and audiometry thresholds were 0.80 and 0.91 (500Hz); 0.84 and 0.82 (1000Hz); 0.85 and 0.84 (2000Hz); and 0.83 and 0.82 (4000Hz). The ASSR technique is a valuable extension of the clinical test battery for hearing-impaired children. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  18. Effects of underwater noise on auditory sensitivity of a cyprinid fish.

    PubMed

    Scholik, A R; Yan, H Y

    2001-02-01

    The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise affects fish hearing. In this study, the fathead minnow (Pimephales promelas) was used to examine: (1) the immediate effects of white noise exposure (0.3-4.0 kHz, 142 dB re: 1 microPa) on auditory thresholds and (2) recovery after exposure. Audiograms were measured using the auditory brainstem response protocol and compared to baseline audiograms of fathead minnows not exposed to noise. Immediately after exposure to 24 h of white noise, five out of the eight frequencies tested showed a significantly higher threshold compared to the baseline fish. Recovery was found to depend on both duration of noise exposure and auditory frequency. These results support the hypothesis that the auditory threshold of the fathead minnow can be altered by white noise, especially in its most sensitive hearing range (0.8-2.0 kHz), and provide evidence that these effects can be long term (>14 days).

  19. Electrophysiological Evidence for the Sources of the Masking Level Difference.

    PubMed

    Fowler, Cynthia G

    2017-08-16

    The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.

  20. Monitoring the Hearing Handicap and the Recognition Threshold of Sentences of a Patient with Unilateral Auditory Neuropathy Spectrum Disorder with Use of a Hearing Aid.

    PubMed

    Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares

    2016-04-01

    Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to -2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use.

  1. Monitoring the Hearing Handicap and the Recognition Threshold of Sentences of a Patient with Unilateral Auditory Neuropathy Spectrum Disorder with Use of a Hearing Aid

    PubMed Central

    Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares

    2015-01-01

    Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to −2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use. PMID:27096026

  2. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  3. The Impact of Clinical History on the Threshold Estimation of Auditory Brainstem Response Results for Infants

    ERIC Educational Resources Information Center

    Zaitoun, Maha; Cumming, Steven; Purcell, Alison; O'Brien, Katie

    2017-01-01

    Purpose: This study assesses the impact of patient clinical history on audiologists' performance when interpreting auditory brainstem response (ABR) results. Method: Fourteen audiologists' accuracy in estimating hearing threshold for 16 infants through interpretation of ABR traces was compared on 2 occasions at least 5 months apart. On the 1st…

  4. Salicylate-induced changes in auditory thresholds of adolescent and adult rats.

    PubMed

    Brennan, J F; Brown, C A; Jastreboff, P J

    1996-01-01

    Shifts in auditory intensity thresholds after salicylate administration were examined in postweanling and adult pigmented rats at frequencies ranging from 1 to 35 kHz. A total of 132 subjects from both age levels were tested under two-way active avoidance or one-way active avoidance paradigms. Estimated thresholds were inferred from behavioral responses to presentations of descending and ascending series of intensities for each test frequency value. Reliable threshold estimates were found under both avoidance conditioning methods, and compared to controls, subjects at both age levels showed threshold shifts at selective higher frequency values after salicylate injection, and the extent of shifts was related to salicylate dose level.

  5. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    PubMed

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  6. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults

    ERIC Educational Resources Information Center

    Cobb, Kensi M.; Stuart, Andrew

    2016-01-01

    Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…

  8. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  9. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  10. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.

    PubMed

    Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger

    2016-05-01

    A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.

  11. Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss.

    PubMed

    Attias, Joseph; Greenstein, Tally; Peled, Miriam; Ulanovski, David; Wohlgelernter, Jay; Raveh, Eyal

    The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.

  12. Hearing conspecific vocal signals alters peripheral auditory sensitivity

    PubMed Central

    Gall, Megan D.; Wilczynski, Walter

    2015-01-01

    We investigated whether hearing advertisement calls over several nights, as happens in natural frog choruses, modified the responses of the peripheral auditory system in the green treefrog, Hyla cinerea. Using auditory evoked potentials (AEP), we found that exposure to 10 nights of a simulated male chorus lowered auditory thresholds in males and females, while exposure to random tones had no effect in males, but did result in lower thresholds in females. The threshold change was larger at the lower frequencies stimulating the amphibian papilla than at higher frequencies stimulating the basilar papilla. Suprathreshold responses to tonal stimuli were assessed for two peaks in the AEP recordings. For the peak P1 (assessed for 0.8–1.25 kHz), peak amplitude increased following chorus exposure. For peak P2 (assessed for 2–4 kHz), peak amplitude decreased at frequencies between 2.5 and 4.0 kHz, but remained unaltered at 2.0 kHz. Our results show for the first time, to our knowledge, that hearing dynamic social stimuli, like frog choruses, can alter the responses of the auditory periphery in a way that could enhance the detection of and response to conspecific acoustic communication signals. PMID:25972471

  13. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    PubMed

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the behavioral for the group with hearing loss and, on average, 14.5dB higher for the group without hearing loss for all studied frequencies. The cortical electrophysiological thresholds obtained with the use of an automated response detection system were highly correlated with behavioral thresholds in the group of individuals with hearing loss. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Cochlear third window in the scala vestibuli: an animal model.

    PubMed

    Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I

    2009-08-01

    Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.

  15. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  16. Barn owls have ageless ears.

    PubMed

    Krumm, Bianca; Klump, Georg; Köppl, Christine; Langemann, Ulrike

    2017-09-27

    We measured the auditory sensitivity of the barn owl ( Tyto alba ), using a behavioural Go/NoGo paradigm in two different age groups, one younger than 2 years ( n = 4) and another more than 13 years of age ( n = 3). In addition, we obtained thresholds from one individual aged 23 years, three times during its lifetime. For computing audiograms, we presented test frequencies of between 0.5 and 12 kHz, covering the hearing range of the barn owl. Average thresholds in quiet were below 0 dB sound pressure level (SPL) for frequencies between 1 and 10 kHz. The lowest mean threshold was -12.6 dB SPL at 8 kHz. Thresholds were the highest at 12 kHz, with a mean of 31.7 dB SPL. Test frequency had a significant effect on auditory threshold but age group had no significant effect. There was no significant interaction between age group and test frequency. Repeated threshold estimates over 21 years from a single individual showed only a slight increase in thresholds. We discuss the auditory sensitivity of barn owls with respect to other species and suggest that birds, which generally show a remarkable capacity for regeneration of hair cells in the basilar papilla, are naturally protected from presbycusis. © 2017 The Author(s).

  17. When instructions fail. The effects of stimulus control training on brain injury survivors' attending and reporting during hearing screenings.

    PubMed

    Schlund, M W

    2000-10-01

    Bedside hearing screenings are routinely conducted by speech and language pathologists for brain injury survivors during rehabilitation. Cognitive deficits resulting from brain injury, however, may interfere with obtaining estimates of auditory thresholds. Poor comprehension or attention deficits often compromise patient abilities to follow procedural instructions. This article describes the effects of jointly applying behavioral methods and psychophysical methods to improve two severely brain-injured survivors' attending and reporting on auditory test stimuli presentation. Treatment consisted of stimulus control training that involved differentially reinforcing responding in the presence and absence of an auditory test tone. Subsequent hearing screenings were conducted with novel auditory test tones and a common titration procedure. Results showed that prior stimulus control training improved attending and reporting such that hearing screenings were conducted and estimates of auditory thresholds were obtained.

  18. Reduced auditory efferent activity in childhood selective mutism.

    PubMed

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  19. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.

    PubMed

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective  The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods  Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result  We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion  It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.

  20. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure.

    PubMed

    Duarte, Alexandre Scalli Mathias; Ng, Ronny Tah Yen; de Carvalho, Guilherme Machado; Guimarães, Alexandre Caixeta; Pinheiro, Laiza Araujo Mohana; Costa, Everardo Andrade da; Gusmão, Reinaldo Jordão

    2015-01-01

    The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints. This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests. The workers' age ranged from 18 to 50 years (mean=39.6), and noise exposure time from one to 38 years (mean=17.3). We found that 15.1% (55) of the workers had bilateral hearing loss, 38.5% (140) had bilateral tinnitus, 52.8% (192) had abnormal sensitivity to loud sounds, and 47.2% (172) had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000Hz bilaterally. There was no significance relationship between auditory complaints and acoustic reflexes. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability

    PubMed Central

    Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan

    2015-01-01

    An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799

  2. Ontogenetic investigation of underwater hearing capabilities in loggerhead sea turtles (Caretta caretta) using a dual testing approach.

    PubMed

    Lavender, Ashley L; Bartol, Soraya M; Bartol, Ian K

    2014-07-15

    Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny. © 2014. Published by The Company of Biologists Ltd.

  3. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  4. Differential responses to acoustic damage and furosemide in auditory brainstem and otoacoustic emission measures

    NASA Astrophysics Data System (ADS)

    Mills, David M.

    2003-02-01

    Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.

  5. Longitudinal Comparison of Auditory Steady-State Evoked Potentials in Preterm and Term Infants: The Maturation Process

    PubMed Central

    Sousa, Ana Constantino; Didoné, Dayane Domeneghini; Sleifer, Pricila

    2017-01-01

    Introduction  Preterm neonates are at risk of changes in their auditory system development, which explains the need for auditory monitoring of this population. The Auditory Steady-State Response (ASSR) is an objective method that allows obtaining the electrophysiological thresholds with greater applicability in neonatal and pediatric population. Objective  The purpose of this study is to compare the ASSR thresholds in preterm and term infants evaluated during two stages. Method  The study included 63 normal hearing neonates: 33 preterm and 30 term. They underwent assessment of ASSR in both ears simultaneously through insert phones in the frequencies of 500 to 4000Hz with the amplitude modulated from 77 to 103Hz. We presented the intensity at a decreasing level to detect the minimum level of responses. At 18 months, 26 of 33 preterm infants returned for the new assessment for ASSR and were compared with 30 full-term infants. We compared between groups according to gestational age. Results  Electrophysiological thresholds were higher in preterm than in full-term neonates ( p  < 0.05) at the first testing. There were no significant differences between ears and gender. At 18 months, there was no difference between groups ( p  > 0.05) in all the variables described. Conclusion  In the first evaluation preterm had higher thresholds in ASSR. There was no difference at 18 months of age, showing the auditory maturation of preterm infants throughout their development. PMID:28680486

  6. Effect of hearing aids on auditory function in infants with perinatal brain injury and severe hearing loss.

    PubMed

    Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio

    2012-01-01

    Approximately 2-4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs.

  7. Effect of Hearing Aids on Auditory Function in Infants with Perinatal Brain Injury and Severe Hearing Loss

    PubMed Central

    Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio

    2012-01-01

    Background Approximately 2–4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. Methodology/Principal Findings A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). Conclusions/Significance This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs. PMID:22808289

  8. Auditory Backward Masking Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.

    2005-01-01

    Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…

  9. A comparison of auditory brainstem responses across diving bird species

    USGS Publications Warehouse

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  10. A comparison of auditory brainstem responses across diving bird species

    PubMed Central

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644

  11. Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses

    PubMed Central

    2007-01-01

    In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105

  12. Hearing and the round goby: Understanding the auditory system of the round goby (Neogobius melanostomus)

    NASA Astrophysics Data System (ADS)

    Belanger, Andrea J.; Higgs, Dennis M.

    2005-04-01

    The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.

  13. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Infant Auditory Sensitivity to Pure Tones and Frequency-Modulated Tones

    ERIC Educational Resources Information Center

    Leibold, Lori J.; Werner, Lynne A.

    2007-01-01

    It has been suggested that infants respond preferentially to infant-directed speech because their auditory sensitivity to sounds with extensive frequency modulation (FM) is better than their sensitivity to less modulated sounds. In this experiment, auditory thresholds for FM tones and for unmodulated, or pure, tones in a background of noise were…

  15. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  16. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.

    PubMed

    Bruni, Matthew; Flax, Judy F; Buyske, Steven; Shindhelm, Amber D; Witton, Caroline; Brzustowicz, Linda M; Bartlett, Christopher W

    2017-03-01

    Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.

  17. Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss: A Case Report.

    PubMed

    Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C

    2016-10-01

    We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.

  18. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654

  19. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  1. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise.

    PubMed

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-09-11

    Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.

  2. Animal model of cochlear third window in the scala vestibuli or scala tympani.

    PubMed

    Attias, Joseph; Preis, Michal; Shemesh, Rafi; Hadar, Tuvia; Nageris, Ben I

    2010-08-01

    The auditory impact of a cochlear third window differs by its location in the scala vestibuli or scala tympani. Pathologic third window has been investigated primarily in the vestibular apparatus of animals and humans. Dehiscence of the superior semicircular canal is the clinical model. Fat sand rats (n = 11) have a unique inner-ear anatomy that allows easy surgical access. A window was drilled in the bony labyrinth over the scala vestibuli in 1 group (12 ears) and over the scala tympani in another (7 ears) while preserving the membranous labyrinth. Auditory brain stem responses to high- and low-frequency stimuli delivered by air and bone conduction were recorded before and after the procedure. Scala vestibuli group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.3 and 9.6 dB, respectively, and bone-conduction thresholds, 4.6 and 3.3 dB, respectively; after fenestration, air-conduction thresholds averaged 40.4 and 41.8 dB, respectively, and bone-conduction thresholds, -1 and 5.6 dB, respectively. Scala tympani group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.6 dB each, and bone-conduction thresholds, 7.9 dB and 7.1 dB, respectively; after fenestration, air-conduction thresholds averaged 11.4 and 9.3 dB, respectively, and bone-conduction thresholds, 9.3 and 4.2 dB, respectively. The changes in air- (p = 0.0001) and bone-conduction (p = 0.04) thresholds were statistically significant only in the scala vestibuli group. The presence of a cochlear third window over the scala vestibuli, but not over the scala tympani, causes a significant increase in air-conduction auditory thresholds. These results agree with the theoretic model and clinical findings and contribute to our understanding of vestibular dehiscence.

  3. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  4. Auditory Processing Testing: In the Booth versus Outside the Booth.

    PubMed

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done, that is, in the booth or in the room. Results from the present study indicate that one can obtain the same results on auditory processing tests, regardless of whether testing is completed in a soundproof booth or in a quiet test environment. Therefore, audiologists should not be required to test for auditory processing in a soundproof booth. This study shows that audiologists can conduct testing in a quiet room so long as the background noise is sufficiently controlled. American Academy of Audiology

  5. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Scheidt, Ryan E.; Heinz, Michael G.

    2011-01-01

    Non-invasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise induced hearing loss. ABRs were recorded for 1–8 kHz tone burst stimuli both before and several weeks after four hours of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. PMID:21699970

  7. Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press?

    PubMed Central

    van Vugt, Floris T.; Tillmann, Barbara

    2014-01-01

    The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299

  8. The effect of superior auditory skills on vocal accuracy

    NASA Astrophysics Data System (ADS)

    Amir, Ofer; Amir, Noam; Kishon-Rabin, Liat

    2003-02-01

    The relationship between auditory perception and vocal production has been typically investigated by evaluating the effect of either altered or degraded auditory feedback on speech production in either normal hearing or hearing-impaired individuals. Our goal in the present study was to examine this relationship in individuals with superior auditory abilities. Thirteen professional musicians and thirteen nonmusicians, with no vocal or singing training, participated in this study. For vocal production accuracy, subjects were presented with three tones. They were asked to reproduce the pitch using the vowel /a/. This procedure was repeated three times. The fundamental frequency of each production was measured using an autocorrelation pitch detection algorithm designed for this study. The musicians' superior auditory abilities (compared to the nonmusicians) were established in a frequency discrimination task reported elsewhere. Results indicate that (a) musicians had better vocal production accuracy than nonmusicians (production errors of 1/2 a semitone compared to 1.3 semitones, respectively); (b) frequency discrimination thresholds explain 43% of the variance of the production data, and (c) all subjects with superior frequency discrimination thresholds showed accurate vocal production; the reverse relationship, however, does not hold true. In this study we provide empirical evidence to the importance of auditory feedback on vocal production in listeners with superior auditory skills.

  9. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H

    2016-11-28

    BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.

  10. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    PubMed

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study

    PubMed Central

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.

    2016-01-01

    Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698

  12. States of Awareness I: Subliminal Perception Relationship to Situational Awareness

    DTIC Science & Technology

    1993-05-01

    one experiment, the visual detection threshold was raised by simultaneous auditory stimulation involving subliminal emotional words. Similar results...an assessment was made of the effects of both subliminal and supraliminal auditory accessory stimulation (white noise) on a visual detection task... stimulation investigation. Both subliminal and supraliminal auditory stimulation were employed to evaluate possible differential effects in visual illusions

  13. Relationship between Auditory and Cognitive Abilities in Older Adults

    PubMed Central

    Sheft, Stanley

    2015-01-01

    Objective The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults. Methods Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities. Results Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance. Conclusions For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials. PMID:26237423

  14. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.

  15. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    PubMed

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Human auditory system response to pulsed radiofrequency energy in RF coils for magnetic resonance at 2.4 to 170 MHz.

    PubMed

    Röschmann, P

    1991-10-01

    The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.

  17. Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous flash suppression.

    PubMed

    Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond

    2015-01-01

    Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.

  18. Auditory effects of aircraft noise on people living near an airport.

    PubMed

    Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C

    1997-01-01

    Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.

  19. Establishing the Response of Low Frequency Auditory Filters

    NASA Technical Reports Server (NTRS)

    Rafaelof, Menachem; Christian, Andrew; Shepherd, Kevin; Rizzi, Stephen; Stephenson, James

    2017-01-01

    The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.

  20. Potentiation of Chemical Ototoxicity by Noise

    PubMed Central

    Steyger, Peter S.

    2010-01-01

    High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755

  1. Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens)

    NASA Astrophysics Data System (ADS)

    Yuen, Michelle M. L.; Nachtigall, Paul E.; Breese, Marlee; Supin, Alexander Ya.

    2005-10-01

    Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.

  2. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study

    PubMed Central

    Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-01-01

    Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503

  3. [Clinical diagnosis of Treacher Collins syndrome and the efficacy of using BAHA].

    PubMed

    Wang, Y B; Chen, X W; Wang, P; Fan, X M; Fan, Y; Liu, Q; Gao, Z Q

    2017-04-20

    Objective: To evaluate the efficacy of soft or implanted BAHA in the patients of Treacher Collins syndrome(TCS). Method: Six patients of TCS were studied. The Teber scoring system was used to evaluate the deformity degree. The air and bone auditory thresholds were assessed by auditory brain stem response(ABR). The infant-toddler meaningful auditory integration scale(IT-MAIS) was used to assess the auditory development at three time levels: baseline,3 months and 6 months. The hearing threshold and speech recognition score were measured under unaided and aided conditions. Result: The average score of deformity degree was 14.0±0.6. The TCOF1 gene was tested in two patients. The bone conduction hearing thresholds of patients was(18.0±4.5)dBnHL and the air conduction hearing thresholds was (70.5±7.0)dBnHL. The IT-MAIS total, detection and perception scores were improved significantly after wearing softband BAHA and approached the normal level in the 2 patients under 2 years old. The hearing thresholds of 6 patients in unaided and softband BAHA conditions were(65.8±3.8)dBHL and (30.0±3.2)dBHL ( P <0.01) respectively, and 1 implanted BAHA was 15 dBHL. The speech recognition scores of 3 patients in unaided and softband BAHA conditions were(31.7±3.5)% and(86.0±1.7)%( P <0.05) respectively, and 1 implanted BAHA was 96%. Conclusion: Whenever the patient was diagnosed as TCS by the clinical manifestations and genetic testing, BAHA system could help to rehabilitate the hearing to a normal condition. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  4. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - Evidence from fMRI.

    PubMed

    Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone

    2017-01-01

    In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.

  5. A masking level difference due to harmonicity.

    PubMed

    Treurniet, W C; Boucher, D R

    2001-01-01

    The role of harmonicity in masking was studied by comparing the effect of harmonic and inharmonic maskers on the masked thresholds of noise probes using a three-alternative, forced-choice method. Harmonic maskers were created by selecting sets of partials from a harmonic series with an 88-Hz fundamental and 45 consecutive partials. Inharmonic maskers differed in that the partial frequencies were perturbed to nearby values that were not integer multiples of the fundamental frequency. Average simultaneous-masked thresholds were as much as 10 dB lower with the harmonic masker than with the inharmonic masker, and this difference was unaffected by masker level. It was reduced or eliminated when the harmonic partials were separated by more than 176 Hz, suggesting that the effect is related to the extent to which the harmonics are resolved by auditory filters. The threshold difference was not observed in a forward-masking experiment. Finally, an across-channel mechanism was implicated when the threshold difference was found between a harmonic masker flanked by harmonic bands and a harmonic masker flanked by inharmonic bands. A model developed to explain the observed difference recognizes that an auditory filter output envelope is modulated when the filter passes two or more sinusoids, and that the modulation rate depends on the differences among the input frequencies. For a harmonic masker, the frequency differences of adjacent partials are identical, and all auditory filters have the same dominant modulation rate. For an inharmonic masker, however, the frequency differences are not constant and the envelope modulation rate varies across filters. The model proposes that a lower variability facilitates detection of a probe-induced change in the variability, thus accounting for the masked threshold difference. The model was supported by significantly improved predictions of observed thresholds when the predictor variables included envelope modulation rate variance measured using simulated auditory filters.

  6. Functional impairment of the auditory pathway after perinatal asphyxia and the short-term effect of perinatal propofol anesthesia in lambs.

    PubMed

    Smit, Adriana L; Seehase, Matthias; Stokroos, Robert J; Jellema, Reint K; Felipe, Lilian; Chenault, Michelene N; Anteunis, Lucien J C; Kremer, Bernd; Kramer, Boris W

    2013-07-01

    Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.

  7. A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection.

    PubMed

    Buchholz, Jörg M

    2011-07-01

    Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (1) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The Effects of Electromagnetic Fields on The Nervous System,

    DTIC Science & Technology

    Superior Cervical Ganglia: Design of Waveguide Apparatus, and Calculation of Specific Absorption Rate; Effects of Electromagnetic Fields on Muscle ... Contraction ; Effects of Electromagnetic Fields on Auditory System: Effect of Noise Masking on Threshold of Evoked Auditory Responses, Microwave-induced Cochlear Microphonics in Guinea Pigs.

  9. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    PubMed

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more evolved species.

  10. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.

    PubMed

    Robson, Holly; Cloutman, Lauren; Keidel, James L; Sage, Karen; Drakesmith, Mark; Welbourne, Stephen

    2014-10-01

    Auditory discrimination is significantly impaired in Wernicke's aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Behavioural auditory discrimination thresholds of consonant-vowel-consonant (CVC) syllables and pure tones (PTs) were measured in WA (n = 7) and control (n = 7) participants. Threshold results were used to develop multiple deviant MMN oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed a relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.

  11. Representation of particle motion in the auditory midbrain of a developing anuran.

    PubMed

    Simmons, Andrea Megela

    2015-07-01

    In bullfrog tadpoles, a "deaf period" of lessened responsiveness to the pressure component of sounds, evident during the end of the late larval period, has been identified in the auditory midbrain. But coding of underwater particle motion in the vestibular medulla remains stable over all of larval development, with no evidence of a "deaf period." Neural coding of particle motion in the auditory midbrain was assessed to determine if a "deaf period" for this mode of stimulation exists in this brain area in spite of its absence from the vestibular medulla. Recording sites throughout the developing laminar and medial principal nuclei show relatively stable thresholds to z-axis particle motion, up until the "deaf period." Thresholds then begin to increase from this point up through the rest of metamorphic climax, and significantly fewer responsive sites can be located. The representation of particle motion in the auditory midbrain is less robust during later compared to earlier larval stages, overlapping with but also extending beyond the restricted "deaf period" for pressure stimulation. The decreased functional representation of particle motion in the auditory midbrain throughout metamorphic climax may reflect ongoing neural reorganization required to mediate the transition from underwater to amphibious life.

  12. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  13. Revisiting gender, race, and ear differences in peripheral auditory function

    NASA Astrophysics Data System (ADS)

    Boothalingam, Sriram; Klyn, Niall A. M.; Stiepan, Samantha M.; Wilson, Uzma S.; Lee, Jungwha; Siegel, Jonathan H.; Dhar, Sumitrajit

    2018-05-01

    Various measures of auditory function are reported to be superior in females as compared to males, in African American compared to Caucasian individuals, and in right compared to left ears. We re-examined the influence of these subject variables on hearing thresholds and otoacoustic emissions (OAEs) in a sample of 887 human participants between 10 and 68 years of age. Even though the variables of interest here have been examined before, previous attempts have largely been limited to frequencies up to 8 kHz. We used state-of-the-art signal delivery and recording techniques that compensated for individual differences in ear canal acoustics, allowing us to measure hearing thresholds and OAEs up to 20 kHz. The use of these modern calibration and recording techniques provided the motivation for re-examining these commonly studied variables. While controlling for age, noise exposure history, and general health history, we attempted to isolate the effects of gender, race, and ear (left versus right) on hearing thresholds and OAEs. Our results challenge the notion of a right ear advantage and question the existence of a significant gender and race differences in both hearing thresholds and OAE levels. These results suggest that ear canal anatomy and acoustics should be important considerations when evaluating the influence of gender, race, and ear on peripheral auditory function.

  14. Effect of conductive hearing loss on central auditory function.

    PubMed

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Comparative Impacts of Scala Vestibuli Versus Scala Tympani Cochlear Implantation on Auditory Performances and Programming Parameters in Partially Ossified Cochleae.

    PubMed

    Trudel, Mathieu; Côté, Mathieu; Philippon, Daniel; Simonyan, David; Villemure-Poliquin, Noémie; Bussières, Richard

    2018-07-01

    To compare scala vestibuli versus scala tympani cochlear implantation in terms of postoperative auditory performances and programming parameters in patients with severe scala tympani ossification. Retrospective case-control study. Tertiary referral center. One hundred three pediatric and adult patients who underwent cochlear implant surgery between 2000 and 2016. Three groups were formed: a scala vestibuli group, a scala tympani with ossification group, and a scala tympani without ossification group. Patients were matched based on their age, sex, duration of deafness, and side of implantation (ratio of 1:2:2). Postoperative evaluation of auditory performances and programming parameters following intensive functional rehabilitation program completion. Multimedia adaptive test (MAT), hearing in noise test (HINT SNR +10 dB, HINT SNR +5 dB, and HINT SNR +0 dB), impedances, neural response telemetry thresholds (NRT), neural response imaging thresholds (NRI), comfortable levels (C-levels), and threshold levels (T-levels) were compared between groups. Twenty-one patients underwent scala vestibuli cochlear implantation: 19 adults and two children. Auditory performances were similar between groups, although sentence recognition in a noisy environment was slightly higher in the scala vestibuli group. Impedance values were also higher in the scala vestibuli group, but all other programming parameters were similar between groups. We present the largest series of patients with scala vestibuli cochlear implantation. This approach provides at least comparable auditory performances without having any deleterious effects on programming parameters. This viable and useful insertion route might be the primary surgical alternative when facing partial cochlear ossification.

  16. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    PubMed

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  18. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study.

    PubMed

    Dewey, Rebecca Susan; Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-03-09

    Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. ©Rebecca Susan Dewey, Deborah A Hall, Hannah Guest, Garreth Prendergast, Christopher J Plack, Susan T Francis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.03.2018.

  19. Revealing and quantifying the impaired phonological analysis underpinning impaired comprehension in Wernicke's aphasia.

    PubMed

    Robson, Holly; Keidel, James L; Ralph, Matthew A Lambon; Sage, Karen

    2012-01-01

    Wernicke's aphasia is a condition which results in severely disrupted language comprehension following a lesion to the left temporo-parietal region. A phonological analysis deficit has traditionally been held to be at the root of the comprehension impairment in Wernicke's aphasia, a view consistent with current functional neuroimaging which finds areas in the superior temporal cortex responsive to phonological stimuli. However behavioural evidence to support the link between a phonological analysis deficit and auditory comprehension has not been yet shown. This study extends seminal work by Blumstein, Baker, and Goodglass (1977) to investigate the relationship between acoustic-phonological perception, measured through phonological discrimination, and auditory comprehension in a case series of Wernicke's aphasia participants. A novel adaptive phonological discrimination task was used to obtain reliable thresholds of the phonological perceptual distance required between nonwords before they could be discriminated. Wernicke's aphasia participants showed significantly elevated thresholds compared to age and hearing matched control participants. Acoustic-phonological thresholds correlated strongly with auditory comprehension abilities in Wernicke's aphasia. In contrast, nonverbal semantic skills showed no relationship with auditory comprehension. The results are evaluated in the context of recent neurobiological models of language and suggest that impaired acoustic-phonological perception underlies the comprehension impairment in Wernicke's aphasia and favour models of language which propose a leftward asymmetry in phonological analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms

    PubMed Central

    2017-01-01

    Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080

  1. Understanding an Audiogram. Tipsheet: Serving Students Who Are Hard of Hearing

    ERIC Educational Resources Information Center

    Johnson, Marni

    2009-01-01

    The type, degree, and configuration of hearing loss, if one is present, can be determined by reading an audiogram. The type of hearing loss is determined by comparing auditory thresholds obtained using head-phones or insert earphones (air-conduction thresholds) to those obtained using a bone oscillator (bone-conduction thresholds). By itself, the…

  2. A Psychophysical Evaluation of Spectral Enhancement

    ERIC Educational Resources Information Center

    DiGiovanni, Jeffrey J.; Nelson, Peggy B.; Schlauch, Robert S.

    2005-01-01

    Listeners with sensorineural hearing loss have well-documented elevated hearing thresholds; reduced auditory dynamic ranges; and reduced spectral (or frequency) resolution that may reduce speech intelligibility, especially in the presence of competing sounds. Amplification and amplitude compression partially compensate for elevated thresholds and…

  3. Selective Auditory Attention in Adults: Effects of Rhythmic Structure of the Competing Language

    ERIC Educational Resources Information Center

    Reel, Leigh Ann; Hicks, Candace Bourland

    2012-01-01

    Purpose: The authors assessed adult selective auditory attention to determine effects of (a) differences between the vocal/speaking characteristics of different mixed-gender pairs of masking talkers and (b) the rhythmic structure of the language of the competing speech. Method: Reception thresholds for English sentences were measured for 50…

  4. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  5. Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish

    PubMed Central

    Rohmann, Kevin N.; Bass, Andrew H.

    2011-01-01

    SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181

  6. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat.

    PubMed

    Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin

    2017-01-01

    Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n  = 5) or dentate cerebellar nucleus (DCBN, n  = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  7. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    PubMed

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  8. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  9. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  10. Effects of alcohol and noise on temporary threshold shift in Guinea pigs.

    PubMed

    Liu, Tien-Chen; Hsu, Chuan-Jen; Hwang, Juen-Haur; Tseng, Fen-Yu; Chen, Yuh-Shyang

    2004-01-01

    The purpose of this study was to investigate the effects of concomitant exposure to noise and alcohol on the auditory thresholds. Twenty-four guinea pigs were equally divided into three groups: the acute intoxication group, the chronic intoxication group and the control group. Animals in the acute group received single intraperitoneal injections of ethanol (2 g/kg). In the chronic group, alcohol was administered via drinking water (10%, v/v) over a 60-day period. All animals were exposed to a white noise at the intensity of 105 dB A for 30 min. Auditory brainstem response (ABR) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured before, immediately after noise exposure and also 1, 2, and 7 days following exposure. The results showed: first, acute alcohol injection caused a significant, temporary elevation of ABR threshold (4.8 dB in average), while chronic alcohol treatment did not change auditory threshold significantly. Second, noise exposure induced a mean threshold shift of 15.4- 19.7 dB. ABR threshold returned to normal 2 days after exposure. Both acute and chronic alcohol treatment did not alter the magnitude and time course of recovery of the temporary threshold shift (TTS). Third, the mean DPOAE amplitudes decreased at most frequencies following acute injection of alcohol. However, the differences did not reach statistical significance. Fourth, the mean DPOAE levels dropped 3.4-9.6 dB in all groups after noise exposure and returned to normal 1 day to 2 days after noise. There were no significant differences in the amount of DPOAE suppression after noise between the three groups. In summary, we have found that acute and chronic treatment of alcohol in combination with noise did not significantly exacerbate TTS or decrease DPOAE amplitudes relative to noise exposure alone. Copyright 2004 S. Karger AG, Basel

  11. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  12. Prevalence and degree of hearing loss among males in Beaver Dam cohort: comparison of veterans and nonveterans.

    PubMed

    Wilson, Richard H; Noe, Colleen M; Cruickshanks, Karen J; Wiley, Terry L; Nondahl, David M

    2010-01-01

    The Epidemiology of Hearing Loss Study (EHLS) conducted in Beaver Dam, Wisconsin, was a population-based study that focused on the prevalence of hearing loss among 3,753 participants between 1993 and 1995. This article reports the results of several auditory measures from 999 veteran and 590 nonveteran males 48 to 92 years of age included in the EHLS. The auditory measures included pure tone thresholds, tympanometry and acoustic reflexes, word recognition in quiet and in competing message, and the Hearing Handicap Inventory for the Elderly-Screening (HHIE-S) version. Hearing loss in the auditory domains of pure tone thresholds, word recognition in quiet, and word recognition in competing message increased with age but were not significantly different for the veterans and nonveterans. No significant differences were found between participant groups on the HHIE-S; however, regarding hearing aid usage, mixed differences were found.

  13. Central auditory processing effects induced by solvent exposure.

    PubMed

    Fuente, Adrian; McPherson, Bradley

    2007-01-01

    Various studies have demonstrated that organic solvent exposure may induce auditory damage. Studies conducted in workers occupationally exposed to solvents suggest, on the one hand, poorer hearing thresholds than in matched non-exposed workers, and on the other hand, central auditory damage due to solvent exposure. Taking into account the potential auditory damage induced by solvent exposure due to the neurotoxic properties of such substances, the present research aimed at studying the possible auditory processing disorder (APD), and possible hearing difficulties in daily life listening situations that solvent-exposed workers may acquire. Fifty workers exposed to a mixture of organic solvents (xylene, toluene, methyl ethyl ketone) and 50 non-exposed workers matched by age, gender and education were assessed. Only subjects with no history of ear infections, high blood pressure, kidney failure, metabolic and neurological diseases, or alcoholism were selected. The subjects had either normal hearing or sensorineural hearing loss, and normal tympanometric results. Hearing-in-noise (HINT), dichotic digit (DD), filtered speech (FS), pitch pattern sequence (PPS), and random gap detection (RGD) tests were carried out in the exposed and non-exposed groups. A self-report inventory of each subject's performance in daily life listening situations, the Amsterdam Inventory for Auditory Disability and Handicap, was also administered. Significant threshold differences between exposed and non-exposed workers were found at some of the hearing test frequencies, for both ears. However, exposed workers still presented normal hearing thresholds as a group (equal or better than 20 dB HL). Also, for the HINT, DD, PPS, FS and RGD tests, non-exposed workers obtained better results than exposed workers. Finally, solvent-exposed workers reported significantly more hearing complaints in daily life listening situations than non-exposed workers. It is concluded that subjects exposed to solvents may acquire an APD and thus the sole use of pure-tone audiometry is insufficient to assess hearing in solvent-exposed populations.

  14. Audiological and electrophysiological assessment of professional pop/rock musicians.

    PubMed

    Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M

    2012-01-01

    In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.

  15. The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.

    PubMed

    Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L

    2018-04-05

    The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.

  16. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  17. Quinine reduces the dynamic range of the human auditory system.

    PubMed

    Berninger, E; Karlsson, K K; Alván, G

    1998-01-01

    The aim of the study was to evaluate and quantify quinine-induced changes in the human auditory dynamic range, as a model for cochlear hearing loss. Six otologically normal volunteers (21-40 years old) received quinine hydrochloride (15 mg/kg body weight) in two identical oral doses and one intravenous infusion. Refined hearing tests were performed monaurally at threshold, at moderate hearing levels and at high hearing levels. Quinine induced a maximal pure-tone threshold shift of 23 dB (1000-2000 Hz). The increase in the psychoacoustical click threshold agreed with an increase in the detection threshold of click-evoked otoacoustic emissions. The change in the stimulus-response relationship of the emissions reflected recruitment. The self-attained most comfortable speech level and the acoustic stapedius reflex thresholds were not affected by quinine administration. Quinine is a useful model substance for reversibly inducing complete loudness recruitment in humans as it acts specifically on some parts of the hearing function. Its mechanism of action on the molecular level is likely to reveal further information on the physiology of hearing.

  18. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold – Evidence from fMRI

    PubMed Central

    Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone

    2017-01-01

    In the present study, the brain’s response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold—as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a ‘medium loud’ hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings. PMID:28403175

  19. Auditory cortical responses in patients with cochlear implants

    PubMed Central

    Burdo, S; Razza, S; Di Berardino, F; Tognola, G

    2006-01-01

    Summary Currently, the most commonly used electrophysiological tests for cochlear implant evaluation are Averaged Electrical Voltages (AEV), Electrical Advisory Brainstem Responses (EABR) and Neural Response Telemetry (NRT). The present paper focuses on the study of acoustic auditory cortical responses, or slow vertex responses, which are not widely used due to the difficulty in recording, especially in young children. Aims of this study were validation of slow vertex responses and their possible applications in monitoring postimplant results, particularly restoration of hearing and auditory maturation. In practice, the use of tone-bursts, also through hearing aids or cochlear implants, as in slow vertex responses, allows many more frequencies to be investigated and louder intensities to be reached than with other tests based on a click as stimulus. Study design focused on latencies of N1 and P2 slow vertex response peaks in cochlear implants. The study population comprised 45 implant recipients (aged 2 to 70 years), divided into 5 different homogeneous groups according to chronological age, age at onset of deafness, and age at implantation. For each subject, slow vertex responses and free-field auditory responses (PTAS) were recorded for tone-bursts at 500 and 2000 Hz before cochlear implant surgery (using hearing aid amplification) and during scheduled sessions at 3rd and 12th month after implant activation. Results showed that N1 and P2 latencies decreased in all groups starting from 3rd through 12th month after activation. Subjects implanted before school age or at least before age 8 yrs showed the widest latency changes. All subjects showed a reduction in the gap between subjective thresholds (obtained with free field auditory responses) and objective thresholds (obtained with slow vertex responses), obtained in presurgery stage and after cochlear implant. In conclusion, a natural evolution of neurophysiological cortical activities of the auditory pathway, over time, was found especially in young children with prelingual deafness and implanted in preschool age. Cochlear implantation appears to provide hearing restoration, demonstrated by the sharp reduction of the gap between subjective free field auditory responses and slow vertex responses threshold obtained with hearing aids vs. cochlear implant. PMID:16886849

  20. Underwater hearing in the loggerhead turtle (Caretta caretta): a comparison of behavioral and auditory evoked potential audiograms.

    PubMed

    Martin, Kelly J; Alessi, Sarah C; Gaspard, Joseph C; Tucker, Anton D; Bauer, Gordon B; Mann, David A

    2012-09-01

    The purpose of this study was to compare underwater behavioral and auditory evoked potential (AEP) audiograms in a single captive adult loggerhead sea turtle (Caretta caretta). The behavioral audiogram was collected using a go/no-go response procedure and a modified staircase method of threshold determination. AEP thresholds were measured using subdermal electrodes placed beneath the frontoparietal scale, dorsal to the midbrain. Both methods showed the loggerhead sea turtle to have low frequency hearing with best sensitivity between 100 and 400 Hz. AEP testing yielded thresholds from 100 to 1131 Hz with best sensitivity at 200 and 400 Hz (110 dB re. 1 μPa). Behavioral testing using 2 s tonal stimuli yielded underwater thresholds from 50 to 800 Hz with best sensitivity at 100 Hz (98 dB re. 1 μPa). Behavioral thresholds averaged 8 dB lower than AEP thresholds from 100 to 400 Hz and 5 dB higher at 800 Hz. The results suggest that AEP testing can be a good alternative to measuring a behavioral audiogram with wild or untrained marine turtles and when time is a crucial factor.

  1. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    PubMed

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  2. Auditory Sensitivity and Masking Profiles for the Sea Otter (Enhydra lutris).

    PubMed

    Ghoul, Asila; Reichmuth, Colleen

    2016-01-01

    Sea otters are threatened marine mammals that may be negatively impacted by human-generated coastal noise, yet information about sound reception in this species is surprisingly scarce. We investigated amphibious hearing in sea otters by obtaining the first measurements of absolute sensitivity and critical masking ratios. Auditory thresholds were measured in air and underwater from 0.125 to 40 kHz. Critical ratios derived from aerial masked thresholds from 0.25 to 22.6 kHz were also obtained. These data indicate that although sea otters can detect underwater sounds, their hearing appears to be primarily air adapted and not specialized for detecting signals in background noise.

  3. Why is auditory frequency weighting so important in regulation of underwater noise?

    PubMed

    Tougaard, Jakob; Dähne, Michael

    2017-10-01

    A key question related to regulating noise from pile driving, air guns, and sonars is how to take into account the hearing abilities of different animals by means of auditory frequency weighting. Recordings of pile driving sounds, both in the presence and absence of a bubble curtain, were evaluated against recent thresholds for temporary threshold shift (TTS) for harbor porpoises by means of four different weighting functions. The assessed effectivity, expressed as time until TTS, depended strongly on choice of weighting function: 2 orders of magnitude larger for an audiogram-weighted TTS criterion relative to an unweighted criterion, highlighting the importance of selecting the right frequency weighting.

  4. The perception of FM sweeps by Chinese and English listeners.

    PubMed

    Luo, Huan; Boemio, Anthony; Gordon, Michael; Poeppel, David

    2007-02-01

    Frequency-modulated (FM) signals are an integral acoustic component of ecologically natural sounds and are analyzed effectively in the auditory systems of humans and animals. Linearly frequency-modulated tone sweeps were used here to evaluate two questions. First, how rapid a sweep can listeners accurately perceive? Second, is there an effect of native language insofar as the language (phonology) is differentially associated with processing of FM signals? Speakers of English and Mandarin Chinese were tested to evaluate whether being a speaker of a tone language altered the perceptual identification of non-speech tone sweeps. In two psychophysical studies, we demonstrate that Chinese subjects perform better than English subjects in FM direction identification, but not in an FM discrimination task, in which English and Chinese speakers show similar detection thresholds of approximately 20 ms duration. We suggest that the better FM direction identification in Chinese subjects is related to their experience with FM direction analysis in the tone-language environment, even though supra-segmental tonal variation occurs over a longer time scale. Furthermore, the observed common discrimination temporal threshold across two language groups supports the conjecture that processing auditory signals at durations of approximately 20 ms constitutes a fundamental auditory perceptual threshold.

  5. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.

    PubMed

    Paul, Brandon T; Bruce, Ian C; Roberts, Larry E

    2017-02-01

    Damage to auditory nerve fibers that expresses with suprathreshold sounds but is hidden from the audiogram has been proposed to underlie deficits in temporal coding ability observed among individuals with otherwise normal hearing, and to be present in individuals experiencing chronic tinnitus with clinically normal audiograms. We tested whether these individuals may have hidden synaptic losses on auditory nerve fibers with low spontaneous rates of firing (low-SR fibers) that are important for coding suprathreshold sounds in noise while high-SR fibers determining threshold responses in quiet remain relatively unaffected. Tinnitus and control subjects were required to detect the presence of amplitude modulation (AM) in a 5 kHz, suprathreshold tone (a frequency in the tinnitus frequency region of the tinnitus subjects, whose audiometric thresholds were normal to 12 kHz). The AM tone was embedded within background noise intended to degrade the contribution of high-SR fibers, such that AM coding was preferentially reliant on low-SR fibers. We also recorded by electroencephalography the "envelope following response" (EFR, generated in the auditory midbrain) to a 5 kHz, 85 Hz AM tone presented in the same background noise, and also in quiet (both low-SR and high-SR fibers contributing to AM coding in the latter condition). Control subjects with EFRs that were comparatively resistant to the addition of background noise had better AM detection thresholds than controls whose EFRs were more affected by noise. Simulated auditory nerve responses to our stimulus conditions using a well-established peripheral model suggested that low-SR fibers were better preserved in the former cases. Tinnitus subjects had worse AM detection thresholds and reduced EFRs overall compared to controls. Simulated auditory nerve responses found that in addition to severe low-SR fiber loss, a degree of high-SR fiber loss that would not be expected to affect audiometric thresholds was needed to explain the results in tinnitus subjects. The results indicate that hidden hearing loss could be sufficient to account for impaired temporal coding in individuals with normal audiograms as well as for cases of tinnitus without audiometric hearing loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults.

    PubMed

    Giroud, Nathalie; Hirsiger, Sarah; Muri, Raphaela; Kegel, Andrea; Dillier, Norbert; Meyer, Martin

    2018-01-01

    To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants' speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245-255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.

  7. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    PubMed

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei

    2018-01-01

    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P < 0.01), respectively. In the implanted group, the auditory thresholds under the unaided, softband, and implanted conditions were 59.17 ± 3.76 dB HL, 32.5 ± 2.74 dB HL, and 17.5 ± 5.24 dB HL (P < 0.01), respectively. The respective speech discrimination scores were 23.33 ± 14.72%, 77.17 ± 6.46%, and 96.50 ± 2.66% (P < 0.01). Using softband bone-anchored hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods.

    PubMed

    Mulsow, Jason; Finneran, James J; Houser, Dorian S

    2011-04-01

    Although electrophysiological methods of measuring the hearing sensitivity of pinnipeds are not yet as refined as those for dolphins and porpoises, they appear to be a promising supplement to traditional psychophysical procedures. In order to further standardize electrophysiological methods with pinnipeds, a within-subject comparison of psychophysical and auditory steady-state response (ASSR) measures of aerial hearing sensitivity was conducted with a 1.5-yr-old California sea lion. The psychophysical audiogram was similar to those previously reported for otariids, with a U-shape, and thresholds near 10 dB re 20 μPa at 8 and 16 kHz. ASSR thresholds measured using both single and multiple simultaneous amplitude-modulated tones closely reproduced the psychophysical audiogram, although the mean ASSR thresholds were elevated relative to psychophysical thresholds. Differences between psychophysical and ASSR thresholds were greatest at the low- and high-frequency ends of the audiogram. Thresholds measured using the multiple ASSR method were not different from those measured using the single ASSR method. The multiple ASSR method was more rapid than the single ASSR method, and allowed for threshold measurements at seven frequencies in less than 20 min. The multiple ASSR method may be especially advantageous for hearing sensitivity measurements with otariid subjects that are untrained for psychophysical procedures.

  9. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  10. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    ERIC Educational Resources Information Center

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  11. Backward and Simultaneous Masking in Children with Grammatical Specific Language Impairment: No Simple Link between Auditory and Language Abilities

    ERIC Educational Resources Information Center

    Rosen, Stuart; Adlard, Alan; van der Lely, Heather K. J.

    2009-01-01

    Purpose: We investigated claims that specific language impairment (SLI) typically arises from nonspeech auditory deficits by measuring tone-in-noise thresholds in a relatively homogeneous SLI subgroup exhibiting a primary deficit restricted to grammar (Grammatical[G]-SLI). Method: Fourteen children (mostly teenagers) with G-SLI were compared to…

  12. Auditory function in normal-hearing, noise-exposed human ears

    PubMed Central

    Stamper, Greta C.; Johnson, Tiffany A.

    2014-01-01

    Objectives To determine if supra-threshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers following full recovery from temporary noise-induced hearing loss (NIHL). Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared to non-noise exposed control animals or pre-noise exposure amplitudes in the same animal. It is unknown if a similar phenomenon exists in the normal-hearing, noise-exposed human ear. Design Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure over the previous 12 months. DPOAEs were collected at three f2’s (1, 2, and 4 kHz) over a range of L2’s. DPOAE stimulus level began at 80 dB FPL (forward-pressure level) and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel utilized an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane (TM) electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed. Results A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional supra-threshold stimulation levels (≥ 70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤ 60 dB nHL). Similar patterns were present for ABRs collected using a TM electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between supra-threshold DPOAEs and NEB. Conclusions A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to supra-threshold clicks and 4 kHz tone bursts. These findings are consistent with data from previous work completed in animals, where the reduction in supra-threshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest a similar mechanism might be operating in human ears following exposure to high sound levels. However, evidence of this damage is only apparent when examining supra-threshold wave I amplitude of the ABR. In contrast, supra-threshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response. PMID:25350405

  13. Hearing threshold assessment in young children with electrocochleography (EcochG) and auditory brainstem responses (ABR): experience at the University Hospital of Ferrara.

    PubMed

    Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A

    2010-10-01

    Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Octave-Band Thresholds for Modeled Reverberant Fields

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.; Tran, Laura L.; Anderson, Mark R.; Trejo, Leonard J. (Technical Monitor)

    1998-01-01

    Auditory thresholds for 10 subjects were obtained for speech stimuli reverberation. The reverberation was produced and manipulated by 3-D audio modeling based on an actual room. The independent variables were octave-band-filtering (bypassed, 0.25 - 2.0 kHz Fc) and reverberation time (0.2- 1.1 sec). An ANOVA revealed significant effects (threshold range: -19 to -35 dB re 60 dB SRL).

  15. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  16. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  17. Towards a unifying basis of auditory thresholds: binaural summation.

    PubMed

    Heil, Peter

    2014-04-01

    Absolute auditory threshold decreases with increasing sound duration, a phenomenon explainable by the assumptions that the sound evokes neural events whose probabilities of occurrence are proportional to the sound's amplitude raised to an exponent of about 3 and that a constant number of events are required for threshold (Heil and Neubauer, Proc Natl Acad Sci USA 100:6151-6156, 2003). Based on this probabilistic model and on the assumption of perfect binaural summation, an equation is derived here that provides an explicit expression of the binaural threshold as a function of the two monaural thresholds, irrespective of whether they are equal or unequal, and of the exponent in the model. For exponents >0, the predicted binaural advantage is largest when the two monaural thresholds are equal and decreases towards zero as the monaural threshold difference increases. This equation is tested and the exponent derived by comparing binaural thresholds with those predicted on the basis of the two monaural thresholds for different values of the exponent. The thresholds, measured in a large sample of human subjects with equal and unequal monaural thresholds and for stimuli with different temporal envelopes, are compatible only with an exponent close to 3. An exponent of 3 predicts a binaural advantage of 2 dB when the two ears are equally sensitive. Thus, listening with two (equally sensitive) ears rather than one has the same effect on absolute threshold as doubling duration. The data suggest that perfect binaural summation occurs at threshold and that peripheral neural signals are governed by an exponent close to 3. They might also shed new light on mechanisms underlying binaural summation of loudness.

  18. Round window closure affects cochlear responses to suprathreshold stimuli.

    PubMed

    Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua

    2013-12-01

    The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Air and Bone Conduction Thresholds of Deaf and Normal Hearing Subjects before and during the Elimination of Cutaneous-Tactile Interference with Anesthesia. Final Report.

    ERIC Educational Resources Information Center

    Nober, E. Harris

    The study investigated whether low frequency air and bone thresholds elicited at high intensity levels from deaf children with a sensory-neural diagnosis reflect valid auditory sensitivity or are mediated through cutaneous-tactile receptors. Subjects were five totally deaf (mean age 17.0) yielding vibrotactile thresholds but with no air and bone…

  20. Comparisons between detection threshold and loudness perception for individual cochlear implant channels

    PubMed Central

    Bierer, Julie Arenberg; Nye, Amberly D

    2014-01-01

    Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146

  1. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    2016-08-01

    The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.

  2. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise

    PubMed Central

    Söderlund, Göran B. W.; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6–9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure. PMID:26858679

  3. Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners.

    PubMed

    Phillips, Dennis P; Smith, Jennifer C

    2004-01-01

    We obtained data on within-channel and between-channel auditory temporal gap-detection acuity in the normal population. Ninety-five normal listeners were tested for gap-detection thresholds, for conditions in which the gap was bounded by spectrally identical, and by spectrally different, acoustic markers. Separate thresholds were obtained with the use of an adaptive tracking method, for gaps delimited by narrowband noise bursts centred on 1.0 kHz, noise bursts centred on 4.0 kHz, and for gaps bounded by a leading marker of 4.0 kHz noise and a trailing marker of 1.0 kHz noise. Gap thresholds were lowest for silent periods bounded by identical markers--'within-channel' stimuli. Gap thresholds were significantly longer for the between-channel stimulus--silent periods bounded by unidentical markers (p < 0.0001). Thresholds for the two within-channel tasks were highly correlated (R = 0.76). Thresholds for the between-channel stimulus were weakly correlated with thresholds for the within-channel stimuli (1.0 kHz, R = 0.39; and 4.0 kHz, R = 0.46). The relatively poor predictability of between-channel thresholds from the within-channel thresholds is new evidence on the separability of the mechanisms that mediate performance of the two tasks. The data confirm that the acuity difference for the tasks, which has previously been demonstrated in only small numbers of highly trained listeners, extends to a population of untrained listeners. The acuity of the between-channel mechanism may be relevant to the formation of voice-onset time-category boundaries in speech perception.

  4. Working memory resources are shared across sensory modalities.

    PubMed

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  5. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  6. Ototraumatic Effects of Hard Rock Music

    PubMed Central

    Reddell, Rayford C.; Lebo, Charles P.

    1972-01-01

    Temporary and permanent shifts in auditory thresholds were found in 43 hard rock musicians and temporary shifts were also observed in some listeners. The threshold shifts involved all of the conventional puretone test frequencies. Custom-fitted polyvinyl chloride ear protectors were found to be effective in prevention of these noise-induced hearing losses. PMID:5008499

  7. Source analysis of short and long latency vestibular-evoked potentials (VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips.

    PubMed

    Todd, N P M; Paillard, A C; Kluk, K; Whittle, E; Colebatch, J G

    2014-06-01

    Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the supra-threshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Cluster-based analysis improves predictive validity of spike-triggered receptive field estimates

    PubMed Central

    Malone, Brian J.

    2017-01-01

    Spectrotemporal receptive field (STRF) characterization is a central goal of auditory physiology. STRFs are often approximated by the spike-triggered average (STA), which reflects the average stimulus preceding a spike. In many cases, the raw STA is subjected to a threshold defined by gain values expected by chance. However, such correction methods have not been universally adopted, and the consequences of specific gain-thresholding approaches have not been investigated systematically. Here, we evaluate two classes of statistical correction techniques, using the resulting STRF estimates to predict responses to a novel validation stimulus. The first, more traditional technique eliminated STRF pixels (time-frequency bins) with gain values expected by chance. This correction method yielded significant increases in prediction accuracy, including when the threshold setting was optimized for each unit. The second technique was a two-step thresholding procedure wherein clusters of contiguous pixels surviving an initial gain threshold were then subjected to a cluster mass threshold based on summed pixel values. This approach significantly improved upon even the best gain-thresholding techniques. Additional analyses suggested that allowing threshold settings to vary independently for excitatory and inhibitory subfields of the STRF resulted in only marginal additional gains, at best. In summary, augmenting reverse correlation techniques with principled statistical correction choices increased prediction accuracy by over 80% for multi-unit STRFs and by over 40% for single-unit STRFs, furthering the interpretational relevance of the recovered spectrotemporal filters for auditory systems analysis. PMID:28877194

  9. The RetroX auditory implant for high-frequency hearing loss.

    PubMed

    Garin, P; Genard, F; Galle, C; Jamart, J

    2004-07-01

    The objective of this study was to analyze the subjective satisfaction and measure the hearing gain provided by the RetroX (Auric GmbH, Rheine, Germany), an auditory implant of the external ear. We conducted a retrospective case review. We conducted this study at a tertiary referral center at a university hospital. We studied 10 adults with high-frequency sensori-neural hearing loss (ski-slope audiogram). The RetroX consists of an electronic unit sited in the postaural sulcus connected to a titanium tube implanted under the auricle between the sulcus and the entrance of the external auditory canal. Implanting requires only minor surgery under local anesthesia. Main outcome measures were a satisfaction questionnaire, pure-tone audiometry in quiet, speech audiometry in quiet, speech audiometry in noise, and azimuth audiometry (hearing threshold in function of sound source location within the horizontal plane at ear level). : Subjectively, all 10 patients are satisfied or even extremely satisfied with the hearing improvement provided by the RetroX. They wear the implant daily, from morning to evening. We observe a statistically significant improvement of pure-tone thresholds at 1, 2, and 4 kHz. In quiet, the speech reception threshold improves by 9 dB. Speech audiometry in noise shows that intelligibility improves by 26% for a signal-to-noise ratio of -5 dB, by 18% for a signal-to-noise ratio of 0 dB, and by 13% for a signal-to-noise ratio of +5 dB. Localization audiometry indicates that the skull masks sound contralateral to the implanted ear. Of the 10 patients, one had acoustic feedback and one presented with a granulomatous reaction to the foreign body that necessitated removing the implant. The RetroX auditory implant is a semi-implantable hearing aid without occlusion of the external auditory canal. It provides a new therapeutic alternative for managing high-frequency hearing loss.

  10. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  11. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    PubMed

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  12. Absolute auditory threshold: testing the absolute.

    PubMed

    Heil, Peter; Matysiak, Artur

    2017-11-02

    The mechanisms underlying the detection of sounds in quiet, one of the simplest tasks for auditory systems, are debated. Several models proposed to explain the threshold for sounds in quiet and its dependence on sound parameters include a minimum sound intensity ('hard threshold'), below which sound has no effect on the ear. Also, many models are based on the assumption that threshold is mediated by integration of a neural response proportional to sound intensity. Here, we test these ideas. Using an adaptive forced choice procedure, we obtained thresholds of 95 normal-hearing human ears for 18 tones (3.125 kHz carrier) in quiet, each with a different temporal amplitude envelope. Grand-mean thresholds and standard deviations were well described by a probabilistic model according to which sensory events are generated by a Poisson point process with a low rate in the absence, and higher, time-varying rates in the presence, of stimulation. The subject actively evaluates the process and bases the decision on the number of events observed. The sound-driven rate of events is proportional to the temporal amplitude envelope of the bandpass-filtered sound raised to an exponent. We find no evidence for a hard threshold: When the model is extended to include such a threshold, the fit does not improve. Furthermore, we find an exponent of 3, consistent with our previous studies and further challenging models that are based on the assumption of the integration of a neural response that, at threshold sound levels, is directly proportional to sound amplitude or intensity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  14. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  15. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and

  16. Enhancing Soldier Performance: A Nonlinear Model of Performance to Improve Selection Testing and Training

    DTIC Science & Technology

    1994-07-01

    psychological refractory period 15. Two-flash threshold 16. Critical flicker fusion (CFF) 17. Steady state visually evoked response 18. Auditory brain stem...States of awareness I: Subliminal erceoption relationships to situational awareness (AL-TR-1992-0085). Brooks Air Force BaSe, TX: Armstrong...the signals required different inputs (e.g., visual versus auditory ) (Colley & Beech, 1989). Despite support of this theory from such experiments

  17. Comparison of auditory stream segregation in sighted and early blind individuals.

    PubMed

    Boroujeni, Fatemeh Moghadasi; Heidari, Fatemeh; Rouzbahani, Masoumeh; Kamali, Mohammad

    2017-01-18

    An important characteristic of the auditory system is the capacity to analyze complex sounds and make decisions on the source of the constituent parts of these sounds. Blind individuals compensate for the lack of visual information by an increase input from other sensory modalities, including increased auditory information. The purpose of the current study was to compare the fission boundary (FB) threshold of sighted and early blind individuals through spectral aspects using a psychoacoustic auditory stream segregation (ASS) test. This study was conducted on 16 sighted and 16 early blind adult individuals. The applied stimuli were presented sequentially as the pure tones A and B and as a triplet ABA-ABA pattern at the intensity of 40dBSL. The A tone frequency was selected as the basis at values of 500, 1000, and 2000Hz. The B tone was presented with the difference of a 4-100% above the basis tone frequency. Blind individuals had significantly lower FB thresholds than sighted people. FB was independent of the frequency of the tone A when expressed as the difference in the number of equivalent rectangular bandwidths (ERBs). Early blindness may increase perceptual separation of the acoustic stimuli to form accurate representations of the world. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    PubMed

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  19. Response Properties of Neighboring Neurons in the Auditory Midbrain for Pure-Tone Stimulation: A Tetrode Study

    PubMed Central

    Seshagiri, Chandran V.; Delgutte, Bertrand

    2007-01-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives. PMID:17671101

  20. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    PubMed

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  1. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    PubMed

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group < early gestational exposure group < mid-gestational exposure group and late gestational exposure group. Noise exposure during pregnancy influenced ABR thresholds in neonatal guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  2. Interactions between auditory 'what' and 'where' pathways revealed by enhanced near-threshold discrimination of frequency and position.

    PubMed

    Tardif, Eric; Spierer, Lucas; Clarke, Stephanie; Murray, Micah M

    2008-03-07

    Partially segregated neuronal pathways ("what" and "where" pathways, respectively) are thought to mediate sound recognition and localization. Less studied are interactions between these pathways. In two experiments, we investigated whether near-threshold pitch discrimination sensitivity (d') is altered by supra-threshold task-irrelevant position differences and likewise whether near-threshold position discrimination sensitivity is altered by supra-threshold task-irrelevant pitch differences. Each experiment followed a 2 x 2 within-subjects design regarding changes/no change in the task-relevant and task-irrelevant stimulus dimensions. In Experiment 1, subjects discriminated between 750 Hz and 752 Hz pure tones, and d' for this near-threshold pitch change significantly increased by a factor of 1.09 when accompanied by a task-irrelevant position change of 65 micros interaural time difference (ITD). No response bias was induced by the task-irrelevant position change. In Experiment 2, subjects discriminated between 385 micros and 431 micros ITDs, and d' for this near-threshold position change significantly increased by a factor of 0.73 when accompanied by task-irrelevant pitch changes (6 Hz). In contrast to Experiment 1, task-irrelevant pitch changes induced a response criterion bias toward responding that the two stimuli differed. The collective results are indicative of facilitative interactions between "what" and "where" pathways. By demonstrating how these pathways may cooperate under impoverished listening conditions, our results bear implications for possible neuro-rehabilitation strategies. We discuss our results in terms of the dual-pathway model of auditory processing.

  3. Validation of the Acoustic Voice Quality Index in the Lithuanian Language.

    PubMed

    Uloza, Virgilijus; Petrauskas, Tadas; Padervinskis, Evaldas; Ulozaitė, Nora; Barsties, Ben; Maryn, Youri

    2017-03-01

    The aim of the present study was to validate the Acoustic Voice Quality Index in Lithuanian language (AVQI-LT) and investigate the feasibility and robustness of its diagnostic accuracy, differentiating normal and dysphonic voice. A total of 184 native Lithuanian subjects with normal voices (n = 46) and with various voice disorders (n = 138) were asked to read aloud the Lithuanian text and to sustain the vowel /a/. A sentence with 13 syllables and a 3-second midvowel portion of the sustained vowel were edited. Both speech tasks were concatenated, and perceptually rated for dysphonia severity by five voice clinicians. They rated the Grade (G) from the Grade Roughness Breathiness Asthenia Strain (GRBAS) protocol and the overall severity from the Consensus Auditory-perceptual Evaluation of Voice protocol with a visual analog scale (VAS). The average scores (G mean and VAS mean ) were taken as the perceptual dysphonia severity level for every voice sample. All concatenated voice samples were acoustically analyzed to receive an AVQI-LT score. Both auditory-perceptual judgment procedures showed sufficient strength of agreement between five raters. The results achieved significant and marked concurrent validity between both auditory-perceptual judgment procedures and AVQI-LT. The diagnostic accuracy of AVQI-LT showed for both auditory-perceptual judgment procedures comparable results with two different AVQI-LT thresholds. The AVQI-LT threshold of 2.97 for the G mean rating obtained reasonable sensitivity = 0.838 and excellent specificity = 0.937. For the VAS rating, an AVQI-LT threshold of 3.48 was determined with sensitivity = 0.840 and specificity = 0.922. The AVQI-LT is considered a valid and reliable tool for assessing the dysphonia severity level in Lithuanian-speaking population. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Enhanced perception of pitch changes in speech and music in early blind adults.

    PubMed

    Arnaud, Laureline; Gracco, Vincent; Ménard, Lucie

    2018-06-12

    It is well known that congenitally blind adults have enhanced auditory processing for some tasks. For instance, they show supra-normal capacity to perceive accelerated speech. However, only a few studies have investigated basic auditory processing in this population. In this study, we investigated if pitch processing enhancement in the blind is a domain-general or domain-specific phenomenon, and if pitch processing shares the same properties as in the sighted regarding how scores from different domains are associated. Fifteen congenitally blind adults and fifteen sighted adults participated in the study. We first created a set of personalized native and non-native vowel stimuli using an identification and rating task. Then, an adaptive discrimination paradigm was used to determine the frequency difference limen for pitch direction identification of speech (native and non-native vowels) and non-speech stimuli (musical instruments and pure tones). The results show that the blind participants had better discrimination thresholds than controls for native vowels, music stimuli, and pure tones. Whereas within the blind group, the discrimination thresholds were smaller for musical stimuli than speech stimuli, replicating previous findings in sighted participants, we did not find this effect in the current control group. Further analyses indicate that older sighted participants show higher thresholds for instrument sounds compared to speech sounds. This effect of age was not found in the blind group. Moreover, the scores across domains were not associated to the same extent in the blind as they were in the sighted. In conclusion, in addition to providing further evidence of compensatory auditory mechanisms in early blind individuals, our results point to differences in how auditory processing is modulated in this population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Relationship between auditory thresholds, central spontaneous activity and hair cell loss after acoustic trauma

    PubMed Central

    Mulders, W.H.A.M.; Ding, D.; Salvi, R.; Robertson, D.

    2011-01-01

    Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained. PMID:21491427

  6. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  7. Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus

    NASA Astrophysics Data System (ADS)

    Fullard, James H.; Ter Hofstede, Hannah M.; Ratcliffe, John M.; Pollack, Gerald S.; Brigidi, Gian S.; Tinghitella, Robin M.; Zuk, Marlene

    2010-01-01

    The auditory thresholds of the AN2 interneuron and the behavioural thresholds of the anti-bat flight-steering responses that this cell evokes are less sensitive in female Pacific field crickets that live where bats have never existed (Moorea) compared with individuals subjected to intense levels of bat predation (Australia). In contrast, the sensitivity of the auditory interneuron, ON1 which participates in the processing of both social signals and bat calls, and the thresholds for flight orientation to a model of the calling song of male crickets show few differences between the two populations. Genetic analyses confirm that the two populations are significantly distinct, and we conclude that the absence of bats has caused partial regression in the nervous control of a defensive behaviour in this insect. This study represents the first examination of natural evolutionary regression in the neural basis of a behaviour along a selection gradient within a single species.

  8. Independence between implicit and explicit processing as revealed by the Simon effect.

    PubMed

    Lo, Shih-Yu; Yeh, Su-Ling

    2011-09-01

    Studies showing human behavior influenced by subliminal stimuli mainly focus on implicit processing per se, and little is known about its interaction with explicit processing. We examined this by using the Simon effect, wherein a task-irrelevant spatial distracter interferes with lateralized response. Lo and Yeh (2008) found that the visual Simon effect, although it occurred when participants were aware of the visual distracters, did not occur with subliminal visual distracters. We used the same paradigm and examined whether subliminal and supra-threshold stimuli are processed independently by adding a supra-threshold auditory distracter to ascertain whether it would interact with the subliminal visual distracter. Results showed auditory Simon effect, but there was still no visual Simon effect, indicating that supra-threshold and subliminal stimuli are processed separately in independent streams. In contrast to the traditional view that implicit processing precedes explicit processing, our results suggest that they operate independently in a parallel fashion. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Severe diarrhea-dehydration in infancy permanently alters auditory function.

    PubMed

    Todd, N Wendell

    2012-02-01

    Of the myriad etiologies of sensorineural hearing impairment, metabolic stress is rarely considered. I posit that severe dehydration in conjunction with hypoxia, at least during infancy, prompts permanent changes in the cochlea. In a population-based prospective study of otitis media, children without otitis were found to have at age 4-8 years, worse auditory thresholds if as an infant had been hospitalized for diarrhea-dehydration. What is more, stapedius reflex thresholds tended to be lower in children who had been hospitalized for diarrhea-dehydration: that is, less acoustic energy for arousal or to be frightening. The hypothesis that the transient metabolic stress of dehydration with hypoxia prompts permanent sensorineural hearing impairment with reduced uncomfortable loudness thresholds, is both (1) consistent in an evolutionary sense with a subsequent survival advantage, and (2) subject to verification both by descriptive studies of children undergoing ECMO (ExtraCorporeal Membrane Oxygenation) or care for congenital diaphragmatic hernia, and by animal studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    PubMed

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  11. From Perception to Metacognition: Auditory and Olfactory Functions in Early Blind, Late Blind, and Sighted Individuals

    PubMed Central

    Cornell Kärnekull, Stina; Arshamian, Artin; Nilsson, Mats E.; Larsson, Maria

    2016-01-01

    Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15), late blind (n = 15), and sighted (n = 30) participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA) showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity. PMID:27729884

  12. The effect of phasic auditory alerting on visual perception.

    PubMed

    Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas

    2017-08-01

    Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cognitive abilities relate to self-reported hearing disability.

    PubMed

    Zekveld, Adriana A; George, Erwin L J; Houtgast, Tammo; Kramer, Sophia E

    2013-10-01

    In this explorative study, the authors investigated the relationship between auditory and cognitive abilities and self-reported hearing disability. Thirty-two adults with mild to moderate hearing loss completed the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1996) and performed the Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) test as well as tests of spatial working memory (SWM) and visual sustained attention. Regression analyses examined the predictive value of age, hearing thresholds (pure-tone averages [PTAs]), speech perception in noise (speech reception thresholds in noise [SRTNs]), and the cognitive tests for the 5 AIADH factors. Besides the variance explained by age, PTA, and SRTN, cognitive abilities were related to each hearing factor. The reported difficulties with sound detection and speech perception in quiet were less severe for participants with higher age, lower PTAs, and better TRTs. Fewer sound localization and speech perception in noise problems were reported by participants with better SRTNs and smaller SWM. Fewer sound discrimination difficulties were reported by subjects with better SRTNs and TRTs and smaller SWM. The results suggest a general role of the ability to read partly masked text in subjective hearing. Large working memory was associated with more reported hearing difficulties. This study shows that besides auditory variables and age, cognitive abilities are related to self-reported hearing disability.

  14. Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas).

    PubMed

    Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya

    2016-08-01

    Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).

  15. Transient threshold shift after gunshot noise exposure.

    PubMed

    Saedi, B; Ghasemi, M; Motiee, M; Mojtahed, M; Safavi, A

    2013-01-01

    Many people, such as soldiers, are routinely exposed to gunshot noise during target practice. It is suspected that this high-intensity noise may affect audition through repeated Transient Threshold Shifts (TTS); it can also mechanically alter auditory components such as waves. This study investigates the scope of gunshot noise from the AK-47 rifle (Kalashnikov) and the impact on the shooters' audition. Forty soldiers (80 ears) were recruited in this study. They were all young and being exposed to gunshot noise for the first time. Gunshot characteristics were measured before exposure. The soldiers underwent auditory evaluation with Pure Tone Audiometry (PTA) and Oto-Acoustic Emission (OAE) once before exposure and immediately (less than one hour) after exposure. The AK-47 gunshot noise pressure level varied between L(AIm) = 73.7 dBA to L(AIm) = 111.4 dBA. Fourteen participants had subclinical hearing impairment in their pre-exposure evaluation; this number increased to 16 after the exposure. Six months post-exposure and later, the number of cases with impairment had fallen to eight (improvement in 50%). Both pre- and post-exposure OAE results were within normal values, while PTA results indicated a significant threshold alteration only at 6 kHz. The results of this study confirm that exposure to gunshot noise with no ear protection can represent a significant hazard for auditory function, especially at higher frequencies.

  16. Tinnitus and Auditory Perception After a History of Noise Exposure: Relationship to Auditory Brainstem Response Measures.

    PubMed

    Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P

    2018-01-15

    To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.

  17. Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus.

    PubMed

    Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard

    2013-01-01

    High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Auditory Weighting Functions and TTS/PTS Exposure Functions for Marine Mammals Exposed to Underwater Noise

    DTIC Science & Technology

    2016-12-01

    weighting functions utilized the “M-weighting” functions at lower frequencies, where no TTS existed at that time . Since derivation of the Phase 2...resulting shapes of the weighting functions (left) and exposure functions (right). The arrows indicate the direction of change when the designated parameter...thresholds are in dB re 1 μPa ..................................... iv 1. Species group designations for Navy Phase 3 auditory weighting functions

  19. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries.

    PubMed

    Wang, Xi; Wang, Ye; Ding, Zhong-jia; Yue, Bo; Zhang, Peng-zhi; Chen, Xiao-dong; Chen, Xin; Chen, Jun; Chen, Fu-quan; Chen, Yang; Wang, Ren-feng; Mi, Wen-juan; Lin, Ying; Wang, Jie; Qiu, Jian-hua

    2014-08-22

    Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Comparison of hearing and voicing ranges in singing

    NASA Astrophysics Data System (ADS)

    Hunter, Eric J.; Titze, Ingo R.

    2003-04-01

    The spectral and dynamic ranges of the human voice of professional and nonprofessional vocalists were compared to the auditory hearing and feeling thresholds at a distance of one meter. In order to compare these, an analysis was done in true dB SPL, not just relative dB as is usually done in speech analysis. The methodology of converting the recorded acoustic signal to absolute pressure units was described. The human voice range of a professional vocalist appeared to match the dynamic range of the auditory system at some frequencies. In particular, it was demonstrated that professional vocalists were able to make use of the most sensitive part of the hearing thresholds (around 4 kHz) through the use of a learned vocal ring or singer's formant. [Work sponsored by NIDCD.

  1. Sustained Perceptual Deficits from Transient Sensory Deprivation

    PubMed Central

    Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms. PMID:26224865

  2. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  3. Two-Stage Processing of Sounds Explains Behavioral Performance Variations due to Changes in Stimulus Contrast and Selective Attention: An MEG Study

    PubMed Central

    Kauramäki, Jaakko; Jääskeläinen, Iiro P.; Hänninen, Jarno L.; Auranen, Toni; Nummenmaa, Aapo; Lampinen, Jouko; Sams, Mikko

    2012-01-01

    Selectively attending to task-relevant sounds whilst ignoring background noise is one of the most amazing feats performed by the human brain. Here, we studied the underlying neural mechanisms by recording magnetoencephalographic (MEG) responses of 14 healthy human subjects while they performed a near-threshold auditory discrimination task vs. a visual control task of similar difficulty. The auditory stimuli consisted of notch-filtered continuous noise masker sounds, and of 1020-Hz target tones occasionally () replacing 1000-Hz standard tones of 300-ms duration that were embedded at the center of the notches, the widths of which were parametrically varied. As a control for masker effects, tone-evoked responses were additionally recorded without masker sound. Selective attention to tones significantly increased the amplitude of the onset M100 response at 100 ms to the standard tones during presence of the masker sounds especially with notches narrower than the critical band. Further, attention modulated sustained response most clearly at 300–400 ms time range from sound onset, with narrower notches than in case of the M100, thus selectively reducing the masker-induced suppression of the tone-evoked response. Our results show evidence of a multiple-stage filtering mechanism of sensory input in the human auditory cortex: 1) one at early (100 ms) latencies bilaterally in posterior parts of the secondary auditory areas, and 2) adaptive filtering of attended sounds from task-irrelevant background masker at longer latency (300 ms) in more medial auditory cortical regions, predominantly in the left hemisphere, enhancing processing of near-threshold sounds. PMID:23071654

  4. Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording

    PubMed Central

    Kirby, Alana E.

    2010-01-01

    Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242

  5. Cochlear Implant Electrode Array From Partial to Full Insertion in Non-Human Primate Model.

    PubMed

    Manrique-Huarte, Raquel; Calavia, Diego; Gallego, Maria Antonia; Manrique, Manuel

    2018-04-01

    To determine the feasibility of progressive insertion (two sequential surgeries: partial to full insertion) of an electrode array and to compare functional outcomes. 8 normal-hearing animals (Macaca fascicularis (MF)) were included. A 14 contact electrode array, which is suitably sized for the MF cochlea was partially inserted (PI) in 16 ears. After 3 months of follow-up revision surgery the electrode was advanced to a full insertion (FI) in 8 ears. Radiological examination and auditory testing was performed monthly for 6 months. In order to compare the values a two way repeated measures ANOVA was used. A p-value below 0.05 was considered as statistically significant. IBM SPSS Statistics V20 was used. Surgical procedure was completed in all cases with no complications. Mean auditory threshold shift (ABR click tones) after 6 months follow-up is 19 dB and 27 dB for PI and FI group. For frequencies 4, 6, 8, 12, and 16 kHz in the FI group, tone burst auditory thresholds increased after the revision surgery showing no recovery thereafter. Mean threshold shift at 6 months of follow- up is 19.8 dB ranging from 2 to 36dB for PI group and 33.14dB ranging from 8 to 48dB for FI group. Statistical analysis yields no significant differences between groups. It is feasible to perform a partial insertion of an electrode array and progress on a second surgical time to a full insertion (up to 270º). Hearing preservation is feasible for both procedures. Note that a minimal threshold deterioration is depicted among full insertion group, especially among high frequencies, with no statistical differences.

  6. Lexical-Access Ability and Cognitive Predictors of Speech Recognition in Noise in Adult Cochlear Implant Users

    PubMed Central

    Smits, Cas; Merkus, Paul; Festen, Joost M.; Goverts, S. Theo

    2017-01-01

    Not all of the variance in speech-recognition performance of cochlear implant (CI) users can be explained by biographic and auditory factors. In normal-hearing listeners, linguistic and cognitive factors determine most of speech-in-noise performance. The current study explored specifically the influence of visually measured lexical-access ability compared with other cognitive factors on speech recognition of 24 postlingually deafened CI users. Speech-recognition performance was measured with monosyllables in quiet (consonant-vowel-consonant [CVC]), sentences-in-noise (SIN), and digit-triplets in noise (DIN). In addition to a composite variable of lexical-access ability (LA), measured with a lexical-decision test (LDT) and word-naming task, vocabulary size, working-memory capacity (Reading Span test [RSpan]), and a visual analogue of the SIN test (text reception threshold test) were measured. The DIN test was used to correct for auditory factors in SIN thresholds by taking the difference between SIN and DIN: SRTdiff. Correlation analyses revealed that duration of hearing loss (dHL) was related to SIN thresholds. Better working-memory capacity was related to SIN and SRTdiff scores. LDT reaction time was positively correlated with SRTdiff scores. No significant relationships were found for CVC or DIN scores with the predictor variables. Regression analyses showed that together with dHL, RSpan explained 55% of the variance in SIN thresholds. When controlling for auditory performance, LA, LDT, and RSpan separately explained, together with dHL, respectively 37%, 36%, and 46% of the variance in SRTdiff outcome. The results suggest that poor verbal working-memory capacity and to a lesser extent poor lexical-access ability limit speech-recognition ability in listeners with a CI. PMID:29205095

  7. [The influence of various acoustic stimuli upon the cumulative action potential (SAP) of the auditory nerves in guinea pigs (author's transl)].

    PubMed

    Hofmann, G; Kraak, W

    1976-08-31

    The impact of various acoustic stimuli upon the cumulative action potential of the auditory nerves in guinea pigs is investigated by means of the averaging method. It was found that the potential amplitude within the measuring range increases with the logarithm of the rising sonic pressure velocity. Unlike the evoked response audiometry (ERA), this potential seems unsuitable for furnishing information of the frequency-dependent threshold course.

  8. Is there a best side for cochlear implants in post-lingual patients?

    PubMed

    Amaral, Maria Stella Arantes do; Damico, Thiago A; Gonçales, Alina S; Reis, Ana C M B; Isaac, Myriam de Lima; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2017-07-29

    Cochlear Implant is a sensory prosthesis capable of restoring hearing in patients with severe or profound bilateral sensorineural hearing loss. To evaluate if there is a better side to be implanted in post-lingual patients. Retrospective longitudinal study. Participants were 40 subjects, of both sex, mean age of 47 years, with post-lingual hearing loss, users of unilateral cochlear implant for more than 12 months and less than 24 months, with asymmetric auditor reserve between the ears (difference of 10dBNA, In at least one of the frequencies with a response, between the ears), divided into two groups. Group A was composed of individuals with cochlear implant in the ear with better auditory reserve and Group B with auditory reserve lower in relation to the contralateral side. There was no statistical difference for the tonal auditory threshold before and after cochlear implant. A better speech perception in pre-cochlear implant tests was present in B (20%), but the final results are similar in both groups. The cochlear implant in the ear with the worst auditory residue favors a bimodal hearing, which would allow the binaural summation, without compromising the improvement of the audiometric threshold and the speech perception. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Analysis of subtle auditory dysfunctions in young normal-hearing subjects affected by Williams syndrome.

    PubMed

    Paglialonga, Alessia; Barozzi, Stefania; Brambilla, Daniele; Soi, Daniela; Cesarani, Antonio; Spreafico, Emanuela; Tognola, Gabriella

    2014-11-01

    To assess if young subjects affected by Williams syndrome (WS) with normal middle ear functionality and normal hearing thresholds might have subtle auditory dysfunctions that could be detected by using clinically available measurements. Otoscopy, acoustic reflexes, tympanometry, pure-tone audiometry, and distortion product otoacoustic emissions (DPOAEs) were measured in a group of 13 WS subjects and in 13 age-matched, typically developing control subjects. Participants were required to have normal otoscopy, A-type tympanogram, normal acoustic reflex thresholds, and pure-tone thresholds≤15 dB HL at 0.5, 1, and 2 kHz bilaterally. To limit the possible influence of middle ear status on DPOAE recordings, we analyzed only data from ears with pure-tone thresholds≤15 dB HL across all octave frequencies in the range 0.25-8 kHz, middle ear pressure (MEP)>-50 daPa, static compliance (SC) in the range 0.3-1.2 cm3, and ear canal volume (ECV) in the range 0.2-2 ml, and we performed analysis of covariance to remove the possible effects of middle ear variables on DPOAEs. No differences in mean hearing thresholds, SC, ECV, and gradient were observed between the two groups, whereas significantly lower MEP values were found in WS subjects as well as significantly decreased DPOAEs up to 3.2 kHz after adjusting for differences in middle ear status. Results revealed that WS subjects with normal hearing thresholds (≤15 dB HL) and normal middle ear functionality (MEP>-50 daPa, SC in the range 0.3-1.2 cm3, ECV in the range 0.2-2 ml) might have subtle auditory dysfunctions that can be detected by using clinically available methods. Overall, this study points out the importance of using otoacoustic emissions as a complement to routine audiological examinations in individuals with WS to detect, before the onset of hearing loss, possible subtle auditory dysfunctions so that patients can be early identified, better monitored, and promptly treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex

    PubMed Central

    Gilbert, Heather J.; Krumbholz, Katrin; Palmer, Alan R.

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  11. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  12. Evaluation of high-resolution MRI for preoperative screening for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Madzivire, Mambidzeni; Camp, Jon J.; Lane, John; Witte, Robert J.; Robb, Richard A.

    2002-05-01

    The success of a cochlear implant is dependent on a functioning auditory nerve. An accurate noninvasive method for screening cochlear implant patients to help determine viability of the auditory nerve would allow physicians to better predict the success of the operation. In this study we measured the size of the auditory nerve relative to the size of the juxtaposed facial nerve and correlated these measurements with audiologic test results. The study involved 15 patients, and three normal volunteers. Noninvasive high-resolution bilateral MRI images were acquired from both 1.5T and 3T scanners. The images were reformatted to obtain an anatomically referenced oblique plane perpendicular to the auditory nerve. The cross- sectional areas of the auditory and facial nerves were determined in this plane. Assessment of the data is encouraging. The ratios of auditory to facial nerve size in the control subjects are close to the expected value of 1.0. Patient data ratios range from 0.73 to 1.3, with numbers significantly less than 1.0 suggesting auditory nerve atrophy. The acoustic nerve area correlated to audiologic test findings, particularly (R2equals0.68) to the count of words understood from a list of 100 words. These preliminary analyses suggest that a threshold of size may be determined to differentiate functional from nonfunctional auditory nerves.

  13. Theory of Auditory Thresholds in Primates

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  14. Normative behavioral thresholds for short tone-bursts.

    PubMed

    Beattie, R C; Rochverger, I

    2001-10-01

    Although tone-bursts have been commonly used in auditory brainstem response (ABR) evaluations for many years, national standards describing normal calibration values have not been established. This study was designed to gather normative threshold data to establish a physical reference for tone-burst stimuli that can be reproduced across clinics and laboratories. More specifically, we obtained norms for 3-msec tone-bursts presented at two repetition rates (9.3/sec and 39/sec), two gating functions (Trapezoid and Blackman), and four frequencies (500, 1000, 2000, and 4000 Hz). Our results are specified using three physical references: dB peak sound pressure level, dB peak-to-peak equivalent sound pressure level, and dB SPL (fast meter response, rate = 50 stimuli/sec). These data are offered for consideration when calibrating ABR equipment. The 39/sec stimulus rate yielded tone-burst thresholds that were approximately 3 dB lower than the 9.3/sec rate. The improvement in threshold with increasing stimulus rate may reflect the ability of the auditory system to integrate energy that occurs within a time interval of 200 to 500 msec (temporal integration). The Trapezoid gating function yielded thresholds that averaged 1.4 dB lower than the Blackman function. Although these differences are small and of little clinical importance, the cumulative effects of several instrument and/or procedural variables may yield clinically important differences.

  15. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    USGS Publications Warehouse

    Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.

    2005-01-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  16. Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)

    NASA Astrophysics Data System (ADS)

    Brittan-Powell, Elizabeth F.; Dooling, Robert J.

    2004-06-01

    Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.

  17. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  18. Influence of sound source location on the behavior and physiology of the precedence effect in cats.

    PubMed

    Dent, Micheal L; Tollin, Daniel J; Yin, Tom C T

    2009-08-01

    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from approximately 0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space.

  19. Influence of Sound Source Location on the Behavior and Physiology of the Precedence Effect in Cats

    PubMed Central

    Dent, Micheal L.; Tollin, Daniel J.; Yin, Tom C. T.

    2009-01-01

    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from ∼0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space. PMID:19439668

  20. Auditory abilities of speakers who persisted, or recovered, from stuttering

    PubMed Central

    Howell, Peter; Davis, Stephen; Williams, Sheila M.

    2006-01-01

    Objective The purpose of this study was to see whether participants who persist in their stutter have poorer sensitivity in a backward masking task compared to those participants who recover from their stutter. Design The auditory sensitivity of 30 children who stutter was tested on absolute threshold, simultaneous masking, backward masking with a broadband and with a notched noise masker. The participants had been seen and diagnosed as stuttering at least 1 year before their 12th birthday. The participants were assessed again at age 12 plus to establish whether their stutter had persisted or recovered. Persistence or recovery was based on participant's, parent's and researcher's assessment and Riley's [Riley, G. D. (1994). Stuttering severity instrument for children and adults (3rd ed.). Austin, TX: Pro-Ed.] Stuttering Severity Instrument-3. Based on this assessment, 12 speakers had persisted and 18 had recovered from stuttering. Results Thresholds differed significantly between persistent and recovered groups for the broadband backward-masked stimulus (thresholds being higher for the persistent group). Conclusions Backward masking performance at teenage is one factor that distinguishes speakers who persist in their stutter from those who recover.

 Education objectives: Readers of this article should: (1) explain why auditory factors have been implicated in stuttering; (2) summarise the work that has examined whether peripheral, and/or central, hearing are problems in stuttering; (3) explain how the hearing ability of persistent and recovered stutterers may differ; (4) discuss how hearing disorders have been implicated in other language disorders. PMID:16920188

  1. Application of Data Mining and Knowledge Discovery Techniques to Enhance Binary Target Detection and Decision-Making for Compromised Visual Images

    DTIC Science & Technology

    2004-11-01

    affords exciting opportunities in target detection. The input signal may be a sum of sine waves, it could be an auditory signal, or possibly a visual...rendering of a scene. Since image processing is an area in which the original data are stationary in some sense ( auditory signals suffer from...11 Example 1 of SR - Identification of a Subliminal Signal below a Threshold .......................... 13 Example 2 of SR

  2. Auditory Evoked Potentials for the Evaluation of Hearing Sensitivity in Navy Dolphins. Modification P00002: Assessment of Hearing Sensitivity in Adult Male Elephant Seals

    DTIC Science & Technology

    2006-12-30

    hearing in the potential and underwater behavioral hearing thresholds in four bottlenose beluga Delphinapterus leucas ," Dokl. Akad. Nauk SSSR 294...313, "Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and 238-241. the white whale ( Delphinapterus leucas ) derived with...Rickards, F. W., Cohen, L. T., De Vidi, S., and Clark, G. M. of a beluga whale, Delphinapterus leucas ," Aquat. Mamm. 26, 212-228. (1995). "The

  3. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  4. Auditory velocity discrimination in the horizontal plane at very high velocities.

    PubMed

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of hearing loss on semantic access by auditory and audiovisual speech in children.

    PubMed

    Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F; Abdi, Hervé

    2013-01-01

    This research studied whether the mode of input (auditory versus audiovisual) influenced semantic access by speech in children with sensorineural hearing impairment (HI). Participants, 31 children with HI and 62 children with normal hearing (NH), were tested with the authors' new multimodal picture word task. Children were instructed to name pictures displayed on a monitor and ignore auditory or audiovisual speech distractors. The semantic content of the distractors was varied to be related versus unrelated to the pictures (e.g., picture distractor of dog-bear versus dog-cheese, respectively). In children with NH, picture-naming times were slower in the presence of semantically related distractors. This slowing, called semantic interference, is attributed to the meaning-related picture-distractor entries competing for selection and control of the response (the lexical selection by competition hypothesis). Recently, a modification of the lexical selection by competition hypothesis, called the competition threshold (CT) hypothesis, proposed that (1) the competition between the picture-distractor entries is determined by a threshold, and (2) distractors with experimentally reduced fidelity cannot reach the CT. Thus, semantically related distractors with reduced fidelity do not produce the normal interference effect, but instead no effect or semantic facilitation (faster picture naming times for semantically related versus unrelated distractors). Facilitation occurs because the activation level of the semantically related distractor with reduced fidelity (1) is not sufficient to exceed the CT and produce interference but (2) is sufficient to activate its concept, which then strengthens the activation of the picture and facilitates naming. This research investigated whether the proposals of the CT hypothesis generalize to the auditory domain, to the natural degradation of speech due to HI, and to participants who are children. Our multimodal picture word task allowed us to (1) quantify picture naming results in the presence of auditory speech distractors and (2) probe whether the addition of visual speech enriched the fidelity of the auditory input sufficiently to influence results. In the HI group, the auditory distractors produced no effect or a facilitative effect, in agreement with proposals of the CT hypothesis. In contrast, the audiovisual distractors produced the normal semantic interference effect. Results in the HI versus NH groups differed significantly for the auditory mode, but not for the audiovisual mode. This research indicates that the lower fidelity auditory speech associated with HI affects the normalcy of semantic access by children. Further, adding visual speech enriches the lower fidelity auditory input sufficiently to produce the semantic interference effect typical of children with NH.

  6. Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.

    PubMed

    Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa

    2016-07-01

    The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.

  7. Auditory Effects of Exposure to Noise and Solvents: A Comparative Study

    PubMed Central

    Lobato, Diolen Conceição Barros; Lacerda, Adriana Bender Moreira De; Gonçalves, Cláudia Giglio De Oliveira; Coifman, Herton

    2013-01-01

    Introduction Industry workers are exposed to different environmental risk agents that, when combined, may potentiate risks to hearing. Objective To evaluate the effects of the combined exposure to noise and solvents on hearing in workers. Methods A transversal retrospective cohort study was performed through documentary analysis of an industry. The sample (n = 198) was divided into four groups: the noise group (NG), exposed only to noise; the noise and solvents group (NSG), exposed to noise and solvents; the noise control group and noise and solvents control group (CNS), no exposure. Results The NG showed 16.66% of cases suggestive of bilateral noise-induced hearing loss and NSG showed 5.26%. The NG and NSG had worse thresholds than their respective control groups. Females were less susceptible to noise than males; however, when simultaneously exposed to solvents, hearing was affected in a similar way, resulting in significant differences (p < 0.05). The 40- to 49-year-old age group was significantly worse (p < 0.05) in the auditory thresholds in the NSG compared with the CNS. Conclusion The results observed in this study indicate that simultaneous exposure to noise and solvents can damage the peripheral auditory system. PMID:25992079

  8. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  9. Auditory detection of non-speech and speech stimuli in noise: Effects of listeners' native language background.

    PubMed

    Liu, Chang; Jin, Su-Hyun

    2015-11-01

    This study investigated whether native listeners processed speech differently from non-native listeners in a speech detection task. Detection thresholds of Mandarin Chinese and Korean vowels and non-speech sounds in noise, frequency selectivity, and the nativeness of Mandarin Chinese and Korean vowels were measured for Mandarin Chinese- and Korean-native listeners. The two groups of listeners exhibited similar non-speech sound detection and frequency selectivity; however, the Korean listeners had better detection thresholds of Korean vowels than Chinese listeners, while the Chinese listeners performed no better at Chinese vowel detection than the Korean listeners. Moreover, thresholds predicted from an auditory model highly correlated with behavioral thresholds of the two groups of listeners, suggesting that detection of speech sounds not only depended on listeners' frequency selectivity, but also might be affected by their native language experience. Listeners evaluated their native vowels with higher nativeness scores than non-native listeners. Native listeners may have advantages over non-native listeners when processing speech sounds in noise, even without the required phonetic processing; however, such native speech advantages might be offset by Chinese listeners' lower sensitivity to vowel sounds, a characteristic possibly resulting from their sparse vowel system and their greater cognitive and attentional demands for vowel processing.

  10. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials

    PubMed Central

    Piniak, Wendy E. D.; Mann, David A.; Harms, Craig A.; Jones, T. Todd; Eckert, Scott A.

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment. PMID:27741231

  11. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    PubMed

    Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  12. Gap Detection and Temporal Modulation Transfer Function as Behavioral Estimates of Auditory Temporal Acuity Using Band-Limited Stimuli in Young and Older Adults

    PubMed Central

    Shen, Yi

    2015-01-01

    Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722

  13. Auditory Function in Rhesus Monkeys: Effects of Aging and Caloric Restriction in the Wisconsin Monkeys Five Years Later

    PubMed Central

    Fowler, Cynthia G.; Chiasson, Kirstin Beach; Leslie, Tami Hanson; Thomas, Denise; Beasley, T. Mark; Kemnitz, Joseph W.; Weindruch, Richard

    2010-01-01

    Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL. Subjects were from the pool of 55 rhesus monkeys aged 15–28 years who had been in the Wisconsin study on CR and aging for 8–13.5 years. Distortion product otoacoustic emissions (DPOAE) with f2 frequencies from 2211–8837 Hz and auditory brainstem response (ABR) thresholds from clicks and 8, 16, and 32 kHz tone bursts were obtained. DPOAE levels declined linearly at approximately 1 dB/year, but that rate doubled for the highest frequencies in the oldest monkeys. There were no interactions for diet condition or sex. ABR thresholds to clicks and tone bursts showed increases with aging. Borderline significance was shown for diet in the thresholds at 8 kHz stimuli, with monkeys on caloric restriction having lower thresholds. Because the rhesus monkeys have a maximum longevity of 40 years, the full benefits of CR may not yet be realized. PMID:20079820

  14. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.

    PubMed

    Hossain, Mohammad E; Jassim, Wissam A; Zilany, Muhammad S A

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.

  15. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram

    PubMed Central

    Hossain, Mohammad E.; Jassim, Wissam A.; Zilany, Muhammad S. A.

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants. PMID:26967160

  16. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage.

    PubMed

    De Paolis, Annalisa; Bikson, Marom; Nelson, Jeremy T; de Ru, J Alexander; Packer, Mark; Cardoso, Luis

    2017-06-01

    Hearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures. In this paper, we provide a review of the strategies used to model the auditory function of the external, middle, inner ear, and the micromechanics of the organ of Corti, along with some of the key results obtained from such modeling efforts. Recent analytical and numerical approaches have incorporated the nonlinear behavior of some parameters and structures into their models. Few models of the integrated hearing system exist; in particular, we describe the evolution of the Auditory Hazard Assessment Algorithm for Human (AHAAH) model, used for prediction of hearing damage due to high intensity sound pressure. Unlike the AHAAH model, 3D finite element models of the entire hearing system are not able yet to predict auditory risk and threshold shifts. It is expected that both AHAAH and FE models will evolve towards a more accurate assessment of threshold shifts and hearing loss under a variety of stimuli conditions and pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The effects of postnatal phthalate exposure on the development of auditory temporal processing in rats.

    PubMed

    Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung

    2017-06-01

    The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    PubMed Central

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  19. Auditory effects of noise on air-crew personnel.

    DOT National Transportation Integrated Search

    1972-11-01

    Hearing-threshold tests were made on flight personnel of several sorts, including aerial-application pilots, flight instructors, private pilots, stewardesses, and FAA flight inspectors. Excluding those people whose flight experience is of short durat...

  20. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.

  1. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance

    PubMed Central

    Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189

  2. Comparison between ABR with click and narrow band chirp stimuli in children.

    PubMed

    Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria

    2014-08-01

    Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Prolonged noise exposure-induced auditory threshold shifts in rats

    PubMed Central

    Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard

    2014-01-01

    Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503

  4. Brainstem auditory evoked potential wave V latency-intensity function in normal Dalmatian and Beagle puppies.

    PubMed

    Poncelet, L; Coppens, A; Deltenre, P

    2000-01-01

    This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.

  5. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons

    PubMed Central

    Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  6. Hearing, Auditory Processing, and Language Skills of Male Youth Offenders and Remandees in Youth Justice Residences in New Zealand.

    PubMed

    Lount, Sarah A; Purdy, Suzanne C; Hand, Linda

    2017-01-01

    International evidence suggests youth offenders have greater difficulties with oral language than their nonoffending peers. This study examined the hearing, auditory processing, and language skills of male youth offenders and remandees (YORs) in New Zealand. Thirty-three male YORs, aged 14-17 years, were recruited from 2 youth justice residences, plus 39 similarly aged male students from local schools for comparison. Testing comprised tympanometry, self-reported hearing, pure-tone audiometry, 4 auditory processing tests, 2 standardized language tests, and a nonverbal intelligence test. Twenty-one (64%) of the YORs were identified as language impaired (LI), compared with 4 (10%) of the controls. Performance on all language measures was significantly worse in the YOR group, as were their hearing thresholds. Nine (27%) of the YOR group versus 7 (18%) of the control group fulfilled criteria for auditory processing disorder. Only 1 YOR versus 5 controls had an auditory processing disorder without LI. Language was an area of significant difficulty for YORs. Difficulties with auditory processing were more likely to be accompanied by LI in this group, compared with the controls. Provision of speech-language therapy services and awareness of auditory and language difficulties should be addressed in youth justice systems.

  7. AUDITORY ASSOCIATIVE MEMORY AND REPRESENTATIONAL PLASTICITY IN THE PRIMARY AUDITORY CORTEX

    PubMed Central

    Weinberger, Norman M.

    2009-01-01

    Historically, the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both for the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form, function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task-dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. PMID:17344002

  8. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  9. An Overview of Auralization and Psychoacoustics

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    This viewgraph presentation provides information on a study the goal of which was to determine the auditory threshold for speech reverberation using a specific room model. Procedures and hardware used are detailed as are the participants in the study.

  10. Effect of subliminal visual material on an auditory signal detection task.

    PubMed

    Moroney, E; Bross, M

    1984-02-01

    An experiment assessed the effect of subliminally embedded, visual material on an auditory detection task. 22 women and 19 men were presented tachistoscopically with words designated as "emotional" or "neutral" on the basis of prior GSRs and a Word Rating List under four conditions: (a) Unembedded Neutral, (b) Embedded Neutral, (c) Unembedded Emotional, and (d) Embedded Emotional. On each trial subjects made forced choices concerning the presence or absence of an auditory tone (1000 Hz) at threshold level; hits and false alarm rates were used to compute non-parametric indices for sensitivity (A') and response bias (B"). While over-all analyses of variance yielded no significant differences, further examination of the data suggests the presence of subliminally "receptive" and "non-receptive" subpopulations.

  11. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  12. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy.

    PubMed

    Riga, Maria G; Chelis, Leonidas; Kakolyris, Stylianos; Papadopoulos, Stergios; Stathakidou, Sofia; Chamalidou, Eleni; Xenidis, Nikolaos; Amarantidis, Kyriakos; Dimopoulos, Prokopios; Danielides, Vasilios

    2013-02-01

    Ototoxicity is a common and irreversible adverse effect of cisplatin treatment with great impact on the patients' quality of life. N-acetylcysteine is a low-molecular-weight agent which has shown substantial otoprotective activity. The role of transtympanic infusions of N-acetylcysteine was examined in a cohort of patients treated with cisplatin-based regimens. Twenty cisplatin-treated patients were subjected, under local anesthesia, to transtympanic N-acetylcysteine (10%) infusions in 1 ear, during the hydration procedure preceding intravenous effusion of cisplatin. The contralateral ear was used as control. The number of transtympanic infusions was respective to the number of administered cycles. Hearing acuity was evaluated before each cycle with pure tone audiometry by an audiologist blinded to the treated ear. A total of 84 transtympanic infusions were performed. In treated ears, no significant changes in auditory thresholds were recorded. In the control ears cisplatin induced a significant decrease of auditory thresholds at the 8000 Hz frequency band (P=0.008). At the same frequency (8000 Hz), the changes in auditory thresholds were significantly larger for the control ears than the treated ones (P=0.005). An acute pain starting shortly after the injection and lasting for a few minutes seemed to be the only significant adverse effect. Transtympanic injections of N-acetylcysteine seem to be a feasible and effective otoprotective strategy for the prevention of cisplatin-induced ototoxicity. Additional studies are required to further clarify the efficiency of this treatment and determine the optimal dosage and protocol.

  13. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.

    PubMed

    Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal

    2007-02-01

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.

  14. A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements.

    PubMed

    Heil, Peter; Matysiak, Artur; Neubauer, Heinrich

    2017-09-01

    Thresholds for detecting sounds in quiet decrease with increasing sound duration in every species studied. The neural mechanisms underlying this trade-off, often referred to as temporal integration, are not fully understood. Here, we probe the human auditory system with a large set of tone stimuli differing in duration, shape of the temporal amplitude envelope, duration of silent gaps between bursts, and frequency. Duration was varied by varying the plateau duration of plateau-burst (PB) stimuli, the duration of the onsets and offsets of onset-offset (OO) stimuli, and the number of identical bursts of multiple-burst (MB) stimuli. Absolute thresholds for a large number of ears (>230) were measured using a 3-interval-3-alternative forced choice (3I-3AFC) procedure. Thresholds decreased with increasing sound duration in a manner that depended on the temporal envelope. Most commonly, thresholds for MB stimuli were highest followed by thresholds for OO and PB stimuli of corresponding durations. Differences in the thresholds for MB and OO stimuli and in the thresholds for MB and PB stimuli, however, varied widely across ears, were negative in some ears, and were tightly correlated. We show that the variation and correlation of MB-OO and MB-PB threshold differences are linked to threshold microstructure, which affects the relative detectability of the sidebands of the MB stimuli and affects estimates of the bandwidth of auditory filters. We also found that thresholds for MB stimuli increased with increasing duration of the silent gaps between bursts. We propose a new model and show that it accurately accounts for our results and does so considerably better than a leaky-integrator-of-intensity model and a probabilistic model proposed by others. Our model is based on the assumption that sensory events are generated by a Poisson point process with a low rate in the absence of stimulation and higher, time-varying rates in the presence of stimulation. A subject in a 3I-3AFC task is assumed to choose the interval in which the greatest number of events occurred or randomly chooses among intervals which are tied for the greatest number of events. The subject is further assumed to count events over the duration of an evaluation interval that has the same timing and duration as the expected stimulus. The increase in the rate of the events caused by stimulation is proportional to the time-varying amplitude envelope of the bandpass-filtered signal raised to an exponent. We find the exponent to be about 3, consistent with our previous studies. This challenges models that are based on the assumption of the integration of a neural response that is directly proportional to the stimulus amplitude or proportional to its square (i.e., proportional to the stimulus intensity or power). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  16. Sleep and Performance Research Center

    DTIC Science & Technology

    2013-05-01

    saturation thresholds under high intensity auditory stimulation during wake. Neuroscience 227:191-200 11 Shevrin,, H., Panksepp, J., Brakel...L.L.A.W. & Snodgrass, M. (2012). Subliminal affect valence words change conscious mood potency but not valence: Is this evidence for unconscious

  17. Cigarette smoking causes hearing impairment among Bangladeshi population.

    PubMed

    Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim

    2015-01-01

    Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63 ± 2.10, 8.56±5.75, 21.06 ± 11.06, 40.79 ± 20.36 decibel (dB), respectively and that of the smokers were 7 ± 3.8, 13.27 ± 8.4, 30.66 ± 12.50 and 56.88 ± 21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16 ± 19.87 dB) at 12 kHz frequency compared with that (41.52 ± 19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies.

  18. Cigarette Smoking Causes Hearing Impairment among Bangladeshi Population

    PubMed Central

    Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim

    2015-01-01

    Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63±2.10, 8.56±5.75, 21.06±11.06, 40.79±20.36 decibel (dB), respectively and that of the smokers were 7±3.8, 13.27±8.4, 30.66±12.50 and 56.88±21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16±19.87 dB) at 12 kHz frequency compared with that (41.52±19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies. PMID:25781179

  19. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Audiological and electrophysiological alterations in HIV-infected individuals subjected or not to antiretroviral therapy.

    PubMed

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio

    2017-08-02

    The Human Immunodeficiency Virus (HIV) and infections related to it can affect multiple sites in the hearing system. The use of High-Activity Anti-Retroviral Therapy (HAART) can cause side effects such as ototoxicity. Thus, no consistent patterns of hearing impairment in adults with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome have been established, and the problems that affect the hearing system of this population warrant further research. This study aimed to compare the audiological and electrophysiological data of Human Immunodeficiency Virus-positive patients with and without Acquired Immune Deficiency Syndrome, who were receiving High-Activity Anti-Retroviral Therapy, to healthy individuals. It was a cross-sectional study conducted with 71 subjects (30-48 years old), divided into groups: Research Group I: 16 Human Immunodeficiency Virus-positive individuals without Acquired Immunodeficiency Syndrome (not receiving antiretroviral treatment); Research Group II: 25 Human Immunodeficiency Virus-positive individuals with Acquired Immunodeficiency Syndrome (receiving antiretroviral treatment); Control Group: 30 healthy subjects. All individuals were tested by pure-tone air conduction thresholds at 0.25-8kHz, extended high frequencies at 9-20kHz, electrophysiological tests (Auditory Brainstem Response - ABR, Middle Latency Responses - MLR, Cognitive Potential - P300). Research Group I and Research Group II had higher hearing thresholds in both conventional and high frequency audiometry when compared to the control group, prolonged latency of waves I, III, V and interpeak I-V in Auditory Brainstem Response and prolonged latency of P300 Cognitive Potential. Regarding Middle Latency Responses, there was a decrease in the amplitude of the Pa wave of Research Group II compared to the Research Group I. Both groups with Human Immunodeficiency Virus had higher hearing thresholds when compared to healthy individuals (group exposed to antiretroviral treatment showed the worst hearing threshold) and seemed to have lower neuroelectric transmission speed along the auditory pathway in the brainstem, subcortical and cortical regions. Copyright © 2017. Published by Elsevier Editora Ltda.

  1. Assessing Auditory Processing Deficits in Tinnitus and Hearing Impaired Patients with the Auditory Behavior Questionnaire

    PubMed Central

    Diges, Isabel; Simón, Francisco; Cobo, Pedro

    2017-01-01

    Background and Purpose: Auditory processing disorders (APD), tinnitus and hearing loss (HL) are typical issues reported by patients in audiologic clinics. These auditory impairments can be concomitant or mutually excluding. APD are not necessarily accompanied by significant HL, whereas many adults exhibit peripheral HL and typical cognitive deficits often associated with APD. Since HL, tinnitus and APD affects to several parts of the ascending auditory pathway from the periphery to the auditory cortex, there could be some interrelationship between them. For instance, tinnitus has been reported to degrade the auditory localization capacity. Tinnitus is believed to be triggered by deafferentation of normal peripheral input to the central auditory system. This peripheral deficit can be accompanied by HL or not, since a type of permanent cochlear damage (thus deafferentation) without an elevation of hearing thresholds might persist. Therefore, a combined study of APD, tinnitus and HL on the same cohort of patients can be audiologically relevant and worthy. Methods: Statistical analysis is applied to a cohort of 305 patients attending an audiology clinic in Madrid (Spain). This group of patients is first categorized in four subgroups, namely, HLTG (with tinnitus and HL), NHLTG (with tinnitus and without HL), HLNTG (with HL but no tinnitus), and NHLNTG (neither tinnitus nor HL). The statistical variables include Age, Average Auditory Threshold (ATT), for assessing HL, Tinnitus Handicap Inventory (THI), for measuring tinnitus, and a new 25-item Auditory Behavior Questionnaire (ABQ), for scoring APD. Factor analysis is applied to arrange these items into 4 subscales. The internal consistency reliability of this ABQ is confirmed by calculating Cronbach's coefficients α. The test-retest reliability is assessed by the intraclass correlation coefficients, ICC. Statistical techniques applied to the data set include descriptive analysis of variables and Spearman rank correlations (ρ) between them. Results: Overall reliability of ABQ is confirmed by an α value of 0.89 and by an ICC of 0.91. Regarding the internal consistency reliability, the four subscales prove a fairly good consistency with α coefficients above 0.7. Average values of statistical variables show significantly lower age of patients with tinnitus and no HL, which can provide a cue of noise overexposure of this segment of population. These younger patients show also decreased ABQ and similar THI in comparison with patients in the other subgroups. A strong correlation (ρ = 0.63) was found between AAT and Age for the HLNTG subgroup. For the HLTG subgroup, a moderate correlation (ρ = 0.44) was found between ABQ and THI. Conclusion: The utilized questionnaire (ABQ), together with AAT and THI, can help to study comorbid hearing impairments in patients regularly attending an audiological clinic. PMID:28428741

  2. Auditory steady-state responses to MM and exponential envelope AM(2)/FM stimuli in normal-hearing adults.

    PubMed

    D'haenens, Wendy; Dhooge, Ingeborg; De Vel, Eddy; Maes, Leen; Bockstael, Annelies; Vinck, Bart M

    2007-08-01

    The present study utilized a commercially available multiple auditory steady-state response (ASSR) system to test normal hearing adults (n=55). The primary objective was to evaluate the impact of the mixed modulation (MM) and the novel proposed exponential AM(2)/FM stimuli on the signal-to-noise ratio (SNR) and threshold estimation accuracy, through a within-subject comparison. The second aim was to establish a normative database for both stimulus types. The results demonstrated that the AM(2)/FM and MM stimulus had a similar effect on the SNR, whereas the ASSR threshold results revealed that the AM(2)/FM produced better thresholds than the MM stimulus for the 500, 1000, and 4000 Hz carrier frequency. The mean difference scores to tones of 500, 1000, 2000, and 4000 Hz were for the MM stimulus: 20+/-12, 14+/-9, 10+/-8, and 12+/-8 dB; and for the AM(2)/FM stimulus: 18+/-13, 12+/-8, 11+/-8, and 10+/-8 dB, respectively. The current research confirms that the AM(2)/FM stimulus can be used efficiently to test normal hearing adults.

  3. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.

    PubMed

    Wang, Xin; Jen, Philip H-S; Wu, Fei-Jian; Chen, Qi-Cai

    2007-09-05

    In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm. For most IC neurons, probe-elicited response was decreased by a weak white noise that was presented at a specific gap (i.e. time window). When presented within this time window, weak noise masking sharpened the frequency tuning curve and increased the minimum threshold of IC neurons. The degree of weak noise masking of these two measurements increased with noise duration. Sharpening of the frequency tuning curve and increasing of the minimum threshold of IC neurons during weak noise masking were mostly mediated through GABAergic inhibition. In addition, sharpening of frequency tuning curve by the weak noise masker was more effective at the high than at low frequency limb. These data indicate that in the real world the ambient noise may improve frequency sensitivity of IC neurons through GABAergic inhibition while inevitably decrease the frequency response range and sensitivity of IC neurons.

  4. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  5. Comparative and developmental patterns of amphibious auditory function in salamanders.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2016-12-01

    Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.

  6. Effect of 24 hours of sleep deprivation on auditory and linguistic perception: a comparison among young controls, sleep-deprived participants, dyslexic readers, and aging adults.

    PubMed

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-06-01

    To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Fifty-five sleep-deprived young adults were compared with 29 aging adults (older than 60 years) and with 18 young controls on auditory temporal order judgment (TOJ) and on speech perception tasks (Experiment 1). The sleep deprived were also compared with 51 dyslexic readers and with the young controls on TOJ and phonological awareness tasks (One-Minute Test for Pseudowords, Phoneme Deletion, Pig Latin, and Spoonerism; Experiment 2). Sleep deprivation resulted in longer TOJ thresholds, poorer speech perception, and poorer nonword reading compared with controls. The TOJ thresholds of the sleep deprived were comparable to those of the aging adults, but their pattern of speech performance differed. They also performed better on TOJ and phonological awareness than dyslexic readers. A variety of linguistic skills are affected by sleep deprivation. The comparison of sleep-deprived individuals with other groups with known difficulties in these linguistic skills might suggest that different groups exhibit common difficulties.

  7. New perspectives on the auditory cortex: learning and memory.

    PubMed

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  8. Developmental hearing loss impedes auditory task learning and performance in gerbils

    PubMed Central

    von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. PMID:27746215

  9. Assessment of cortical auditory evoked potentials in children with specific language impairment.

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Pilka, Adam; Skarżyński, Henryk

    2018-02-28

    The proper course of speech development heavily influences the cognitive and personal development of children. It is a condition for achieving preschool and school successes - it facilitates socializing and expressing feelings and needs. Impairment of language and its development in children represents a major diagnostic and therapeutic challenge for physicians and therapists. Early diagnosis of coexisting deficits and starting the therapy influence the therapeutic success. One of the basic diagnostic tests for children suffering from specific language impairment (SLI) is audiometry, thus far referred to as a hearing test. Auditory processing is just as important as a proper hearing threshold. Therefore, diagnosis of central auditory disorder may be a valuable supplementation of diagnosis of language impairment. Early diagnosis and implementation of appropriate treatment may contribute to an effective language therapy.

  10. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  11. Characterization of Hearing Thresholds from 500 to 16,000 Hz in Dentists: A Comparative Study

    PubMed Central

    Gonçalves, Claudia Giglio de Oliveira; Santos, Luciana; Lobato, Diolen; Ribas, Angela; Lacerda, Adriana Bender Moreira; Marques, Jair

    2014-01-01

    Introduction High-level noise exposure in dentists' workplaces may cause damages to the auditory systems. High-frequency audiometry is an important tool in the investigation in the early diagnosis of hearing loss. Objectives To analyze the auditory thresholds at frequencies from 500 to 16,000 Hz of dentists in the city of Curitiba. Methods This historic cohort study retrospectively tested hearing thresholds from 500 to 16,000 Hz with a group of dentists from Curitiba, in the state of Paraná, Brazil. Eighty subjects participated in the study, separated into a dentist group and a control group, with the same age range and gender across groups but with no history of occupational exposure to high levels of sound pressure in the control group. Subjects were tested with conventional audiometry and high-frequency audiometry and answered a questionnaire about exposure to noise. Results Results showed that 81% of dentists did not receive any information regarding noise at university; 6 (15%) dentists had sensorineural hearing impairment; significant differences were observed between the groups only at frequencies of 500 Hz and 1,000, 6,000 and 8,000 Hz in the right ear. There was no significant difference between the groups after analysis of mean hearing thresholds of high frequencies with the average hearing thresholds in conventional frequencies; subjects who had been working as dentists for longer than 10 years had worse tonal hearing thresholds at high frequencies. Conclusions In this study, we observed that dentists are at risk for the development of sensorineural hearing loss especially after 10 years of service. PMID:25992172

  12. Auditory processing deficits in growth restricted fetuses affect later language development.

    PubMed

    Kisilevsky, Barbara S; Davies, Gregory A L

    2007-01-01

    An increased risk for language deficits in infants born growth restricted has been reported in follow-up studies for more than 20 years, suggesting a relation between fetal auditory system development and later language learning. Work with animal models indicate that there are at least two ways in which growth restriction could affect the development of auditory perception in human fetuses: a delay in myelination or conduction and an increase in sensorineural threshold. Systematic study of auditory function in growth restricted human fetuses has not been reported. However, results of studies employing low-risk fetuses delivering as healthy full-term infants demonstrate that, by late gestation, the fetus can hear, sound properties modulate behavior, and sensory information is available from both inside (e.g., maternal vascular) and outside (e.g., noise, voices, music) of the maternal body. These data provide substantive evidence that the auditory system is functioning and that environmental sounds are available for shaping neural networks and laying the foundation for language acquisition before birth. We hypothesize that fetal growth restriction affects auditory system development, resulting in atypical auditory information processing in growth restricted fetuses compared to healthy, appropriately-grown-for-gestational-age fetuses. Speech perception that lays the foundation for later language competence will differ in growth restricted compared to normally grown fetuses and be associated with later language abilities.

  13. Psychophysiological responses to masked auditory stimuli.

    PubMed

    Borgeat, F; Elie, R; Chaloult, L; Chabot, R

    1985-02-01

    Psychophysiological responses to masked auditory verbal stimuli of increasing intensities were studied in twenty healthy women. Two experimental sessions corresponding to two stimulation contents (neutral or emotional) were conducted. At each session, two different sets of instructions (attending or not attending to stimuli) were used successively. Verbal stimuli, masked by a 40-dB white noise, were presented to the subject at increasing intensities by increments of 5 dB starting at 0 dB. At each increment, frontal EMG, skin conductance and heart rate were recorded. The data were submitted to analyses of variance and covariance. Psychophysiological responses to stimuli below the thresholds of identification and detection were observed. The instruction not to attend the stimuli modified the patterns of physiological responses. The effect of the affective content of the stimuli on responses was stronger when not attending. The results show the possibility of psychophysiological responses to masked auditory stimuli and suggests that psychophysiological parameters can constitute objective and useful measures for research in auditory subliminal perception.

  14. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders.

    PubMed

    Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile

    2014-03-01

    This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  15. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    PubMed

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  16. Seasonal plasticity of auditory saccular sensitivity in "sneaker" type II male plainfin midshipman fish, Porichthys notatus.

    PubMed

    Bhandiwad, Ashwin A; Whitchurch, Elizabeth A; Colleye, Orphal; Zeddies, David G; Sisneros, Joseph A

    2017-03-01

    Adult female and nesting (type I) male midshipman fish (Porichthys notatus) exhibit an adaptive form of auditory plasticity for the enhanced detection of social acoustic signals. Whether this adaptive plasticity also occurs in "sneaker" type II males is unknown. Here, we characterize auditory-evoked potentials recorded from hair cells in the saccule of reproductive and non-reproductive "sneaker" type II male midshipman to determine whether this sexual phenotype exhibits seasonal, reproductive state-dependent changes in auditory sensitivity and frequency response to behaviorally relevant auditory stimuli. Saccular potentials were recorded from the middle and caudal region of the saccule while sound was presented via an underwater speaker. Our results indicate saccular hair cells from reproductive type II males had thresholds based on measures of sound pressure and acceleration (re. 1 µPa and 1 ms -2 , respectively) that were ~8-21 dB lower than non-reproductive type II males across a broad range of frequencies, which include the dominant higher frequencies in type I male vocalizations. This increase in type II auditory sensitivity may potentially facilitate eavesdropping by sneaker males and their assessment of vocal type I males for the selection of cuckoldry sites during the breeding season.

  17. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    PubMed

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y. C.; Hou, Sanna

    2016-01-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  19. Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis

    DTIC Science & Technology

    2012-04-01

    2  2.2  Functional hearing groups... Functions ....................................................................................... 5  2.3.1  Development of marine mammal auditory weighting... functions .................... 5  2.3.2  Navy marine mammal weighting functions .................................................. 10  2.4  Criteria

  20. [Comparison of tone burst evoked auditory brainstem responses with different filter settings for referral infants after hearing screening].

    PubMed

    Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying

    2011-03-01

    Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P < 0.05), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.

  1. Auditory function after application of ototopical vancomycin and mupirocin solutions in a murine model.

    PubMed

    Rutherford, Kimberley D; Kavanagh, Katherine; Parham, Kourosh

    2011-03-01

    To determine whether mupirocin (440 µg/mL) and vancomycin otic drops (25 mg/mL) show evidence of ototoxicity in CBA/J mice immediately following a 7-day course of daily intratympanic (IT) injections and 1 month following treatment. Nonrandomized controlled trial. Academic hospital laboratory. Twenty CBA/J mice. Mean auditory brainstem response (ABR) thresholds increased in all drug- and saline-treated ears immediately after 7 days of IT injections but returned to baseline for most stimulus frequencies by 30 days later. This finding appeared to be correlated with the presence and subsequent resolution of tympanic membrane (TM) perforations and granulation tissue at the injection sites. Mupirocin-treated ears showed no significant difference in ABR thresholds compared to saline-treated ears. No significant differences were noted between vancomycin- and saline-treated ears, but there was a significant interaction between testing day and stimulus frequency (P < .001). Further analysis revealed that ABR thresholds at 32 kHz remained significantly elevated in vancomycin-treated mice despite the resolution of TM perforations and granulation tissue 30 days after completion of IT injections (95% confidence interval, -13.5 to -5.5, P < .01). Although IT application of mupirocin solution (440 µg/mL) caused no significant change in the ABR thresholds in a murine model, vancomycin solution (25 mg/mL) resulted in high-frequency threshold elevations in both the ear directly injected and the contralateral ear. Mupirocin solution may be beneficial in managing otitis externa and media caused by resistant pathogens. Further studies of ototopical vancomycin are needed to define parameters governing its safe use.

  2. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    PubMed

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.

  3. Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2007 thru Q4 2009

    DTIC Science & Technology

    2014-05-11

    years (CY) Q3 2007-Q4 2009 shows incident case rates for sensorineural hearing loss (SNHL), significant threshold shift (STS), tinnitus , and Noise-Induced...Prev Med. 2010;38(1S):S71-S77. Humes LE, Jollenbeck LM, Durch JS. Noise and military service: Implications for hearing loss and tinnitus . Washington...threshold shift 79415 NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS

  4. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.

    PubMed

    Gordon, Shira D; Ter Hofstede, Hannah M

    2018-03-22

    Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.

  5. Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus.

    PubMed

    Sisneros, Joseph A

    2009-08-01

    The plainfin midshipman fish, Porichthys notatus, is a seasonally breeding species of marine teleost fish that generates acoustic signals for intraspecific social and reproductive-related communication. Female midshipman use the inner ear saccule as the main acoustic endorgan for hearing to detect and locate vocalizing males that produce multiharmonic advertisement calls during the breeding season. Previous work showed that the frequency sensitivity of midshipman auditory saccular afferents changed seasonally with female reproductive state such that summer reproductive females became better suited than winter nonreproductive females to encode the dominant higher harmonics of the male advertisement calls. The focus of this study was to test the hypothesis that seasonal reproductive-dependent changes in saccular afferent tuning is paralleled by similar changes in saccular sensitivity at the level of the hair-cell receptor. Here, I examined the evoked response properties of midshipman saccular hair cells from winter nonreproductive and summer reproductive females to determine if reproductive state affects the frequency response and threshold of the saccule to behaviorally relevant single tone stimuli. Saccular potentials were recorded from populations of hair cells in vivo while sound was presented by an underwater speaker. Results indicate that saccular hair cells from reproductive females had thresholds that were approximately 8 to 13 dB lower than nonreproductive females across a broad range of frequencies that included the dominant higher harmonic components and the fundamental frequency of the male's advertisement call. These seasonal-reproductive-dependent changes in thresholds varied differentially across the three (rostral, middle, and caudal) regions of the saccule. Such reproductive-dependent changes in saccule sensitivity may represent an adaptive plasticity of the midshipman auditory sense to enhance mate detection, recognition, and localization during the breeding season.

  6. Cross-modal enhancement of speech detection in young and older adults: does signal content matter?

    PubMed

    Tye-Murray, Nancy; Spehar, Brent; Myerson, Joel; Sommers, Mitchell S; Hale, Sandra

    2011-01-01

    The purpose of the present study was to examine the effects of age and visual content on cross-modal enhancement of auditory speech detection. Visual content consisted of three clearly distinct types of visual information: an unaltered video clip of a talker's face, a low-contrast version of the same clip, and a mouth-like Lissajous figure. It was hypothesized that both young and older adults would exhibit reduced enhancement as visual content diverged from the original clip of the talker's face, but that the decrease would be greater for older participants. Nineteen young adults and 19 older adults were asked to detect a single spoken syllable (/ba/) in speech-shaped noise, and the level of the signal was adaptively varied to establish the signal-to-noise ratio (SNR) at threshold. There was an auditory-only baseline condition and three audiovisual conditions in which the syllable was accompanied by one of the three visual signals (the unaltered clip of the talker's face, the low-contrast version of that clip, or the Lissajous figure). For each audiovisual condition, the SNR at threshold was compared with the SNR at threshold for the auditory-only condition to measure the amount of cross-modal enhancement. Young adults exhibited significant cross-modal enhancement with all three types of visual stimuli, with the greatest amount of enhancement observed for the unaltered clip of the talker's face. Older adults, in contrast, exhibited significant cross-modal enhancement only with the unaltered face. Results of this study suggest that visual signal content affects cross-modal enhancement of speech detection in both young and older adults. They also support a hypothesized age-related deficit in processing low-contrast visual speech stimuli, even in older adults with normal contrast sensitivity.

  7. Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae.

    PubMed

    Casper, B M; Mann, D A

    2009-12-01

    Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.

  8. Effects of diabetes mellitus and systemic arterial hypertension on elderly patients' hearing.

    PubMed

    Rolim, Laurie Penha; Samelli, Alessandra Giannella; Moreira, Renata Rodrigues; Matas, Carla Gentile; Santos, Itamar de Souza; Bensenor, Isabela Martins; Lotufo, Paulo Andrade

    2017-09-21

    Chronic diseases can act as an accelerating factor in the auditory system degeneration. Studies on the association between presbycusis and diabetes mellitus and systemic arterial hypertension have shown controversial conclusions. To compare the initial audiometry (A1) with a subsequent audiometry (A2) performed after a 3 to 4-year interval in a population of elderly patients with diabetes mellitus and/or systemic arterial hypertension, to verify whether hearing loss in these groups is more accelerated when compared to controls without these clinical conditions. 100 elderly individuals participated in this study. For the auditory threshold assessment, a previous complete audiological evaluation (A1) and a new audiological evaluation (A2) performed 3-4 years after the first one was utilized. The participants were divided into four groups: 20 individuals in the diabetes mellitus group, 20 individuals in the systemic arterial hypertension group, 20 individuals in the diabetes mellitus/systemic arterial hypertension group and 40 individuals in the control group, matching them with each study group, according to age and gender. ANOVA and Kruskal-Wallis statistical tests were used, with a significance level set at 0.05. When comparing the mean annual increase in the auditory thresholds of the A1 with the A2 assessment, considering each study group and its respective control, it can be observed that there was no statistically significant difference for any of the frequencies for the diabetes mellitus group; for the systemic arterial hypertension group, significant differences were observed after 4kHz. For the diabetes mellitus and systemic arterial hypertension group, significant differences were observed at the frequencies of 500, 2kHz, 3kHz and 8kHz. It was observed that the systemic arterial hypertension group showed the greatest decrease in auditory thresholds in the studied segment when compared to the other groups, suggesting that among the three studied conditions, hypertension seems to have the greatest influence on hearing. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats.

    PubMed

    Fechter, L D; Fisher, J W; Chapman, G D; Mokashi, V P; Ortiz, P A; Reboulet, J E; Stubbs, J E; Lear, A M; McInturf, S M; Prues, S L; Gearhart, C A; Fulton, S; Mattie, D R

    2012-01-01

    Both laboratory and epidemiological studies published over the past two decades have identified the risk of excess hearing loss when specific chemical contaminants are present along with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss (NIHL) using inhalation exposure to fuel and simultaneous exposure to either continuous or intermittent noise exposure over a 4-wk exposure period using both male and female Fischer 344 rats. In the initial study, male (n = 5) and female (n = 5) rats received inhalation exposure to JP-8 fuel for 6 h/d, 5 d/wk for 4 wk at concentrations of 200, 750, or 1500 mg/m³. Parallel groups of rats also received nondamaging noise (constant octave band noise at 85 dB(lin)) in combination with the fuel, noise alone (75, 85, or 95 dB), or no exposure to fuel or noise. Significant concentration-related impairment of auditory function measured by distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) threshold was seen in rats exposed to combined JP-8 plus noise exposure when JP-8 levels of 1500 mg/m³ were presented with trends toward impairment seen with 750 mg/m³ JP-8 + noise. JP-8 alone exerted no significant effect on auditory function. In addition, noise was able to disrupt the DPOAE and increase auditory thresholds only when noise exposure was at 95 dB. In a subsequent study, male (n = 5 per group) and female (n = 5 per group) rats received 1000 mg/m³ JP-8 for 6 h/d, 5 d/wk for 4 wk with and without exposure to 102 dB octave band noise that was present for 15 min out of each hour (total noise duration 90 min). Comparisons were made to rats receiving only noise, and thosereceiving no experimental treatment. Significant impairment of auditory thresholds especially for high-frequency tones was identified in the male rats receiving combined treatment. This study provides a basis for estimating excessive hearing loss under conditions of subchronic JP-8 jet fuel exposure.

  10. Superior canal dehiscence length and location influences clinical presentation and audiometric and cervical vestibular-evoked myogenic potential testing.

    PubMed

    Niesten, Marlien E F; Hamberg, Leena M; Silverman, Joshua B; Lou, Kristina V; McCall, Andrew A; Windsor, Alanna; Curtin, Hugh D; Herrmann, Barbara S; Grolman, Wilko; Nakajima, Hideko H; Lee, Daniel J

    2014-01-01

    Superior canal dehiscence (SCD) is caused by an absence of bony covering of the arcuate eminence or posteromedial aspect of the superior semicircular canal. However, the clinical presentation of SCD syndrome varies considerably, as some SCD patients are asymptomatic and others have auditory and/or vestibular complaints. In order to determine the basis for these observations, we examined the association between SCD length and location with: (1) auditory and vestibular signs and symptoms; (2) air conduction (AC) loss and air-bone gap (ABG) measured by pure-tone audiometric testing, and (3) cervical vestibular-evoked myogenic potential (cVEMP) thresholds. 104 patients (147 ears) underwent SCD length and location measurements using a novel method of measuring bone density along 0.2-mm radial CT sections. We found that patients with auditory symptoms have a larger dehiscence (median length: 4.5 vs. 2.7 mm) with a beginning closer to the ampulla (median location: 4.8 vs. 6.4 mm from ampulla) than patients with no auditory symptoms (only vestibular symptoms). An increase in AC threshold was found as the SCD length increased at 250 Hz (95% CI: 1.7-4.7), 500 Hz (95% CI: 0.7-3.5) and 1,000 Hz (95% CI: 0.0-2.5), and an increase in ABG as the SCD length increased at 250 Hz (95% CI: 2.0-5.3), 500 Hz (95% CI: 1.6-4.6) and 1,000 Hz (95% CI: 1.3-3.3) was also seen. Finally, a larger dehiscence was associated with lowered cVEMP thresholds at 250 Hz (95% CI: -4.4 to -0.3), 500 Hz (95% CI: -4.1 to -1.0), 750 Hz (95% CI: -4.2 to -0.7) and 1,000 Hz (95% CI: -3.6 to -0.5) and a starting location closer to the ampulla at 250 Hz (95% CI: 1.3-5.1), 750 Hz (95% CI: 0.2-3.3) and 1,000 Hz (95% CI: 0.6-3.5). These findings may help to explain the variation of signs and symptoms seen in patients with SCD syndrome.

  11. Flying in tune: sexual recognition in mosquitoes.

    PubMed

    Gibson, Gabriella; Russell, Ian

    2006-07-11

    Mosquitoes hear with their antennae, which in most species are sexually dimorphic. Johnston, who discovered the mosquito auditory organ at the base of the antenna 150 years ago, speculated that audition was involved with mating behaviour. Indeed, male mosquitoes are attracted to female flight tones. The male auditory organ has been proposed to act as an acoustic filter for female flight tones, but female auditory behavior is unknown. We show, for the first time, interactive auditory behavior between males and females that leads to sexual recognition. Individual males and females both respond to pure tones by altering wing-beat frequency. Behavioral auditory tuning curves, based on minimum threshold sound levels that elicit a change in wing-beat frequency to pure tones, are sharper than the mechanical tuning of the antennae, with males being more sensitive than females. We flew opposite-sex pairs of tethered Toxorhynchites brevipalpis and found that each mosquito alters its wing-beat frequency in response to the flight tone of the other, so that within seconds their flight-tone frequencies are closely matched, if not completely synchronized. The flight tones of same-sex pairs may converge in frequency but eventually diverge dramatically.

  12. Underwater Detonations at the Silver Strand Training Complex: Effects on Marine Mammals

    DTIC Science & Technology

    2009-04-30

    and S. H. Ridgway (2000), "Auditory and Behavioral Responses of Bottlenose Dolphins (Tursiops truncatus) and a Beluga Whale ( Delphinapterus leucas ...Shift in Masked Hearing Thresholds of Bottlenose Dolphins, Tursiops truncatus, and White Whales, Delphinapterus leucas , after Exposure to Intense Tones

  13. Effects of several mental tasks on auditory fatigue.

    DOT National Transportation Integrated Search

    1965-01-01

    Eight males were exposed for three minutes to a 4000 cps fatigue tone at 40 dB SL. Each S was tested under four task-conditions: mental arithmetic (MA), written ling division (LD), threshold determination of a 500 cps tone (TD), and reverie (REV). Te...

  14. Otoacoustic Emissions before and after Listening to Music on a Personal Player

    PubMed Central

    Trzaskowski, Bartosz; Jędrzejczak, W. Wiktor; Piłka, Edyta; Cieślicka, Magdalena; Skarżyński, Henryk

    2014-01-01

    Background The problem of the potential impact of personal music players on the auditory system remains an open question. The purpose of the present study was to investigate, by means of otoacoustic emissions (OAEs), whether listening to music on a personal player affected auditory function. Material/Methods A group of 20 normally hearing adults was exposed to music played on a personal player. Transient evoked OAEs (TEOAEs) and distortion product OAEs (DPOAEs), as well as pure tone audiometry (PTA) thresholds, were tested at 3 stages: before, immediately after, and the next day following 30 min of exposure to music at 86.6 dBA. Results We found no statistically significant changes in OAE parameters or PTA thresholds due to listening to the music. Conclusions These results suggest that exposure to music at levels similar to those used in our study does not disturb cochlear function in a way that can be detected by means of PTA, TEOAE, or DPOAE tests. PMID:25116920

  15. Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs.

    PubMed

    Maruyama, Jun; Yamagata, Takahiko; Ulfendahl, Mats; Bredberg, Göran; Altschuler, Richard A; Miller, Josef M

    2007-02-01

    Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent degeneration of deafferented CNVIII spiral ganglion cells (SGCs) in deafened guinea pigs. Following destruction of sensory cells, guinea pigs were treated immediately with Trolox (a water soluble vitamin E analogue)+ascorbic acid (vitamin C) administered either locally, directly in the inner ear, or systemically. Electrical auditory brainstem response (EABR) thresholds were recorded to assess nerve function and showed a large increase following deafness. In treated animals EABR thresholds decreased and surviving SGCs were increased significantly compared to untreated animals. These results indicate that a change in oxidative state following deafferentation plays a role in nerve cell death and antioxidant therapy may rescue SGCs from deafferentation-induced degeneration.

  16. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses.

    PubMed

    Alemi, Razieh; Motassadi Zarandy, Masoud; Joghataei, Mohammad Taghi; Eftekharian, Ali; Zarrindast, Mohammad Reza; Vousooghi, Nasim

    2018-02-01

    Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    PubMed

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  19. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    PubMed

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  1. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    PubMed

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Discrimination of sound source velocity in human listeners

    NASA Astrophysics Data System (ADS)

    Carlile, Simon; Best, Virginia

    2002-02-01

    The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.

  3. Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619

  4. Hearing loss in a mouse model of 22q11.2 Deletion Syndrome.

    PubMed

    Fuchs, Jennifer C; Zinnamon, Fhatarah A; Taylor, Ruth R; Ivins, Sarah; Scambler, Peter J; Forge, Andrew; Tucker, Abigail S; Linden, Jennifer F

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.

  5. Effect of signal to noise ratio on the speech perception ability of older adults

    PubMed Central

    Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh

    2016-01-01

    Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712

  6. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions.

    PubMed

    Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G

    2017-06-01

    In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tympanal mechanics and neural responses in the ears of a noctuid moth

    NASA Astrophysics Data System (ADS)

    Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  8. Localization suppression and fusion measure of the precedence effect in young children

    NASA Astrophysics Data System (ADS)

    Litovsky, Ruth; Godar, Shelly; Yu, Gongqiang

    2004-05-01

    This study investigated aspects of the precedence effect (PE) known as fusion and localization dominance in children 4-5 years of age. Stimuli were three, 25-ms noise bursts (2-ms rise/fall times) with 250-ms ISI. On PE conditions the lead stimulus was presented from one of six locations in azimuth, and the lag was at 0 deg. Lead-lag delays varied from 5 to 100 ms. Localization was measured using an identification paradigm. Fusion was measured separately whereby subjects reported whether a single auditory event or two auditory events were perceived. Children reported two sounds on 75% of trials (fusion threshold) at delays ranging from 15 to 35 ms. Below fusion thresholds, the localization of the lead was similar to that of single-source stimuli. Above fusion thresholds lead localization was significantly degraded, persisting out to 100 ms. Localization of the lag was poor at all delays on which it was reported as being heard. According to these results localization dominance (difficulty localizing the lag) in children persists at greater delays than fusion, which is consistent with findings obtained in adult subjects. The range of delays over which these effects are robust in children is longer than the range observed in adults.

  9. Developmental hearing loss impedes auditory task learning and performance in gerbils.

    PubMed

    von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N; Sanes, Dan H

    2017-04-01

    The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus).

    PubMed

    Finneran, James J; Houser, Dorian S

    2006-05-01

    Traditional behavioral techniques for hearing assessment in marine mammals are limited by the time and access required to train subjects. Electrophysiological methods, where passive electrodes are used to measure auditory evoked potentials (AEPs), are attractive alternatives to behavioral techniques; however, there have been few attempts to compare AEP and behavioral results for the same subject. In this study, behavioral and AEP hearing thresholds were compared in four bottlenose dolphins. AEP thresholds were measured in-air using a piezoelectric sound projector embedded in a suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Evoked potentials were recorded noninvasively using surface electrodes. Adaptive procedures allowed AEP hearing thresholds to be estimated from 10 to 150 kHz in a single ear in about 45 min. Behavioral thresholds were measured in a quiet pool and in San Diego Bay. AEP and behavioral threshold estimates agreed closely as to the upper cutoff frequency beyond which thresholds increased sharply. AEP thresholds were strongly correlated with pool behavioral thresholds across the range of hearing; differences between AEP and pool behavioral thresholds increased with threshold magnitude and ranged from 0 to + 18 dB.

  11. The effect of gabapentin on gap detection and forward masking in young and old gerbils.

    PubMed

    Gleich, Otto; Strutz, Jürgen

    2011-01-01

    Auditory temporal processing frequently appears more affected in old subjects than would be predicted by the degree of peripheral hearing loss, pointing to an age-dependent central processing deficit. In parallel, an age-dependent decline of inhibitory function has been demonstrated in the auditory pathway, suggesting a causal relationship between temporal processing and inhibition. Gabapentin has been specifically synthesized as a potential gamma-amino-butyric-acid (GABA) mimetic with the capability to cross the blood-brain barrier. Gabapentin treatment ameliorated tinnitus in a rat model and improved tinnitus annoyance in humans with acoustic trauma. Consequently, the present study evaluated the effect of gabapentin on auditory temporal processing in the gerbil model. Psychometric functions were collected for different test paradigms. (A) "Gap detection": The detection of a gap in the middle of a 800 msec broadband noise pulse was determined either at 15 or at 30 dB SL. (B) "Forward masking": The detection of a 20 msec probe stimulus following 2.5 msec after a 400 msec 40 dB SPL masker was determined with masker and probe frequency at 2.85 kHz. The effect of gabapentin was evaluated by collecting gap detection and forward masking functions before, during, and after treating gerbils with gabapentin doses of 115 or 350 mg/kg/day administered via drinking water. Data under different experimental conditions were collected for groups of 3 to 5 young (<2 years) and 6 to 10 old (>2 years) gerbils. Two-way analyses of variance for the factors age groups and treatment groups with subsequent pairwise comparisons for significant effects were used for the statistical evaluation of the data. For gap detection, mean thresholds were significantly increased in the group of old as compared with the young gerbils at 30 dB SL (young 2.0 msec; old 3.2 msec) and at 15 dB SL (young 2.9 msec; old 9.1 msec). Gabapentin had no significant effect on gap detection, and there was no significant interaction between age group and gabapentin treatment. Mean thresholds in the forward masking paradigm were significantly elevated in old (45.5 dB SPL) as compared with young (35.0 dB SPL) gerbils. Overall, gabapentin had no significant effect on masked thresholds; however, there was a significant interaction between treatment and age. Subsequent pairwise comparisons revealed no significant effect on masked thresholds in old gerbils but showed significantly elevated thresholds of young gerbils during 350 mg/kg gabapentin (38.3 dB SPL) compared with thresholds obtained in young gerbils before (32.3 dB SPL) and after (33.5 dB SPL) treatment. Gabapentin did not exert a therapeutic effect on impaired gap detection and forward masking in old gerbils. The lack of an effect of gabapentin on impaired auditory temporal processing in old gerbils and the finding of elevated masked thresholds in young gerbils can be reconciled with reports of only moderate GABAergic effects compared with other drugs (e.g., comparing elevation of GABA levels in the brain by gabapentin and vigabatrin) and effects due to binding of gabapentin to alpha-2-delta units of voltage-gated calcium channels.

  12. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency-intensity input output functions were steeper in infants compared to adults. CAEP amplitude growth functions with respect to stimulus SPL are adult-like at this age, particularly for the earliest component, P1-N1. Infant perceptual thresholds were elevated with respect to those found in adults. Furthermore, perceptual thresholds were higher, on average, than levels at which CAEPs could be obtained. When CAEP amplitudes were plotted with respect to perceptual threshold (dB SL), the infant CAEP amplitude growth slopes were steeper than in adults. Although CAEP latencies indicate immaturity in neural transmission at the level of the cortex, amplitude growth with respect to stimulus SPL is adult-like at this age, particularly for the earliest component, P1-N1. The latency and amplitude input-output functions may provide additional information as to how infants perceive stimulus level. The reasons for the discrepancy between electrophysiologic and perceptual threshold may be due to immaturity in perceptual temporal resolution abilities and the broad-band listening strategy employed by infants. The findings from the current study can be translated to the clinical setting. It is possible to use tonal or speech sound tokens to evoke CAEPs in an awake, passively alert infant, and thus determine whether these sounds activate the auditory cortex. This could be beneficial in the verification of hearing aid or cochlear implant benefit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    PubMed

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  14. Brainstem auditory evoked potentials in children with lead exposure.

    PubMed

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation

    NASA Astrophysics Data System (ADS)

    McAngus Todd, Neil P.; Rosengren, Sally M.; Colebatch, James G.

    2003-12-01

    In this paper data are presented from an experiment which provides evidence for the existence of a short latency, acoustically evoked potential of probable vestibular origin. The experiment was conducted in two phases using bone-conducted acoustic stimulation. In the first phase subjects were stimulated with 6-ms, 500-Hz tone bursts in order to obtain the threshold VT for vestibular evoked myogenic potentials (VEMP). It was confirmed that the difference between bone-conducted auditory and acoustic vestibular thresholds was slightly over 30 dB. The estimated threshold was then used as a reference value in the second part of the experiment to stimulate subjects over a range of intensities from -6 to +18 dB (re:VT). Averaged EEG recordings were made with eight Ag/AgCl electrodes placed on the scalp at Fpz, F3, F4, F7, F8, Cz, T3, and T4 according to the 10-20 system. Below VT auditory midlatency responses (MLRs) were observed. Above VT two additional potentials appeared: a positivity at about 10 ms (P10) which was maximal at Cz, and a negativity at about 15 ms (N15) which was maximal at Fpz. Extrapolation of the growth functions for the P10 and N15 indicated a threshold close to VT, consistent with a vestibular origin of these potentials. Given the low threshold of vestibular acoustic sensitivity it is possible that this mode may make a contribution to the detection of and affective responses to loud low frequency sounds. The evoked potentials may also have application as a noninvasive and nontraumatic test of vestibular projections to the cortex.

  16. Sounds, Behaviour, and Auditory Receptors of the Armoured Ground Cricket, Acanthoplus longipes

    PubMed Central

    Kowalski, Kerstin; Lakes-Harlan, Reinhard

    2010-01-01

    The auditory sensory system of the taxon Hetrodinae has not been studied previously. Males of the African armoured ground cricket, Acanthoplus longipes (Orthoptera: Tettigoniidae: Hetrodinae) produce a calling song that lasts for minutes and consists of verses with two pulses. About three impulses are in the first pulse and about five impulses are in the second pulse. In contrast, the disturbance stridulation consists of verses with about 14 impulses that are not separated in pulses. Furthermore, the inter-impulse intervals of both types of sounds are different, whereas verses have similar durations. This indicates that the neuronal networks for sound generation are not identical. The frequency spectrum peaks at about 15 kHz in both types of sounds, whereas the hearing threshold has the greatest sensitivity between 4 and 10 kHz. The auditory afferents project into the prothoracic ganglion. The foreleg contains about 27 sensory neurons in the crista acustica; the midleg has 18 sensory neurons, and the hindleg has 14. The auditory system is similar to those of other Tettigoniidae. PMID:20569136

  17. Audiovisual integration in children listening to spectrally degraded speech.

    PubMed

    Maidment, David W; Kang, Hi Jee; Stewart, Hannah J; Amitay, Sygal

    2015-02-01

    The study explored whether visual information improves speech identification in typically developing children with normal hearing when the auditory signal is spectrally degraded. Children (n=69) and adults (n=15) were presented with noise-vocoded sentences from the Children's Co-ordinate Response Measure (Rosen, 2011) in auditory-only or audiovisual conditions. The number of bands was adaptively varied to modulate the degradation of the auditory signal, with the number of bands required for approximately 79% correct identification calculated as the threshold. The youngest children (4- to 5-year-olds) did not benefit from accompanying visual information, in comparison to 6- to 11-year-old children and adults. Audiovisual gain also increased with age in the child sample. The current data suggest that children younger than 6 years of age do not fully utilize visual speech cues to enhance speech perception when the auditory signal is degraded. This evidence not only has implications for understanding the development of speech perception skills in children with normal hearing but may also inform the development of new treatment and intervention strategies that aim to remediate speech perception difficulties in pediatric cochlear implant users.

  18. The perception of microsound and its musical implications.

    PubMed

    Roads, Curtis

    2003-11-01

    Sound particles or microsounds last only a few milliseconds, near the threshold of auditory perception. We can easily analyze the physical properties of sound particles either individually or in masses. However, correlating these properties with human perception remains complicated. One cannot speak of a single time frame, or a "time constant" for the auditory system. The hearing mechanism involves many different agents, each of which operates on its own timescale. The signals being sent by diverse hearing agents are integrated by the brain into a coherent auditory picture. The pioneer of "sound quanta," Dennis Gabor (1900-1979), suggested that at least two mechanisms are at work in microevent detection: one that isolates events, and another that ascertains their pitch. Human hearing imposes a certain minimum duration in order to establish a firm sense of pitch, amplitude, and timbre. This paper traces disparate strands of literature on the topic and summarizes their meaning. Specifically, we examine the perception of intensity and pitch of microsounds, the phenomena of tone fusion and fission, temporal auditory acuity, and preattentive perception. The final section examines the musical implications of microsonic analysis, synthesis, and transformation.

  19. Relationship Between Hair Cell Loss and Hearing Loss in Fishes.

    PubMed

    Smith, Michael E

    2016-01-01

    Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.

  20. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  1. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus).

    PubMed

    Schlundt, Carolyn E; Dear, Randall L; Houser, Dorian S; Bowles, Ann E; Reidarson, Tom; Finneran, James J

    2011-02-01

    The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.

  2. Dyslipidemia and Auditory Function

    PubMed Central

    Evans, M. Bradley; Tonini, Ross; Shope, Cynthia Do; Oghalai, John S.; Jerger, James F.; Insull, William; Brownell, William E.

    2013-01-01

    The relationship between dyslipidemia and hearing is unclear. This study was conducted to investigate whether elevated serum lipid levels impact auditory function in humans and in guinea pigs. In the human study, a cross-sectional study of 40 volunteers with dyslipidemia was conducted. Pure tone thresholds, distortion product otoacoustic emissions, and lipid profiles were analyzed. When controlled for patient age and sex, we found that elevated triglycerides were associated with reduced hearing. In the guinea pig study, a prospective study of animals fed a high-fat diet for 14 weeks was conducted. Although the high-fat diet led to a dramatic elevation in the average weight and total cholesterol in all animals (from 61 to 589 mg/dl), there were no meaningful changes in distortion product otoacoustic emission magnitudes. These results suggest that whereas chronic dyslipidemia associated with elevated triglycerides may reduce auditory function, short-term dietary changes may not. PMID:16868509

  3. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.

    PubMed

    Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju

    2014-08-01

    The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.

  4. Human amygdala activation by the sound produced during dental treatment: A fMRI study.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  5. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    PubMed Central

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli. PMID:26356376

  6. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  7. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.

    PubMed

    Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith

    2017-01-01

    Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.

  8. Auditory hallucinations in adults with hearing impairment: a large prevalence study.

    PubMed

    Linszen, M M J; van Zanten, G A; Teunisse, R J; Brouwer, R M; Scheltens, P; Sommer, I E

    2018-03-20

    Similar to visual hallucinations in visually impaired patients, auditory hallucinations are often suggested to occur in adults with hearing impairment. However, research on this association is limited. This observational, cross-sectional study tested whether auditory hallucinations are associated with hearing impairment, by assessing their prevalence in an adult population with various degrees of objectified hearing impairment. Hallucination presence was determined in 1007 subjects aged 18-92, who were referred for audiometric testing to the Department of ENT-Audiology, University Medical Center Utrecht, the Netherlands. The presence and severity of hearing impairment were calculated using mean air conduction thresholds from the most recent pure tone audiometry. Out of 829 participants with hearing impairment, 16.2% (n = 134) had experienced auditory hallucinations in the past 4 weeks; significantly more than the non-impaired group [5.8%; n = 10/173; p < 0.001, odds ratio 3.2 (95% confidence interval 1.6-6.2)]. Prevalence of auditory hallucinations significantly increased with categorized severity of impairment, with rates up to 24% in the most profoundly impaired group (p < 0.001). The corrected odds of hallucination presence increased 1.02 times for each dB of impairment in the best ear. Auditory hallucinations mostly consisted of voices (51%), music (36%), and doorbells or telephones (24%). Our findings reveal that auditory hallucinations are common among patients with hearing impairment, and increase with impairment severity. Although more research on potential confounding factors is necessary, clinicians should be aware of this phenomenon, by inquiring after hallucinations in hearing-impaired patients and, conversely, assessing hearing impairment in patients with auditory hallucinations, since it may be a treatable factor.

  9. On pure word deafness, temporal processing, and the left hemisphere.

    PubMed

    Stefanatos, Gerry A; Gershkoff, Arthur; Madigan, Sean

    2005-07-01

    Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (> 200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes.

  10. High lead exposure and auditory sensory-neural function in Andean children.

    PubMed Central

    Counter, S A; Vahter, M; Laurell, G; Buchanan, L H; Ortega, F; Skerfving, S

    1997-01-01

    We investigated blood lead (B-Pb) and mercury (B-Hg) levels and auditory sensory-neural function in 62 Andean school children living in a Pb-contaminated area of Ecuador and 14 children in a neighboring gold mining area with no known Pb exposure. The median B-Pb level for 62 children in the Pb-exposed group was 52.6 micrograms/dl (range 9.9-110.0 micrograms/dl) compared with 6.4 micrograms/dl (range 3.9-12.0 micrograms/dl) for the children in the non-Pb exposed group; the differences were statistically significant (p < 0.001). Auditory thresholds for the Pb-exposed group were normal at the pure tone frequencies of 0.25-8 kHz over the entire range of B-Pb levels, Auditory brain stem response tests in seven children with high B-Pb levels showed normal absolute peak and interpeak latencies. The median B-Hg levels were 0.16 micrograms/dl (range 0.04-0.58 micrograms/dl) for children in the Pb-exposed group and 0.22 micrograms/dl (range 0.1-0.44 micrograms/dl) for children in the non-Pb exposed gold mining area, and showed no significant relationship to auditory function. Images Figure 1. Figure 3. A Figure 3. B PMID:9222138

  11. Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow

    PubMed Central

    Caras, Melissa L.; Brenowitz, Eliot; Rubel, Edwin W

    2010-01-01

    Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds. PMID:20563817

  12. Brain activation responses to subliminal or supraliminal rectal stimuli and to auditory stimuli in irritable bowel syndrome.

    PubMed

    Andresen, V; Bach, D R; Poellinger, A; Tsrouya, C; Stroh, A; Foerschler, A; Georgiewa, P; Zimmer, C; Mönnikes, H

    2005-12-01

    Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.

  13. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use

    PubMed Central

    Gieseler, Anja; Tahden, Maike A. S.; Thiel, Christiane M.; Wagener, Kirsten C.; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners (mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age, and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU. PMID:28270784

  14. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  15. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use.

    PubMed

    Gieseler, Anja; Tahden, Maike A S; Thiel, Christiane M; Wagener, Kirsten C; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners ( mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age , and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU.

  16. Noise over-exposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible basis for tinnitus-related hyperactivity?

    PubMed Central

    Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan

    2012-01-01

    The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808

  17. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  18. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  19. Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift

    PubMed Central

    Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.

    2008-01-01

    Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566

  20. Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking.

    PubMed

    Nelson, Paul C; Smith, Zachary M; Young, Eric D

    2009-02-25

    An organism's ability to detect and discriminate sensory inputs depends on the recent stimulus history. For example, perceptual detection thresholds for a brief tone can be elevated by as much as 50 dB when following a masking stimulus. Previous work suggests that such forward masking is not a direct result of peripheral neural adaptation; the central pathway apparently modifies the representation in a way that further attenuates the input's response to short probe signals. Here, we show that much of this transformation is complete by the level of the inferior colliculus (IC). Single-neuron extracellular responses were recorded in the central nucleus of the awake marmoset IC. The threshold for a 20 ms probe tone presented at best frequency was determined for various masker-probe delays, over a range of masker sound pressure levels (SPLs) and frequencies. The most striking aspect of the data was the increased potency of forward maskers as their SPL was increased, despite the fact that the excitatory response to the masker was often saturating or nonmonotonic over the same range of levels. This led to probe thresholds at high masker levels that were almost always higher than those observed in the auditory nerve. Probe threshold shifts were not usually caused by a persistent excitatory response to the masker; instead we propose a wide-dynamic-range inhibitory mechanism locked to sound offset as an explanation for several key aspects of the data. These findings further delineate the role of subcortical auditory processing in the generation of a context-dependent representation of ongoing acoustic scenes.

  1. Wide dynamic range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking

    PubMed Central

    Nelson, Paul C.; Smith, Zachary M.; Young, Eric D.

    2009-01-01

    An organism’s ability to detect and discriminate sensory inputs depends on the recent stimulus history. For example, perceptual detection thresholds for a brief tone can be elevated by as much as 50 dB when following a masking stimulus. Previous work suggests that such forward masking is not a direct result of peripheral neural adaptation; the central pathway apparently modifies the representation in a way that further attenuates the input’s response to short probe signals. Here, we show that much of this transformation is complete by the level of the inferior colliculus (IC). Single-neuron extracellular responses were recorded in the central nucleus of the awake marmoset IC. The threshold for a 20-ms probe tone presented at best frequency was determined for various masker-probe delays, over a range of masker SPLs and frequencies. The most striking aspect of the data was the increased potency of forward maskers as their SPL was increased, despite the fact that the excitatory response to the masker was often saturating or non-monotonic over the same range of levels. This led to probe thresholds at high masker levels that were almost always higher than those observed in the auditory nerve. Probe threshold shifts were not usually caused by a persistent excitatory response to the masker; instead we propose a wide dynamic-range inhibitory mechanism locked to sound offset as an explanation for several key aspects of the data. These findings further delineate the role of subcortical auditory processing in the generation of a context-dependent representation of ongoing acoustic scenes. PMID:19244530

  2. The Effect of Attention-Deficit/Hyperactivity Disorder and Methylphenidate Treatment on the Adult Auditory Temporal Order Judgment Threshold

    ERIC Educational Resources Information Center

    Fostick, Leah

    2017-01-01

    Purpose: "The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition" notes that attention-deficit/hyperactivity disorder (ADHD) diagnosed in childhood will persist into adulthood among at least some individuals. There is a paucity of evidence, however, regarding whether other difficulties that often accompany childhood…

  3. An Evaluation of Psychophysical Models of Auditory Change Perception

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent

    2008-01-01

    In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed with a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors…

  4. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  5. Auditory maturation in premature infants: a potential pitfall for early cochlear implantation.

    PubMed

    Hof, Janny R; Stokroos, Robert J; Wix, Eduard; Chenault, Mickey; Gelders, Els; Brokx, Jan

    2013-08-01

    To describe spontaneous hearing improvement in the first years of life of a number of preterm neonates relative to cochlear implant candidacy. Retrospective case study. Hearing levels of 14 preterm neonates (mean gestational age at birth = 29 weeks) referred after newborn hearing screening were evaluated. Initial hearing thresholds ranged from 40 to 105 dBHL (mean = 85 dBHL). Hearing level improved to normal levels for four neonates and to moderate levels for five, whereas for five neonates, no improvement in hearing thresholds was observed and cochlear implantation was recommended. Three of the four neonates in whom the hearing improved to normal levels were born prior to 28 weeks gestational age. Hearing improvement was mainly observed prior to a gestational age of 80 weeks. Delayed maturation of an immature auditory pathway might be an important reason for referral after newborn hearing screening in premature infants. Caution is advised regarding early cochlear implantation in preterm born infants. Audiological follow-ups until at least 80 weeks gestational age are therefore recommended. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.

    PubMed

    Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O

    2017-03-01

    Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.

  7. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  8. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study

    PubMed Central

    2012-01-01

    Background About 25% of schizophrenia patients with auditory hallucinations are refractory to pharmacotherapy and electroconvulsive therapy. We conducted a deep transcranial magnetic stimulation (TMS) pilot study in order to evaluate the potential clinical benefit of repeated left temporoparietal cortex stimulation in these patients. The results were encouraging, but a sham-controlled study was needed to rule out a placebo effect. Methods A total of 18 schizophrenic patients with refractory auditory hallucinations were recruited, from Beer Yaakov MHC and other hospitals outpatient populations. Patients received 10 daily treatment sessions with low-frequency (1 Hz for 10 min) deep TMS applied over the left temporoparietal cortex, using the H1 coil at the intensity of 110% of the motor threshold. Procedure was either real or sham according to patient randomization. Patients were evaluated via the Auditory Hallucinations Rating Scale, Scale for the Assessment of Positive Symptoms-Negative Symptoms, Clinical Global Impressions, and Quality of Life Questionnaire. Results In all, 10 patients completed the treatment (10 TMS sessions). Auditory hallucination scores of both groups improved; however, there was no statistical difference in any of the scales between the active and the sham treated groups. Conclusions Low-frequency deep TMS to the left temporoparietal cortex using the protocol mentioned above has no statistically significant effect on auditory hallucinations or the other clinical scales measured in schizophrenic patients. Trial Registration Clinicaltrials.gov identifier: NCT00564096. PMID:22559192

  9. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems.

    PubMed

    Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva

    2017-03-01

    Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the speech signal by 90° compared with unaided listening. Personal FM systems are feasible in stroke patients, and may be of benefit in just under 20% of this population, who are not eligible for conventional hearing aids.

  10. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells.

    PubMed

    Kim, Se-Jin; Park, Channy; Han, A Lum; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; Lee, Ho-Kyun; Chung, Sang-Young; So, Hongseob; Park, Raekil

    2009-05-01

    Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-1 and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n=5; Click and 8-kHz stimuli, p<0.05; 4, 16 and 32 kHz, p<0.01), whereas that of animal group which was treated with cisplatin and ebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway, which ultimately prevents free radical stresses from cisplatin and further contributes to protect auditory sensory hair cells from free radicals produced by cisplatin.

  11. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats.

    PubMed

    Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G

    2009-02-25

    Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.

  12. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants.

    PubMed

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G

    2015-02-01

    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  13. Cochlear implantation outcomes in children with common cavity deformity; a retrospective study.

    PubMed

    Zhang, Li; Qiu, Jianxin; Qin, Feifei; Zhong, Mei; Shah, Gyanendra

    2017-09-01

    A common cavity deformity (CCD) is a deformed inner ear in which the cochlea and vestibule are confluent forming a common rudimentary cystic cavity that results in profound hearing loss. There are few studies paying attention to common cavity. Our group is engrossed in observing the improvement of auditory and verbal abilities in children who have received cochlear implantation (CI), and comparing these targets between children with common cavity and normal inner ear structure. A retrospective study was conducted in 12 patients with profound hearing loss that were divided into a common cavity group and a control group, six in each group matched in sex, age and time of implantation, based on inner ear structure. Categories of Auditory Performance (CAP) and speech intelligibility rating (SIR) scores and aided hearing thresholds were collected and compared between the two groups. All patients wore CI for more than 1 year at the Cochlear Center of Anhui Medical University from 2011 to 2015. Postoperative CAP and SIR scores were higher than before operation in both groups (p < 0.05), although the scores were lower in the CCD group than in the control group (p < 0.05). The aided threshold was also lower in the control group than in the CCD group (p < 0.05). Even though audiological improvement in children with CCD was not as good as in those without CCD, CI provides benefits in auditory perception and communication skills in these children.

  14. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation.

    PubMed

    Kim, Su-Jin; Kwak, Hyun Jeong; Kim, Dae-Seung; Choi, Hyun-Myung; Sim, Jung-Eun; Kim, Sung-Hoon; Um, Jae-Young; Hong, Seung-Heon

    2015-07-01

    Cisplatin is an effective anti-cancer drug; however, one of its side effects is irreversible sensorineural hearing damage. Korean Red Ginseng (KRG) has been used clinically for the treatment of various diseases; however, the underlying mechanism of KRG treatment of ototoxicity has not been studied extensively. The present study aimed to further investigate the mechanism of KRG on cisplatin-induced toxicity in auditory HEI-OC1 cells in vitro, as well as in vivo. The pharmacological effects of KRG on cisplatin-induced changes in the hearing threshold of mice were determined, as well as the effect on the impairment of hair cell arrays. In addition, in order to elucidate the protective mechanisms of KRG, the regulatory effects of KRG on cisplatin-induced apoptosis-associated gene levels and nuclear factor-κB (NF-κB) activation were investigated in auditory cells. The results revealed that KRG prevented cisplatin-induced alterations in the hearing threshold of mice as well as the destruction of hair cell arrays in rat organ of Corti primary explants. In addition, KRG inhibited cisplatin-mediated cell toxicity, reactive oxygen species generation, interleukin-6 production, cytochrome c release and activation of caspases-3 in the HEI-OC1 auditory cell line. Furthermore, the results demonstrated that KRG inhibited the activation of NF-κB and caspase-1. In conclusion, these results provided a model for the pharmacological mechanism of KRG and provided evidence for potential therapies against ototoxicity.

  15. Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.

    PubMed

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-02-01

    To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.

  16. Aging effects on the Binaural Interaction Component of the Auditory Brainstem Response in the Mongolian Gerbil: Effects of Interaural Time and Level Differences

    PubMed Central

    Laumen, Geneviève; Tollin, Daniel J.; Beutelmann, Rainer; Klump, Georg M.

    2016-01-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. PMID:27173973

  17. Measuring hearing in the harbor seal (Phoca vitulina): Comparison of behavioral and auditory brainstem response techniques

    NASA Astrophysics Data System (ADS)

    Wolski, Lawrence F.; Anderson, Rindy C.; Bowles, Ann E.; Yochem, Pamela K.

    2003-01-01

    Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 μPa2.s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.

  18. Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function

    PubMed Central

    Bramhall, Naomi F.; Konrad-Martin, Dawn; McMillan, Garnett P.; Griest, Susan E.

    2017-01-01

    Objectives Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. Design Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. Results After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. Conclusions Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted for by sex or variability in outer hair cell function. This change is similar to the decreased ABR wave I amplitudes observed in animal models of noise-induced cochlear synaptopathy. However, without post mortem examination of the temporal bone, no direct conclusions can be drawn concerning the presence of synaptopathy in the study groups with higher noise exposure histories. PMID:27992391

  19. Tinnitus and other auditory problems - occupational noise exposure below risk limits may cause inner ear dysfunction.

    PubMed

    Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn

    2014-01-01

    The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: - pure tone audiometry with Békésy technique, - transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; - psychoacoustical modulation transfer function, - forward masking, - speech recognition in noise, - tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group.

  20. Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4.

    PubMed

    Mutai, Hideki; Miya, Fuyuki; Fujii, Masato; Tsunoda, Tatsuhiko; Matsunaga, Tatsuo

    2015-01-01

    Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (-)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.

  1. Tinnitus and Other Auditory Problems – Occupational Noise Exposure below Risk Limits May Cause Inner Ear Dysfunction

    PubMed Central

    Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn

    2014-01-01

    The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: − pure tone audiometry with Békésy technique, − transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; − psychoacoustical modulation transfer function, − forward masking, − speech recognition in noise, − tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group. PMID:24827149

  2. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  3. PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing.

    PubMed

    Soranzo, Alessandro; Grassi, Massimo

    2014-01-01

    PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment.

  4. PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing

    PubMed Central

    Soranzo, Alessandro; Grassi, Massimo

    2014-01-01

    PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment. PMID:25101013

  5. [The experimental research of inner ear metabolism and electrical physiology of autoimmune sensorineural hearing loss].

    PubMed

    Tan, C; Cao, Y; Hu, P

    1998-09-01

    Inquire into the mechanism of inner ear pathological physiology in autoimmune sensorineural hearing loss (ASHL). With the auditory electric-physiological techniques and enzyme-histochemical method, the change of inner ear hearing function and enzyme activity were observed. These animals, which threshold of auditory nerve compound active potential (CAP) and cochlear microphonic potential(CM) heightening evidently, showed that the amplitude of endolymphatic potential(EP) (include-EP) bring down in various degrees, which was related to the change of the active of Na(+)-K(+)-ATPase and SDH in vascularis stria and endolymphatic sac. The abnormality of enzymes metabolism in inner ear tissues, which following autoimmune inflammation damage, is the pathological foundation of hearing dysfunction.

  6. Loudness function derives from data on electrical discharge rates in auditory nerve fibers

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1973-01-01

    Judgements of the loudness of pure-tone sound stimuli yield a loudness function which relates perceived loudness to stimulus amplitude. A loudness function is derived from physical evidence alone without regard to human judgments. The resultant loudness function is L=K(q-q0), where L is loudness, q is effective sound pressure (specifically q0 at the loudness threshold), and K is generally a weak function of the number of stimulated auditory nerve fibers. The predicted function is in agreement with loudness judgment data reported by Warren, which imply that, in the suprathreshold loudness regime, decreasing the sound-pressure level by 6 db results in halving the loudness.

  7. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    PubMed

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech-perception performance showed larger EACC thresholds in this study. These results demonstrate the feasibility of recording eERPs from implanted children with ANSD, using direct electrical stimulation. Temporal-processing deficits, as demonstrated by large EACC thresholds for gap detection, might account in part for the poor speech-perception performances observed in a subgroup of implanted subjects with ANSD. This finding suggests that the EACC elicited by changes in temporal continuity (i.e., gap) holds promise as a predictor of speech-perception ability among implanted children with ANSD.

  8. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.

    2010-01-01

    Objectives The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar electrode configuration are predictive of wide or tip-shifted psychophysical tuning curves. Design Data were collected from five cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked psychophysical tuning curves were obtained for channels with the highest, lowest, and median tripolar (σ=1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (σ=0) or a more focused partial tripolar (σ ≥ 0.55) configuration. The masker channel and level were varied while the configuration was fixed to σ = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Results Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, σ, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, partial tripolar stimulus, had significantly broader psychophysical tuning curves than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with partial tripolar probes, for both the highest and lowest threshold channels. Conclusions These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:20090533

  9. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  10. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy

    PubMed Central

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A.E.

    2014-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 KHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2, and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm3 volumes centered on the left and right Heschl’s gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = −0.57, p = 0.02), while a similar trend was found in the control group (r = −0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis, and suggest a potential treatment target for presbycusis. PMID:25463460

  11. Malformation of the eighth cranial nerve in children.

    PubMed

    de Paula-Vernetta, Carlos; Muñoz-Fernández, Noelia; Mas-Estellés, Fernando; Guzmán-Calvete, Abel; Cavallé-Garrido, Laura; Morera-Pérez, Constantino

    2016-01-01

    Prevalence of congenital sensorineural hearing loss (SNHL) is approximately 1.5-6 in every 1,000 newborns. Dysfunction of the auditory nerve (auditory neuropathy) may be involved in up to 1%-10% of cases; hearing losses because of vestibulocochlear nerve (VCN) aplasia are less frequent. The objectives of this study were to describe clinical manifestations, hearing thresholds and aetiology of children with SNHL and VCN aplasia. We present 34 children (mean age 20 months) with auditory nerve malformation and profound HL taken from a sample of 385 children implanted in a 10-year period. We studied demographic characteristics, hearing, genetics, risk factors and associated malformations (Casselman's and Sennaroglu's classifications). Data were processed using a bivariate descriptive statistical analysis (P<.05). Of all the cases, 58.8% were bilateral (IIa/IIa and I/I were the most common). Of the unilateral cases, IIb was the most frequent. Auditory screening showed a sensitivity of 77.4%. A relationship among bilateral cases and systemic pathology was observed. We found a statistically significant difference when comparing hearing loss impairment and patients with different types of aplasia as defined by Casselman's classification. Computed tomography (CT) scan yielded a sensitivity of 46.3% and a specificity of 85.7%. However, magnetic resonance imaging (MRI) was the most sensitive imaging test. Ten percent of the children in a cochlear implant study had aplasia or hypoplasia of the auditory nerve. The degree of auditory loss was directly related to the different types of aplasia (Casselman's classification) Although CT scan and MRI are complementary, the MRI is the test of choice for detecting auditory nerve malformation. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  12. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  13. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model

    PubMed Central

    Diehl, Peter U.; Schaette, Roland

    2015-01-01

    Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277

  14. Auditory adaptation testing as a tool for investigating tinnitus origin: two patients with vestibular schwannoma.

    PubMed

    Silverman, Carol A; Silman, Shlomo; Emmer, Michele B

    2017-06-01

    To enhance the understanding of tinnitus origin by disseminating two case studies of vestibular schwannoma (VS) involving behavioural auditory adaptation testing (AAT). Retrospective case study. Two adults who presented with unilateral, non-pulsatile subjective tinnitus and bilateral normal-hearing sensitivity. At the initial evaluation, the otolaryngologic and audiologic findings were unremarkable, bilaterally. Upon retest, years later, VS was identified. At retest, the tinnitus disappeared in one patient and was slightly attenuated in the other patient. In the former, the results of AAT were positive for left retrocochlear pathology; in the latter, the results were negative for the left ear although a moderate degree of auditory adaptation was present despite bilateral normal-hearing sensitivity. Imaging revealed a small VS in both patients, confirmed surgically. Behavioural AAT in patients with tinnitus furnishes a useful tool for exploring tinnitus origin. Decrease or disappearance of tinnitus in patients with auditory adaptation suggests that the tinnitus generator is the cochlea or the cochlear nerve adjacent to the cochlea. Patients with unilateral tinnitus and bilateral, symmetric, normal-hearing thresholds, absent other audiovestibular symptoms, should be routinely monitored through otolaryngologic and audiologic re-evaluations. Tinnitus decrease or disappearance may constitute a red flag for retrocochlear pathology.

  15. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  16. Auditory and tactile gap discrimination by observers with normal and impaired hearing.

    PubMed

    Desloge, Joseph G; Reed, Charlotte M; Braida, Louis D; Perez, Zachary D; Delhorne, Lorraine A; Villabona, Timothy J

    2014-02-01

    Temporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21-69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250-250, 250-400, 400-250, and 400-400 Hz). Auditory measurements were obtained for monaural presentation over headphones and tactile measurements were obtained using sinusoidal vibrations presented to the left middle finger. The auditory GDDTs of the hearing-impaired listeners, which were larger than those of the normal-hearing observers, were well-reproduced in the listeners with simulated loss. The magnitude of the GDDT was generally independent of modality and showed effects of age in both modalities. The use of different-frequency compared to same-frequency markers led to a greater deterioration in auditory GDDTs compared to tactile GDDTs and may reflect differences in bandwidth properties between the two sensory systems.

  17. How auditory discontinuities and linguistic experience affect the perception of speech and non-speech in English- and Spanish-speaking listeners

    NASA Astrophysics Data System (ADS)

    Hay, Jessica F.; Holt, Lori L.; Lotto, Andrew J.; Diehl, Randy L.

    2005-04-01

    The present study was designed to investigate the effects of long-term linguistic experience on the perception of non-speech sounds in English and Spanish speakers. Research using tone-onset-time (TOT) stimuli, a type of non-speech analogue of voice-onset-time (VOT) stimuli, has suggested that there is an underlying auditory basis for the perception of stop consonants based on a threshold for detecting onset asynchronies in the vicinity of +20 ms. For English listeners, stop consonant labeling boundaries are congruent with the positive auditory discontinuity, while Spanish speakers place their VOT labeling boundaries and discrimination peaks in the vicinity of 0 ms VOT. The present study addresses the question of whether long-term linguistic experience with different VOT categories affects the perception of non-speech stimuli that are analogous in their acoustic timing characteristics. A series of synthetic VOT stimuli and TOT stimuli were created for this study. Using language appropriate labeling and ABX discrimination tasks, labeling boundaries (VOT) and discrimination peaks (VOT and TOT) are assessed for 24 monolingual English speakers and 24 monolingual Spanish speakers. The interplay between language experience and auditory biases are discussed. [Work supported by NIDCD.

  18. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  19. Acoustic Reflexes in Normal-Hearing Adults, Typically Developing Children, and Children with Suspected Auditory Processing Disorder: Thresholds, Real-Ear Corrections, and the Role of Static Compliance on Estimates.

    PubMed

    Saxena, Udit; Allan, Chris; Allen, Prudence

    2017-06-01

    Previous studies have suggested elevated reflex thresholds in children with auditory processing disorders (APDs). However, some aspects of the child's ear such as ear canal volume and static compliance of the middle ear could possibly affect the measurements of reflex thresholds and thus impact its interpretation. Sound levels used to elicit reflexes in a child's ear may be higher than predicted by calibration in a standard 2-cc coupler, and lower static compliance could make visualization of very small changes in impedance at threshold difficult. For this purpose, it is important to evaluate threshold data with consideration of differences between children and adults. A set of studies were conducted. The first compared reflex thresholds obtained using standard clinical procedures in children with suspected APD to that of typically developing children and adults to test the replicability of previous studies. The second study examined the impact of ear canal volume on estimates of reflex thresholds by applying real-ear corrections. Lastly, the relationship between static compliance and reflex threshold estimates was explored. The research is a set of case-control studies with a repeated measures design. The first study included data from 20 normal-hearing adults, 28 typically developing children, and 66 children suspected of having an APD. The second study included 28 normal-hearing adults and 30 typically developing children. In the first study, crossed and uncrossed reflex thresholds were measured in 5-dB step size. Reflex thresholds were analyzed using repeated measures analysis of variance (RM-ANOVA). In the second study, uncrossed reflex thresholds, real-ear correction, ear canal volume, and static compliance were measured. Reflex thresholds were measured using a 1-dB step size. The effect of real-ear correction and static compliance on reflex threshold was examined using RM-ANOVA and Pearson correlation coefficient, respectively. Study 1 replicated previous studies showing elevated reflex thresholds in many children with suspected APD when compared to data from adults using standard clinical procedures, especially in the crossed condition. The thresholds measured in children with suspected APD tended to be higher than those measured in the typically developing children. There were no significant differences between the typically developing children and adults. However, when real-ear calibrated stimulus levels were used, it was found that children's thresholds were elicited at higher levels than in the adults. A significant relationship between reflex thresholds and static compliance was found in the adult data, showing a trend for higher thresholds in ears with lower static compliance, but no such relationship was found in the data from the children. This study suggests that reflex measures in children should be adjusted for real-ear-to-coupler differences before interpretation. The data in children with suspected APD support previous studies suggesting abnormalities in reflex thresholds. The lack of correlation between threshold and static compliance estimates in children as was observed in the adults may suggest a nonmechanical explanation for age and clinically related effects. American Academy of Audiology

  20. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    PubMed

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses

    PubMed Central

    Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.

    2010-01-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230

  2. Live CT imaging of sound reception anatomy and hearing measurements in the pygmy killer whale, Feresa attenuata.

    PubMed

    Montie, Eric W; Manire, Charlie A; Mann, David A

    2011-03-15

    In June 2008, two pygmy killer whales (Feresa attenuata) were stranded alive near Boca Grande, FL, USA, and were taken into rehabilitation. We used this opportunity to learn about the peripheral anatomy of the auditory system and hearing sensitivity of these rare toothed whales. Three-dimensional (3-D) reconstructions of head structures from X-ray computed tomography (CT) images revealed mandibles that were hollow, lacked a bony lamina medial to the pan bone and contained mandibular fat bodies that extended caudally and abutted the tympanoperiotic complex. Using auditory evoked potential (AEP) procedures, the modulation rate transfer function was determined. Maximum evoked potential responses occurred at modulation frequencies of 500 and 1000 Hz. The AEP-derived audiograms were U-shaped. The lowest hearing thresholds occurred between 20 and 60 kHz, with the best hearing sensitivity at 40 kHz. The auditory brainstem response (ABR) was composed of seven waves and resembled the ABR of the bottlenose and common dolphins. By changing electrode locations, creating 3-D reconstructions of the brain from CT images and measuring the amplitude of the ABR waves, we provided evidence that the neuroanatomical sources of ABR waves I, IV and VI were the auditory nerve, inferior colliculus and the medial geniculate body, respectively. The combination of AEP testing and CT imaging provided a new synthesis of methods for studying the auditory system of cetaceans.

  3. Auditory Outcomes with Hearing Rehabilitation in Children with Unilateral Hearing Loss: A Systematic Review.

    PubMed

    Appachi, Swathi; Specht, Jessica L; Raol, Nikhila; Lieu, Judith E C; Cohen, Michael S; Dedhia, Kavita; Anne, Samantha

    2017-10-01

    Objective Options for management of unilateral hearing loss (UHL) in children include conventional hearing aids, bone-conduction hearing devices, contralateral routing of signal (CROS) aids, and frequency-modulating (FM) systems. The objective of this study was to systematically review the current literature to characterize auditory outcomes of hearing rehabilitation options in UHL. Data Sources PubMed, EMBASE, Medline, CINAHL, and Cochrane Library were searched from inception to January 2016. Manual searches of bibliographies were also performed. Review Methods Studies analyzing auditory outcomes of hearing amplification in children with UHL were included. Outcome measures included functional and objective auditory results. Two independent reviewers evaluated each abstract and article. Results Of the 249 articles identified, 12 met inclusion criteria. Seven articles solely focused on outcomes with bone-conduction hearing devices. Outcomes favored improved pure-tone averages, speech recognition thresholds, and sound localization in implanted patients. Five studies focused on FM systems, conventional hearing aids, or CROS hearing aids. Limited data are available but suggest a trend toward improvement in speech perception with hearing aids. FM systems were shown to have the most benefit for speech recognition in noise. Studies evaluating CROS hearing aids demonstrated variable outcomes. Conclusions Data evaluating functional and objective auditory measures following hearing amplification in children with UHL are limited. Most studies do suggest improvement in speech perception, speech recognition in noise, and sound localization with a hearing rehabilitation device.

  4. Human Factors Engineering Bibliographic Series. Volume 2: 1960-1964 Literature

    DTIC Science & Technology

    1966-10-01

    flutter discrimination, melodic and temporal) binaural vs. monaural equipment and methods (e.g., anechoic chambers, audiometric devices, communication...brightness, duration, timbre, vocality) stimulus mixtures (e.g., harmonics, beats , combination tones, modulations) thresholds training, nonverbal--see Training...scales and aids) Beats --see Audition (stimulus mixtures) Bells--see Auditory (displays, nonverbal) Belts, Harnesses, and other Restraining Devices--see

  5. A Temporal Model of Level-Invariant, Tone-in-Noise Detection

    ERIC Educational Resources Information Center

    Berg, Bruce G.

    2004-01-01

    Level-invariant detection refers to findings that thresholds in tone-in-noise detection are unaffected by roving-level procedures that degrade energy cues. Such data are inconsistent with ideas that detection is based on the energy passed by an auditory filter. A hypothesis that detection is based on a level-invariant temporal cue is advanced.…

  6. Children's weighting strategies for word-final stop voicing are not explained by auditory sensitivities.

    PubMed

    Nittrouer, Susan; Lowenstein, Joanna H

    2007-02-01

    It has been reported that children and adults weight differently the various acoustic properties of the speech signal that support phonetic decisions. This finding is generally attributed to the fact that the amount of weight assigned to various acoustic properties by adults varies across languages, and that children have not yet discovered the mature weighting strategies of their own native languages. But an alternative explanation exists: Perhaps children's auditory sensitivities for some acoustic properties of speech are poorer than those of adults, and children cannot categorize stimuli based on properties to which they are not keenly sensitive. The purpose of the current study was to test that hypothesis. Edited-natural, synthetic-formant, and sine wave stimuli were all used, and all were modeled after words with voiced and voiceless final stops. Adults and children (5 and 7 years of age) listened to pairs of stimuli in 5 conditions: 2 involving a temporal property (1 with speech and 1 with nonspeech stimuli) and 3 involving a spectral property (1 with speech and 2 with nonspeech stimuli). An AX discrimination task was used in which a standard stimulus (A) was compared with all other stimuli (X) equal numbers of times (method of constant stimuli). Adults and children had similar difference thresholds (i.e., 50% point on the discrimination function) for 2 of the 3 sets of nonspeech stimuli (1 temporal and 1 spectral), but children's thresholds were greater for both sets of speech stimuli. Results are interpreted as evidence that children's auditory sensitivities are adequate to support weighting strategies similar to those of adults, and so observed differences between children and adults in speech perception cannot be explained by differences in auditory perception. Furthermore, it is concluded that listeners bring expectations to the listening task about the nature of the signals they are hearing based on their experiences with those signals.

  7. Ontogenetic Development of Weberian Ossicles and Hearing Abilities in the African Bullhead Catfish

    PubMed Central

    Lechner, Walter; Heiss, Egon; Schwaha, Thomas; Glösmann, Martin; Ladich, Friedrich

    2011-01-01

    Background The Weberian apparatus of otophysine fishes facilitates sound transmission from the swimbladder to the inner ear to increase hearing sensitivity. It has been of great interest to biologists since the 19th century. No studies, however, are available on the development of the Weberian ossicles and its effect on the development of hearing in catfishes. Methodology/Principal Findings We investigated the development of the Weberian apparatus and auditory sensitivity in the catfish Lophiobagrus cyclurus. Specimens from 11.3 mm to 85.5 mm in standard length were studied. Morphology was assessed using sectioning, histology, and X-ray computed tomography, along with 3D reconstruction. Hearing thresholds were measured utilizing the auditory evoked potentials recording technique. Weberian ossicles and interossicular ligaments were fully developed in all stages investigated except in the smallest size group. In the smallest catfish, the intercalarium and the interossicular ligaments were still missing and the tripus was not yet fully developed. Smallest juveniles revealed lowest auditory sensitivity and were unable to detect frequencies higher than 2 or 3 kHz; sensitivity increased in larger specimens by up to 40 dB, and frequency detection up to 6 kHz. In the size groups capable of perceiving frequencies up to 6 kHz, larger individuals had better hearing abilities at low frequencies (0.05–2 kHz), whereas smaller individuals showed better hearing at the highest frequencies (4–6 kHz). Conclusions/Significance Our data indicate that the ability of otophysine fish to detect sounds at low levels and high frequencies largely depends on the development of the Weberian apparatus. A significant increase in auditory sensitivity was observed as soon as all Weberian ossicles and interossicular ligaments are present and the chain for transmitting sounds from the swimbladder to the inner ear is complete. This contrasts with findings in another otophysine, the zebrafish, where no threshold changes have been observed. PMID:21533262

  8. Sensory coding and cognitive processing of sound in Veterans with blast exposure

    PubMed Central

    Bressler, Scott; Goldberg, Hannah; Shinn-Cunningham, Barbara

    2017-01-01

    Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or “hidden”) in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or “zig-zagging”) of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study participants also suffered from post-traumatic disorder (PTSD), follow-up studies are required to tease apart the contributions of PTSD and blast-induced injury on cognitive performance. PMID:27815131

  9. Assessing the Underwater Acoustics of the World's Largest Vibration Hammer (OCTA-KONG) and Its Potential Effects on the Indo-Pacific Humpbacked Dolphin (Sousa chinensis)

    PubMed Central

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, “soft start” and “power down” techniques. PMID:25338113

  10. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis).

    PubMed

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, "soft start" and "power down" techniques.

  11. Homeostatic enhancement of sensory transduction

    PubMed Central

    Milewski, Andrew R.; Ó Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2017-01-01

    Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells’ ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle’s displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell’s behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here. PMID:28760949

  12. A case of high noise sensitivity

    NASA Astrophysics Data System (ADS)

    Murata, M.; Sakamoto, H.

    1995-10-01

    A case of noise sensitivity with a five-year follow-up period is reported. The patient was a 34-year-old single man who was diagnosed as having psychosomatic disorder triggered by two stressful life events in rapid succession with secondary hypersensitivity to noise. Hypersensitivity to light and cold also developed later in the clinical course. The auditory threshold was within the normal range. The discomfort threshold as a measure of the noise sensitivity secondary to mental illness was measured repeatedly using test tone of audiometry. The discomfort threshold varied depending upon his mental status, ranging from 40-50 dB in the comparatively poorer mental state to 70-95 dB in the relatively good mental state. The features of noise sensitivity, including that secondary to mental illness, are discussed.

  13. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.

    PubMed

    Nechaev, Dmitry I; Milekhina, Olga N; Supin, Alexander Ya

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.

  14. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).

    PubMed

    Valero, M D; Burton, J A; Hauser, S N; Hackett, T A; Ramachandran, R; Liberman, M C

    2017-09-01

    Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise

    PubMed Central

    Nechaev, Dmitry I.; Milekhina, Olga N.; Supin, Alexander Ya.

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels. PMID:26462066

  16. Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations

    PubMed Central

    Sela, Yaniv; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Tononi, Giulio; Nir, Yuval

    2016-01-01

    Study Objectives: Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-evoked neuronal spiking activity during natural sleep. Methods: We compared neuronal (n = 269) and multiunit activity (MUA), as well as local field potentials (LFP) in rat core auditory cortex (A1) during NREM sleep, comparing responses to sounds depending on the presence or absence of sleep spindles. Results: We found that sleep spindles robustly modulated the timing of neuronal discharges in A1. However, responses to sounds were nearly identical for all measured signals including isolated neurons, MUA, and LFPs (all differences < 10%). Furthermore, in 10% of trials, auditory stimulation led to an early termination of the sleep spindle oscillation around 150–250 msec following stimulus onset. Finally, active ON states and inactive OFF periods during slow waves in NREM sleep affected the auditory response in opposite ways, depending on stimulus intensity. Conclusions: Responses in core auditory cortex are well preserved regardless of sleep spindles recorded in that area, suggesting that thalamocortical sensory relay remains functional during sleep spindles, and that sensory disconnection in sleep is mediated by other mechanisms. Citation: Sela Y, Vyazovskiy VV, Cirelli C, Tononi G, Nir Y. Responses in rat core auditory cortex are preserved during sleep spindle oscillations. SLEEP 2016;39(5):1069–1082. PMID:26856904

  17. Deletion of Fmr1 Alters Function and Synaptic Inputs in the Auditory Brainstem

    PubMed Central

    Rotschafer, Sarah E.; Marshak, Sonya; Cramer, Karina S.

    2015-01-01

    Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1 -/- mice, an animal model of FXS. We found that Fmr1 -/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1 -/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1 -/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1 -/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem. PMID:25679778

  18. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Follow-up of hearing thresholds among forge hammering workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamal, A.A.; Mikael, R.A.; Faris, R.

    Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantlymore » higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.« less

  20. Auditory spectral versus spatial temporal order judgment: Threshold distribution analysis.

    PubMed

    Fostick, Leah; Babkoff, Harvey

    2017-05-01

    Some researchers suggested that one central mechanism is responsible for temporal order judgments (TOJ), within and across sensory channels. This suggestion is supported by findings of similar TOJ thresholds in same modality and cross-modality TOJ tasks. In the present study, we challenge this idea by analyzing and comparing the threshold distributions of the spectral and spatial TOJ tasks. In spectral TOJ, the tones differ in their frequency ("high" and "low") and are delivered either binaurally or monaurally. In spatial (or dichotic) TOJ, the two tones are identical but are presented asynchronously to the two ears and thus differ with respect to which ear received the first tone and which ear received the second tone ("left"/"left"). Although both tasks are regarded as measures of auditory temporal processing, a review of data published in the literature suggests that they trigger different patterns of response. The aim of the current study was to systematically examine spectral and spatial TOJ threshold distributions across a large number of studies. Data are based on 388 participants in 13 spectral TOJ experiments, and 222 participants in 9 spatial TOJ experiments. None of the spatial TOJ distributions deviated significantly from the Gaussian; while all of the spectral TOJ threshold distributions were skewed to the right, with more than half of the participants accurately judging temporal order at very short interstimulus intervals (ISI). The data do not support the hypothesis that 1 central mechanism is responsible for all temporal order judgments. We suggest that different perceptual strategies are employed when performing spectral TOJ than when performing spatial TOJ. We posit that the spectral TOJ paradigm may provide the opportunity for two-tone masking or temporal integration, which is sensitive to the order of the tones and thus provides perceptual cues that may be used to judge temporal order. This possibility should be considered when interpreting spectral TOJ data, especially in the context of comparing different populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth

    PubMed Central

    Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of sensitivity to spectral modulation than spectral modulation detection with a flat standard. PMID:29621338

  2. Auditory processing deficits are sometimes necessary and sometimes sufficient for language difficulties in children: Evidence from mild to moderate sensorineural hearing loss.

    PubMed

    Halliday, Lorna F; Tuomainen, Outi; Rosen, Stuart

    2017-09-01

    There is a general consensus that many children and adults with dyslexia and/or specific language impairment display deficits in auditory processing. However, how these deficits are related to developmental disorders of language is uncertain, and at least four categories of model have been proposed: single distal cause models, risk factor models, association models, and consequence models. This study used children with mild to moderate sensorineural hearing loss (MMHL) to investigate the link between auditory processing deficits and language disorders. We examined the auditory processing and language skills of 46, 8-16year-old children with MMHL and 44 age-matched typically developing controls. Auditory processing abilities were assessed using child-friendly psychophysical techniques in order to obtain discrimination thresholds. Stimuli incorporated three different timescales (µs, ms, s) and three different levels of complexity (simple nonspeech tones, complex nonspeech sounds, speech sounds), and tasks required discrimination of frequency or amplitude cues. Language abilities were assessed using a battery of standardised assessments of phonological processing, reading, vocabulary, and grammar. We found evidence that three different auditory processing abilities showed different relationships with language: Deficits in a general auditory processing component were necessary but not sufficient for language difficulties, and were consistent with a risk factor model; Deficits in slow-rate amplitude modulation (envelope) detection were sufficient but not necessary for language difficulties, and were consistent with either a single distal cause or a consequence model; And deficits in the discrimination of a single speech contrast (/bɑ/ vs /dɑ/) were neither necessary nor sufficient for language difficulties, and were consistent with an association model. Our findings suggest that different auditory processing deficits may constitute distinct and independent routes to the development of language difficulties in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals.

    PubMed

    Rizza, Aurora; Terekhov, Alexander V; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O'Regan, J Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980's and 1990's, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level.

  4. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals

    PubMed Central

    Rizza, Aurora; Terekhov, Alexander V.; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O’Regan, J. Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980’s and 1990’s, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level. PMID:29875719

  5. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    PubMed

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.

  6. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu; Zhong, Cuiping; Hong, Liu

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110more » dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.« less

  7. Temporal resolution of the Florida manatee (Trichechus manatus latirostris) auditory system.

    PubMed

    Mann, David A; Colbert, Debborah E; Gaspard, Joseph C; Casper, Brandon M; Cook, Mandy L H; Reep, Roger L; Bauer, Gordon B

    2005-10-01

    Auditory evoked potential (AEP) measurements of two Florida manatees (Trichechus manatus latirostris) were measured in response to amplitude modulated tones. The AEP measurements showed weak responses to test stimuli from 4 kHz to 40 kHz. The manatee modulation rate transfer function (MRTF) is maximally sensitive to 150 and 600 Hz amplitude modulation (AM) rates. The 600 Hz AM rate is midway between the AM sensitivities of terrestrial mammals (chinchillas, gerbils, and humans) (80-150 Hz) and dolphins (1,000-1,200 Hz). Audiograms estimated from the input-output functions of the EPs greatly underestimate behavioral hearing thresholds measured in two other manatees. This underestimation is probably due to the electrodes being located several centimeters from the brain.

  8. In-Air Evoked Potential Audiometry of Grey Seals (Halichoerus grypus) from the North and Baltic Seas

    PubMed Central

    Ruser, Andreas; Dähne, Michael; Sundermeyer, Janne; Lucke, Klaus; Houser, Dorian S.; Finneran, James J.; Driver, Jörg; Pawliczka, Iwona; Rosenberger, Tanja; Siebert, Ursula

    2014-01-01

    In-air anthropogenic sound has the potential to affect grey seal (Halichoerus grypus) behaviour and interfere with acoustic communication. In this study, a new method was used to deliver acoustic signals to grey seals as part of an in-air hearing assessment. Using in-ear headphones with adapted ear inserts allowed for the measurement of auditory brainstem responses (ABR) on sedated grey seals exposed to 5-cycle (2-1-2) tone pips. Thresholds were measured at 10 frequencies between 1–20 kHz. Measurements were made using subcutaneous electrodes on wild seals from the Baltic and North Seas. Thresholds were determined by both visual and statistical approaches (single point F-test) and good agreement was obtained between the results using both methods. The mean auditory thresholds were ≤40 dB re 20 µPa peak equivalent sound pressure level (peSPL) between 4–20 kHz and showed similar patterns to in-air behavioural hearing tests of other phocid seals between 3 and 20 kHz. Below 3 kHz, a steep reduction in hearing sensitivity was observed, which differed from the rate of decline in sensitivity obtained in behavioural studies on other phocids. Differences in the rate of decline may reflect influence of the ear inserts on the ability to reliably transmit lower frequencies or interference from the structure of the distal end of the ear canal. PMID:24632891

  9. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    PubMed

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  10. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.

    PubMed

    Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M

    2016-07-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    PubMed

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  12. On the single sweep processing of auditory brainstem responses: click vs. chirp stimulations and active vs. passive electrodes.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J

    2008-01-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.

  13. Great cormorants ( Phalacrocorax carbo) can detect auditory cues while diving

    NASA Astrophysics Data System (ADS)

    Hansen, Kirstin Anderson; Maxwell, Alyssa; Siebert, Ursula; Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-06-01

    In-air hearing in birds has been thoroughly investigated. Sound provides birds with auditory information for species and individual recognition from their complex vocalizations, as well as cues while foraging and for avoiding predators. Some 10% of existing species of birds obtain their food under the water surface. Whether some of these birds make use of acoustic cues while underwater is unknown. An interesting species in this respect is the great cormorant ( Phalacrocorax carbo), being one of the most effective marine predators and relying on the aquatic environment for food year round. Here, its underwater hearing abilities were investigated using psychophysics, where the bird learned to detect the presence or absence of a tone while submerged. The greatest sensitivity was found at 2 kHz, with an underwater hearing threshold of 71 dB re 1 μPa rms. The great cormorant is better at hearing underwater than expected, and the hearing thresholds are comparable to seals and toothed whales in the frequency band 1-4 kHz. This opens up the possibility of cormorants and other aquatic birds having special adaptations for underwater hearing and making use of underwater acoustic cues from, e.g., conspecifics, their surroundings, as well as prey and predators.

  14. Psychometric functions for informational masking

    NASA Astrophysics Data System (ADS)

    Lutfi, Robert A.; Kistler, Doris J.; Callahan, Michael R.; Wightman, Frederic L.

    2003-04-01

    The method of constant stimuli was used to obtain complete psychometric functions (PFs) from 44 normal-hearing listeners in conditions known to produce varying amounts of informational masking. The task was to detect a pure-tone signal in the presence of a broadband noise and in the presence of multitone maskers with frequencies and amplitudes that varied at random from one presentation to the next. Relative to the broadband noise condition, significant reductions were observed in both the slope and the upper asymptote of the PF for multitone maskers producing large amounts of informational masking. Slope was affected more for some listeners while asymptote was affected more for others. Mean slopes and asymptotes varied nonmonotonically with the number of masker components in much the same manner as mean thresholds. The results are consistent with a model that assumes trial-by-trial judgments are based on a weighted sum of dB levels at the output of independent auditory filters. For many listeners, however, the weights appear to reflect how often a nonsignal auditory filter is mistaken for the signal filter. For these listeners adaptive procedures may produce a significant bias in the estimates of threshold for conditions of informational masking. [Work supported by NIDCD.

  15. Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses.

    PubMed

    Van Dun, Bram; Wouters, Jan; Moonen, Marc

    2009-07-01

    Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.

  16. Dolphin biosonar target detection in noise: wrap up of a past experiment.

    PubMed

    Au, Whitlow W L

    2014-07-01

    The target detection capability of bottlenose dolphins in the presence of artificial masking noise was first studied by Au and Penner [J. Acoust. Soc. Am. 70, 687-693 (1981)] in which the dolphins' target detection threshold was determined as a function of the ratio of the echo energy flux density and the estimated received noise spectral density. Such a metric was commonly used in human psychoacoustics despite the fact that the echo energy flux density is not compatible with noise spectral density which is averaged intensity per Hz. Since the earlier detection in noise studies, two important parameters, the dolphin integration time applicable to broadband clicks and the dolphin's auditory filter shape, were determined. The inclusion of these two parameters allows for the estimation of the received energy flux density of the masking noise so that the dolphin target detection can now be determined as a function of the ratio of the received energy of the echo over the received noise energy. Using an integration time of 264 μs and an auditory bandwidth of 16.7 kHz, the ratio of the echo energy to noise energy at the target detection threshold is approximately 1 dB.

  17. Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations

    PubMed Central

    Friston, Karl J.; Kleinschmidt, Andreas

    2010-01-01

    Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004

  18. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  19. Randomized, Prospective, Three-Arm Study to Confirm the Auditory Safety and Efficacy of Artemether-Lumefantrine in Colombian Patients with Uncomplicated Plasmodium falciparum Malaria

    PubMed Central

    Carrasquilla, Gabriel; Barón, Clemencia; Monsell, Edwin M.; Cousin, Marc; Walter, Verena; Lefèvre, Gilbert; Sander, Oliver; Fisher, Laurel M.

    2012-01-01

    The safety of artemether-lumefantrine in patients with acute, uncomplicated Plasmodium falciparum malaria was investigated prospectively using the auditory brainstem response (ABR) and pure-tone thresholds. Secondary outcomes included polymerase chain reaction-corrected cure rates. Patients were randomly assigned in a 3:1:1 ratio to either artemether-lumefantrine (N = 159), atovaquone-proguanil (N = 53), or artesunate-mefloquine (N = 53). The null hypothesis (primary outcome), claiming that the percentage of patients with a baseline to Day-7 ABR Wave III latency increase of > 0.30 msec is ≥ 15% after administration of artemether-lumefantrine, was rejected; 2.6% of patients (95% confidence interval: 0.7–6.6) exceeded 0.30 msec, i.e., significantly below 15% (P < 0.0001). A model-based analysis found no apparent relationship between drug exposure and ABR change. In all three groups, average improvements (2–4 dB) in pure-tone thresholds were observed, and polymerase chain reaction-corrected cure rates were > 95% to Day 42. The results support the continued safe and efficacious use of artemether-lumefantrine in uncomplicated falciparum malaria. PMID:22232454

  20. Randomized, prospective, three-arm study to confirm the auditory safety and efficacy of artemether-lumefantrine in Colombian patients with uncomplicated Plasmodium falciparum malaria.

    PubMed

    Carrasquilla, Gabriel; Barón, Clemencia; Monsell, Edwin M; Cousin, Marc; Walter, Verena; Lefèvre, Gilbert; Sander, Oliver; Fisher, Laurel M

    2012-01-01

    The safety of artemether-lumefantrine in patients with acute, uncomplicated Plasmodium falciparum malaria was investigated prospectively using the auditory brainstem response (ABR) and pure-tone thresholds. Secondary outcomes included polymerase chain reaction-corrected cure rates. Patients were randomly assigned in a 3:1:1 ratio to either artemether-lumefantrine (N = 159), atovaquone-proguanil (N = 53), or artesunate-mefloquine (N = 53). The null hypothesis (primary outcome), claiming that the percentage of patients with a baseline to Day-7 ABR Wave III latency increase of > 0.30 msec is ≥ 15% after administration of artemether-lumefantrine, was rejected; 2.6% of patients (95% confidence interval: 0.7-6.6) exceeded 0.30 msec, i.e., significantly below 15% (P < 0.0001). A model-based analysis found no apparent relationship between drug exposure and ABR change. In all three groups, average improvements (2-4 dB) in pure-tone thresholds were observed, and polymerase chain reaction-corrected cure rates were > 95% to Day 42. The results support the continued safe and efficacious use of artemether-lumefantrine in uncomplicated falciparum malaria.

  1. Interaction of Object Binding Cues in Binaural Masking Pattern Experiments.

    PubMed

    Verhey, Jesko L; Lübken, Björn; van de Par, Steven

    2016-01-01

    Object binding cues such as binaural and across-frequency modulation cues are likely to be used by the auditory system to separate sounds from different sources in complex auditory scenes. The present study investigates the interaction of these cues in a binaural masking pattern paradigm where a sinusoidal target is masked by a narrowband noise. It was hypothesised that beating between signal and masker may contribute to signal detection when signal and masker do not spectrally overlap but that this cue could not be used in combination with interaural cues. To test this hypothesis an additional sinusoidal interferer was added to the noise masker with a lower frequency than the noise whereas the target had a higher frequency than the noise. Thresholds increase when the interferer is added. This effect is largest when the spectral interferer-masker and masker-target distances are equal. The result supports the hypothesis that modulation cues contribute to signal detection in the classical masking paradigm and that these are analysed with modulation bandpass filters. A monaural model including an across-frequency modulation process is presented that account for this effect. Interestingly, the interferer also affects dichotic thresholds indicating that modulation cues also play a role in binaural processing.

  2. Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils

    PubMed Central

    Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter

    2015-01-01

    This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003

  3. A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods.

    PubMed

    Houser, Dorian S; Finneran, James J

    2006-09-01

    Variable stimulus presentation methods are used in auditory evoked potential (AEP) estimates of cetacean hearing sensitivity, each of which might affect stimulus reception and hearing threshold estimates. This study quantifies differences in underwater hearing thresholds obtained by AEP and behavioral means. For AEP estimates, a transducer embedded in a suction cup (jawphone) was coupled to the dolphin's lower jaw for stimulus presentation. Underwater AEP thresholds were obtained for three dolphins in San Diego Bay and for one dolphin in a quiet pool. Thresholds were estimated from the envelope following response at carrier frequencies ranging from 10 to 150 kHz. One animal, with an atypical audiogram, demonstrated significantly greater hearing loss in the right ear than in the left. Across test conditions, the range and average difference between AEP and behavioral threshold estimates were consistent with published comparisons between underwater behavioral and in-air AEP thresholds. AEP thresholds for one animal obtained in-air and in a quiet pool demonstrated a range of differences of -10 to 9 dB (mean = 3 dB). Results suggest that for the frequencies tested, the presentation of sound stimuli through a jawphone, underwater and in-air, results in acceptable differences to AEP threshold estimates.

  4. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  5. Central masking with bilateral cochlear implants

    PubMed Central

    Lin, Payton; Lu, Thomas; Zeng, Fan-Gang

    2013-01-01

    Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system. PMID:23363113

  6. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low threshold channel. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. Conclusions These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:21178633

  7. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs

    PubMed Central

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR. PMID:22666193

  8. The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.

    PubMed

    Chertoff, Mark E; Martz, Ashley; Sakumura, Joey T; Kamerer, Aryn M; Diaz, Francisco

    The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.

  9. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  10. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  11. Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex

    PubMed Central

    Kanwisher, Nancy; McDermott, Josh H.

    2013-01-01

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce “resolved” peaks of excitation in the cochlea, whereas others are “unresolved,” providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior. PMID:24336712

  12. Audition and exhibition to toluene - a contribution for the theme

    PubMed Central

    Augusto, Lívia Sanches Calvi; Kulay, Luiz Alexandre; Franco, Eloisa Sartori

    2012-01-01

    Summary Introduction: With the technological advances and the changes in the productive processes, the workers are displayed the different physical and chemical agents in its labor environment. The toluene is solvent an organic gift in glues, inks, oils, amongst others. Objective: To compare solvent the literary findings that evidence that diligent displayed simultaneously the noise and they have greater probability to develop an auditory loss of peripheral origin. Method: Revision of literature regarding the occupational auditory loss in displayed workers the noise and toluene. Results: The isolated exposition to the toluene also can unchain an alteration of the auditory thresholds. These audiometric findings, for ototoxicity the exposition to the toluene, present similar audiograms to the one for exposition to the noise, what it becomes difficult to differentiate a audiometric result of agreed exposition - noise and toluene - and exposition only to the noise. Conclusion: The majority of the studies was projected to generate hypotheses and would have to be considered as preliminary steps of an additional research. Until today the agents in the environment of work and its effect they have been studied in isolated way and the limits of tolerance of these, do not consider the agreed expositions. Considering that the workers are displayed the multiples agent and that the auditory loss is irreversible, the implemented tests must be more complete and all the workers must be part of the program of auditory prevention exactly displayed the low doses of the recommended limit of exposition. PMID:25991943

  13. How visual cues for when to listen aid selective auditory attention.

    PubMed

    Varghese, Lenny A; Ozmeral, Erol J; Best, Virginia; Shinn-Cunningham, Barbara G

    2012-06-01

    Visual cues are known to aid auditory processing when they provide direct information about signal content, as in lip reading. However, some studies hint that visual cues also aid auditory perception by guiding attention to the target in a mixture of similar sounds. The current study directly tests this idea for complex, nonspeech auditory signals, using a visual cue providing only timing information about the target. Listeners were asked to identify a target zebra finch bird song played at a random time within a longer, competing masker. Two different maskers were used: noise and a chorus of competing bird songs. On half of all trials, a visual cue indicated the timing of the target within the masker. For the noise masker, the visual cue did not affect performance when target and masker were from the same location, but improved performance when target and masker were in different locations. In contrast, for the chorus masker, visual cues improved performance only when target and masker were perceived as coming from the same direction. These results suggest that simple visual cues for when to listen improve target identification by enhancing sounds near the threshold of audibility when the target is energetically masked and by enhancing segregation when it is difficult to direct selective attention to the target. Visual cues help little when target and masker already differ in attributes that enable listeners to engage selective auditory attention effectively, including differences in spectrotemporal structure and in perceived location.

  14. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    PubMed

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  15. Transcranial magnetic stimulation for the treatment of tinnitus: a new coil positioning method and first results.

    PubMed

    Langguth, Berthold; Zowe, Marc; Landgrebe, Michael; Sand, Philipp; Kleinjung, Tobias; Binder, Harald; Hajak, Göran; Eichhammer, Peter

    2006-01-01

    Auditory phantom perceptions are associated with hyperactivity of the central auditory system. Neuronavigation guided repetitive transcranial magnetic stimulation (rTMS) of the area of increased activity was demonstrated to reduce tinnitus perception. The study aimed at developing an easy applicable standard procedure for transcranial magnetic stimulation of the primary auditory cortex and to investigate this coil positioning strategy for the treatment of chronic tinnitus in clinical practice. The left gyrus of Heschl was targeted in 25 healthy subjects using a frameless stereotactical system. Based on individual scalp coordinates of the coil, a positioning strategy with reference to the 10--20-EEG system was developed. Using this coil positioning approach we started an open treatment trial. 28 patients with chronic tinnitus received 10 sessions of rTMS (intensity 110% of motor threshold, 1 Hz, 2000 Stimuli/day). Being within a range of about 20 mm diameter, the scalp coordinates for stimulating the primary auditory cortex allowed to determine a standard procedure for coil positioning. Clinical validation of this coil positioning method resulted in a significant improvement of tinnitus complaints (p<0.001). The newly developed coil positioning strategy may have the potential to offer a more easy-to-use stimulation approach for treating chronic tinnitus as compared with highly sophisticated, imaging guided treatment methods.

  16. Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials

    NASA Astrophysics Data System (ADS)

    Bibikov, Nikolay G.

    2002-05-01

    Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.

  17. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia.

    PubMed

    Abdul Wahab, Noor Alaudin; Zakaria, Mohd Normani; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Wahab, Suzaily

    2017-11-01

    The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.

  18. Audiological manifestations in HIV-positive adults.

    PubMed

    Matas, Carla Gentile; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio Augusto Cotrim

    2014-07-01

    To characterize the findings of behavioral hearing assessment in HIV-positive individuals who received and did not receive antiretroviral treatment. This research was a cross-sectional study. The participants were 45 HIV-positive individuals (18 not exposed and 27 exposed to antiretroviral treatment) and 30 control-group individuals. All subjects completed an audiological evaluation through pure-tone audiometry, speech audiometry, and high-frequency audiometry. The hearing thresholds obtained by pure-tone audiometry were different between groups. The group that had received antiretroviral treatment had higher thresholds for the frequencies ranging from 250 to 3000 Hz compared with the control group and the group not exposed to treatment. In the range of frequencies from 4000 through 8000 Hz, the HIV-positive groups presented with higher thresholds than did the control group. The hearing thresholds determined by high-frequency audiometry were different between groups, with higher thresholds in the HIV-positive groups. HIV-positive individuals presented poorer results in pure-tone and high-frequency audiometry, suggesting impairment of the peripheral auditory pathway. Individuals who received antiretroviral treatment presented poorer results on both tests compared with individuals not exposed to antiretroviral treatment.

  19. Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep

    PubMed Central

    Stuart, Katrina; Conduit, Russell

    2009-01-01

    Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960

  20. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations.

    PubMed

    Horacek, Jiri; Brunovsky, Martin; Novak, Tomas; Skrdlantova, Lucie; Klirova, Monika; Bubenikova-Valesova, Vera; Krajca, Vladimir; Tislerova, Barbora; Kopecek, Milan; Spaniel, Filip; Mohr, Pavel; Höschl, Cyril

    2007-01-01

    Auditory hallucinations are characteristic symptoms of schizophrenia with high clinical importance. It was repeatedly reported that low frequency (

  1. Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome.

    PubMed

    Bonnel, Anna; McAdams, Stephen; Smith, Bennett; Berthiaume, Claude; Bertone, Armando; Ciocca, Valter; Burack, Jacob A; Mottron, Laurent

    2010-07-01

    Persons with Autism spectrum disorders (ASD) display atypical perceptual processing in visual and auditory tasks. In vision, Bertone, Mottron, Jelenic, and Faubert (2005) found that enhanced and diminished visual processing is linked to the level of neural complexity required to process stimuli, as proposed in the neural complexity hypothesis. Based on these findings, Samson, Mottron, Jemel, Belin, and Ciocca (2006) proposed to extend the neural complexity hypothesis to the auditory modality. They hypothesized that persons with ASD should display enhanced performance for simple tones that are processed in primary auditory cortical regions, but diminished performance for complex tones that require additional processing in associative auditory regions, in comparison to typically developing individuals. To assess this hypothesis, we designed four auditory discrimination experiments targeting pitch, non-vocal and vocal timbre, and loudness. Stimuli consisted of spectro-temporally simple and complex tones. The participants were adolescents and young adults with autism, Asperger syndrome, and typical developmental histories, all with IQs in the normal range. Consistent with the neural complexity hypothesis and enhanced perceptual functioning model of ASD (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), the participants with autism, but not with Asperger syndrome, displayed enhanced pitch discrimination for simple tones. However, no discrimination-thresholds differences were found between the participants with ASD and the typically developing persons across spectrally and temporally complex conditions. These findings indicate that enhanced pure-tone pitch discrimination may be a cognitive correlate of speech-delay among persons with ASD. However, auditory discrimination among this group does not appear to be directly contingent on the spectro-temporal complexity of the stimuli. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Auditory and visual health after ten years of exposure to metal-on-metal hip prostheses: a cross-sectional study follow up.

    PubMed

    Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark

    2014-01-01

    Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.

  3. Hearing impairment in the P23H-1 retinal degeneration rat model

    PubMed Central

    Sotoca, Jorge V.; Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Martinez-Galan, Juan R.; Caminos, Elena

    2014-01-01

    The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research. PMID:25278831

  4. Auditory Speech Perception Development in Relation to Patient's Age with Cochlear Implant

    PubMed Central

    Ciscare, Grace Kelly Seixas; Mantello, Erika Barioni; Fortunato-Queiroz, Carla Aparecida Urzedo; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa dos

    2017-01-01

    Introduction  A cochlear implant in adolescent patients with pre-lingual deafness is still a debatable issue. Objective  The objective of this study is to analyze and compare the development of auditory speech perception in children with pre-lingual auditory impairment submitted to cochlear implant, in different age groups in the first year after implantation. Method  This is a retrospective study, documentary research, in which we analyzed 78 reports of children with severe bilateral sensorineural hearing loss, unilateral cochlear implant users of both sexes. They were divided into three groups: G1, 22 infants aged less than 42 months; G2, 28 infants aged between 43 to 83 months; and G3, 28 older than 84 months. We collected medical record data to characterize the patients, auditory thresholds with cochlear implants, assessment of speech perception, and auditory skills. Results  There was no statistical difference in the association of the results among groups G1, G2, and G3 with sex, caregiver education level, city of residence, and speech perception level. There was a moderate correlation between age and hearing aid use time, age and cochlear implants use time. There was a strong correlation between age and the age cochlear implants was performed, hearing aid use time and age CI was performed. Conclusion  There was no statistical difference in the speech perception in relation to the patient's age when cochlear implant was performed. There were statistically significant differences for the variables of auditory deprivation time between G3 - G1 and G2 - G1 and hearing aid use time between G3 - G2 and G3 - G1. PMID:28680487

  5. Default, Cognitive and Affective Brain Networks in Human Tinnitus

    DTIC Science & Technology

    Tinnitus is a major health problem among those currently and formerly in military service. This project hypothesizes that many of the clinically...significant, non-auditory aspects of the tinnitus condition involve two major brain networks: the cognitive control network (CCN) and the default mode...function can be assessed. Subjects in three groups are being compared: (1) control subjects with clinically-normal hearing thresholds and no tinnitus

  6. Stability of Low-Frequency Residual Hearing in Patients Who Are Candidates for Combined Acoustic Plus Electric Hearing

    ERIC Educational Resources Information Center

    Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.

    2006-01-01

    The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…

  7. Attenuation of Progressive Hearing Loss in DBA/2J Mice by Reagents that Affect Epigenetic Modifications Is Associated with Up-Regulation of the Zinc Importer Zip4

    PubMed Central

    Mutai, Hideki; Miya, Fuyuki; Fujii, Masato; Tsunoda, Tatsuhiko; Matsunaga, Tatsuo

    2015-01-01

    Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing. PMID:25875282

  8. The Relationship between the Behavioral Hearing Thresholds and Maximum Bilirubin Levels at Birth in Children with a History of Neonatal Hyperbilirubinemia

    PubMed Central

    Panahi, Rasool; Jafari, Zahra; Sheibanizade, Abdoreza; Salehi, Masoud; Esteghamati, Abdoreza; Hasani, Sara

    2013-01-01

    Introduction: Neonatal hyperbilirubinemia is one of the most important factors affecting the auditory system and can cause sensorineural hearing loss. This study investigated the relationship between behavioral hearing thresholds in children with a history of jaundice and the maximum level of bilirubin concentration in the blood. Materials and Methods: This study was performed on 18 children with a mean age of 5.6 years and with a history of neonatal hyperbilirubinemia. Behavioral hearing thresholds, transient evoked emissions and brainstem evoked responses were evaluated in all children. Results: Six children (33.3%) had normal hearing thresholds and the remaining (66.7%) had some degree of hearing loss. There was no significant relationship (r=-0.28, P=0.09) between the mean total bilirubin levels and behavioral hearing thresholds in all samples. A transient evoked emission was seen only in children with normal hearing thresholds however in eight cases brainstem evoked responses had not detected. Conclusion: Increased blood levels of bilirubin at the neonatal period were potentially one of the causes of hearing loss. There was a lack of a direct relationship between neonatal bilirubin levels and the average hearing thresholds which emphasizes on the necessity of monitoring the various amounts of bilirubin levels. PMID:24303432

  9. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    PubMed

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Auditory risk assessment of college music students in jazz band-based instructional activity.

    PubMed

    Gopal, Kamakshi V; Chesky, Kris; Beschoner, Elizabeth A; Nelson, Paul D; Stewart, Bradley J

    2013-01-01

    It is well-known that musicians are at risk for music-induced hearing loss, however, systematic evaluation of music exposure and its effects on the auditory system are still difficult to assess. The purpose of the study was to determine if college students in jazz band-based instructional activity are exposed to loud classroom noise and consequently exhibit acute but significant changes in basic auditory measures compared to non-music students in regular classroom sessions. For this we (1) measured and compared personal exposure levels of college students (n = 14) participating in a routine 50 min jazz ensemble-based instructional activity (experimental) to personal exposure levels of non-music students (n = 11) participating in a 50-min regular classroom activity (control), and (2) measured and compared pre- to post-auditory changes associated with these two types of classroom exposures. Results showed that the L eq (equivalent continuous noise level) generated during the 50 min jazz ensemble-based instructional activity ranged from 95 dBA to 105.8 dBA with a mean of 99.5 ± 2.5 dBA. In the regular classroom, the L eq ranged from 46.4 dBA to 67.4 dBA with a mean of 49.9 ± 10.6 dBA. Additionally, significant differences were observed in pre to post-auditory measures between the two groups. The experimental group showed a significant temporary threshold shift bilaterally at 4000 Hz (P < 0.05), and a significant decrease in the amplitude of transient-evoked otoacoustic emission response in both ears (P < 0.05) after exposure to the jazz ensemble-based instructional activity. No significant changes were found in the control group between pre- and post-exposure measures. This study quantified the noise exposure in jazz band-based practice sessions and its effects on basic auditory measures. Temporary, yet significant, auditory changes seen in music students place them at risk for hearing loss compared to their non-music cohorts.

  11. Clinical evaluation of the vector algorithm for neonatal hearing screening using automated auditory brainstem response.

    PubMed

    Keohane, Bernie M; Mason, Steve M; Baguley, David M

    2004-02-01

    A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.

  12. Hearing disability and communication handicap for compensation purposes based on self-assessment and audiometric testing.

    PubMed

    Salomon, G; Parving, A

    1985-01-01

    It is reasoned that for compensation or epidemiological studies an evaluation of hearing disability and the concomitant handicap must include the ability to perceive visual cues. A scaling procedure for hearing- and audiovisual communication handicap is presented. The procedure deviates in two ways from previous handicap assessments: (1) It is based on individual self-assessment of semantic speech perception but can be implemented by means of professional audiological test procedures. (2) The system does not make use of pure-tone auditory thresholds as a predominant audiological principle, but is based on speech perception. The interrelationship between auditory and audiovisual handicap is evaluated. A total score including audio- and audiovisual perception handicap is proposed and a suggestion for disability percentages is presented.

  13. Influence of signal processing strategy in auditory abilities.

    PubMed

    Melo, Tatiana Mendes de; Bevilacqua, Maria Cecília; Costa, Orozimbo Alves; Moret, Adriane Lima Mortari

    2013-01-01

    The signal processing strategy is a parameter that may influence the auditory performance of cochlear implant and is important to optimize this parameter to provide better speech perception, especially in difficult listening situations. To evaluate the individual's auditory performance using two different signal processing strategy. Prospective study with 11 prelingually deafened children with open-set speech recognition. A within-subjects design was used to compare performance with standard HiRes and HiRes 120 in three different moments. During test sessions, subject's performance was evaluated by warble-tone sound-field thresholds, speech perception evaluation, in quiet and in noise. In the silence, children S1, S4, S5, S7 showed better performance with the HiRes 120 strategy and children S2, S9, S11 showed better performance with the HiRes strategy. In the noise was also observed that some children performed better using the HiRes 120 strategy and other with HiRes. Not all children presented the same pattern of response to the different strategies used in this study, which reinforces the need to look at optimizing cochlear implant clinical programming.

  14. A dual-process account of auditory change detection.

    PubMed

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  15. The effect of tinnitus on some psychoacoustical abilities in individuals with normal hearing sensitivity.

    PubMed

    Jain, Chandni; Sahoo, Jitesh Prasad

    Tinnitus is the perception of a sound without an external source. It can affect auditory perception abilities in individuals with normal hearing sensitivity. The aim of the study was to determine the effect of tinnitus on psychoacoustic abilities in individuals with normal hearing sensitivity. The study was conducted on twenty subjects with tinnitus and twenty subjects without tinnitus. Tinnitus group was again divided into mild and moderate tinnitus based on the tinnitus handicap inventory. Differential limen of intensity, differential limen of frequency, gap detection test, modulation detection thresholds were done through the mlp toolbox in Matlab and speech in noise test was done with the help of Quick SIN in Kannada. RESULTS of the study showed that the clinical group performed poorly in all the tests except for differential limen of intensity. Tinnitus affects aspects of auditory perception like temporal resolution, speech perception in noise and frequency discrimination in individuals with normal hearing. This could be due to subtle changes in the central auditory system which is not reflected in the pure tone audiogram.

  16. Auditory evoked potential (AEP) measurements in stranded rough-toothed dolphins (Steno bredanensis)

    NASA Astrophysics Data System (ADS)

    Cook, Mandy L. H.; Manire, Charles A.; Mann, David A.

    2005-04-01

    Thirty-six rough-toothed dolphins (Steno bredanensis) live-stranded on Hutchinson Island, FL on August 6, 2004. Seven animals were transported to Mote Marine Laboratory for rehabilitation. Two auditory evoked potential (AEP) measurements were performed on each of five of these dolphins in air using a jawphone to present acoustic stimuli. Modulation rate transfer functions (MRTFs) were measured to establish how well the auditory system follows the temporal envelope of acoustic stimuli. A 40 kHz stimulus carrier was amplitude modulated (AM) with varying rates ranging from 200 Hz to 1800 Hz, in 200 Hz steps. The best AM-rate from the first dolphin tested was 1500 Hz. This AM rate was used in subsequent AEP measurements to determine evoked-potential hearing thresholds between 5000 and 80000 Hz. These findings show that rough-toothed dolphins can detect sounds between 5 and 80 kHz, and are most likely capable of detecting frequencies much higher than 80 kHz. MRTF data suggest that rough-toothed dolphins have a high temporal resolution, similar to that of other cetaceans.

  17. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    PubMed

    Dykstra, Andrew R; Halgren, Eric; Gutschalk, Alexander; Eskandar, Emad N; Cash, Sydney S

    2016-01-01

    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  18. Single-Sided Deafness: Impact of Cochlear Implantation on Speech Perception in Complex Noise and on Auditory Localization Accuracy.

    PubMed

    Döge, Julia; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias

    2017-12-01

    To assess auditory localization accuracy and speech reception threshold (SRT) in complex noise conditions in adult patients with acquired single-sided deafness, after intervention with a cochlear implant (CI) in the deaf ear. Nonrandomized, open, prospective patient series. Tertiary referral university hospital. Eleven patients with late-onset single-sided deafness (SSD) and normal hearing in the unaffected ear, who received a CI. All patients were experienced CI users. Unilateral cochlear implantation. Speech perception was tested in a complex multitalker equivalent noise field consisting of multiple sound sources. Speech reception thresholds in noise were determined in aided (with CI) and unaided conditions. Localization accuracy was assessed in complete darkness. Acoustic stimuli were radiated by multiple loudspeakers distributed in the frontal horizontal plane between -60 and +60 degrees. In the aided condition, results show slightly improved speech reception scores compared with the unaided condition in most of the patients. For 8 of the 11 subjects, SRT was improved between 0.37 and 1.70 dB. Three of the 11 subjects showed deteriorations between 1.22 and 3.24 dB SRT. Median localization error decreased significantly by 12.9 degrees compared with the unaided condition. CI in single-sided deafness is an effective treatment to improve the auditory localization accuracy. Speech reception in complex noise conditions is improved to a lesser extent in 73% of the participating CI SSD patients. However, the absence of true binaural interaction effects (summation, squelch) impedes further improvements. The development of speech processing strategies that respect binaural interaction seems to be mandatory to advance speech perception in demanding listening situations in SSD patients.

  19. The value of ASSR threshold-based bilateral hearing aid fitting in children with difficult or unreliable behavioral audiometry.

    PubMed

    Vlastarakos, Petros V; Vasileiou, Alexandra; Nikolopoulos, Thomas P

    2017-12-01

    We conducted an analysis to assess the relative contribution of auditory brainstem response (ABR) testing and auditory steady-state response (ASSR) testing in providing appropriate hearing aid fitting in hearing-impaired children with difficult or unreliable behavioral audiometry. Of 150 infants and children who had been referred to us for hearing assessment as part of a neonatal hearing screening and cochlear implantation program, we identified 5 who exhibited significant discrepancies between click-ABR and ASSR testing results and difficult or unreliable behavioral audiometry. Hearing aid fitting in pediatric cochlear implant candidates for a trial period of 3 to 6 months is a common practice in many implant programs, but monitoring the progress of the amplified infants and providing appropriate hearing aid fitting can be challenging. If we accept the premise that we can assess the linguistic progress of amplified infants with an acceptable degree of certainty, the auditory behavior that we are monitoring presupposes appropriate bilateral hearing aid fitting. This may become very challenging in young children, or even in older children with difficult or unreliable behavioral audiometry results. This challenge can be addressed by using data from both ABR and ASSR testing. Fitting attempts that employ data from only ABR testing provide amplification that involves the range of spoken language but is not frequency-specific. Hearing aid fitting should also incorporate and take into account ASSR data because reliance on ABR testing alone might compromise the validity of the monitoring process. In conclusion, we believe that ASSR threshold-based bilateral hearing aid fitting is necessary to provide frequency-specific amplification of hearing and appropriate propulsion in the prelinguistic vocalizations of monitored infants.

  20. Baseline hearing abilities and variability in wild beluga whales (Delphinapterus leucas).

    PubMed

    Castellote, Manuel; Mooney, T Aran; Quakenbush, Lori; Hobbs, Roderick; Goertz, Caroline; Gaglione, Eric

    2014-05-15

    While hearing is the primary sensory modality for odontocetes, there are few data addressing variation within a natural population. This work describes the hearing ranges (4-150 kHz) and sensitivities of seven apparently healthy, wild beluga whales (Delphinapterus leucas) during a population health assessment project that captured and released belugas in Bristol Bay, Alaska. The baseline hearing abilities and subsequent variations were addressed. Hearing was measured using auditory evoked potentials (AEPs). All audiograms showed a typical cetacean U-shape; substantial variation (>30 dB) was found between most and least sensitive thresholds. All animals heard well, up to at least 128 kHz. Two heard up to 150 kHz. Lowest auditory thresholds (35-45 dB) were identified in the range 45-80 kHz. Greatest differences in hearing abilities occurred at both the high end of the auditory range and at frequencies of maximum sensitivity. In general, wild beluga hearing was quite sensitive. Hearing abilities were similar to those of belugas measured in zoological settings, reinforcing the comparative importance of both settings. The relative degree of variability across the wild belugas suggests that audiograms from multiple individuals are needed to properly describe the maximum sensitivity and population variance for odontocetes. Hearing measures were easily incorporated into field-based settings. This detailed examination of hearing abilities in wild Bristol Bay belugas provides a basis for a better understanding of the potential impact of anthropogenic noise on a noise-sensitive species. Such information may help design noise-limiting mitigation measures that could be applied to areas heavily influenced and inhabited by endangered belugas. © 2014. Published by The Company of Biologists Ltd.

  1. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.

    PubMed

    Guest, Hannah; Munro, Kevin J; Prendergast, Garreth; Howe, Simon; Plack, Christopher J

    2017-02-01

    In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Comparison of threshold estimation in infants with hearing loss or normal hearing using auditory steady-state response evoked by narrow band CE-chirps and auditory brainstem response evoked by tone pips.

    PubMed

    Michel, Franck; Jørgensen, Kristoffer Foldager

    2017-02-01

    The objective of this study is to compare air-conduction thresholds obtained with ASSR evoked by narrow band (NB) CE-chirps and ABR evoked by tone pips (tpABR) in infants with various degrees of hearing loss. Thresholds were measured at 500, 1000, 2000 and 4000 Hz. Data on each participant were collected at the same day. Sixty-seven infants aged 4 d to 22 months (median age = 96 days), resulting in 57, 52, 87 and 56 ears for 500, 1000, 2000 and 4000 Hz, respectively. Statistical analysis was performed for ears with hearing loss (HL) and showed a very strong correlation between tpABR and ASSR evoked by NB CE-chirps: 0.90 (n = 28), 0.90 (n = 28), 0.96 (n = 42) and 0.95 (n = 30) for 500, 1000, 2000 and 4000 Hz, respectively. At these frequencies, the mean difference between tpABR and ASSR was -3.6 dB (± 7.0), -5.2 dB (± 7.3), -3.9 dB (± 5.2) and -5.2 dB (± 4.7). Linear regression analysis indicated that the relationship was not influenced by the degree of hearing loss. We propose that dB nHL to dB eHL correction values for ASSR evoked by NB CE-chirps should be 5 dB lower than values used for tpABR.

  3. Is very early hearing assessment always reliable in selecting patients for cochlear implants? A case series study.

    PubMed

    Bovo, R; Trevisi, P; Ghiselli, S; Benatti, A; Martini, A

    2015-05-01

    This study concerns a case series of 23 infants with a diagnosis of severe-to-profound hearing loss at 3 months old, who significantly improved (even reaching a normal auditory threshold) within their first year of life. All infants were routinely followed up with audiological tests every 2 months after being fitted with hearing aids as necessary. A reliable consistency between the various test findings (DPOAE, ABR, behavioral responses, CAEP and ECoG) clearly emerged in most cases during the follow-up, albeit at different times after birth. The series of infants included 7 cases of severe prematurity, 6 of cerebral or complex syndromic malformations, 5 healthy infants, 2 with asymptomatic congenital CMV infection, and 1 case each of hyperbilirubinemia, hypoxia, and sepsis. All term-born infants showed a significant improvement over their initial hearing threshold by 6 months of age, while in most of those born prematurely the first signs of threshold amelioration occurred beyond 70 weeks of gestational age, and even beyond 85 weeks in one case. Cochlear implantation (CI) should only be considered after a period of auditory stimulation and follow-up with electrophysiological and behavioral tests, and an accurate analysis of their correlation. In our opinion, CI can be performed after a period of 8 months in all term-born infants with persistent severe-to-profound hearing loss without risk of diagnostic error, whereas the follow-up for severely preterm infants should extend to at least 80 weeks of gestational age. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Bone conduction reception: head sensitivity mapping.

    PubMed

    McBride, Maranda; Letowski, Tomasz; Tran, Phuong

    2008-05-01

    This study sought to identify skull locations that are highly sensitive to bone conduction (BC) auditory signal reception and could be used in the design of military radio communication headsets. In Experiment 1, pure tone signals were transmitted via BC to 11 skull locations of 14 volunteers seated in a quiet environment. In Experiment 2, the same signals were transmitted via BC to nine skull locations of 12 volunteers seated in an environment with 60 decibels of white background noise. Hearing threshold levels for each signal per location were measured. In the quiet condition, the condyle had the lowest mean threshold for all signals followed by the jaw angle, mastoid and vertex. In the white noise condition, the condyle also had the lowest mean threshold followed by the mastoid, vertex and temple. Overall results of both experiments were very similar and implicated the condyle as the most effective location.

  5. Reorganization of neural systems mediating peripheral visual selective attention in the deaf: An optical imaging study.

    PubMed

    Seymour, Jenessa L; Low, Kathy A; Maclin, Edward L; Chiarelli, Antonio M; Mathewson, Kyle E; Fabiani, Monica; Gratton, Gabriele; Dye, Matthew W G

    2017-01-01

    Theories of brain plasticity propose that, in the absence of input from the preferred sensory modality, some specialized brain areas may be recruited when processing information from other modalities, which may result in improved performance. The Useful Field of View task has previously been used to demonstrate that early deafness positively impacts peripheral visual attention. The current study sought to determine the neural changes associated with those deafness-related enhancements in visual performance. Based on previous findings, we hypothesized that recruitment of posterior portions of Brodmann area 22, a brain region most commonly associated with auditory processing, would be correlated with peripheral selective attention as measured using the Useful Field of View task. We report data from severe to profoundly deaf adults and normal-hearing controls who performed the Useful Field of View task while cortical activity was recorded using the event-related optical signal. Behavioral performance, obtained in a separate session, showed that deaf subjects had lower thresholds (i.e., better performance) on the Useful Field of View task. The event-related optical data indicated greater activity for the deaf adults than for the normal-hearing controls during the task in the posterior portion of Brodmann area 22 in the right hemisphere. Furthermore, the behavioral thresholds correlated significantly with this neural activity. This work provides further support for the hypothesis that cross-modal plasticity in deaf individuals appears in higher-order auditory cortices, whereas no similar evidence was obtained for primary auditory areas. It is also the only neuroimaging study to date that has linked deaf-related changes in the right temporal lobe to visual task performance outside of the imaging environment. The event-related optical signal is a valuable technique for studying cross-modal plasticity in deaf humans. The non-invasive and relatively quiet characteristics of this technique have great potential utility in research with clinical populations such as deaf children and adults who have received cochlear or auditory brainstem implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts inherent to the contrast sensitivity test (which for simplicity could be termed "visionmetry") and to pure tone audiometry (also termed auditory sensitivity test) are analyzed with the purpose of contributing to divulge their ability to supply early information associated to pathologies not solely related to the visual and auditory systems respectively.

  7. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    PubMed

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem responses in long-term severely-hearing impaired CI users could be an attribute of processes associated with long-term hearing impairment and/or electrical stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  9. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex

    PubMed Central

    Moucha, Raluca; Pandya, Pritesh K.; Engineer, Navzer D.; Rathbun, Daniel L.

    2010-01-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity PMID:15616812

  10. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons.

    PubMed

    Senn, Pascal; Roccio, Marta; Hahnewald, Stefan; Frick, Claudia; Kwiatkowska, Monika; Ishikawa, Masaaki; Bako, Peter; Li, Hao; Edin, Fredrik; Liu, Wei; Rask-Andersen, Helge; Pyykkö, Ilmari; Zou, Jing; Mannerström, Marika; Keppner, Herbert; Homsy, Alexandra; Laux, Edith; Llera, Miguel; Lellouche, Jean-Paul; Ostrovsky, Stella; Banin, Ehud; Gedanken, Aharon; Perkas, Nina; Wank, Ute; Wiesmüller, Karl-Heinz; Mistrík, Pavel; Benav, Heval; Garnham, Carolyn; Jolly, Claude; Gander, Filippo; Ulrich, Peter; Müller, Marcus; Löwenheim, Hubert

    2017-09-01

    : Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.

  12. The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception - A Randomized Pilot Study.

    PubMed

    Henin, Simon; Fein, Dovid; Smouha, Eric; Parra, Lucas C

    2016-01-01

    Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.

  13. Active Duty- U.S. Army Noise-Induced Hearing Injury Quarterly Surveillance: Q1 2010 Thru Q2 2012

    DTIC Science & Technology

    2014-06-10

    threshold shift, tinnitus , and Noise-Induced Hearing Loss. RECOMMENDATIONS: Commanders and Preventive Medicine assets at multiple levels should use...Humes LE, Jollenbeck LM, Durch JS: Noise and military service: Implications for hearing loss and tinnitus . Washington, DC: National Academy Press...NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS TINN Tinnitus 38832 OBJECTIVE

  14. Visual and Auditory Sensitivities and Discriminations

    DTIC Science & Technology

    2003-03-03

    Experimental Psychology : Human Perception and Performance, 26, 1721-1723. The data have also been reported to ECVP at the Trieste meeting, and to the Edinburgh...design to measure the disparity required to just detect the cyclopean test bars (Macmillan & Creelman , 1991). Each trial consisted of a single...conventionally (Macmillan & Creelman , 1991). Results Grating detection threshold (d =1.0) for observer 1 was estimated as 0.18 arc min peak-to-trough

  15. In-flight speech intelligibility evaluation of a service member with sensorineural hearing loss: case report.

    PubMed

    Casto, Kristen L; Cho, Timothy H

    2012-09-01

    This case report describes the in-flight speech intelligibility evaluation of an aircraft crewmember with pure tone audiometric thresholds that exceed the U.S. Army's flight standards. Results of in-flight speech intelligibility testing highlight the inability to predict functional auditory abilities from pure tone audiometry and underscore the importance of conducting validated functional hearing evaluations to determine aviation fitness-for-duty.

  16. Underwater Hearing in Turtles.

    PubMed

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  17. Hearing in the sea otter (Enhydra lutris): auditory profiles for an amphibious marine carnivore.

    PubMed

    Ghoul, Asila; Reichmuth, Colleen

    2014-11-01

    In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125-40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25-22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was -1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.

  18. Self-Assessed Hearing Handicap in Older Adults With Poorer-Than-Predicted Speech Recognition in Noise.

    PubMed

    Eckert, Mark A; Matthews, Lois J; Dubno, Judy R

    2017-01-01

    Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function.

  19. Self-Assessed Hearing Handicap in Older Adults With Poorer-Than-Predicted Speech Recognition in Noise

    PubMed Central

    Matthews, Lois J.; Dubno, Judy R.

    2017-01-01

    Purpose Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. Method We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. Results One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. Conclusion The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function. PMID:28060993

  20. Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system

    PubMed Central

    Linnenschmidt, Meike; Beedholm, Kristian; Wahlberg, Magnus; Højer-Kristensen, Jakob; Nachtigall, Paul E.

    2012-01-01

    Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of their echolocation clicks to compensate for the distance-related energy loss. By monitoring the auditory brainstem response (ABR) during a psychophysical task, we found that a harbour porpoise (Phocoena phocoena), in addition to adjusting the sound level of the outgoing signals up to 5.4 dB, also reduces its ABR threshold by 6 dB when the target distance doubles. This self-induced threshold shift increases the dynamic range of the biosonar system and compensates for half of the variation of energy that is caused by changes in the distance to the target. In combination with an increased source level as a function of target range, this helps the porpoise to maintain a stable echo-evoked ABR amplitude irrespective of target range, and is therefore probably an important tool enabling porpoises to efficiently analyse and classify received echoes. PMID:22279169

  1. How do albino fish hear?

    PubMed Central

    Lechner, W; Ladich, F

    2011-01-01

    Pigmentation disorders such as albinism are occasionally associated with hearing impairments in mammals. Therefore, we wanted to investigate whether such a phenomenon also exists in non-mammalian vertebrates. We measured the hearing abilities of normally pigmented and albinotic specimens of two catfish species, the European wels Silurus glanis (Siluridae) and the South American bronze catfish Corydoras aeneus (Callichthyidae). The non-invasive auditory evoked potential (AEP) recording technique was utilized to determine hearing thresholds at 10 frequencies from 0.05 to 5 kHz. Neither auditory sensitivity nor shape of AEP waveforms differed between normally pigmented and albinotic specimens at any frequency tested in both species. Silurus glanis and C. aeneus showed the best hearing between 0.3 and 1 kHz; the lowest thresholds were 78.4 dB at 0.5 kHz in S. glanis (pigmented), 75 dB at 1 kHz in S. glanis (albinotic), 77.6 dB at 0.5 kHz in C. aeneus (pigmented) and 76.9 dB at 1 kHz in C. aeneus (albinotic). This study indicates no association between albinism and hearing ability. Perhaps because of the lack of melanin in the fish inner ear, hearing in fishes is less likely to be affected by albinism than in mammals. PMID:21552308

  2. How do albino fish hear?

    PubMed

    Lechner, W; Ladich, F

    2011-03-01

    Pigmentation disorders such as albinism are occasionally associated with hearing impairments in mammals. Therefore, we wanted to investigate whether such a phenomenon also exists in non-mammalian vertebrates. We measured the hearing abilities of normally pigmented and albinotic specimens of two catfish species, the European wels Silurus glanis (Siluridae) and the South American bronze catfish Corydoras aeneus (Callichthyidae). The non-invasive auditory evoked potential (AEP) recording technique was utilized to determine hearing thresholds at 10 frequencies from 0.05 to 5 kHz. Neither auditory sensitivity nor shape of AEP waveforms differed between normally pigmented and albinotic specimens at any frequency tested in both species. Silurus glanis and C. aeneus showed the best hearing between 0.3 and 1 kHz; the lowest thresholds were 78.4 dB at 0.5 kHz in S. glanis (pigmented), 75 dB at 1 kHz in S. glanis (albinotic), 77.6 dB at 0.5 kHz in C. aeneus (pigmented) and 76.9 dB at 1 kHz in C. aeneus (albinotic). This study indicates no association between albinism and hearing ability. Perhaps because of the lack of melanin in the fish inner ear, hearing in fishes is less likely to be affected by albinism than in mammals.

  3. Comparison of distortion product otoacoustic emissions with auditory brain-stem response for clinical use in neonatal intensive care unit.

    PubMed

    Ochi, A; Yasuhara, A; Kobayashi, Y

    1998-11-01

    This study compares the clinical usefulness of distortion product otoacoustic emissions (DPOAEs) with the auditory brain-stem response (ABR) for neonates in the neonatal intensive care unit for the evaluation of hearing impairment. Both DPOAEs and ABR were performed on 36 neonates (67 ears) on the same day. We defined neonates as having normal hearing when the thresholds of wave V of ABR were < or =45 dB hearing level. (1) We could not obtain DPOAEs at f2 = 977 Hz in neonates with normal hearing because of high noise floors. DPOAE recording time was 36 min shorter than that of ABR. (2) We defined as normal DPOAEs, the number of frequencies which showed the DPgram-noise floor > or =4 dB was > or =4 at 6 f2 frequencies, from 1416 Hz to 7959 Hz. (3) Normal thresholds of ABR and normal DPOAEs showed the same percentages, i.e. 68.7%, but the percentage of different results between ABR and DPOAEs was 6.0%. Our study indicates that DPOAEs represent a simple procedure, which can be easily performed in the NICU to obtain reliable results in high-risk neonates. Results obtained by DPOAEs were comparable to those obtained by the more complex procedure of ABR.

  4. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    PubMed

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  5. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  6. Auditory evoked potentials in the auditory system of a beluga whale Delphinapterus leucas to prolonged sound stimuli.

    PubMed

    Popov, Vladimir V; Sysueva, Evgenia V; Nechaev, Dmitry I; Rozhnov, Vyatcheslav V; Supin, Alexander Ya

    2016-03-01

    The effects of prolonged (up to 1500 s) sound stimuli (tone pip trains) on evoked potentials (the rate following response, RFR) were investigated in a beluga whale. The stimuli (rhythmic tone pips) were of frequencies of 45, 64, and 90 kHz at levels from 20 to 60 dB above threshold. Two experimental protocols were used: short- and long-duration. For the short-duration protocol, the stimuli were 500-ms-long pip trains that repeated at a rate of 0.4 trains/s. For the long-duration protocol, the stimuli were continuous pip successions lasting up to 1500 s. The RFR amplitude gradually decreased by three to seven times from 10 ms to 1500 s of stimulation. Decrease of response amplitude during stimulation was approximately proportional to initial (at the start of stimulation) response amplitude. Therefore, even for low stimulus level (down to 20 dB above the baseline threshold) the response was never suppressed completely. The RFR amplitude decay that occurred during stimulation could be satisfactorily approximated by a combination of two exponents with time constants of 30-80 ms and 3.1-17.6 s. The role of adaptation in the described effects and the impact of noise on the acoustic orientation of odontocetes are discussed.

  7. Hearing in Cichlid Fishes under Noise Conditions

    PubMed Central

    Ladich, Friedrich; Schulz-Mirbach, Tanja

    2013-01-01

    Background Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise. Methodology/Principal Findings We investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0–11 dB (SPL) and 7–11 dB (PAL) in E. maculatus and by 1–2 dB (SPL) and by 1–4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13–29 dB (SPL) and 26–32 dB (PAL) in E. maculatus and 6–16 dB (SPL) and 6–19 dB (PAL) in S. tinanti. Conclusions Our data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family. PMID:23469032

  8. Smoke alarms for sleeping adults who are hard-of-hearing: comparison of auditory, visual, and tactile signals.

    PubMed

    Bruck, Dorothy; Thomas, Ian R

    2009-02-01

    People who are hard-of-hearing may rely on auditory, visual, or tactile alarms in a fire emergency, and US standards require strobe lights in hotel bedrooms to provide emergency notification for people with hearing loss. This is the first study to compare the waking effectiveness of a variety of auditory (beeps), tactile (bed and pillow shakers), and visual (strobe lights) signals at a range of intensities. Three auditory signals, a bed shaker, a pillow shaker, and strobe lights were presented to 38 adults (aged 18 to 80 yr) with mild to moderately severe hearing loss of 25 to 70 dB (in both ears), during slow-wave sleep (deep sleep). Two of the auditory signals were selected on the basis that they had the lowest auditory thresholds when awake (from a range of eight signals). The third auditory signal was the current 3100-Hz smoke alarm. All auditory signals were tested below, at, and above the decibel level prescribed by the applicable standard for bedrooms (75 dBA). In the case of bed and pillow shakers intensities below, at, and above the level as purchased were tested. For strobe lights three levels were used, all of which were above the applicable standard. The intensity level at which participants awoke was identified by electroencephalograph monitoring. The most effective signal was a 520-Hz square wave auditory signal, waking 92% at 75 dBA, compared with 56% waking to the 75 dBA high-pitched alarm. Bed and pillow shakers awoke 80 to 84% at the intensity level as purchased. The strobe lights awoke only 27% at an intensity above the US standard. Nonparametric analyses confirmed that the 520-Hz square wave signal was significantly more effective than the current smoke alarm and the strobe lights in waking this population. A low-frequency square wave signal has now been found to be significantly more effective than all tested alternatives in a number of populations (hard-of-hearing, children, older adults, young adults, alcohol impaired) and should be adopted across the whole population as the normal smoke alarm signal. Strobe lights, even at high intensities, are ineffective in reliably waking people with mild to moderate hearing loss.

  9. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    PubMed

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla

    PubMed Central

    Songer, Jocelyn E.; Rosowski, John J.

    2006-01-01

    A superior semicircular canal dehiscence (SCD) is a break or hole in the bony wall of the superior semicircular canal. Patients with SCD syndrome present with a variety of symptoms: some with vestibular symptoms, others with auditory symptoms (including low-frequency conductive hearing loss) and yet others with both. We are interested in whether or not mechanically altering the superior canal by introducing a dehiscence is sufficient to cause the low-frequency conductive hearing loss associated with SCD syndrome. We evaluated the effect of a surgically introduced dehiscence on auditory responses to air-conducted (AC) stimuli in 11 chinchilla ears. Cochlear potential (CP) was recorded at the round-window before and after a dehiscence was introduced. In each ear, a decrease in CP in response to low frequency (<2 kHz) sound stimuli was observed after the introduction of the dehiscence. The dehiscence was then patched with cyanoacrylate glue leading to a reversal of the dehiscence-induced changes in CP. The reversible decrease in auditory sensitivity observed in chinchilla is consistent with the elevated AC thresholds observed in patients with SCD. According to the ‘third-window’ hypothesis the SCD shunts sound-induced stapes velocity away from the cochlea, resulting in decreased auditory sensitivity to AC sounds. The data collected in this study are consistent with predictions of this hypothesis. PMID:16150562

  11. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants

    PubMed Central

    Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.

    2014-01-01

    The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates (“rate integration”). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (1) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate (“adaptation”), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation, desynchronization, and firing probabilities of individual neurons that contribute to the aggregate ECAP response. PMID:25093283

  12. Variation in hearing within a wild population of beluga whales (Delphinapterus leucas).

    PubMed

    Mooney, T Aran; Castellote, Manuel; Quakenbush, Lori; Hobbs, Roderick; Gaglione, Eric; Goertz, Caroline

    2018-05-08

    Documenting hearing abilities is vital to understanding a species' acoustic ecology and for predicting the impacts of increasing anthropogenic noise. Cetaceans use sound for essential biological functions such as foraging, navigation and communication; hearing is considered to be their primary sensory modality. Yet, we know little regarding the hearing of most, if not all, cetacean populations, which limits our understanding of their sensory ecology, population level variability and the potential impacts of increasing anthropogenic noise. We obtained audiograms (5.6-150 kHz) of 26 wild beluga whales to measure hearing thresholds during capture-release events in Bristol Bay, AK, USA, using auditory evoked potential methods. The goal was to establish the baseline population audiogram, incidences of hearing loss and general variability in wild beluga whales. In general, belugas showed sensitive hearing with low thresholds (<80 dB) from 16 to 100 kHz, and most individuals (76%) responded to at least 120 kHz. Despite belugas often showing sensitive hearing, thresholds were usually above or approached the low ambient noise levels measured in the area, suggesting that a quiet environment may be associated with hearing sensitivity and that hearing thresholds in the most sensitive animals may have been masked. Although this is just one wild population, the success of the method suggests that it should be applied to other populations and species to better assess potential differences. Bristol Bay beluga audiograms showed substantial (30-70 dB) variation among individuals; this variation increased at higher frequencies. Differences among individual belugas reflect that testing multiple individuals of a population is necessary to best describe maximum sensitivity and population variance. The results of this study quadruple the number of individual beluga whales for which audiograms have been conducted and provide the first auditory data for a population of healthy wild odontocetes. © 2018. Published by The Company of Biologists Ltd.

  13. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  14. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  15. Effect of gap detection threshold on consistency of speech in children with speech sound disorder.

    PubMed

    Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz

    2017-02-01

    The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Auditory frequency generalization in the goldfish (Carassius auratus)1

    PubMed Central

    Fay, Richard R.

    1970-01-01

    Auditory frequency generalization in the goldfish was studied at five points within the best hearing range through the use of classical respiratory conditioning. Each experimental group received single-stimulus conditioning sessions at one of five stimulus frequencies (100, 200, 400, 800, and 1600 Hz), and were subsequently tested for generalization at eight neighboring frequencies. All stimuli were presented 30 db above absolute threshold. Significant generalization decrements were found for all subjects. For the subjects conditioned in the range between 100 and 800 Hz, a nearly complete failure to generalize was found at one octave above and below the training frequency. The subjects conditioned at 1600 Hz produced relatively more flat gradients between 900 and 2000 Hz. The widths of the generalization gradients, expressed in Hz, increased as a power function of frequency with a slope greater than one. PMID:16811481

  17. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.

    PubMed

    Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J

    This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This trend is inconsistent with the physiologic measures. For a fixed modulation frequency, correlations were observed between MDTs and MRAs; this trend was evident at all frequencies except 1000 Hz (although only statistically significant for 250 and 500 Hz AM rates), possibly an indication of central limitations in processing of high modulation frequencies. Finally, peripheral responses were larger and psychophysical thresholds were lower in the apical electrodes relative to basal and medial electrodes, which may reflect better cochlear health and neural survival evidenced by lower preoperative low-frequency audiometric thresholds and steeper growth of neural responses in ECAP amplitude growth functions for apical electrodes. Robust ECAPs were recorded for all modulation frequencies tested. ECAP amplitudes varied sinusoidally, reflecting the periodicity of the modulated stimuli. MRAs increased as the modulation frequency increased, a trend we attribute to neural adaptation. For low modulation frequencies, there are multiple current steps between the peak and valley of the modulation cycle, which means successive stimuli are more similar to one another and neural responses are more likely to adapt. Higher MRAs were correlated with lower psychophysical thresholds at low modulation frequencies but not at 1000 Hz, implying a central limitation to processing of modulated stimuli.

  18. Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury.

    PubMed

    Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J

    2017-04-01

    Auditory complaints following mild traumatic brain injury (MTBI) are common, but few studies have addressed the role of auditory temporal processing in speech recognition complaints. In this study, deficits understanding speech in a background of speech noise following MTBI were evaluated with the goal of comparing the relative contributions of auditory and nonauditory factors. A matched-groups design was used in which a group of listeners with a history of MTBI were compared to a group matched in age and pure-tone thresholds, as well as a control group of young listeners with normal hearing (YNH). Of the 33 listeners who participated in the study, 13 were included in the MTBI group (mean age = 46.7 yr), 11 in the Matched group (mean age = 49 yr), and 9 in the YNH group (mean age = 20.8 yr). Speech-in-noise deficits were evaluated using subjective measures as well as monaural word (Words-in-Noise test) and sentence (Quick Speech-in-Noise test) tasks, and a binaural spatial release task. Performance on these measures was compared to psychophysical tasks that evaluate monaural and binaural temporal fine-structure tasks and spectral resolution. Cognitive measures of attention, processing speed, and working memory were evaluated as possible causes of differences between MTBI and Matched groups that might contribute to speech-in-noise perception deficits. A high proportion of listeners in the MTBI group reported difficulty understanding speech in noise (84%) compared to the Matched group (9.1%), and listeners who reported difficulty were more likely to have abnormal results on objective measures of speech in noise. No significant group differences were found between the MTBI and Matched listeners on any of the measures reported, but the number of abnormal tests differed across groups. Regression analysis revealed that a combination of auditory and auditory processing factors contributed to monaural speech-in-noise scores, but the benefit of spatial separation was related to a combination of working memory and peripheral auditory factors across all listeners in the study. The results of this study are consistent with previous findings that a subset of listeners with MTBI has objective auditory deficits. Speech-in-noise performance was related to a combination of auditory and nonauditory factors, confirming the important role of audiology in MTBI rehabilitation. Further research is needed to evaluate the prevalence and causal relationship of auditory deficits following MTBI. American Academy of Audiology

  19. Repeated antenatal corticosteroid treatments adversely affect neural transmission time and auditory thresholds in laboratory rats.

    PubMed

    Church, M W; Adams, B R; Anumba, J I; Jackson, D A; Kruger, M L; Jen, K-L C

    2012-01-01

    Antenatal corticosteroid (AC) treatment is given to pregnant women at risk for preterm birth to reduce infant morbidity and mortality by enhancing lung and brain maturation. However, there is no accepted regimen on how frequently AC treatments should be given and some studies found that repeated AC treatments can cause growth retardation and brain damage. Our goal was to assess the dose-dependent effects of repeated AC treatment and estimate the critical number of AC courses to cause harmful effects on the auditory brainstem response (ABR), a sensitive measure of brain development, neural transmission and hearing loss. We hypothesized that repeated AC treatment would have harmful effects on the offspring's ABRs and growth only if more than 3 AC treatment courses were given. To test this hypothesis, pregnant Wistar rats were given either a high regimen of AC (HAC), a moderate regimen (MAC), a low regimen (LAC), or saline (SAL). An untreated control (CON) group was also used. Simulating the clinical condition, the HAC dams received 0.2mg/kg Betamethasone (IM) twice daily for 6 days during gestation days (GD) 17-22. The MAC dams received 3 days of AC treatment followed by 3 days of saline treatment on GD 17-19 and GD 20-22, respectively. The LAC dams received 1 day of AC treatment followed by 5 days of saline treatment on GD 17 and GD 18-22, respectively. The SAL dams received 6 days of saline treatment from GD 17 to 22 (twice daily, isovolumetric to the HAC injections, IM). The offspring were ABR-tested on postnatal day 24. Results indicated that the ABR's P4 latencies (neural transmission time) were significantly prolonged (worse) in the HAC pups and that ABR's thresholds were significantly elevated (worse) in the HAC and MAC pups when compared to the CON pups. The HAC and MAC pups were also growth retarded and had higher postnatal mortality than the CON pups. The SAL and LAC pups showed little or no adverse effects. In conclusion, repeated AC treatment had harmful effects on the rat offspring's ABRs, postnatal growth and survival. The prolonged ABR latencies reflect slowed neural transmission times along the auditory nerve and brainstem auditory pathway. The elevated ABR thresholds reflect hearing deficits. We concluded that repeated AC treatment can have harmful neurological, sensory and developmental effects on the rat offspring. These effects should be considered when weighing the benefits and risks of repeated AC treatment and when monitoring and managing the prenatally exposed child for possible adverse effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hidden Hearing Injury: The Emerging Science and Military Relevance of Cochlear Synaptopathy.

    PubMed

    Tepe, Victoria; Smalt, Christopher; Nelson, Jeremy; Quatieri, Thomas; Pitts, Kenneth

    2017-09-01

    The phenomenon recently described as "hidden hearing loss" was the subject of a meeting co-hosted by the Department of Defense Hearing Center of Excellence and MIT Lincoln Laboratory to consider the potential relevance of noise-related synaptopathic injury to military settings and performance, service-related injury scenarios, and military medical priorities. Participants included approximately 50 researchers and subject matter experts from academic, federal, and military laboratories. Here we present a synthesis of discussion topics and concerns, as well as specific research objectives identified to develop militarily relevant knowledge. We consider findings from studies to date that have demonstrated cochlear synaptopathy and neurodegenerative processes apparently linked to noise exposure in animal models. We explore the potential relevance of these findings to the prediction and prevention of military hearing injuries, and to comorbid injuries in the neurological domain. Noise-induced cochlear synaptopathic injury is not detected by conventional audiometric assessment of threshold sensitivity. Animal studies suggest there may be a generous window of opportunity for intervention to mitigate or prevent cochlear neurodegenerative processes, e.g., by administration of neurotrophins or antioxidants. However, it is not yet known if the mechanisms that underlie "hidden hearing loss" also occur in human beings or, if so, how to identify them early, and how and when to intervene. Neurological injuries resulting from noise exposures via the auditory system have potentially significant implications for military Service Member performance, long-term Veteran health, and noise exposure standards. Mediated via auditory pathways, such injuries have possible relationship to clinical impairments including speech perception, and may be a largely overlooked contributor to cognitive symptoms associated with other military service-related injuries such as blast exposure and brain trauma. The potential health and performance consequences of noise-induced cochlear synaptopathic injury are easily overlooked, especially if it is assumed that hearing threshold sensitivity loss is the major concern. There should be a renewed impetus to further characterize and model synaptopathic mechanisms of auditory injury; study its potential impact on human auditory function, cognition, and performance metrics of military relevance; and develop solutions for auditory protection (including noise dosimetry) and treatment if appropriate following noise or blast exposure in military scenarios. We identify specific problems, solution objectives, and research objectives. Recommended research calls for a multidisciplinary approach to address cochlear nerve synaptopathy, central (brain) dysfunction, noise exposure measurement and metrics, and clinical assessment. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

Top