Media-Augmented Exercise Machines
NASA Astrophysics Data System (ADS)
Krueger, T.
2002-01-01
Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.
Teaching Hands-On Linux Host Computer Security
ERIC Educational Resources Information Center
Shumba, Rose
2006-01-01
In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…
Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee
2013-07-01
[Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.
Platz, T; Eickhof, C; van Kaick, S; Engel, U; Pinkowski, C; Kalok, S; Pause, M
2005-10-01
To study the effects of augmented exercise therapy time for arm rehabilitation as either Bobath therapy or the impairment-oriented training (Arm BASIS training) in stroke patients with arm severe paresis. Single blind, multicentre randomized control trial. Three inpatient neurorehabilitation centres. Sixty-two anterior circulation ischaemic stroke patients. Random assignment to three group: (A) no augmented exercise therapy time, (B) augmented exercise therapy time as Bobath therapy and (C) augmented exercise therapy time as Arm BASIS training. Fugl-Meyer arm motor score. Secondary measure: Action Research Arm Test (ARA). Ancillary measures: Fugl-Meyer arm sensation and joint motion/pain scores and the Ashworth Scale (elbow flexors). An overall effect of augmented exercise therapy time on Fugl-Meyer scores after four weeks was not corroborated (mean and 95% confidence interval (CI) of change scores: no augmented exercise therapy time (n=20) 8.8, 5.2-12.3; augmented exercise therapy time (n=40) 9.9, 6.8-13.9; p = 0.2657). The group who received the augmented exercise therapy time as Arm BASIS training (n=20) had, however, higher gains than the group receiving the augmented exercise therapy time as Bobath therapy (n=20) (mean and 95% CI of change scores: Bobath 7.2, 2.6-11.8; BASIS 12.6, 8.4-16.8; p = 0.0432). Passive joint motion/pain deteriorated less in the group who received BASIS training (mean and 95% CI of change scores: Bobath -3.2, -5.2 to -1.1; BASIS 0.1, -1.8-2.0; p = 0.0090). ARA, Fugl-Meyer arm sensation, and Ashworth Scale scores were not differentially affected. The augmented exercise therapy time as Arm BASIS training enhanced selective motor control. Type of training was more relevant for recovery of motor control than therapeutic time spent.
Exercise as an augmentation strategy for treatment of major depression.
Trivedi, Madhukar H; Greer, Tracy L; Grannemann, Bruce D; Chambliss, Heather O; Jordan, Alexander N
2006-07-01
The use of augmentation strategies among patients with major depression is increasing because rates of complete remission with standard antidepressant monotherapy are quite low. Clinical and neurobiological data suggest that exercise may be a good candidate for use as an augmentation treatment for depression. This pilot study examined the use of exercise to augment antidepressant medication in patients with major depression. Seventeen patients with incomplete remission of depressive symptoms began a 12-week exercise program while continuing their antidepressant medication (unchanged in type or dose). Individual exercise prescriptions were calculated based on an exercise dose consistent with currently recommended public health guidelines. The exercise consisted of both supervised and home-based sessions. The 17-item Hamilton Rating Scale for Depression (HRSD17) and the Inventory of Depressive Symptomatology-Self-Report (IDS-SR30) were used to assess symptoms of depression on a weekly basis. Intent-to-treat analyses yielded significant decreases on both the HRSD17 (5.8 points, p < 0.008) and IDS-SR30 (13.9 points, p < 0.002). For patients who completed the study (n = 8), HRSD17 scores decreased by 10.4 points and IDS-SR30 scores decreased by 18.8 points. This study provides preliminary evidence for exercise as an effective augmentation treatment for antidepressant medication. This is a lower-cost augmentation strategy that has numerous health benefits and may further reduce depressive symptoms in partial responders to antidepressant treatment. Practical tips on how practitioners can use exercise to enhance antidepressant treatment are discussed. Longer-term use of exercise is also likely to confer additional health benefits for this population.
An affordable, computerised, table-based exercise system for stroke survivors.
King, Marcus; Hale, Leigh; Pekkari, Anna; Persson, Martin; Gregorsson, Malin; Nilsson, Mikaela
2010-07-01
Loss of hand function as a result of upper limb paresis after a stroke leads to reduced independence. Robotic-assisted therapy with virtual reality leads to improvements in motor function, but there is a need to improve the cost-benefit ratio of these therapies. This case series study investigated augmented reality computer games which provided a rewarded, goal-directed task to upper limb rehabilitation via a gravity supported reaching task. A computer game was developed to motivate chronic stroke survivors to undertake gravity supported reaching tasks performed on a table, and a focus group study investigated the application of this device for rehabilitation. From the focus group, a simple device was developed to improve the quality of the exercise and a further focus group study investigated a variety of computer games to determine motivations for undertaking rehabilitation exercises. Of the four participants in the case study, two showed improvement in ability to play the game and in arm function. Participants enjoyed playing a range of computer games and felt that the system provided a worthwhile exercise. Motivation for undertaking exercise with the system included: intellectual stimulation during game play, feedback such as game score, gaining physical benefits from the exercise, the system tolerating varying levels of disability, ability to relate to the game and ability to use the system in social groups. A low-cost device has been developed which increases the exercise of gravity supported reaching movements, provides goal-directed tasks with rewards and motivates the user to undertake extended rehabilitation.
Abnormal Neurocirculatory Control During Exercise in Humans with Chronic Renal Failure
Park, Jeanie; Middlekauff, Holly R.
2014-01-01
Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies. PMID:25458430
Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation.
Thomas, A; Bunyan, K; Tiidus, P M
2010-01-01
Our laboratory has shown that oestrogen acts to augment myoblast (satellite cell) activation, proliferation and total number and that this may occur through an oestrogen receptor (OR)-mediated mechanism. The purpose of this study was to further investigate the mechanism of oestrogen influence on augmentation of post-exercise myoblast numbers through use of a specific OR-alpha agonist, propyl pyrazole triol (PPT). Ovariectomized rats were used (n = 64) and separated into four groups: sham, oestrogen supplemented, agonist supplemented, and a combined oestrogen and agonist supplemented group. These groups were further subdivided into control (unexercised) and exercise groups. Surgical removal of white vastus and soleus muscles was performed 72 h post-exercise. Muscle samples were immunostained for the myoblast markers Pax7 and MyoD. A significant increase in total (Pax7-positive) and activated (MyoD-positive) myoblasts was found in all groups post-exercise. A further significant augmentation of total and activated myoblasts occurred in oestrogen supplemented, agonist supplemented and the combined oestrogen and agonist supplemented groups post-exercise in white vastus and soleus muscles relative to unsupplemented animals. These results demonstrate that both oestrogen and the specific OR-alpha receptor agonist, PPT, can significantly and to similar degrees augment myoblast number and activation following exercise-induced muscle damage. This suggests that oestrogen acts through an OR-mediated mechanism to stimulate myoblast proliferation following exercise, with OR-alpha playing a primary role.
Oakley, C; Spafford, C; Beard, J D
2017-05-01
The objective of this study was to collect 1 year follow-up information on walking distance, speed, compliance, and cost in patients with intermittent claudication who took part in a previously reported 12 week randomised clinical trial of a home exercise programme augmented with Nordic pole walking versus controls who walked normally. A second objective was to look at quality of life and ankle brachial pressure indices (ABPIs) after a 12 week augmented home exercise programme. Thirty-two of the 38 patients who completed the original trial were followed-up after 6 and 12 months. Frequency, duration, speed, and distance of walking were recorded using diaries and pedometers. A new observational cohort of 29 patients was recruited to the same augmented home exercise programme. ABPIs, walking improvement, and quality of life questionnaire were recorded at baseline and 12 weeks (end of the programme). Both groups in the follow-up study continued to improve their walking distance and speed over the following year. Compliance was excellent: 98% of the augmented group were still walking with poles at both 6 and 12 months, while 74% of the control group were still walking at the same point. The augmented group increased their mean walking distance to 17.5 km by 12 months, with a mean speed of 4.2 km/hour. The control group only increased their mean walking distance from 4.2 km to 5.6 km, and speed to 3.3 km/hour. Repeated ANOVA showed the results to be highly significant (p = .002). The 21/29 patients who completed the observational study showed a statistically significant increase in resting ABPIs from baseline (mean ± SD 0.75 ± 0.12) to week 12 (mean ± SD 0.85 ± 0.12) (t = (20) -8.89, p = .000 [two-tailed]). All their walking improvement and quality of life parameters improved significantly (p = .002 or less in the six categories) over the same period and their mean health scores improved by 79%. Following a 12 week augmented home exercise programme, most patients with intermittent claudication continued to significantly improve their walking distance and walking speed at 1 year compared with normal walking. Quality of life and ABPIs improved significantly after only 12 weeks and it is postulated that the improvement in ABPI was due to collateral development. These results justify the belief that an augmented home exercise programme will be as clinically effective as existing supervised exercise programmes, with the added benefits of lower cost and better compliance. Funding for a multicentre trial comparing an augmented home exercise programme with existing supervised exercise programme is now urgently required. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Weightman, Andrew; Preston, Nick; Levesley, Martin; Holt, Raymond; Mon-Williams, Mark; Clarke, Mike; Cozens, Alastair J; Bhakta, Bipin
2011-03-01
We developed a home-based rehabilitation exercise system incorporating a powered joystick linked to a computer game, to enable children with arm paresis to participate in independent home exercise. We investigated the feasibility and impact of using the system in the home setting. Eighteen children with cerebral palsy (median age 7.5 years, age range 5-16 years) were recruited from local National Health Service and the exercise system was installed in their home for approximately 4 weeks. Baseline and post-intervention assessments were taken: Canadian Occupational Performance Measure (COPM); kinematic measurement of movement quality (indexed by duration and smoothness) measured using a motion tracking system when performing a standardized computer task. The system was used for a median time of 75 min (interquartile range (IQR) 17-271), equating to 606 outward and 734 inward movements. Pre-COPM, (median 4.2); post-COPM (median 6.0); obs=34; z=3.62, p<0.01). Kinematic analysis of pre- and post-intervention movements on the standardized task showed decreased duration and increased smoothness. Some improvements in self-reported function and quality of movement are observed. This pilot study suggests that the system could be used to augment home-based arm exercise in an engaging way for children with cerebral palsy, although a controlled clinical trial is required to establish clinical efficacy. The feasibility of this technology has been demonstrated.
Lee, Jin; Yoo, Ha-Na; Lee, Byoung-Hee
2017-09-01
[Purpose] To determine the effect of augmented reality (AR)-based otago exercise on muscle strength, balance, and physical factors in falls of elderly women. [Subjects and Methods] Thirty subjects were randomly assigned to AR group (AR, n=10), yoga group (yoga, n=10), and self-exercise group (self, n=10). For 12 weeks, these groups were given lessons related to AR-based otago exercise including strengthening, balance training, or yoga three times a week (60 minutes each time) and self-exercise using elastic band exercise program. [Results] Knee flexion and ankle dorsiflexion strength were significantly improved in all three groups (AR, yoga, and self-exercise groups). Regarding balance, eye open center of pressure-x (EO CoP-x) was significantly decreased in AR group and yoga group. However, eye close CoP-x, eye open standard deviation-x (EO SD-x), and eye open height of ellipse (EO HoE) were only significantly decreased in AR group. AR group also showed meaningfully improved results in morse fall scale. [Conclusion] Augmented reality-based otago exercise can improve muscle strength, balance, and physical factors in elderly women to prevent falls.
Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2014-06-05
Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, P.R.; Widney, T.W.; Goolsby, P.T.
The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspected Party and the Inspection Team. Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for a hypothetical challenge inspection under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primarymore » emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. The Exercise Manual supplements the ACE-IT software by providing general information on on-site inspections and detailed information for the CWC challenge inspection exercise. The detailed information includes the pre-inspection briefing, maps, list of sensitive items, medical records, and shipping records.« less
A single exercise bout augments adenovirus-specific T-cell mobilization and function.
Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J
2018-04-30
Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.
Evidence-based recommendations for the prescription of exercise for major depressive disorder.
Rethorst, Chad D; Trivedi, Madhukar H
2013-05-01
Major depressive disorder (MDD) is a source of great disease burden, due in part to the limited accessibility and effectiveness of current treatments. Although current treatments are efficacious in a segment of the population with MDD, there is a clear need for alternative and augmentation treatment strategies. Exercise is one such alternative treatment option. Research has shown exercise to be efficacious as both a stand-alone and an augmentation therapy. As a result, exercise is now included in the American Psychiatric Association's treatment recommendations. The purpose of this article is to provide clinicians with a knowledge base to prescribe exercise to their patients. The authors describe the evidence supporting the use of exercise in the treatment of MDD, provide evidence-based recommendations for prescribing exercise, and address practical considerations related to prescribing exercise in real-world treatment settings.
Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H
2018-01-18
Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.
Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise
Casey, Darren P; Madery, Brandon D; Curry, Timothy B; Eisenach, John H; Wilkins, Brad W; Joyner, Michael J
2010-01-01
We tested the hypotheses that (1) nitric oxide (NO) contributes to augmented skeletal muscle vasodilatation during hypoxic exercise and (2) the combined inhibition of NO production and adenosine receptor activation would attenuate the augmented vasodilatation during hypoxic exercise more than NO inhibition alone. In separate protocols subjects performed forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n= 12), subjects received intra-arterial administration of saline (control) and the NO synthase inhibitor NG-monomethyl-l-arginine (l-NMMA). In protocol 2 (n= 10), subjects received intra-arterial saline (control) and combined l-NMMA–aminophylline (adenosine receptor antagonist) administration. Forearm vascular conductance (FVC; ml min−1 (100 mmHg)−1) was calculated from forearm blood flow (ml min−1) and blood pressure (mmHg). In protocol 1, the change in FVC (Δ from normoxic baseline) due to hypoxia under resting conditions and during hypoxic exercise was substantially lower with l-NMMA administration compared to saline (control; P < 0.01). In protocol 2, administration of combined l-NMMA–aminophylline reduced the ΔFVC due to hypoxic exercise compared to saline (control; P < 0.01). However, the relative reduction in ΔFVC compared to the respective control (saline) conditions was similar between l-NMMA only (protocol 1) and combined l-NMMA–aminophylline (protocol 2) at 10% (−17.5 ± 3.7 vs.−21.4 ± 5.2%; P= 0.28) and 20% (−13.4 ± 3.5 vs.−18.8 ± 4.5%; P= 0.18) hypoxic exercise. These findings suggest that NO contributes to the augmented vasodilatation observed during hypoxic exercise independent of adenosine. PMID:19948661
Food-Dependent, Exercise-Induced Anaphylaxis: Diagnosis and Management in the Outpatient Setting.
Feldweg, Anna M
Food-dependent, exercise-induced anaphylaxis is a disorder in which anaphylaxis develops most predictably during exercise, when exercise takes place within a few hours of ingesting a specific food. IgE to that food should be demonstrable. It is the combination of the food and exercise that precipitates attacks, whereas the food and exercise are each tolerated independently. Recently, it was demonstrated that exercise is not essential for the development of symptoms, and that if enough of the culprit food is ingested, often with additional augmentation factors, such as alcohol or acetylsalicylic acid, symptoms can be induced at rest in the challenge setting. Thus, food-dependent, exercise-induced anaphylaxis appears to be more correctly characterized as a food allergy syndrome in which symptoms develop only in the presence of various augmentation factors, with exercise being the primary one. However, additional factors are not usually present when the patient exercises normally, so ongoing investigation is needed into the physiologic and cellular changes that occur during exercise to facilitate food-induced anaphylaxis. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F
2006-03-01
Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.
Learning While Exercising for Science Education in Augmented Reality among Adolescents
ERIC Educational Resources Information Center
Hsiao, Kuei-Fang; Chen, Nian-Shing; Huang, Shih-Yu
2012-01-01
Because of a shortage of physical exercise, concerns about adolescents have recently been raised in Taiwan. In educational environments where student exercise has been limited by scheduling constraints and the lack of physical exercise has become a vital problem, "learning while exercising" may be part of a possible solution. This study…
Limberg, Jacqueline K.; Malterer, Katherine R.; Kellawan, J. Mikhail; Schrage, William G.; Wilkins, Brad W.; Nicholson, Wayne T.; Eisenach, John H.; Joyner, Michael J.; Curry, Timothy B.
2017-01-01
Purpose Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). Methods FBF (Doppler ultrasound) was assessed at rest and during 5 minutes of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: 1) oral SDF (n=10), 2) intra-arterial L-NMMA (n=20), 3) SDF and L-NMMA (n=10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. Results FBF increased with exercise (p<0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17±1 to 15±1 mL/dL/min, p<0.01). Although the hyperemic response to NTP was augmented by SDF (Area under the curve: 41±7 vs 61±11 AU, p<0.01), there was no effect of SDF on exercise hyperemia (p=0.33). Conclusions Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans. PMID:28013386
Schoeman, Jacobus C; Steyn, Stephanus F; Harvey, Brian H; Brink, Christiaan B
2017-04-14
Juvenile depression is of great concern with only limited treatment currently approved. Delayed onset of action, low remission and high relapse rates, and potential long-lasting consequences further complicates treatment and highlights the need for new treatment options. Studies reporting on long-lasting effects of early-life treatment have reported conflicting results, with the pre-adolescent period mostly overlooked. The anti-depressive effect of exercise, as a possible treatment option or augmentation strategy, is dependent on age and exercise intensity. We investigated the immediate (i.e. postnatal day 35 (PND35)) and lasting (PND60 to PND61) effects of pre-pubertal (PND21 to PND34) fluoxetine and/or exercise on bio-behavioural markers of depression and oxidative stress in stress sensitive Flinders Sensitive Line rats. Low, but not moderate, intensity exercise or 5, but not 10, mg/kg/day fluoxetine displayed anti-depressant-like properties at PND35. Pre-pubertal treatment with 5mg/kg/day fluoxetine or low intensity exercise exerted lasting anti-depressive-like effects into adulthood, whereas the combination of these two treatments did not. Furthermore, the combination of fluoxetine plus exercise reduced hippocampal BDNF levels as compared to exercise alone, which may explain the latter findings. In all treatment groups hippocampal SOD activity was significantly increased at PND61, suggesting an increased anti-oxidant capacity in adulthood. In conclusion, the data confirm the anti-depressant-like properties of both early-life fluoxetine and exercise in a genetic animal model of depression. However, optimal lasting effects of early-life interventions may require adjustment of antidepressant dose and/or exercise intensity to developmental age, and that a combination of antidepressant and exercise may not necessarily be augmentative. Copyright © 2017 Elsevier B.V. All rights reserved.
Shachar-Malach, Tal; Cooper Kazaz, Rena; Constantini, Naama; Lifschytz, Tzuri; Lerer, Bernard
2015-01-01
Physical exercise has been shown to reduce depressive symptoms when used in combination with antidepressant medication. We report a randomized controlled trial of aerobic exercise compared to stretching as an augmentation strategy for hospitalized patients with major depression. Male or female patients, 18-80 years, diagnosed with a Major Depressive Episode, were randomly assigned to three weeks of augmentation therapy with aerobic (n=6) or stretching exercise (n=6). Depression was rated, at several time points using the 21-item Hamilton Depression Scale (HAM-D), Beck Depression Inventory (BDI) and other scales. According to the HAM-D, there were four (out of six) responders in the aerobic group, two of whom achieved remission, and none in the stretching group. According to the BDI, there were two responders in the aerobic group who were also remitters and none in the stretching group. The results of this small study suggest that aerobic exercise significantly improves treatment outcome when added to antidepressant medication. However, due to the small sample size the results must be regarded as preliminary and further studies are needed to confirm the findings.
2014-01-01
Background Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. Methods In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. Results The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider’s lower extremities. Conclusions The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders. PMID:24902780
Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V
2013-01-01
Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.
Augmentation of Deglutitive Thyrohyoid Muscle Shortening by the Shaker Exercise
Mepani, Rachel; Antonik, Stephen; Massey, Benson; Kern, Mark; Logemann, Jerilyn; Pauloski, Barbara; Rademaker, Alfred; Easterling, Caryn
2010-01-01
Earlier studies of the effect of 6 weeks of the Shaker Exercise have shown significant increase in UES opening and anterior excursion of larynx and hyoid during swallowing in patients with upper esophageal sphincter (UES) dysfunction, resulting in elimination of aspiration and resumption of oral intake. This effect is attributed to strengthening of the suprahyoid muscles, as evidenced by comparison of electromyographic changes in muscle fatigue before and after completion of the exercise regime. The effect of this exercise on thyrohyoid muscle shortening is unknown. Therefore the aim of this study was to determine the effect of the exercise on thyrohyoid muscle shortening. We studied 11 dysphagic patients with UES dysfunction. Six were randomized to traditional swallowing therapy and five to the Shaker Exercise. Videofluoroscopy was used to measure deglutitive thyrohyoid shortening before and after completion of assigned therapy regimen. Maximum thyrohyoid muscle shortening occurred at close temporal proximity to the time of maximal thyroid cartilage excursion. The percent change in thyrohyoid distance from initiation of deglutition to maximal anterior/superior hyoid excursion showed no statistically significant difference between the two groups prior to either therapy (p = 0.54). In contrast, after completion of therapy, the percent change in thyrohyoid distance in the Shaker Exercise group was significantly greater compared to the traditional therapy (p = 0.034). The Shaker Exercise augments the thyrohyoid muscle shortening in addition to strengthening the suprahyoid muscles. The combination of increased thyrohyoid shortening and suprahyoid strengthening contributes to the Shaker Exercise outcome of deglutitive UES opening augmentation. PMID:18685891
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control.
Wood, Helen E; Mitchell, Gordon S; Babb, Tony G
2009-09-30
Small increases in external dead space (V(D)) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased V(D) and STM. Men were studied at rest and during cycle exercise (10-50W) without (Control) and with added V(D) (200-600ml). With added V(D), V(T) increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, V(T) increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and V(D) on mean inspiratory flow indicated that the augmented exercise ventilatory response with added V(D) (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased V(D) and STM.
Jonsdottir, I H; Johansson, C; Asea, A; Johansson, P; Hellstrand, K; Thorén, P; Hoffmann, P
1997-08-01
We have recently shown that in vivo natural cytotoxicity is enhanced after chronic exercise in spontaneously hypertensive rats (SHRs). In the present report, we have studied the duration of this augmentation and some possible mechanisms involved. Exercise consisted of voluntary running for 4-5 weeks, with the running distance ranging from 2.7-15.6 km day(-1) during the last week of running. In vivo cytotoxicity was measured as clearance of injected 51Cr-labelled YAC-1 lymphoma cells from the lungs. The in vivo natural cytotoxicity was increased in running SHRs, and also in SHRs that had their running wheel locked for 24 and 48 h prior to the experiment, and was still present after 96 h. The enhancement of in vivo cytotoxicity after 5 weeks of exercise was abolished after an acute injection of the beta-adrenergic receptor antagonist timolol (0.5 mg kg(-1) i.v.), indicating that catecholamines are involved in this augmentation. Interestingly, 24 h after the last exercise bout, the increased natural cytotoxicity could be blocked by timolol. The opioid receptor antagonist naloxone given subcutaneously for 7 days by osmotic pumps (6 mg kg(-1) h(-1)) could not reverse the increased in vivo cytotoxicity seen in the running SHRs, suggesting that opioid receptor mechanisms are not involved, or at least not the naloxone-sensitive mu-receptor. Natural immunity was not influenced by the histamine H2 receptor antagonist ranitidine, either in controls or in runners, indicating that the natural killer cell-regulatory effect of histamine is not present in SHRs and does not seem to be involved in the exercise-induced changes in natural immune function. We conclude that the augmentation of in vivo natural cytotoxicity after voluntary chronic exercise in rats is long-lasting and that the augmentation is partly mediated by beta-adrenergic receptors.
Gaston, Anca; Prapavessis, Harry
2014-04-01
Despite the benefits of exercise during pregnancy, many expectant mothers are inactive. This study examined whether augmenting a protection motivation theory (PMT) intervention with a Health Action Process Approach can enhance exercise behavior change among pregnant women. Sixty inactive pregnant women were randomly assigned to one of three treatment groups: PMT-only, PMT + action-planning, and PMT + action-and-coping-planning. Week-long objective (accelerometer) and subjective (self-report) exercise measures were collected at baseline, and at 1- and 4-weeks post-intervention. Repeated-measures ANOVAs demonstrated that while all participants reported increased exercise from baseline to 1-week post-intervention, participants in both planning groups were significantly more active (p < .001) than those in the PMT-only group by 4-weeks post-intervention (η (2) = .13 and .15 for accelerometer and self-report data, respectively). In conclusion, augmenting a PMT intervention with action or action-and-coping-planning can enhance exercise behavior change in pregnant women.
Greer, Tracy L; Trombello, Joseph M; Rethorst, Chad D; Carmody, Thomas J; Jha, Manish K; Liao, Allen; Grannemann, Bruce D; Chambliss, Heather O; Church, Timothy S; Trivedi, Madhukar H
2016-09-01
Functional impairments often remain despite symptomatic improvement with antidepressant treatment, supporting the need for novel treatment approaches. The present study examined the extent to which exercise augmentation improved several domains of psychosocial functioning and quality of life (QoL) among depressed participants. Data were collected from 122 partial responders to antidepressant medication. Participants were randomized to either high- (16 kcal/kg of weight/week [KKW]) or low-dose (4-KKW) exercise. Participants completed a combination of supervised and home-based exercise for 12 weeks. The Short-Form Health Survey, Work and Social Adjustment Scale, Social Adjustment Scale, Quality of Life Enjoyment and Satisfaction Questionnaire, and Satisfaction with Life Scale were collected at 6 and 12 weeks. Participants with data for at least one of the two follow-up time points (n = 106) were analyzed using a linear mixed model to assess change from baseline within groups and the difference between groups for each psychosocial outcome measure. All analyses controlled for covariates, including baseline depressive symptomatology. Participants experienced significant improvements in functioning across tested domains, and generally fell within a healthy range of functioning on all measures at Weeks 6 and 12. Although no differences were found between exercise groups, improvements were observed across a variety of psychosocial and QoL domains, even in the low-dose exercise group. These findings support exercise augmentation of antidepressant treatment as a viable intervention for treatment-resistant depression to improve function in addition to symptoms. © 2016 Wiley Periodicals, Inc.
Greer, Tracy L.; Trombello, Joseph M.; Rethorst, Chad D.; Carmody, Thomas J.; Jha, Manish K.; Liao, Allen; Grannemann, Bruce D.; Chambliss, Heather O.; Church, Timothy S.; Trivedi, Madhukar H.
2016-01-01
BACKGROUND Functional impairments often remain despite symptomatic improvement with antidepressant treatment, supporting the need for novel treatment approaches. The present study examined the extent to which exercise augmentation improved several domains of psychosocial functioning and quality of life among depressed participants. METHODS Data were collected from 122 partial responders to antidepressant medication. Participants were randomized to either high (16 kilocalories per kilogram of weight per week [KKW]) or low dose (4KKW) exercise. Participants completed a combination of supervised and home-based exercise for 12 weeks. The Short-Form Health Survey, Work and Social Adjustment Scale, Social Adjustment Scale, the Quality of Life Enjoyment and Satisfaction Questionnaire, and the Satisfaction with Life Scale were collected at 6 and 12 weeks. Participants with data for at least one of the two follow-up time points (n=106) were analyzed using a linear mixed model to assess change from baseline within groups and the difference between groups for each psychosocial outcome measure. All analyses controlled for covariates, including baseline depressive symptomatology. RESULTS Participants experienced significant improvements in functioning across tested domains, and generally fell within a healthy range of functioning on all measures at Weeks 6 and 12. While no differences were found between exercise groups, improvements were observed across a variety of psychosocial and quality-of-life domains, even in the low exercise dose group. CONCLUSIONS These findings support exercise augmentation of antidepressant treatment as a viable intervention for treatment-resistant depression to improve function in addition to symptoms. PMID:27164293
Holdsworth, Clark T; Copp, Steven W; Hirai, Daniel M; Ferguson, Scott K; Sims, Gabrielle E; Hageman, Karen S; Stebbins, Charles L; Poole, David C; Musch, Timothy I
2014-03-01
Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p < 0.05) but was not differentially affected by l-NAME. Specifically, 17 of 28 individual muscle BF's were lower (p < 0.05) in FO demonstrating that PUFA supplementation with FO in CHF rats does not augment muscle BF during exercise but may lower metabolic cost.
Blood flow dynamics in heart failure
NASA Technical Reports Server (NTRS)
Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.
1999-01-01
BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.
Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine
2016-01-01
Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725
Making the Rate: Enzyme Dynamics
ERIC Educational Resources Information Center
Ragsdale, Frances R.
2004-01-01
An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.
Acute changes in arterial stiffness following exercise in people with metabolic syndrome.
Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A
This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (p<0.05) in most of the arterial stiffness variables following exercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (p<0.01). Age influences arterial stiffness. Exercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
Lewis, Gregory D.; Murphy, Ryan M.; Shah, Ravi V.; Pappagianopoulos, Paul P.; Malhotra, Rajeev; Bloch, Kenneth D.; Systrom, David M.; Semigran, Marc J.
2012-01-01
Background Elevated resting pulmonary arterial pressure (PAP) in patients with left ventricular systolic dysfunction (LVSD) purports a poor prognosis. However, PAP response patterns to exercise in LVSD and their relationship to functional capacity and outcomes have not been characterized. Methods and Results Sixty consecutive patients with LVSD (age 60±12 years, LV ejection fraction 0.31±0.07, mean±SD) and 19 controls underwent maximum incremental cardiopulmonary exercise testing with simultaneous hemodynamic monitoring. During low-level exercise (30 Watts), LVSD subjects compared to controls, had greater augmentation in mean PAPs (15±1 vs. 5±1 mmHg), transpulmonary gradients (5±1 vs. 1±1 mmHg), and effective PA elastance (0.05±0.02 vs. −0.03±0.01 mmHg/ml, p<0.0001 for all). A linear increment in PAP relative to work (0.28±0.12 mmHg/watt) was observed in 65% of LVSD patients, which exceeded that observed in controls (0.07±0.02 mmHg/watt, P<0.0001). Exercise capacity and survival was worse in patients with a PAP/watt slope above the median than in patients with a lower slope. In the remaining 35% of LVSD patients, exercise induced a steep initial increment in PAP (0.41±0.16 mmHg/watt) followed by a plateau. The plateau pattern, compared to a linear pattern, was associated with reduced peak VO2 (10.6±2.6 vs. 13.1±4.0 ml/kg/min, P=0.005), lower right ventricular stroke work index augmentation with exercise (5.7±3.8 vs. 9.7±5.0 g/m2, P=0.002), and increased mortality (HR 8.1, 95% CI 2.7-23.8, P<0.001). Conclusions A steep increment in PAP during exercise and failure to augment PAP throughout exercise are associated with decreased exercise capacity and survival in patients with LVSD, and may therefore represent therapeutic targets. Clinical Trial Information URL: http://www.clinicaltrials.gov. Unique Identifier: NCT00309790) PMID:21292991
Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph
2015-09-01
The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.
Exercise is an effective treatment for positive valence symptoms in major depression.
Toups, Marisa; Carmody, Thomas; Greer, Tracy; Rethorst, Chad; Grannemann, Bruce; Trivedi, Madhukar H
2017-02-01
Measurement of symptoms domains and their response to treatment in relative isolation from diagnosed mental disorders has gained new urgency, as reflected by the National Institute of Mental Health's introduction of the Research Domain Criteria (RDoC). The Snaith Hamilton Pleasure Scale (SHAPS) and the Motivation and Energy Inventory (MEI) are two scales measuring positive valence symptoms. We evaluated the effect of exercise on positive valence symptoms of Major Depressive Disorder (MDD). Subjects in the Treatment with Exercise Augmentation for Depression (TREAD) study completed self-reported SHAPS and MEI during 12 weeks of exercise augmentation for depression. We evaluated the effect of exercise on SHAPS and MEI scores, and whether the changes were related to overall MDD severity measured with the Quick Inventory of Depression Symptomatology (QIDS). SHAPS and MEI scores significantly improved with exercise. MEI score change had larger effect size and greater correlation with change in QIDS score. MEI also showed significant moderator and mediator effects of exercise in MDD. Generalizability to other treatments is limited. This study lacked other bio-behavioral markers that would enhance understanding of the relationship of RDoC and the measures used. Positive valence symptoms improve with exercise treatment for depression, and this change correlates well with overall outcome. Motivation and energy may be more clinically relevant to outcome of exercise treatment than anhedonia. Copyright © 2016. Published by Elsevier B.V.
Roberts, Paul A; Fox, John; Peirce, Nicholas; Jones, Simon W; Casey, Anna; Greenhaff, Paul L
2016-08-01
Muscle glycogen availability can limit endurance exercise performance. We previously demonstrated 5 days of creatine (Cr) and carbohydrate (CHO) ingestion augmented post-exercise muscle glycogen storage compared to CHO feeding alone in healthy volunteers. Here, we aimed to characterise the time-course of this Cr-induced response under more stringent and controlled experimental conditions and identify potential mechanisms underpinning this phenomenon. Fourteen healthy, male volunteers cycled to exhaustion at 70 % VO2peak. Muscle biopsies were obtained at rest immediately post-exercise and after 1, 3 and 6 days of recovery, during which Cr or placebo supplements (20 g day(-1)) were ingested along with a prescribed high CHO diet (37.5 kcal kg body mass(-1) day(-1), >80 % calories CHO). Oral-glucose tolerance tests (oral-GTT) were performed pre-exercise and after 1, 3 and 6 days of Cr and placebo supplementation. Exercise depleted muscle glycogen content to the same extent in both treatment groups. Creatine supplementation increased muscle total-Cr, free-Cr and phosphocreatine (PCr) content above placebo following 1, 3 and 6 days of supplementation (all P < 0.05). Creatine supplementation also increased muscle glycogen content noticeably above placebo after 1 day of supplementation (P < 0.05), which was sustained thereafter. This study confirmed dietary Cr augments post-exercise muscle glycogen super-compensation, and demonstrates this occurred during the initial 24 h of post-exercise recovery (when muscle total-Cr had increased by <10 %). This marked response ensued without apparent treatment differences in muscle insulin sensitivity (oral-GTT, muscle GLUT4 mRNA), osmotic stress (muscle c-fos and HSP72 mRNA) or muscle cell volume (muscle water content) responses, such that another mechanism must be causative.
Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise
Madery, Brandon D.; Pike, Tasha L.; Eisenach, John H.; Dietz, Niki M.; Joyner, Michael J.; Wilkins, Brad W.
2009-01-01
We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (α-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml·min−1·100 mmHg−1) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (ΔFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 ± 29 and 314 ± 34 ml·min−1·100 mmHg−1 (10% and 20%, respectively). Aminophylline administration did not affect ΔFVC during hypoxic exercise at 10% (190 ± 29 ml·min−1·100 mmHg−1, P = 0.4) or 20% (287 ± 48 ml·min−1·100 mmHg−1, P = 0.3). In protocol 2, ΔFVC due to hypoxic exercise with phentolamine infusion was 313 ± 30 and 453 ± 41 ml·min−1·100 mmHg−1 (10% and 20% respectively). ΔFVC was similar at 10% (352 ± 39 ml·min−1·100 mmHg−1, P = 0.8) and 20% (528 ± 45 ml·min−1·100 mmHg−1, P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, ΔFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449
Trivedi, Madhukar H; Greer, Tracy L; Church, Timothy S; Carmody, Thomas J; Grannemann, Bruce D; Galper, Daniel I; Dunn, Andrea L; Earnest, Conrad P; Sunderajan, Prabha; Henley, Steven S; Blair, Steven N
2011-05-01
Most patients with major depressive disorder (MDD) require second-step treatments to achieve remission. The Treatment with Exercise Augmentation for Depression (TREAD) study was designed to test the efficacy of aerobic exercise as an augmentation treatment for MDD patients who had not remitted with antidepressant treatment. Eligible participants in this randomized controlled trial were sedentary individuals (men and women aged 18-70 years) diagnosed with DSM-IV nonpsychotic MDD who had not remitted with selective serotonin reuptake inhibitor (SSRI) treatment. Participants were recruited through physician referrals and advertisements. A total of 126 participants were randomized to augmentation treatment with either 16 kcal per kg per week (KKW) or 4 KKW of exercise expenditure for 12 weeks while SSRI treatment was held constant. Supervised sessions were conducted at The Cooper Institute, Dallas, Texas, with additional home-based sessions as needed to fulfill the weekly exercise prescription. The primary outcome was remission (as determined by a score ≤ 12 on the Inventory of Depressive Symptomatology, Clinician-Rated). The study took place between August 2003 and August 2007. There were significant improvements over time for both groups combined (F₁,₁₂₁ = 39.9, P < .0001), without differential group effect (group effect: F₁,₁₃₄ = 3.2, P = .07; group-by-time effect: F₁,₁₁₉ = 3.8, P = .06). Adjusted remission rates at week 12 were 28.3% versus 15.5% for the 16-KKW and 4-KKW groups, respectively, leading to a number needed to treat (NNT) of 7.8 for 16 KKW versus 4 KKW. Men, regardless of family history of mental illness, and women without a family history of mental illness had higher remission rates by week 12 with higher-dose (women, 39.0%; men, 85.4%) than with lower-dose exercise (women, 5.6%; men, 0.1%) (women: t₉₅ = 2.1, P = .04; men: t₈₈ = 5.4, P < .0001) (NNT: women, 3.0; men, 1.2). There was a trend for higher remission rates in the higher-dose exercise group (P < .06), with a clinically meaningful NNT of 7.8 in favor of the high exercise dose. Significant differences between groups were found when the moderating effects of gender and family history of mental illness were taken into account and suggest that higher-dose exercise may be better for all men and for women without a family history of mental illness. clinicaltrials.gov Identifier: NCT00076258. © Copyright 2011 Physicians Postgraduate Press, Inc.
Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis
NASA Technical Reports Server (NTRS)
Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem
2015-01-01
Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.
NASA Astrophysics Data System (ADS)
Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M.
2002-01-01
The diastereoselective synthesis of ethyl (E)-3-methyl-3-phenylglycidate, a strawberry flavoring agent, is carried out by epoxidizing ethyl trans-b-methylcinnamate with m-chloroperbenzoic acid. This epoxidation is appropriate for the introductory organic laboratory and augments the small number of such experiments currently available for undergraduate education. In the course of performing this exercise, students are exposed to many important facets of organic chemistry such as synthesis, reaction mechanism, stereochemistry, chromatography, quantitative analysis, spectroscopy, and computational chemistry. The 1H NMR spectrum of this compound is especially interesting and presents instructive examples of diastereotopic protons and shielding effects of the aromatic ring current.
Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N
2017-08-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.
Lee, Yong Hee; Park, Soo Hyun; Yoon, Eun Sun; Lee, Chong-Do; Wee, Sang Ouk; Fernhall, Bo; Jae, Sae Young
2015-09-01
The effects of combined aerobic and resistance exercise training on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis were investigated. Twenty-six patients with chronic poststroke hemiparesis were randomly assigned to either the combined aerobic and resistance exercise group (n = 14) or the control group (n = 12). The exercise intervention group received a combined aerobic and resistance exercise training (1 hr/day, three times/week for 16 wks), whereas the control group received usual care. Central arterial stiffness was determined by pulse wave velocity and augmentation index. Gait velocity was assessed using the 6-min walk test, 10-m walk test, and the Timed Up-and-Go test. Patients in the exercise intervention group had greater improvement of mean pulse wave velocity (P < 0.001), augmentation index (P = 0.048), and gait velocity (6-min walk test, P < 0.001; 10-m walk test, P < 0.001) than did patients in the control group. Patients in the exercise intervention group also had greater improvements in physical fitness component (grip strength, P < 0.001; muscular strength of upper and lower limbs, P < 0.027; flexibility, P < 0.001) when compared with control patients. The combined aerobic and resistance exercise program significantly reduced central arterial stiffness and increased gait velocity in patients with chronic poststroke hemiparesis.
Gomez, Ana Maria; Gomez, Claudia; Aschner, Pablo; Veloza, Angelica; Muñoz, Oscar; Rubio, Claudia; Vallejo, Santiago
2015-05-01
Although physical exercise (PE) is recommended for individuals with type 1 diabetes (DM1), participation in exercise is challenging because it increases the risk of severe hypoglycemia and the available therapeutic options to prevent it frequently result in hyperglycemia. There is no clear recommendation about the best timing for exercise. The aim of this study was to compare the risk of hypoglycemia after morning or afternoon exercise sessions up to 36 hours postworkout. This randomized crossover study enrolled subjects with DM1, older than 18 years of age, on sensor-augmented insulin pump (SAP) therapy. Participants underwent 2 moderate-intensity exercise sessions; 1 in the morning and 1 in the afternoon, separated by a 7 to 14 day wash-out period. Continuous glucose monitoring (CGM) data were collected 24 hours before, during and 36 hours after each session. Thirty-five subjects (mean age 30.31 ± 12.66 years) participated in the study. The rate of hypoglycemia was significantly lower following morning versus afternoon exercise sessions (5.6 vs 10.7 events per patient, incidence rate ratio, 0.52; 95% CI, 0.43-0.63; P < .0001). Most hypoglycemic events occurred 15-24 hours after the session. On days following morning exercise sessions, there were 20% more CGM readings in near-euglycemic range (70-200 mg/dL) than on days prior to morning exercise (P = .003). Morning exercise confers a lower risk of late-onset hypoglycemia than afternoon exercise and improves metabolic control on the subsequent day. © 2015 Diabetes Technology Society.
Jacobs, P G; El Youssef, J; Reddy, R; Resalat, N; Branigan, D; Condon, J; Preiser, N; Ramsey, K; Jones, M; Edwards, C; Kuehl, K; Leitschuh, J; Rajhbeharrysingh, U; Castle, J R
2016-11-01
To test whether adjusting insulin and glucagon in response to exercise within a dual-hormone artificial pancreas (AP) reduces exercise-related hypoglycaemia. In random order, 21 adults with type 1 diabetes (T1D) underwent three 22-hour experimental sessions: AP with exercise dosing adjustment (APX); AP with no exercise dosing adjustment (APN); and sensor-augmented pump (SAP) therapy. After an overnight stay and 2 hours after breakfast, participants exercised for 45 minutes at 60% of their maximum heart rate, with no snack given before exercise. During APX, insulin was decreased and glucagon was increased at exercise onset, while during SAP therapy, subjects could adjust dosing before exercise. The two primary outcomes were percentage of time spent in hypoglycaemia (<3.9 mmol/L) and percentage of time spent in euglycaemia (3.9-10 mmol/L) from the start of exercise to the end of the study. The mean (95% confidence interval) times spent in hypoglycaemia (<3.9 mmol/L) after the start of exercise were 0.3% (-0.1, 0.7) for APX, 3.1% (0.8, 5.3) for APN, and 0.8% (0.1, 1.4) for SAP therapy. There was an absolute difference of 2.8% less time spent in hypoglycaemia for APX versus APN (p = .001) and 0.5% less time spent in hypoglycaemia for APX versus SAP therapy (p = .16). Mean time spent in euglycaemia was similar across the different sessions. Adjusting insulin and glucagon delivery at exercise onset within a dual-hormone AP significantly reduces hypoglycaemia compared with no adjustment and performs similarly to SAP therapy when insulin is adjusted before exercise. © 2016 John Wiley & Sons Ltd.
Yan, Huimin; Ranadive, Sushant M; Heffernan, Kevin S; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, Bo
2014-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms.
Ranadive, Sushant M.; Heffernan, Kevin S.; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S.; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2013-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms. PMID:24186094
2014-01-01
Background There is still limited information on systemic inflammation in alpha-1-antitrypsin-deficient (AATD) COPD patients and what effect alpha-1-antitrypsin augmentation therapy and/or exercise might have on circulating inflammatory cytokines. We hypothesized that AATD COPD patients on augmentation therapy (AATD + AUG) would have lower circulating and skeletal muscle inflammatory cytokines compared to AATD COPD patients not receiving augmentation therapy (AATD-AUG) and/or the typical non-AATD (COPD) patient. We also hypothesized that cytokine response to exercise would be lower in AATD + AUG compared to AATD-AUG or COPD subjects. Methods Arterial and femoral venous concentration and skeletal muscle expression of TNFα, IL-6, IL-1β and CRP were measured at rest, during and up to 4-hours after 50% maximal 1-hour knee extensor exercise in all COPD patient groups, including 2 additional groups (i.e. AATD with normal lung function, and healthy age-/activity-matched controls). Results Circulating CRP was higher in AATD + AUG (4.7 ± 1.6 mg/dL) and AATD-AUG (3.3 ± 1.2 mg/dL) compared to healthy controls (1.5 ± 0.3 mg/dL, p < 0.05), but lower in AATD compared to non-AATD-COPD patients (6.1 ± 2.6 mg/dL, p < 0.05). TNFα, IL-6 and IL-1β were significantly increased by 1.7-, 1.7-, and 4.7-fold, respectively, in non-AATD COPD compared to AATD COPD (p < 0.05), and 1.3-, 1.7-, and 2.2-fold, respectively, compared to healthy subjects (p < 0.05). Skeletal muscle TNFα was on average 3–4 fold greater in AATD-AUG compared to the other groups (p < 0.05). Exercise showed no effect on these cytokines in any of our patient groups. Conclusion These data show that AATD COPD patients do not experience the same chronic systemic inflammation and exhibit reduced inflammation compared to non-AATD COPD patients. Augmentation therapy may help to improve muscle efflux of TNFα and reduce muscle TNFα concentration, but showed no effect on IL-6, IL-1β or CRP. PMID:24975928
NASA Astrophysics Data System (ADS)
Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho
As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.
CMS results in the Combined Computing Readiness Challenge CCRC'08
NASA Astrophysics Data System (ADS)
Bonacorsi, D.; Bauerdick, L.; CMS Collaboration
2009-12-01
During February and May 2008, CMS participated to the Combined Computing Readiness Challenge (CCRC'08) together with all other LHC experiments. The purpose of this worldwide exercise was to check the readiness of the Computing infrastructure for LHC data taking. Another set of major CMS tests called Computing, Software and Analysis challenge (CSA'08) - as well as CMS cosmic runs - were also running at the same time: CCRC augmented the load on computing with additional tests to validate and stress-test all CMS computing workflows at full data taking scale, also extending this to the global WLCG community. CMS exercised most aspects of the CMS computing model, with very comprehensive tests. During May 2008, CMS moved more than 3.6 Petabytes among more than 300 links in the complex Grid topology. CMS demonstrated that is able to safely move data out of CERN to the Tier-1 sites, sustaining more than 600 MB/s as a daily average for more than seven days in a row, with enough headroom and with hourly peaks of up to 1.7 GB/s. CMS ran hundreds of simultaneous jobs at each Tier-1 site, re-reconstructing and skimming hundreds of millions of events. After re-reconstruction the fresh AOD (Analysis Object Data) has to be synchronized between Tier-1 centers: CMS demonstrated that the required inter-Tier-1 transfers are achievable within a few days. CMS also showed that skimmed analysis data sets can be transferred to Tier-2 sites for analysis at sufficient rate, regionally as well as inter-regionally, achieving all goals in about 90% of >200 links. Simultaneously, CMS also ran a large Tier-2 analysis exercise, where realistic analysis jobs were submitted to a large set of Tier-2 sites by a large number of people to produce a chaotic workload across the systems, and with more than 400 analysis users in May. Taken all together, CMS routinely achieved submissions of 100k jobs/day, with peaks up to 200k jobs/day. The achieved results in CCRC'08 - focussing on the distributed workflows - are presented and discussed.
Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation
NASA Technical Reports Server (NTRS)
Kirby, C. R.; Convertino, V. A.
1986-01-01
The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.
Hamlyn, Nicolle; Behm, David G; Young, Warren B
2007-11-01
The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.
Heinzel, Stephan; Rapp, Michael A; Fydrich, Thomas; Ströhle, Andreas; Terán, Christina; Kallies, Gunnar; Schwefel, Melanie; Heissel, Andreas
2018-02-01
Even though cognitive behavioral therapy has become a relatively effective treatment for major depressive disorder and cognitive behavioral therapy-related changes of dysfunctional neural activations were shown in recent studies, remission rates still remain at an insufficient level. Therefore, the implementation of effective augmentation strategies is needed. In recent meta-analyses, exercise therapy (especially endurance exercise) was reported to be an effective intervention in major depressive disorder. Despite these findings, underlying mechanisms of the antidepressant effect of exercise especially in combination with cognitive behavioral therapy have rarely been studied to date and an investigation of its neural underpinnings is lacking. A better understanding of the psychological and neural mechanisms of exercise and cognitive behavioral therapy would be important for developing optimal treatment strategies in depression. The SPeED study (Sport/Exercise Therapy and Psychotherapy-evaluating treatment Effects in Depressive patients) is a randomized controlled trial to investigate underlying physiological, neurobiological, and psychological mechanisms of the augmentation of cognitive behavioral therapy with endurance exercise. It is investigated if a preceding endurance exercise program will enhance the effect of a subsequent cognitive behavioral therapy. This study will include 105 patients diagnosed with a mild or moderate depressive episode according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed.). The participants are randomized into one of three groups: a high-intensive or a low-intensive endurance exercise group or a waiting list control group. After the exercise program/waiting period, all patients receive an outpatient cognitive behavioral therapy treatment according to a standardized therapy manual. At four measurement points, major depressive disorder symptoms (Beck Depression Inventory, Hamilton Rating Scale for Depression), (neuro)biological measures (neural activations during working memory, monetary incentive delay task, and emotion regulation, as well as cortisol levels and brain-derived neurotrophic factor), neuropsychological test performance, and questionnaires (psychological needs, self-efficacy, and quality of life) are assessed. In this article, we report the design of the SPeED study and refer to important methodological issues such as including both high- and low-intensity endurance exercise groups to allow the investigation of dose-response effects and physiological components of the therapy effects. The main aims of this research project are to study effects of endurance exercise and cognitive behavioral therapy on depressive symptoms and to investigate underlying physiological and neurobiological mechanisms of these effects. Results may provide important implications for the development of effective treatment strategies in major depressive disorder, specifically concerning the augmentation of cognitive behavioral therapy by endurance exercise.
Sienko, K H; Whitney, S L; Carender, W J; Wall, C
2017-01-01
This narrative review highlights findings from the sensory augmentation field for people with vestibular deficits and addresses the outstanding questions that are critical to the translation of this technology into clinical and/or personal use. Prior research has demonstrated that the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies can improve balance during static and dynamic stance tasks within a laboratory setting. However, its application in improving gait requires additional investigation, as does its efficacy as a rehabilitation device for people with vestibular deficits. In some locomotor studies involving sensory augmentation, gait velocity decreased and secondary task performance worsened, and subjects negatively altered their segmental control strategies when cues were provided following short training sessions. A further question is whether the retention and/or carry-over effects of training with a sensory augmentation technology exceed the retention and/or carry-over effects of training alone, thereby supporting its use as a rehabilitation device. Preliminary results suggest that there are short-term improvements in balance performance following a small number of training sessions with a sensory augmentation device. Long-term clinical and home-based controlled training studies are needed. It is hypothesized that sensory augmentation provides people with vestibular deficits with additional sensory input to promote central compensation during a specific exercise/activity; however, research is needed to substantiate this theory. Major obstacles standing in the way of its use for these critical applications include determining exercise/activity specific feedback parameters and dosage strategies. This paper summarizes the reported findings that support sensory augmentation as a balance aid and rehabilitation device, but does not critically examine efficacy or the quality of the research methods used in the reviewed studies.
Arcoverde, Cynthia; Deslandes, Andrea; Moraes, Helena; Almeida, Cloyra; Araujo, Narahyana Bom de; Vasques, Paulo Eduardo; Silveira, Heitor; Laks, Jerson
2014-03-01
To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer's disease (AD) patients. Elderly (n=20) with mild dementia (NINCDS-ADRDA/CDR1) were randomly assigned to an exercise group (EG) on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO₂max) and control group (GC) 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG). Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Walking on treadmill may be recommended as an augmentation treatment for patients with AD.
2012-01-01
Background The motivation of patients during robot-assisted rehabilitation after neurological disorders that lead to impairments of motor functions is of great importance. Due to the increasing number of patients, increasing medical costs and limited therapeutic resources, clinicians in the future may want patients to practice their movements at home or with reduced supervision during their stay in the clinic. Since people only engage in an activity and are motivated to practice if the outcome matches the effort at which they perform, an augmented feedback application for rehabilitation should take the cognitive and physical deficits of patients into account and incorporate a mechanism that is capable of balancing i.e. adjusting the difficulty of an exercise in an augmented feedback application to the patient's capabilities. Methods We propose a computational mechanism based on Fitts' Law that balances i.e. adjusts the difficulty of an exercise for upper-extremity rehabilitation. The proposed mechanism was implemented into an augmented feedback application consisting of three difficulty conditions (easy, balanced, hard). The task of the exercise was to reach random targets on the screen from a starting point within a specified time window. The available time was decreased with increasing condition difficulty. Ten subacute stroke patients were recruited to validate the mechanism through a study. Cognitive and motor functions of patients were assessed using the upper extremity section of the Fugl-Meyer Assessment, the modified Ashworth scale as well as the Addenbrookes cognitive examination-revised. Handedness of patients was obtained using the Edinburgh handedness inventory. Patients' performance during the execution of the exercises was measured twice, once for the paretic and once for the non-paretic arm. Results were compared using a two-way ANOVA. Post hoc analysis was performed using a Tukey HSD with a significance level of p < 0.05. Results Results show that the mechanism was capable of balancing the difficulty of an exercise to the capabilities of the patients. Medians for both arms show a gradual decrease and significant difference of the number of successful trials with increasing condition difficulty (F2;60 = 44.623; p < 0.01; η2 = 0.623) but no significant difference between paretic and non-paretic arm (F1;60 = 3.768; p = 0.057; η2 = 0.065). Post hoc analysis revealed that, for both arms, the hard condition significantly differed from the easy condition (p < 0.01). In the non-paretic arm there was an additional significant difference between the balanced and the hard condition (p < 0.01). Reducing the time to reach the target, i.e., increasing the difficulty level, additionally revealed significant differences between conditions for movement speeds (F2;59 = 6.013; p < 0.01; η2 = 0.185), without significant differences for hand-closing time (F2;59 = 2.620; p = 0.082; η2 = 0.09), reaction time (F2;59 = 0.978; p = 0.383; η2 = 0.036) and hand-path ratio (F2;59 = 0.054; p = 0.947; η2 = 0.002). The evaluation of a questionnaire further supported the assumption that perceived performance declined with increased effort and increased exercise difficulty leads to frustration. Conclusions Our results support that Fitts' Law indeed constitutes a powerful mechanism for task difficulty adaptation and can be incorporated into exercises for upper-extremity rehabilitation. PMID:22304989
Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise
NASA Technical Reports Server (NTRS)
Halliwill, J. R.; Taylor, J. A.; Hartwig, T. D.; Eckberg, D. L.
1996-01-01
The occurrence of a sustained vasodilation and hypotension after acute, dynamic exercise suggests that exercise may alter arterial baroreflex mechanisms. Therefore, we assessed systemic hemodynamics, baroreflex regulation of heart rate, and cardiac vagal tone after 60 min of cycling at 60% peak oxygen consumption in 12 healthy, untrained men and women (ages 21-28 yr). We derived sigmoidal carotid-cardiac baroreflex relations by measurement of R-R interval changes induced by ramped, stepwise, R-wave-triggered changes in external neck pressure from 40 to -65 mmHg. We estimated tonic cardiac vagal control with power spectral analysis of R-R interval variability in the respiratory frequency band (0.2-0.3 Hz) during frequency- and tidal volume-controlled breathing. Both mean arterial pressure and total peripheral resistance were reduced postexercise [pressure: from 86 +/- 2 (mean +/- SE) to 81 +/- 2 mmHg; resistance: from 23 +/- 2 to 16 +/- 1 units; both P < 0.05]. Cardiac output was increased postexercise (from 3.9 +/- 0.3 to 5.5 +/- 0.5 l/min, P < 0.05). Both slope and range of the carotid-cardiac baroreflex relation were increased postexercise (slope: from 4.7 +/- 0.7 to 6.1 +/- 0.9 ms/mmHg; range: from 186 +/- 23 to 238 +/- 30 ms, P < 0.05). Respiratory R-R interval variability (cardiac vagal tone) was not changed at any time after exercise, whereas heart rate and plasma norepinephrine levels were elevated. Thus moderate-intensity, dynamic exercise increases heart rate and cardiac output, reduces peripheral vascular resistance, and augments baroreflex responsiveness. Our data suggest that augmented baroreflex heart rate gain restrains rather than contributes to postexercise hypotension, which appears to be mediated predominately by vasodilation.
Effects of Static Stretching Exercise on Lumbar Flexibility and Central Arterial Stiffness.
Logan, Jeongok G; Kim, Suk-Sun; Lee, Mijung; Byon, Ha Do; Yeo, SeonAe
Previous studies have demonstrated that arterial stiffness is associated with lumbar flexibility (LF). Stretching exercise targeted to improve LF may have a beneficial effect on reducing arterial stiffness. We examined the effects of a single bout of a structured, static stretching exercise on arterial stiffness, LF, peripheral and central blood pressure (BP), and heart rate (HR) and tested the association between LF and central arterial stiffness. The study had a pretest-posttest design without a control group. Thirty healthy women followed a video demonstration of a 30-minute whole-body stretching exercise. Carotid-femoral pulse wave velocity (cf-PWV), augmentation index, LF, peripheral and central BP, and HR were measured before and after the stretching exercise. One bout of a static stretching exercise significantly reduced cf-PWV (t29 = 2.708, P = .011) and HR (t29 = 7.160, P = .000) and increased LF (t29 = 12.248, P < .000). Augmentation index and peripheral and central BP also decreased but did not reach statistical significance. Despite no association found between cf-PWV and LF, the larger increase in LF the subjects had, the larger decrease in cf-PWV they had after exercise (r = 0.500, P = .005). Study findings highlight the potential benefit of a static stretching exercise on central arterial stiffness, an independent predictor of cardiovascular morbidity. Static stretching exercise conducted in the sitting position may be used as an effective intervention to reduce cardiovascular risk after a cardiac event or for patients whose sympathetic function should not be overly activated or whose gaits are not stable.
Pierce, G L; Harris, S A; Seals, D R; Casey, D P; Barlow, P B; Stauss, H M
2016-09-01
We hypothesised that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary and n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week-aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique), estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±s.e.=-5.76±2.01, P=0.01) was the strongest predictor of BRS (model R(2)=0.59, P<0.001). The 8-week-exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=-0.65, P=0.044, adjusted for changes in MAP). Age- and endurance-exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise.
Pierce, Gary L.; Harris, Stephen A.; Seals, Douglas R.; Casey, Darren P.; Barlow, Patrick B.; Stauss, Harald M.
2016-01-01
We hypothesized that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease (CVD) risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary; n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique) and estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±SE = −5.76 ± 2.01, P=0.01) was the strongest predictor of BRS (Model R2=0.59, P<0.001). The 8 week exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=−0.65, P=0.044, adjusted for changes in MAP). Age- and endurance exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise. PMID:26911535
Voluntary chronic exercise augments in vivo natural immunity in rats.
Jonsdottir, I H; Asea, A; Hoffmann, P; Dahlgren, U I; Andersson, B; Hellstrand, K; Thorén, P
1996-05-01
The effect of chronic voluntary exercise on the immune response was studied in spontaneously hypertensive rats. Exercise consisted of voluntary running in wheels for 5 wk, and the mean running distance was 4.2 km/24 h. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners compared with sedentary controls (P < 0.001). The total number of mononuclear cells in the spleen was significantly decreased in runners compared with controls. Analysis of splenic lymphocyte phenotypes revealed a significantly increased fraction of OX52+/CD5- natural killer cells in runners compared with sedentary controls. In contrast to changes in natural immunity, immunoglobulins G and M levels in serum, the antibody response to antigen in vivo, and the proliferation of splenic T cells in vitro were unchanged. Our data suggest that chronic voluntary exercise augments natural cytotoxicity mechanisms in vivo, whereas splenic T-cell proliferation and the antibody-mediated immune response remain unchanged.
Murach, Kevin A; Bagley, James R
2016-08-01
Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.
Aoyama, Tomoki; Fujita, Yasuko; Madoba, Katsuyuki; Nankaku, Manabu; Yamada, Minoru; Tomita, Motoko; Goto, Koji; Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Matsuda, Shuichi; Nakamura, Takashi; Toguchida, Junya
2015-03-01
To determine the feasibility and safety of implementing a 12-week rehabilitation program after mesenchymal stromal cell (MSC) transplantation augmented by vascularized bone grafting for idiopathic osteonecrosis (ION) of the femoral head. A prospective case series. University clinical research laboratory. Participants (N=10) with ION who received MSC transplantation augmented by vascularized bone grafting. A 12-week exercise program, which included range-of-motion (ROM) exercises, muscle-strengthening exercises, and aerobic training. Measures of ROM, muscle strength, Timed Up and Go test, and Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) were collected before surgery and again at 6 and 12 months after surgery. All participants completed the 12-week program. External rotation ROM as well as extensor and abductor muscle strength significantly improved 6 months after treatment compared with that before treatment (P<.05). Significant improvements were also seen in physical function, role physical, and bodily pain subgroup scores of the SF-36 (P<.05). No serious adverse events occurred. This study demonstrates the feasibility and safety of a multiplex rehabilitation program after MSC transplantation and provides support for further study on the benefits of rehabilitation programs in regenerative medicine. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Advanced intellect-augmentation techniques
NASA Technical Reports Server (NTRS)
Engelbart, D. C.
1972-01-01
User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.
Effect of nifedipine on choroidal blood flow regulation during isometric exercise.
Schmidl, Doreen; Prinz, Ana; Kolodjaschna, Julia; Polska, Elzbieta; Luksch, Alexandra; Fuchsjager-Mayrl, Gabriele; Garhofer, Gerhard; Schmetterer, Leopold
2012-01-25
To determine whether nifedipine, an L-type calcium channel blocker, alters choroidal blood flow (ChBF) regulation during isometric exercise in healthy subjects. The study was carried out in a randomized, placebo-controlled, double-masked, two-way crossover design. Fifteen healthy male subjects were randomly assigned to receive either placebo or nifedipine on two different study days. Subfoveal ChBF was measured with laser Doppler flowmetry while the study participants performed isometric exercise (squatting). This was performed before drug administration and during infusion of nifedipine and placebo, respectively. Mean arterial pressure (MAP) and intraocular pressure (IOP) were measured noninvasively, and ocular perfusion pressure (OPP) was calculated as ⅔ MAP-IOP. MAP and OPP increased significantly during all squatting periods (P < 0.01). The increase in ChBF was less pronounced than the increase in OPP during isometric exercise. Nifedipine did not alter the OPP increase in response to isometric exercise, but it significantly augmented the exercise-induced increase in ChBF (P < 0.001 vs. placebo). Although ChBF increased by a maximum of 14.2% ± 9.2% during the squatting period when placebo was administered, the maximum increase during administration of nifedipine was 23.2% ± 7.2%. In conclusion, the data of the present study suggest that nifedipine augments the ChBF response to an experimental increase in OPP. In addition, it confirms that the choroidal vasculature has a significant regulatory capacity over wide ranges of OPPs during isometric exercise. (ClinicalTrials.gov number, NCT00280462.).
Effect of dead space on breathing stability at exercise in hypoxia.
Hermand, Eric; Lhuissier, François J; Richalet, Jean-Paul
2017-12-01
Recent studies have shown that normal subjects exhibit periodic breathing when submitted to concomitant environmental (hypoxia) and physiological (exercise) stresses. A mathematical model including mass balance equations confirmed the short period of ventilatory oscillations and pointed out an important role of dead space in the genesis of these phenomena. Ten healthy subjects performed mild exercise on a cycloergometer in different conditions: rest/exercise, normoxia/hypoxia and no added dead space/added dead space (aDS). Ventilatory oscillations (V˙E peak power) were augmented by exercise, hypoxia and aDS (P<0.001, P<0.001 and P<0.01, respectively) whereas V˙E period was only shortened by exercise (P<0.001), with an 11-s period. aDS also increased V˙E (P<0.001), tidal volume (VT, P<0.001), and slightly augmented PETCO 2 (P<0.05) and the respiratory frequency (P<0.05). These results confirmed our previous model, showing an exacerbation of breathing instability by increasing dead space. This underlines opposite effects observed in heart failure patients and normal subjects, in which added dead space drastically reduced periodic breathing and sleep apneas. It also points out that alveolar ventilation remains very close to metabolic needs and is not affected by an added dead space. Clinical Trial reg. n°: NCT02201875. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Zegman, Marilyn A.
Although the augmental value of exercise to behavioral weight control programs has been suggested, demonstration of this value is dependent upon an assessment of adherence to change in eating habits and activity patterns. Self-report measures of adherence were obtained from overweight college women undergoing treatment that involved either dietary…
USDA-ARS?s Scientific Manuscript database
Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...
Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions.
Mehanna, Emile; Hamik, Anne; Josephson, Richard A
2016-05-01
Historically, the relationship between exercise and the cardiovascular system was viewed as unidirectional, with a disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercise-induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome.
Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions
Mehanna, Emile; Hamik, Anne; Josephson, Richard A
2017-01-01
Historically the relationship between exercise and the cardiovascular system was viewed as unidirectional, with disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercises induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome. PMID:27005804
Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi
2015-01-15
We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. Copyright © 2015 the American Physiological Society.
Stroke Volume During Concomitant Apnea and Exercise: Influence of Gravity and Venous Return
NASA Astrophysics Data System (ADS)
Hoffmann, Uwe; Drager, Tobias; Steegmanns, Ansgar; Koesterer, Thomas; Linnarsson, Dag
2008-06-01
The responses of the cardiovascular system to intensive exercise (hiP) and combined stimuli by hiP and breath-hold (hiP-BH) for 20 s were examined during changing gravity (parabolic flight) and constant gravity (1g). The basic response to microgravity (μg) during low-intensity exercise was an increase in cardiac output (CO) and stroke volume (SV) as a result of augmented venous return. When onset of hiP was superimposed, the initial augmentation of CO and SV were increased further. In contrast, when BH was added, the increases of CO and SV were slowed. We propose that this was due to a transient increase of the pulmonary blood volume with the combination of μg and BH at large lung volume, creating a temporary imbalance between right ventricular input and left ventricular output. In addition, the BH- induced relative bradycardia may have contributed to a prolongation of the right-to- left indirect ventricular interdependence.
Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.
Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012
Heart rate variability and aerobic fitness.
De Meersman, R E
1993-03-01
Heart rate variability, a noninvasive marker of parasympathetic activity, diminishes with aging and is augmented after exercise training. Whether habitual exercise over time can attenuate this loss is unknown. This cross-sectional investigation compared 72 male runners, aged 15 to 83 to 72 age- and weight-matched sedentary control subjects for the amplitude of their heart rate variability. Heart rate variability was assessed during rest while subjects were breathing at a rate of 6 breaths per minute and at an augmented tidal volume (tidal volume = 30% of vital capacity). Fitness levels were assessed with on-line, open-circuit spirometry while subjects were performing an incremental stress test. Overall results between the two groups showed that the physically active group had significantly higher fitness levels (p < 0.001), which were associated with significantly higher levels of heart rate variability, when compared with their sedentary counterparts (p < 0.001). These findings provide suggestive evidence for habitual aerobic exercise as a beneficial modulator of heart rate variability in an aging population.
van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert
2013-10-04
Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.
Computer Augmented Video Education.
ERIC Educational Resources Information Center
Sousa, M. B.
1979-01-01
Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)
Augmented Reality Comes to Physics
ERIC Educational Resources Information Center
Buesing, Mark; Cook, Michael
2013-01-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…
ERIC Educational Resources Information Center
Varley, Rachel; Webb, Thomas L.; Sheeran, Paschal
2011-01-01
Objective: The effectiveness of self-help materials may be constrained by failures to undertake recommended exercises or to deploy the techniques that one has learned at the critical moment. The present randomized controlled trial investigated whether augmenting self-help materials with if-then plans (or implementation intentions) could overcome…
NASA Technical Reports Server (NTRS)
Vissing, J.; Vissing, S. F.; MacLean, D. A.; Saltin, B.; Quistorff, B.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
Muscle acidosis has been implicated as a major determinant of reflex sympathetic activation during exercise. To test this hypothesis we studied sympathetic exercise responses in metabolic myopathies in which muscle acidosis is impaired or augmented during exercise. As an index of reflex sympathetic activation to muscle, microneurographic measurements of muscle sympathetic nerve activity (MSNA) were obtained from the peroneal nerve. MSNA was measured during static handgrip exercise at 30% of maximal voluntary contraction force to exhaustion in patients in whom exercise-induced muscle acidosis is absent (seven myophosphorylase deficient patients; MD [McArdle's disease], and one patient with muscle phosphofructokinase deficiency [PFKD]), augmented (one patient with mitochondrial myopathy [MM]), or normal (five healthy controls). Muscle pH was monitored by 31P-magnetic resonance spectroscopy during handgrip exercise in the five control subjects, four MD patients, and the MM and PFKD patients. With handgrip to exhaustion, the increase in MSNA over baseline (bursts per minute [bpm] and total activity [%]) was not impaired in patients with MD (17+/-2 bpm, 124+/-42%) or PFKD (65 bpm, 307%), and was not enhanced in the MM patient (24 bpm, 131%) compared with controls (17+/-4 bpm, 115+/-17%). Post-handgrip ischemia studied in one McArdle patient, caused sustained elevation of MSNA above basal suggesting a chemoreflex activation of MSNA. Handgrip exercise elicited an enhanced drop in muscle pH of 0.51 U in the MM patient compared with the decrease in controls of 0.13+/-0.02 U. In contrast, muscle pH increased with exercise in MD by 0.12+/-0.05 U and in PFKD by 0.01 U. In conclusion, patients with glycogenolytic, glycolytic, and oxidative phosphorylation defects show normal muscle sympathetic nerve responses to static exercise. These findings indicate that muscle acidosis is not a prerequisite for sympathetic activation in exercise.
Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.
Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu
2018-03-22
The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.
ERIC Educational Resources Information Center
Paisley, William; Butler, Matilda
This study of the computer/user interface investigated the role of the computer in performing information tasks that users now perform without computer assistance. Users' perceptual/cognitive processes are to be accelerated or augmented by the computer; a long term goal is to delegate information tasks entirely to the computer. Cybernetic and…
Doonan, Robert J.; Scheffler, Patrick; Yu, Alice; Egiziano, Giordano; Mutter, Andrew; Bacon, Simon; Carli, Franco; Daskalopoulos, Marios E.; Daskalopoulou, Stella S.
2011-01-01
Background Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals. Methods/Results Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions. Conclusion Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired ‘vascular reserve’ or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular function, affecting the ability of the vascular bed to respond to increased demands. PMID:22028821
Wong, Ming Chao; Turner, Paul; MacIntyre, Kate; Yee, Kwang Chien
2017-01-01
Stimulating widespread interests of the population to participate in behavioural changes through information and technology has been an aim of much health informatics research. The recent widespread participation of the augmented reality game Pokémon Go which encourages exercises, provides significant insights into the potential of information technology to improve healthcare intervention on obesity-related disease. Does Pokémon Go point to another way of achieving health benefits using mobile devices? This paper analyses the features of Pokémon Go in relation to potential health benefits. This paper suggests from the perspective of a user on changes to the game that potentially could help with obesity, mental health cardiovascular health and vitamin D deficiencies. While the impact of augmented reality games on improving exercises might be substantial, the question of sustainability and likely long-term health outcomes remain debatable. The rapid uptake of Pokémon Go by the population around the world, however, should serve as a useful lesson for information and technological design to improve outcomes obesity-related diseases in the future.
Bell, Christopher; Stob, Nicole R; Seals, Douglas R
2006-01-01
β-Adrenergic receptor (β-AR) modulation of resting and postprandial energy expenditure (EE) is augmented in regularly exercising compared with sedentary adults, but the underlying physiological mechanisms are unknown. Differences in thermogenic responsiveness to β-AR stimulation, perhaps secondary to reactive oxygen species (ROS) bioactivity, may be involved. To determine habitual exercise-related differences in β-AR thermogenic responsiveness and the possible influence of ROS, we measured the percentage increase in EE (ΔEE%; indirect calorimetry, ventilated hood method) above resting EE in response to non-specific β-AR stimulation (intravenous isoproterenol (isoprenaline): 6, 12 and 24 ng (kg fat-free mass)−1 min−1) in 25 sedentary (11 males; 51 ± 4 years; body mass index 25.0 ± 0.8 kg m−2, maximal oxygen uptake 29 ± 1 ml kg−1 min−1 (mean ±s.e.m.)) and 14 habitually aerobic exercising (9 males, 46 ± 6 years, 23.1 ± 0.7 kg m−2, 44 ± 3 ml kg−1 min−1) healthy adults under normal (control) conditions and during acute intravenous administration of a potent antioxidant, ascorbic acid (vitamin C; 0.04 g (kg fat-free mass)−1). ΔEE% was greater (P= 0.02) in the habitually exercising (8.6 ± 1.2, 12.9 ± 1.2, 20.0 ± 1.4) versus sedentary (6.3 ± 0.7, 10.4 ± 0.8, 16.0 ± 1.0) adults. Ascorbic acid increased (P= 0.01) ΔEE% only in the sedentary adults (to 9.5 ± 0.9, 12.4 ± 0.7, 18.5 ± 0.8), abolishing baseline group differences. ΔEE% was not related to the amount of body fat, sex, or any other baseline characteristic. Thermogenic responsiveness to β-AR stimulation is augmented in habitually exercising adults. The mechanism is ascorbic acid dependent, suggesting that it may be linked to decreased ROS bioactivity. Our findings advance a novel mechanism by which habitual physical activity may modulate EE in humans, with potential implications for energy balance and body weight control. PMID:16308351
[Basic mechanisms of QRS voltage changes on ECG of healthy subjects during the exercise test].
Saltykova, M M
2015-01-01
Electrocardiography is the most commonly used technique for detection stress-induced myocardial ischemia. However, the sensitivity of ECG-criteria is not high. One of the major problem is the difficulty in differentiating ECG changes caused by various factors. The aim of this study was to evaluate the dependence of the QRS voltage changes during exercise on parameters of central hemodynamics, gender particularities and to reveal mechanisms causing these changes. To eliminate the effect of changes in cardiomyocytes transmembrane potentials under the influence of the neurotransmitters of the autonomic nervous system during stepwise increasing exercises and/or due to a lack of ATP results from inadequate myocardial blood flow only healthy subjects not older than 35 years were included in the study (7 men and 7 women) and only periods of ventricular depolarization (QRS complex on the ECG) were included in the analysis. We compared the changes of QRS waves during exercise sessions with two upper and one lower limbs in both men and women. The exercise load was twice bigger in exercise with one leg relative to exercise with two arms. Responses of heart rate and systolic arterial pressure were similar. Amplitude of S-wave in left chest leads significantly increased in both sessions without significant difference between augmentations in the sessions and in groups of men and women. Significant relationship between the S wave augmentation and the peak systolic arterial pressure were revealed. Furthermore, the QRS changes during the exercise with vertical and a horizontal torso position were compared to assess the impact of diastolic arterial pressure and displacement of the diaphragm and heart rotation due to increase of abdominal pressure during the last steps of exercise. The obtained results allow us to exclude the impact of the heart position and size changes, as well as the exercise load on S-wave changes and make a conclusion about the dependence of this parameter on the value of systolic blood pressure.
Computer Augmented Learning; A Survey.
ERIC Educational Resources Information Center
Kindred, J.
The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…
Rosenbaum, Simon; Nguyen, Dang; Lenehan, Tom; Tiedemann, Anne; van der Ploeg, Hidde P; Sherrington, Catherine
2011-07-22
The physical wellbeing of people with mental health conditions can often be overlooked in order to treat the primary mental health condition as a priority. Exercise however, can potentially improve both the primary psychiatric condition as well as physical measures that indicate risk of other conditions such as diabetes mellitus and cardiovascular disease. Evidence supports the role of exercise as an important component of treatment for depression and anxiety, yet no randomised controlled trials (RCT's) have been conducted to evaluate the use of exercise in the treatment of people with post traumatic stress disorder (PTSD). This RCT will investigate the effects of structured, progressive exercise on PTSD symptoms, functional ability, body composition, physical activity levels, sleep patterns and medication usage. Eighty participants with a Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) diagnosis of PTSD will be recruited. Participants will have no contraindications to exercise and will be cognitively able to provide consent to participate in the study. The primary outcome measures will be PTSD symptoms, measured through the PTSD Checklist Civilian (PCL-C) scale. Secondary outcome measures will assess depression and anxiety, mobility and strength, body composition, physical activity levels, sleep patterns and medication usage. All outcomes will be assessed by a health or exercise professional masked to group allocation at baseline and 12 weeks after randomisation. The intervention will be a 12 week individualised program, primarily involving resistance exercises with the use of exercise bands. A walking component will also be incorporated. Participants will complete one supervised session per week, and will be asked to perform at least two other non-supervised exercise sessions per week. Both intervention and control groups will receive all usual non-exercise interventions including psychotherapy, pharmaceutical interventions and group therapy. This study will determine the effect of an individualised and progressive exercise intervention on PTSD symptoms, depression and anxiety, mobility and strength, body composition, physical activity levels, sleep patterns and medication usage among people with a DSM-IV diagnosis of PTSD. ACTRN12610000579099.
Cognitive Benefits of Exercise Intervention.
Archer, T; Ricci, S; Massoni, F; Ricci, L; Rapp-Ricciardi, M
2016-01-01
Exercise, as a potent epigenetic regulator, implies the potential to counteract pathophysiological processes and alterations in most cardiovascular/respiratory cells and tissues not withstanding a paucity of understanding the underlying molecular mechanisms and doseresponse relationships. In the present account, the assets accruing from physical exercise and its influence upon executive functioning are examined. Under conditions of neuropsychiatric and neurologic ill-health, age-related deterioration of functional and biomarker indicators during healthy and disordered trajectories, neuroimmune and affective unbalance, and epigenetic pressures, exercise offers a large harvest of augmentations in health and well-being. Both animal models and human studies support the premise of manifest gains from regular exercise within several domains, besides cognitive function and mood, notably as the agency of a noninvasive, readily available therapeutic intervention.
Augmented Reality Simulations on Handheld Computers
ERIC Educational Resources Information Center
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
NASA Astrophysics Data System (ADS)
Clay, Alexis; Delord, Elric; Couture, Nadine; Domenger, Gaël
We describe the joint research that we conduct in gesture-based emotion recognition and virtual augmentation of a stage, bridging together the fields of computer science and dance. After establishing a common ground for dialogue, we could conduct a research process that equally benefits both fields. As computer scientists, dance is a perfect application case. Dancer's artistic creativity orient our research choices. As dancers, computer science provides new tools for creativity, and more importantly a new point of view that forces us to reconsider dance from its fundamentals. In this paper we hence describe our scientific work and its implications on dance. We provide an overview of our system to augment a ballet stage, taking a dancer's emotion into account. To illustrate our work in both fields, we describe three events that mixed dance, emotion recognition and augmented reality.
A novel upper limb rehabilitation system with self-driven virtual arm illusion.
Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul
2014-01-01
This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.
VRACK: measuring pedal kinematics during stationary bike cycling.
Farjadian, Amir B; Kong, Qingchao; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2013-06-01
Ankle impairment and lower limb asymmetries in strength and coordination are common symptoms for individuals with selected musculoskeletal and neurological impairments. The virtual reality augmented cycling kit (VRACK) was designed as a compact mechatronics system for lower limb and mobility rehabilitation. The system measures interaction forces and cardiac activity during cycling in a virtual environment. The kinematics measurement was added to the system. Due to the constrained problem definition, the combination of inertial measurement unit (IMU) and Kalman filtering was recruited to compute the optimal pedal angular displacement during dynamic cycling exercise. Using a novel benchmarking method the accuracy of IMU-based kinematics measurement was evaluated. Relatively accurate angular measurements were achieved. The enhanced VRACK system can serve as a rehabilitation device to monitor biomechanical and physiological variables during cycling on a stationary bike.
Computer Augmented Lectures (CAL): A New Teaching Technique for Chemistry.
ERIC Educational Resources Information Center
Masten, F. A.; And Others
A new technique described as computer augmented lectures (CAL) is being used at the University of Texas at Austin. It involves the integration of on-line, interactive, time sharing computer terminals and theater size video projectors for large screen display. This paper covers the basic concept, pedagogical techniques, experiments conducted,…
Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; Lee-Young, Robert S; Mayes, Wesley H; James, Freyja D; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H
2012-10-15
The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2(Tg)), mitochondria-targeted catalase (mcat(Tg)), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H(2)O(2) emitting potential (JH(2)O(2)) in muscle fibers. sod2(Tg) did not decrease JH(2)O(2) in chow-fed mice, but decreased JH(2)O(2) in HF-fed mice. mcat(Tg) and mtAO decreased JH(2)O(2) in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2(Tg) in chow-fed mice, but was increased in HF-fed sod2(Tg) and both chow- and HF-fed mcat(Tg) and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2(Tg), mcat(Tg), and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[(14)C]-deoxyglucose during exercise. In chow-fed mice, sod2(Tg), mcat(Tg), and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2(Tg) and mcat(Tg) mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state.
Effect of static and dynamic exercise on heart rate and blood pressure variabilities.
González-Camarena, R; Carrasco-Sosa, S; Román-Ramos, R; Gaitán-González, M J; Medina-Bañuelos, V; Azpiroz-Leehan, J
2000-10-01
This study examines the effect of static and dynamic leg exercises on heart rate variability (HRV) and blood pressure variability (BPV) in humans. 10 healthy male subjects were studied at rest, during static exercise performed at 30% of maximal voluntary contraction (SX30), and during dynamic cycling exercises done at 30% of VO2max (DX30) and at 60% of VO2max (DX60). Respiration, heart rate, and blood pressure signals were digitized to analyze temporal and spectral parameters involving short and overall indexes (SD, deltaRANGE, RMSSD, Total power), power of the low (LF), middle (MF), and high (HF) frequency components, and the baroreceptor sensitivity by the alphaMF index. During SX30, indexes of HRV as SD, deltaRANGE, Total power, and MF in absolute units increased in relation with rest values and were significantly higher (P < 0.001) than during DX30 and DX60; HF during SX30, in normalized and absolute units, was not different of the rest condition but was higher (P < 0.001) than HF during DX30 and DX60. Parameters of BPV as SD and deltaRANGE increased (P < 0.001) during both type of exercises, and significant (P < 0.01) increments were observed on MF during SX30 and DX30; systolic HF was attenuated during DX30 (P < 0.05), whereas diastolic HF was augmented during DX60 (P < 0.001). Compared with rest condition, the alphaMF index decreased (P < 0.01) only during dynamic exercises. Because HRV and BPV response is different when induced by static or dynamic exercise, differences in the autonomic activity can be advised. Instead of the vagal withdrawal and sympathetic augmentation observed during dynamic exercise, the increase in the overall HRV and the MF component during static exercise suggest an increased activity of both autonomic branches.
Kido, Kohei; Yokokawa, Takumi; Ato, Satoru; Sato, Koji; Fujita, Satoshi
2017-08-01
Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation. Copyright © 2017 the American Physiological Society.
Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K
2007-01-01
It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.
Augmented Reality Comes to Physics
NASA Astrophysics Data System (ADS)
Buesing, Mark; Cook, Michael
2013-04-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.
Weinstock, Jeremiah; Wadeson, Heather K; VanHeest, Jaci L
2012-01-01
Opiate dependence is a significant public health concern linked to poor quality of life, comorbid psychiatric disorders, and high costs to society. Current opiate agonist treatments are an effective but limited intervention. Adjunctive interventions could improve and augment opiate agonist treatment outcomes, including drug abstinence, quality of life, and physical health. This article reviews exercise as an adjunctive intervention for opiate agonist treatment, especially in regards to improving mood and overall quality of life, while reducing other substance use. Poor adherence and dropout frequently prevent many individuals from garnering the many physical and mental health benefits of exercise. Strategies for implementing an exercise intervention, including safety considerations, are discussed.
Alpha-1 Antitrypsin Deficiency (Inherited Emphysema)
... often given once a week. There are three brands of augmentation therapy. They include: • Prolastin® • Aralast™ • Zemaira™ • In addition to medicines, the management of Alpha-1 related emphysema includes: • Exercise and ...
van Loon, Luc J C; Tipton, Kevin D
2013-01-01
Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Using Computational Fluid Dynamics to examine airflow characteristics in Empty Nose Syndrome
NASA Astrophysics Data System (ADS)
Flint, Tim; Esmaily-Moghadam, Mahdi; Thamboo, Andrew; Velasquez, Nathalia; Nayak, Jayakar V.; Sellier, Mathieu; Moin, Parviz
2016-11-01
The enigmatic disorder, empty nose syndrome (ENS), presents with a complex subjective symptom profile despite objectively patent nasal airways, and recent reports suggest that surgical augmentation of the nasal airway can improve quality of life and ENS-related complaints. In this study, computational fluid dynamics (CFD) was performed both prior to, and following, inferior turbinate augmentation to model the resultant changes in airflow patterns and better understand the pathophysiology of ENS. An ENS patient with marked reduction in ENS symptoms following turbinate augmentation was identified, and pre- and post-operative CT imaging was collected. A Finite element framework with the variational multiscale method (Esmaily-Moghadam, Comput. Methods Appl. Mech. Engrg. 2015) was used to compute the airflow, temperature, and moisture transport through the nasal cavity. Comparison of the CFD results following corrective surgery showed higher levels of airflow turbulence. Augmentation produced 50%, 25%, and 25% increases in root mean square pressure, wall shear stress, and heat flux respectively. These results provide insight into the changes in nasal airflow characteristics attainable through surgical augmentation, and by extension, how nasal airflow patterns may be distorted in the 'overly patent' airway of ENS patients. Supported by Stanford University CTR and Fulbright New Zealand.
Millen, Aletta M E; Woodiwiss, Angela J; Norton, Gavin R
2016-07-01
Decreases in brachial blood pressure (BP) may occur for several hours following a bout of exercise. Although aortic backward waves predict cardiovascular damage independent of brachial BP, whether decreases in aortic backward waves also occur post-exercise in young-to-middle-aged hypertensives, the extent to which these changes exceed brachial BP changes, and the best method of identifying these changes is uncertain. We examined aortic function at baseline and 15-min post-exercise in 20 pre-hypertensive or hypertensive men and women (age 45 ± 7 years). Central aortic pressure, forward (Pf) and backward (Pb) wave pressures, the reflection index (RI) and augmentation pressure (AP) and index (AIx) were determined using applanation tonometry, and SphygmoCor software. Decreases in central aortic (p < 0.001) but not brachial systolic BP and pulse pressure (PP) occurred post-exercise. In addition, decreases in post-exercise (baseline versus post-exercise) Pb (19 ± 4 vs 13 ± 3 mm Hg p < 0.0001), RI (72.9 ± 22.1 vs 47.6 ± 12.8 %, p < 0.0001), AIx (26.3 ± 10.8 vs 7.8 ± 11.6 %, p < 0.0001) and AP (9.9 ± 3.9 vs 2.8 ± 3.9 mm Hg, p < 0.0001), but not Pf, were noted. However, decreases in AIx were not correlated with decreases in Pb, and whilst decreases in aortic PP correlated with decreases in Pb (p < 0.0001), no correlations were noted with decreases in AP or AIx. In young-to-middle-aged pre-hypertensive and hypertensive individuals, aortic backward waves decrease post-exercise; this change is not reflected in brachial BP measurements and is poorly indexed by measures of pressure augmentation.
Stoller, Oliver; Schindelholz, Matthias; Hunt, Kenneth J
2016-01-01
Neurological impairments can limit the implementation of conventional cardiopulmonary exercise testing (CPET) and cardiovascular training strategies. A promising approach to provoke cardiovascular stress while facilitating task-specific exercise in people with disabilities is feedback-controlled robot-assisted end-effector-based stair climbing (RASC). The aim of this study was to evaluate the feasibility, reliability, and repeatability of augmented RASC-based CPET in able-bodied subjects, with a view towards future research and applications in neurologically impaired populations. Twenty able-bodied subjects performed a familiarisation session and 2 consecutive incremental CPETs using augmented RASC. Outcome measures focussed on standard cardiopulmonary performance parameters and on accuracy of work rate tracking (RMSEP-root mean square error). Criteria for feasibility were cardiopulmonary responsiveness and technical implementation. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean differences, limits of agreement, and coefficients of variation (CoV) were estimated to assess repeatability. All criteria for feasibility were achieved. Mean V'O2peak was 106±9% of predicted V'O2max and mean HRpeak was 99±3% of predicted HRmax. 95% of the subjects achieved at least 1 criterion for V'O2max, and the detection of the sub-maximal ventilatory thresholds was successful (ventilatory anaerobic threshold 100%, respiratory compensation point 90% of the subjects). Excellent reliability was found for peak cardiopulmonary outcome measures (ICC ≥ 0.890, SEM ≤ 0.60%, MDC ≤ 1.67%). Repeatability for the primary outcomes was good (CoV ≤ 0.12). RASC-based CPET with feedback-guided exercise intensity demonstrated comparable or higher peak cardiopulmonary performance variables relative to predicted values, achieved the criteria for V'O2max, and allowed determination of sub-maximal ventilatory thresholds. The reliability and repeatability were found to be high. There is potential for augmented RASC to be used for exercise testing and prescription in populations with neurological impairments who would benefit from repetitive task-specific training.
Stoller, Oliver; Schindelholz, Matthias; Hunt, Kenneth J.
2016-01-01
Background Neurological impairments can limit the implementation of conventional cardiopulmonary exercise testing (CPET) and cardiovascular training strategies. A promising approach to provoke cardiovascular stress while facilitating task-specific exercise in people with disabilities is feedback-controlled robot-assisted end-effector-based stair climbing (RASC). The aim of this study was to evaluate the feasibility, reliability, and repeatability of augmented RASC-based CPET in able-bodied subjects, with a view towards future research and applications in neurologically impaired populations. Methods Twenty able-bodied subjects performed a familiarisation session and 2 consecutive incremental CPETs using augmented RASC. Outcome measures focussed on standard cardiopulmonary performance parameters and on accuracy of work rate tracking (RMSEP−root mean square error). Criteria for feasibility were cardiopulmonary responsiveness and technical implementation. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean differences, limits of agreement, and coefficients of variation (CoV) were estimated to assess repeatability. Results All criteria for feasibility were achieved. Mean V′O2peak was 106±9% of predicted V′O2max and mean HRpeak was 99±3% of predicted HRmax. 95% of the subjects achieved at least 1 criterion for V′O2max, and the detection of the sub-maximal ventilatory thresholds was successful (ventilatory anaerobic threshold 100%, respiratory compensation point 90% of the subjects). Excellent reliability was found for peak cardiopulmonary outcome measures (ICC ≥ 0.890, SEM ≤ 0.60%, MDC ≤ 1.67%). Repeatability for the primary outcomes was good (CoV ≤ 0.12). Conclusions RASC-based CPET with feedback-guided exercise intensity demonstrated comparable or higher peak cardiopulmonary performance variables relative to predicted values, achieved the criteria for V′O2max, and allowed determination of sub-maximal ventilatory thresholds. The reliability and repeatability were found to be high. There is potential for augmented RASC to be used for exercise testing and prescription in populations with neurological impairments who would benefit from repetitive task-specific training. PMID:26849137
Aerobic exercise training reduces arterial stiffness in metabolic syndrome.
Donley, David A; Fournier, Sara B; Reger, Brian L; DeVallance, Evan; Bonner, Daniel E; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D
2014-06-01
The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced (P < 0.05) in MetS-ExT subjects (7.9 ± 0.6 to 7.2 ± 0.4 m/s) and Con-ExT (6.6 ± 1.8 to 5.6 ± 1.6 m/s). Exercise training reduced (P < 0.05) central systolic pressure (116 ± 5 to 110 ± 4 mmHg), augmentation pressure (9 ± 1 to 7 ± 1 mmHg), augmentation index (19 ± 3 to 15 ± 4%), and improved myocardial efficiency (155 ± 8 to 168 ± 9), but only in the MetS group. Aerobic capacity increased (P < 0.05) in MetS-ExT (16.6 ± 1.0 to 19.9 ± 1.0) and Con-ExT subjects (23.8 ± 1.6 to 26.3 ± 1.6). MMP-1 and -7 were correlated with cfPWV, and both MMP-1 and -7 were reduced post-ExT in MetS subjects. These findings suggest that some of the pathophysiological changes associated with MetS can be improved after aerobic exercise training, thereby lowering their cardiovascular risk. Copyright © 2014 the American Physiological Society.
Aerobic exercise training reduces arterial stiffness in metabolic syndrome
Donley, David A.; Fournier, Sara B.; Reger, Brian L.; DeVallance, Evan; Bonner, Daniel E.; Olfert, I. Mark; Frisbee, Jefferson C.
2014-01-01
The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced (P < 0.05) in MetS-ExT subjects (7.9 ± 0.6 to 7.2 ± 0.4 m/s) and Con-ExT (6.6 ± 1.8 to 5.6 ± 1.6 m/s). Exercise training reduced (P < 0.05) central systolic pressure (116 ± 5 to 110 ± 4 mmHg), augmentation pressure (9 ± 1 to 7 ± 1 mmHg), augmentation index (19 ± 3 to 15 ± 4%), and improved myocardial efficiency (155 ± 8 to 168 ± 9), but only in the MetS group. Aerobic capacity increased (P < 0.05) in MetS-ExT (16.6 ± 1.0 to 19.9 ± 1.0) and Con-ExT subjects (23.8 ± 1.6 to 26.3 ± 1.6). MMP-1 and -7 were correlated with cfPWV, and both MMP-1 and -7 were reduced post-ExT in MetS subjects. These findings suggest that some of the pathophysiological changes associated with MetS can be improved after aerobic exercise training, thereby lowering their cardiovascular risk. PMID:24744384
Heating Augmentation for Short Hypersonic Protuberances
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza R.; Wood, William A.
2008-01-01
Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9:5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hyper- sonic protuberances (k/delta < 0.33) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.
Heating Augmentation for Short Hypersonic Protuberances
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Wood, William A.
2008-01-01
Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9.5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hypersonic protuberances (k/delta less than 0.3) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.
Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana
2016-11-01
When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.
Ventilation Increases with Lower Extremity Venous Occlusion in Young Adults
Keller-Ross, Manda L.; Cowl, Andrielle L.; Cross, Troy; Johnson, Bruce D.; Olson, Thomas P.
2015-01-01
Introduction Venous distention via sub-systolic occlusion of the lower limbs may augment ventilation via stimulation of group III/IV afferent neurons. Purpose The purpose of this study was to examine the ventilatory response to graded lower extremity venous occlusion during exercise in healthy adults. Methods Nineteen adults (9 men, 25±5 yr) completed two visits. Visit 1: a maximal cycle ergometry exercise test. Visit 2 included a 30% peak workload cycle exercise with randomized inflations of bilateral thigh pressure tourniquets to 20, 40, 60, 80, 100 mmHg for 2 min each, separated by 2 min of deflation. Three min of cycling occurred prior to cuffing (CTL). Expired minute ventilation (VE), whole body gas exchange, rating of perceived exertion and dyspnea were measured during each session. Results VE increased significantly from the control condition (exercise only, control, CTL) to each occlusion pressure (p<0.05) with the greatest increase at 100 mmHg (CTL to 100 mmHg: 31.5±6.6 to 40.1±10.7 L/min). Respiratory rate (RR) increased as well (CTL to 100 mmHg: 24.8±6.0 to 30.9±11.5 breaths/min, p<0.05, condition effect) with no change in tidal volume (p>0.05). Tidal volume to inspiratory time (VT/TI) increased significantly from the CTL condition to each occlusion pressure (CTL to 100 mmHg: 1.5±0.3 to 1.8±0.4 L/min, p<0.05, all pressures). Dyspnea and RPE increased with all occlusion pressures from CTL exercise (p<0.05, all pressures). Conclusion Our findings suggest that mild-to-moderate venous occlusion of the lower extremity evokes a tachypneic breathing pattern which, in turn, augments VE and perceived breathing effort during exercise. PMID:26484951
Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru
2011-04-01
We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.
Shakya, Yuniya; Johnson, Michelle J
2008-01-01
Robot assisted therapy is a new and promising area in stroke rehabilitation and has shown to be effective in reducing motor impairment, but is a costly solution for home rehabilitation. High medical costs could be reduced if we could improve rehabilitation exercise in unsupervised environments such as the home. Hence, there is an augmented need for a cost effective rehabilitation system that can be used outside the clinic. This paper presents the design concept for an autonomous robotic assistant that is low-cost and effective in engaging the users while assisting them with therapy in any under-supervised area. We investigated how the robot assistant can support TheraDrive, our low-cost therapy system. We present the design methods and a case study demonstrating the arm and video collection system.
Rethorst, Chad D; Tu, Jian; Carmody, Thomas J; Greer, Tracy L; Trivedi, Madhukar H
2016-08-01
Effective treatment of Major Depressive Disorder (MDD) will require the development of alternative treatments and the ability for clinicians to match patients with the treatment likely to produce the greatest effect. We examined atypical depression subtype as a predictor of treatment response to aerobic exercise augmentation in persons with non-remitted MDD. Our results revealed a small-to-moderate effect, particularly in a group assigned to high-dose exercise (semi-partial eta-squared =0.0335, p=0.0735), indicating that those with atypical depression tended to have larger treatment response to exercise. Through this hypothesis-generating analysis, we indicate the need for research to examine depression subtype, along with other demographic, clinical and biological factors as predictors of treatment response to exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K
2014-11-01
The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery. Copyright 2014, SLACK Incorporated.
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
Enhancing Neuroplasticity to Augment Cognitive Remediation in Schizophrenia.
Jahshan, Carol; Rassovsky, Yuri; Green, Michael F
2017-01-01
There is a burgeoning need for innovative treatment strategies to improve the cognitive deficits in schizophrenia. Cognitive remediation (CR) is effective at the group level, but the variability in treatment response is large. Given that CR may depend on intact neuroplasticity to produce cognitive gains, it is reasonable to combine it with strategies that harness patients' neuroplastic potential. In this review, we discuss two non-pharmacological approaches that can enhance neuroplasticity and possibly augment the effects of CR in schizophrenia: physical exercise and transcranial direct current stimulation (tDCS). Substantial body of evidence supports the beneficial effect of physical exercise on cognition, and a handful of studies in schizophrenia have shown that physical exercise in conjunction with CR has a larger impact on cognition than CR alone. Physical exercise is thought to stimulate neuroplasticity through the regulation of central growth factors, and current evidence points to brain-derived neurotrophic factor as the potential underlying mechanism through which physical exercise might enhance the effectiveness of CR. tDCS has emerged as a potential tool for cognitive enhancement and seems to affect the cellular mechanisms involved in long-term potentiation (LTP). A few reports have demonstrated the feasibility of integrating tDCS with CR in schizophrenia, but there are insufficient data to determine if this multimodal approach leads to incremental performance gain in patients. Larger randomized controlled trials are necessary to understand the mechanisms of the combined tDCS-CR intervention. Future research should take advantage of new developments in neuroplasticity paradigms to examine the effects of these interventions on LTP.
Wearable computer for mobile augmented-reality-based controlling of an intelligent robot
NASA Astrophysics Data System (ADS)
Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino
2000-10-01
An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.
Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D
2017-07-01
Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease. Copyright © 2017 the American Physiological Society.
Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A
2012-06-01
We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P < 0.05) among mild workloads, whereas this was not the case for moderate-intensity exercise. In protocol 2 (n = 13), subjects performed rhythmic dynamic hand-grip exercise at mild and moderate intensities in conditions of matched total work, but muscle fibre recruitment was manipulated. In this protocol, greater muscle fibre recruitment led to significantly greater FBF (152 ± 15 versus 127 ± 13 ml min(-1)) and (20 ± 2 versus 17 ± 2 ml min(-1); both P < 0.05) at mild workloads, and there was a trend for similar responses at the moderate intensity but this was not statistically significant. In both protocols, the ratio of the change in FBF to change in was similar across all exercise intensities and manipulations, and the strongest correlation among all variables was between and blood flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.
Gramm, Courtney; Randall, Nicholas R.; Olson, Thomas P.
2016-01-01
Although pathophysiological links between postmenopause and healthy aging remain unclear, both factors are associated with increased blood pressure and sympathetic nerve activity (SNA) in women. Activation of polymodal musculoskeletal neural afferents originating within adventia of venules modulates SNA and blood pressure control during exercise in healthy adults. We hypothesized transient subsystolic regional circulatory occlusion (RCO) during exercise sensitizes these afferents leading to augmented systemic vascular resistance (SVR)-mediated increased mean arterial pressure (MAP) in postmenopause vs. premenopause. Normotensive women in premenopause or postmenopause (n = 14 and 14; ages: 30 ± 9 and 55 ± 7 yr, respectively; P < 0.01) performed: 1) peak exercise testing and 2) fixed-load cycling at 30% peak workload (48 ± 11 and 38 ± 6 W, respectively; P < 0.01), whereby the initial 3 min were control exercise without RCO (CTL), thereafter including 2 min of bilateral-thigh RCO to 20, 40, 60, 80, or 100 mmHg (randomized), with 2 min deflation between RCO. Both MAP (17 ± 4 vs. 4 ± 4%, P = 0.02) and SVR (16 ± 8 vs. −3 ± 8%, P = 0.04) increased at 80 mmHg from CTL in postmenopause vs. premenopause, respectively. However, cardiac index was similar in postmenopause vs. premenopause at 80 mmHg from CTL (1 ± 6 vs. 7 ± 6%, respectively; P = 0.15). There was no continuous effect of aging in MAP (P = 0.12), SVR (P = 0.07), or cardiac index (P = 0.18) models. These data suggest transient locomotor subsystolic RCO sensitizes musculoskeletal afferents, which provoke increased SVR to generate augmented MAP during exercise in postmenopause. These observations provide a novel approach for understanding the age-independent variability in exercise blood pressure control across the normotensive adult pre- to postmenopause spectrum. PMID:27765745
Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi
2017-11-01
We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n = 7) and non-cold-sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Van Iterson, Erik H; Gramm, Courtney; Randall, Nicholas R; Olson, Thomas P
2016-12-01
Although pathophysiological links between postmenopause and healthy aging remain unclear, both factors are associated with increased blood pressure and sympathetic nerve activity (SNA) in women. Activation of polymodal musculoskeletal neural afferents originating within adventia of venules modulates SNA and blood pressure control during exercise in healthy adults. We hypothesized transient subsystolic regional circulatory occlusion (RCO) during exercise sensitizes these afferents leading to augmented systemic vascular resistance (SVR)-mediated increased mean arterial pressure (MAP) in postmenopause vs. premenopause. Normotensive women in premenopause or postmenopause (n = 14 and 14; ages: 30 ± 9 and 55 ± 7 yr, respectively; P < 0.01) performed: 1) peak exercise testing and 2) fixed-load cycling at 30% peak workload (48 ± 11 and 38 ± 6 W, respectively; P < 0.01), whereby the initial 3 min were control exercise without RCO (CTL), thereafter including 2 min of bilateral-thigh RCO to 20, 40, 60, 80, or 100 mmHg (randomized), with 2 min deflation between RCO. Both MAP (17 ± 4 vs. 4 ± 4%, P = 0.02) and SVR (16 ± 8 vs. -3 ± 8%, P = 0.04) increased at 80 mmHg from CTL in postmenopause vs. premenopause, respectively. However, cardiac index was similar in postmenopause vs. premenopause at 80 mmHg from CTL (1 ± 6 vs. 7 ± 6%, respectively; P = 0.15). There was no continuous effect of aging in MAP (P = 0.12), SVR (P = 0.07), or cardiac index (P = 0.18) models. These data suggest transient locomotor subsystolic RCO sensitizes musculoskeletal afferents, which provoke increased SVR to generate augmented MAP during exercise in postmenopause. These observations provide a novel approach for understanding the age-independent variability in exercise blood pressure control across the normotensive adult pre- to postmenopause spectrum. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Bokhari, S. H.; Raza, A. D.
1984-01-01
Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.
ERIC Educational Resources Information Center
Ziegler, Blake E.
2013-01-01
Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…
Reduced-Order Kalman Filtering for Processing Relative Measurements
NASA Technical Reports Server (NTRS)
Bayard, David S.
2008-01-01
A study in Kalman-filter theory has led to a method of processing relative measurements to estimate the current state of a physical system, using less computation than has previously been thought necessary. As used here, relative measurements signifies measurements that yield information on the relationship between a later and an earlier state of the system. An important example of relative measurements arises in computer vision: Information on relative motion is extracted by comparing images taken at two different times. Relative measurements do not directly fit into standard Kalman filter theory, in which measurements are restricted to those indicative of only the current state of the system. One approach heretofore followed in utilizing relative measurements in Kalman filtering, denoted state augmentation, involves augmenting the state of the system at the earlier of two time instants and then propagating the state to the later time instant.While state augmentation is conceptually simple, it can also be computationally prohibitive because it doubles the number of states in the Kalman filter. When processing a relative measurement, if one were to follow the state-augmentation approach as practiced heretofore, one would find it necessary to propagate the full augmented state Kalman filter from the earlier time to the later time and then select out the reduced-order components. The main result of the study reported here is proof of a property called reduced-order equivalence (ROE). The main consequence of ROE is that it is not necessary to augment with the full state, but, rather, only the portion of the state that is explicitly used in the partial relative measurement. In other words, it suffices to select the reduced-order components first and then propagate the partial augmented state Kalman filter from the earlier time to the later time; the amount of computation needed to do this can be substantially less than that needed for propagating the full augmented Kalman state filter.
NASA Astrophysics Data System (ADS)
Jenkins, H. S.; Gant, R.; Hopkins, D.
2014-12-01
Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology, geography and hydrology, and enabled our undergraduate students to understand topography intuitively. We therefore find the AR Sandbox to be a novel teaching tool and an effective demonstration of the capabilities of 3D visualization and real-time augmented user interfaces that enable students to better understand environmental processes.
Strange, Charlie; Senior, Robert M; Sciurba, Frank; O'Neal, Scott; Morris, Alison; Wisniewski, Stephen R; Bowler, Russell; Hochheiser, Harry S; Becich, Michael J; Zhang, Yingze; Leader, Joseph K; Methé, Barbara A; Kaminski, Naftali; Sandhaus, Robert A
2015-10-01
Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD. Clinical trial registered with www.clinicaltrials.gov (NCT01832220).
Senior, Robert M.; Sciurba, Frank; O’Neal, Scott; Morris, Alison; Wisniewski, Stephen R.; Bowler, Russell; Hochheiser, Harry S.; Becich, Michael J.; Zhang, Yingze; Leader, Joseph K.; Methé, Barbara A.; Kaminski, Naftali; Sandhaus, Robert A.
2015-01-01
Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD. Clinical trial registered with www.clinicaltrials.gov (NCT01832220) PMID:26153726
ERIC Educational Resources Information Center
Alcoholado, Cristián; Diaz, Anita; Tagle, Arturo; Nussbaum, Miguel; Infante, Cristián
2016-01-01
This study aims to understand the differences in student learning outcomes and classroom behaviour when using the interpersonal computer, personal computer and pen-and-paper to solve arithmetic exercises. In this multi-session experiment, third grade students working on arithmetic exercises from various curricular units were divided into three…
Demonstrating Operating System Principles via Computer Forensics Exercises
ERIC Educational Resources Information Center
Duffy, Kevin P.; Davis, Martin H., Jr.; Sethi, Vikram
2010-01-01
We explore the feasibility of sparking student curiosity and interest in the core required MIS operating systems course through inclusion of computer forensics exercises into the course. Students were presented with two in-class exercises. Each exercise demonstrated an aspect of the operating system, and each exercise was written as a computer…
Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades
2012-05-13
Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
NASA Astrophysics Data System (ADS)
Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.
2012-10-01
Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.
From Augmentation Media to Meme Media.
ERIC Educational Resources Information Center
Tanaka, Yuzuru
Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…
Advanced Intellect-Augmentation Techniques.
ERIC Educational Resources Information Center
Engelbart, D. C.
This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh
We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to performmore » $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $$1.6 \\times 10^{-2}$$ seconds on an Intel Xeon processor.« less
Lee, Hyo
2011-08-01
There are few studies investigating psychosocial mechanisms in Korean Americans' exercise behavior. The present study tested the usefulness of the theory of planned behavior in predicting Korean American's exercise behavior and whether the descriptive norm (i.e., perceptions of what others do) improved the predictive validity of the theory of planned behavior. Using a retrospective design and self-report measures, web-survey responses from 198 Korean-American adults were analyzed using hierarchical regression analyses. The theory of planned behavior constructs accounted for 31% of exercise behavior and 43% of exercise intention. Intention and perceived behavioral control were significant predictors of exercise behavior. Although the descriptive norm did not augment the theory of planned behavior, all original constructs--attitude, injunctive norm (a narrow definition of subjective norm), and perceived behavioral control--statistically significantly predicted leisure-time physical activity intention. Future studies should consider random sampling, prospective design, and objective measures of physical activity.
de Bruin, E D; Schoene, D; Pichierri, G; Smith, S T
2010-08-01
Virtual augmented exercise, an emerging technology that can help to promote physical activity and combine the strengths of indoor and outdoor exercise, has recently been proposed as having the potential to increase exercise behavior in older adults. By creating a strong presence in a virtual, interactive environment, distraction can be taken to greater levels while maintaining the benefits of indoor exercises which may result in a shift from negative to positive thoughts about exercise. Recent findings on young participants show that virtual reality training enhances mood, thus, increasing enjoyment and energy. For older adults virtual, interactive environments can influence postural control and fall events by stimulating the sensory cues that are responsible in maintaining balance and orientation. However, the potential of virtual reality training has yet to be explored for older adults. This manuscript describes the potential of dance pad training protocols in the elderly and reports on the theoretical rationale of combining physical game-like exercises with sensory and cognitive challenges in a virtual environment.
Forecasting: Exercises to Enhance Learning from Business Simulations
ERIC Educational Resources Information Center
Clark, Timothy S.; Kent, Brian M.
2013-01-01
Forecasting the outputs of dynamic systems develops a richer understanding of relevant inputs and their interrelationships than merely observing them ex post. Academic business simulations foster students' development of this critical competency, but learning outcomes can be significantly augmented with relatively simple, complementary exercises…
Gan, Hong Seng; Tee, Nicholas Yee Kwang; Bin Mamtaz, Mohammad Raziun; Xiao, Kevin; Cheong, Brandon Huey-Ping; Liew, Oi Wah; Ng, Tuck Wah
2018-05-01
The appreciation and understanding of gas generation through processes is vital in biochemical education. In this work, an augmented reality tool is reported to depict the redox reaction between hydrogen peroxide and sodium hypochlorite solutions, two ubiquitous oxidizing agents, to create oxygen, a combustible gas. As it operates out of smartphones or tablets, students are able to conduct the exercise collaboratively, respond in a manner similar to an actual physical experiment, and able to depict the oxygen volume changes in relation to the volume of hydrogen peroxide of different concentrations used. The tool offers to help students acquire bench skills by limiting handing risks and to mitigate possible student anxiety on handling chemical materials and implements in the laboratory. The feedback received from Year 11 and 12 high school student participants in an outreach exercise indicate the overall effectiveness of this tool. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):245-252, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.
Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi; Geraci, Salvatore; Bhuva, Rushik; Konda, Prasad; Doulias, Paschalis-Thomas; Ischiropoulos, Harry; Townsend, Raymond R; Margulies, Kenneth B; Cappola, Thomas P; Poole, David C; Chirinos, Julio A
2015-01-27
Inorganic nitrate (NO3(-)), abundant in certain vegetables, is converted to nitrite by bacteria in the oral cavity. Nitrite can be converted to nitric oxide in the setting of hypoxia. We tested the hypothesis that NO3(-) supplementation improves exercise capacity in heart failure with preserved ejection fraction via specific adaptations to exercise. Seventeen subjects participated in this randomized, double-blind, crossover study comparing a single dose of NO3-rich beetroot juice (NO3(-), 12.9 mmol) with an identical nitrate-depleted placebo. Subjects performed supine-cycle maximal-effort cardiopulmonary exercise tests, with measurements of cardiac output and skeletal muscle oxygenation. We also assessed skeletal muscle oxidative function. Study end points included exercise efficiency (total work/total oxygen consumed), peak VO2, total work performed, vasodilatory reserve, forearm mitochondrial oxidative function, and augmentation index (a marker of arterial wave reflections, measured via radial arterial tonometry). Supplementation increased plasma nitric oxide metabolites (median, 326 versus 10 μmol/L; P=0.0003), peak VO2 (12.6±3.7 versus 11.6±3.1 mL O2·min(-1)·kg(-1); P=0.005), and total work performed (55.6±35.3 versus 49.2±28.9 kJ; P=0.04). However, efficiency was unchanged. NO3(-) led to greater reductions in systemic vascular resistance (-42.4±16.6% versus -31.8±20.3%; P=0.03) and increases in cardiac output (121.2±59.9% versus 88.7±53.3%; P=0.006) with exercise. NO3(-) reduced aortic augmentation index (132.2±16.7% versus 141.4±21.9%; P=0.03) and tended to improve mitochondrial oxidative function. NO3(-) increased exercise capacity in heart failure with preserved ejection fraction by targeting peripheral abnormalities. Efficiency did not change as a result of parallel increases in total work and VO2. NO3(-) increased exercise vasodilatory and cardiac output reserves. NO3(-) also reduced arterial wave reflections, which are linked to left ventricular diastolic dysfunction and remodeling. www.clinicaltrials.gov. Unique identifier: NCT01919177. © 2014 American Heart Association, Inc.
Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Walter, Clemens; Schulze, Ralf K W
2016-08-01
To evaluate the impact of cone beam computed tomography (CBCT) imaging on treatment planning regarding augmentation procedures for implant placement. Panoramic radiographs and CBCT images of 40 patients requesting single-tooth implants in 59 sites were retrospectively analyzed by six specialists in implantology, and treatment planning was performed. Therapeutic recommendations were compared with the surgical protocol performed initially. Bone height estimation from panoramic radiographs yielded to higher measures and greater variability compared to CBCT. The suggested treatment plan for lateral and vertical augmentation procedures based on CBCT or panoramic radiographs coincided for 55-72% of the cases. A trend to a more invasive augmentation procedure was seen when planning was based on CBCT. Panoramic radiography revealed 57-63% (lateral) vs. 67% (vertical augmentation) congruent plans in agreement with surgery. Among the dissenting sites, there was a trend toward less invasive planning for lateral augmentation with panoramic radiographs, while vertical augmentation requirements were more frequently more invasive when based on CBCT. Vertical augmentation requirements can be adequately determined from panoramic radiographs. In difficult cases with a deficient lateral alveolar bone, the augmentation schedule may better be evaluated from CBCT to avoid underestimation, which occurs more frequently when based on panoramic radiographs only. However, overall, radiographic interpretation and diagnostic thinking accuracy seem to be mainly depending on the opinion of observers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2013-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ramachandran, R.; McEniry, M.; Maskey, M.
2011-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
An adaptive brain actuated system for augmenting rehabilitation
Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.
2014-01-01
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945
The application of rapid prototyping technique in chin augmentation.
Li, Min; Lin, Xin; Xu, Yongchen
2010-04-01
This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.
Effect of orofacial exercises on oral aperture in adults with systemic sclerosis
Yuen, Hon K.; Marlow, Nicole M.; Reed, Susan G.; Summerlin, Lisa M.; Leite, Renata S.; Mahoney, Samantha; Silver, Richard M.
2012-01-01
Purpose To examine the effect of a home orofacial exercise program on increasing oral aperture among adults with systemic sclerosis (SSc). Method Forty-eight adults with SSc were assigned randomly to the multi-faceted oral health intervention or usual dental care control group. Participants with an oral aperture of < 40 mm in the intervention group received an orofacial exercise program, which included daily manual mouth-stretching and oral augmentation exercises twice a day with a total of 6 minutes for 6 months. The outcome measure was oral aperture which was measured at baseline, 3-months, and 6-months intervals. Results A significantly larger increase in oral aperture for participants received the orofacial exercise program was found when compared to those in the usual care at 3 months (P=0.01), but not at 6 months evaluation. Participants’ adherence rate to the exercise program was low (48.9%). Conclusions The orofacial exercise program intervention for adults with SSc and microstomia did not show significant improvement at 6 months. In addition to the low exercise adherence rate, insufficient frequencies, repetitions, and durations of the orofacial exercises may contribute to these results. PMID:21951278
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S
2016-06-01
What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women. Involuntary contractions did not elicit a differential magnitude of responses in heart rate, heart rate variability indices and systemic vascular resistance in obese versus lean women; however, they did result in greater sBRS responses (P < 0.05) in obese women. In conclusion, involuntary contractions elicited an augmented BP and sBRS response in normotensive obese versus lean women. The greater elevations in circulatory haemodynamics in obese women are suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Embedded assessment algorithms within home-based cognitive computer game exercises for elders.
Jimison, Holly; Pavel, Misha
2006-01-01
With the recent consumer interest in computer-based activities designed to improve cognitive performance, there is a growing need for scientific assessment algorithms to validate the potential contributions of cognitive exercises. In this paper, we present a novel methodology for incorporating dynamic cognitive assessment algorithms within computer games designed to enhance cognitive performance. We describe how this approach works for variety of computer applications and describe cognitive monitoring results for one of the computer game exercises. The real-time cognitive assessments also provide a control signal for adapting the difficulty of the game exercises and providing tailored help for elders of varying abilities.
Bernhardt, Vipa; Mitchell, Gordon S.; Lee, Won Y.; Babb, Tony G.
2016-01-01
Background The ventilatory response to exercise can be transiently adjusted in response to environmentally (e.g., breathing apparatus) or physiologically altered conditions (e.g., respiratory disease), maintaining constant relative arterial PCO2 regulation from rest to exercise (Mitchell and Babb, 2006); this augmentation is called short-term modulation (STM) of the exercise ventilatory response. Obesity and/or obstructive sleep apnea could affect the exercise ventilatory response and the capacity for STM due to chronically increased mechanical and/or ventilatory loads on the respiratory system, and/or recurrent (chronic) intermittent hypoxia experienced during sleep. We hypothesized that: 1) the exercise ventilatory response is augmented in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is diminished in obese OSA patients. Methods Nine obese adults with OSA (age: 39 ± 6 yr, BMI: 40 ± 5 kg/m2, AHI: 25 ± 24 events/hr [range 6–73], mean ± SD) and 8 obese adults without OSA (age: 38 ± 10 yr, BMI: 37 ± 6 kg/m2, AHI: 1 ± 2) completed three, 20-min bouts of constant-load submaximal cycling exercise (8 min rest, 6 min at 10 and 30 W) with or without added external dead space (200 or 400 ml; 20 min rest between bouts). Steady-state measurements were made of ventilation (V̇E), oxygen consumption (V̇O2), carbon dioxide production (V̇CO2), and end-tidal PCO2 (PETCO2). The exercise ventilatory response was defined as the slope of the V̇E-V̇CO2 relationship (ΔV̇E/ΔV̇CO2). Results In control (i.e. no added dead space), the exercise ventilatory response was not significantly different between non-OSA and OSA groups (ΔV̇E/ΔV̇CO2 slope: 30.5 ± 4.2 vs 30.5 ± 3.8, p > 0.05); PETCO2 regulation from rest to exercise did not differ between groups (p > 0.05). In trials with added external dead space, ΔV̇E/ΔV̇CO2 increased with increased dead space (p < 0.05) and the PETCO2 change from rest to exercise remained small (<2 mmHg) in both groups, demonstrating STM. There were no significant differences between groups. Conclusions Contrary to our hypotheses: 1) the exercise ventilatory response is not increased in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is preserved in obese OSA and non-OSA adults. PMID:27840272
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Peng, Chen
2017-09-01
The augmented multi-indexed matrix approach acts as a powerful tool in reducing the conservatism of control synthesis of discrete-time Takagi-Sugeno fuzzy systems. However, its computational burden is sometimes too heavy as a tradeoff. Nowadays, reducing the conservatism whilst alleviating the computational burden becomes an ideal but very challenging problem. This paper is toward finding an efficient way to achieve one of satisfactory answers. Different from the augmented multi-indexed matrix approach in the literature, we aim to design a more efficient slack variable approach under a general framework of homogenous matrix polynomials. Thanks to the introduction of a new extended representation for homogeneous matrix polynomials, related matrices with the same coefficient are collected together into one sole set and thus those redundant terms of the augmented multi-indexed matrix approach can be removed, i.e., the computational burden can be alleviated in this paper. More importantly, due to the fact that more useful information is involved into control design, the conservatism of the proposed approach as well is less than the counterpart of the augmented multi-indexed matrix approach. Finally, numerical experiments are given to show the effectiveness of the proposed approach.
NASA Technical Reports Server (NTRS)
Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Raven, P. B.; Secher, N. H.
2001-01-01
This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Sensor fusion and augmented reality with the SAFIRE system
NASA Astrophysics Data System (ADS)
Saponaro, Philip; Treible, Wayne; Phelan, Brian; Sherbondy, Kelly; Kambhamettu, Chandra
2018-04-01
The Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) mobile radar system was developed and exercised at an arid U.S. test site. The system can detect hidden target using radar, a global positioning system (GPS), dual stereo color cameras, and dual stereo thermal cameras. An Augmented Reality (AR) software interface allows the user to see a single fused video stream containing the SAR, color, and thermal imagery. The stereo sensors allow the AR system to display both fused 2D imagery and 3D metric reconstructions, where the user can "fly" around the 3D model and switch between the modalities.
LOW-LEVEL CARBON MONOXIDE EXPOSURE AND WORK CAPACITY AT 1600 METERS
At sea level, low-level carbon monoxide (CO) exposure impairs exercise performance. To determine if altitude residence at 1600 m augments this CO effect, two studies of graded treadmill work capacity were done. The Initial Study investigated nine, non-smoking male subjects breath...
Malchow, Berend; Keller, Katriona; Hasan, Alkomiet; Dörfler, Sebastian; Schneider-Axmann, Thomas; Hillmer-Vogel, Ursula; Honer, William G.; Schulze, Thomas G.; Niklas, Andree; Wobrock, Thomas; Schmitt, Andrea; Falkai, Peter
2015-01-01
Aerobic exercise has been shown to improve symptoms in multiepisode schizophrenia, including cognitive impairments, but results are inconsistent. Therefore, we evaluated the effects of an enriched environment paradigm consisting of bicycle ergometer training and add-on computer-assisted cognitive remediation (CACR) training. To our knowledge, this is the first study to evaluate such an enriched environment paradigm in multiepisode schizophrenia. Twenty-two multiepisode schizophrenia patients and 22 age- and gender-matched healthy controls underwent 3 months of endurance training (30min, 3 times/wk); CACR training (30min, 2 times/wk) was added from week 6. Twenty-one additionally recruited schizophrenia patients played table soccer (known as “foosball” in the United States) over the same period and also received the same CACR training. At baseline and after 6 weeks and 3 months, we measured the Global Assessment of Functioning (GAF), Social Adjustment Scale-II (SAS-II), schizophrenia symptoms (Positive and Negative Syndrome Scale), and cognitive domains (Verbal Learning Memory Test [VLMT], Wisconsin Card Sorting Test [WCST], and Trail Making Test). After 3 months, we observed a significant improvement in GAF and in SAS-II social/leisure activities and household functioning adaptation in the endurance training augmented with cognitive remediation, but not in the table soccer augmented with cognitive remediation group. The severity of negative symptoms and performance in the VLMT and WCST improved significantly in the schizophrenia endurance training augmented with cognitive remediation group from week 6 to the end of the 3-month training period. Future studies should investigate longer intervention periods to show whether endurance training induces stable improvements in everyday functioning. PMID:25782770
ERIC Educational Resources Information Center
Mechling, Linda C.; Cronin, Beth
2006-01-01
In the study reported on here, the authors used computer-based video instruction (CBVI) to teach 3 high school students with moderate or severe intellectual disabilities how to order in fast-food restaurants by using an augmentative, alternative communication device. The study employed a multiple probe design to institute CBVI as the only…
Exercise as an anabolic intervention in patients with end-stage renal disease.
Ikizler, T Alp
2011-01-01
Muscle wasting and accompanying structural derangements leading to abnormalities in muscle function, exercise performance, and physical activity are common in patients with end-stage renal disease. Therefore, several studies have been performed examining the effects of exercise in this particular patient population. Most of the studies have assessed the effects of cardiopulmonary fitness training, whereas a few have examined the role of resistance (i.e., strength) training. Despite the proven efficacy of resistance exercise as an anabolic intervention in the otherwise healthy elderly population and certain chronic disease states, recent studies in patients on maintenance hemodialysis have not been encouraging in terms of long-term improvements in markers of muscle mass. Preliminary studies indicated that a combination of simultaneous exercise and nutritional supplementation could augment the anabolic effects of exercise, at least in the acute setting. However, a recent randomized clinical trial failed to show further benefits of additional resistance exercise on long-term somatic protein accretion above and beyond nutritional supplementation alone. Further research is necessary to both understand the observed lack of obvious benefits and strategies to improve the exercise regimens in patients with end-stage renal disease. Published by Elsevier Inc.
Computer-Based Exercises for Learning to Read and Spell by Deaf Children
ERIC Educational Resources Information Center
Reitsma, Pieter
2009-01-01
There is a surprising lack of systematic research evaluating the effects of reading exercises for young deaf children. Therefore, for this article, two computer-based exercises were developed and learning effects were determined by posttests. One (spelling oriented) exercise was to select the correct word among three orthographically similar…
Detecting Symptoms of Low Performance Using Production Rules
ERIC Educational Resources Information Center
Bravo, Javier; Ortigosa, Alvaro
2009-01-01
E-Learning systems offer students innovative and attractive ways of learning through augmentation or substitution of traditional lectures and exercises with online learning material. Such material can be accessed at any time from anywhere using different devices, and can be personalized according to the individual student's needs, goals and…
Richards, Jennifer C; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A
2014-01-01
In healthy humans, ageing is typically associated with reduced skeletal muscle blood flow and vascular conductance during exercise. Further, there is a marked increase in resting sympathetic nervous system (SNS) activity with age, yet whether augmented SNS-mediated α-adrenergic vasoconstriction contributes to the age-associated impairment in exercising muscle blood flow and vascular tone in humans is unknown. We tested the hypothesis that SNS-mediated vasoconstriction is greater in older than young adults and limits muscle (forearm) blood flow (FBF) during graded handgrip exercise (5, 15, 25% maximal voluntary contraction (MVC)). FBF was measured (Doppler ultrasound) and forearm vascular conductance (FVC) was calculated in 11 young (21 ± 1 years) and 12 older (62 ± 2 years) adults in control conditions and during combined local α- and β-adrenoreceptor blockade via intra-arterial infusions of phentolamine and propranolol, respectively. Under control conditions, older adults exhibited significantly lower FBF and FVC at 15% MVC exercise (22.6 ± 1.3 vs. 29 ± 3.3 ml min−1 100 g forearm fat-free mass (FFM)−1 and 21.7 ± 1.2 vs. 33.6 ± 4.0 ml min−1 100 g FFM−1 100 mmHg−1; P < 0.05) and 25% MVC exercise (37.4 ± 1.4 vs. 46.0 ± 4.9 ml min−1 100 g FFM−1 and 33.7 ± 1.4 vs. 49.0 ± 5.7 ml min−1 100 g FFM−1 100 mmHg−1; P < 0.05), whereas there was no age group difference at 5% MVC exercise. Local adrenoreceptor blockade increased FBF and FVC at rest and during exercise in both groups, although the increase in FBF and FVC from rest to steady-state exercise was similar in young and older adults across exercise intensities, and thus the age-associated impairment in FBF and FVC persisted. Our data indicate that during graded intensity handgrip exercise, the reduced FVC and subsequently lower skeletal muscle blood flow in older healthy adults is not due to augmented sympathetic vasoconstriction, but rather due to impairments in local signalling or structural limitations in the peripheral vasculature with advancing age. PMID:25194040
Maharaj, Sonill S; Yakasai, Abdulsalam M
2018-05-01
Distal symmetrical polyneuropathy is a common neurological sequela after HIV, which leads to neuropathic pain and functional limitations. Rehabilitation programs with exercises are used to augment pharmacological therapy to relieve pain but appropriate and effective exercises are unknown. This study explored the safety and effect of moderate-intensity aerobic exercises and progressive resisted exercises for HIV-induced distal symmetrical polyneuropathy neuropathic pain. A randomized pretest, posttest of 12 wks of aerobic exercise or progressive resisted exercise compared with a control. Outcome measures were assessed using the subjective periphery neuropathy, brief peripheral neuropathy screening, and numeric pain rating scale. Pain was assessed at baseline, 6 and 12 wks. Data between groups were compared using Kruskal-Wallis, Mann-Whitney U test, and within-groups Friedman and Wilcoxon signed rank tests. There were 136 participants (mean [SD] age = 36.79 [8.23] yrs) and the exercise groups completed the protocols without any adverse effects. Pain scores within and between aerobic exercise and progressive resisted exercise groups showed significant improvement (P < 0.05) from baseline to 6 and 12 wks compared with the control (P > 0.05). This study supports a rehabilitation program of moderate-intensity aerobic exercise and progressive resisted exercise being safe and effective for reducing neuropathic pain and is beneficial with analgesics for HIV-induced distal symmetrical polyneuropathy.
Augmented Reality-Guided Lumbar Facet Joint Injections.
Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda
2018-05-08
The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.
Iwasaki, Ken-Ichi; Zhang, Rong; Zuckerman, Julie H; Levine, Benjamin D
2003-10-01
Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.
Yoshida, Sadamitsu; Adachi, Hitoshi; Murata, Makoto; Tomono, Junichi; Oshima, Shigeru; Kurabayashi, Masahiko
2017-09-01
Myocardial ischemia induces cardiac dysfunction, resulting in insufficient oxygen supply to peripheral tissues and mismatched energy production during exercise. To relieve the insufficient oxygen supply, heart rate (HR) response is augmented; however, beta-adrenergic receptor blockers (BB) restrict HR response. Although BB are essential drugs for angina pectoris, the effect of BB on exercise tolerance in patients with angina has not been studied. The aim of this study was to clarify the importance of HR augmentation to preserve exercise tolerance in patients with angina pectoris. Forty-two subjects who underwent cardiopulmonary exercise testing (CPX) to detect myocardial ischemia were enrolled. CPX was performed until exhaustion or onset of significant myocardial ischemia using a ramp protocol. Subjects were assigned to three groups (Group A: with ST depression during CPX with significant coronary stenosis and taking BB; Group B: with ST depression and not taking BB; Group C: without ST depression and not taking BB). HR response to exercise was evaluated during the following two periods: below and above ischemic threshold (IT). In Group C, it was evaluated during the first 2min and the last 2min of a ramp exercise. No significant differences were observed among the three groups with regard to patients' basic characteristics. Below IT, there were no differences in oxygen pulse/watt (O 2 pulse increasing rate), HR/watt (ΔHR/ΔWR), and ΔV˙O 2 /ΔWR. Above IT, O 2 pulse increasing rate was greater in Group A than in Group B. ΔHR/ΔWR was smaller in Group A than in Group B. ΔV˙O 2 /ΔWR became smaller in Group A than in Group B. There was no difference in anaerobic threshold, and peak V˙O 2 was smaller in Group A than in Group B. Restriction of HR response by a BB is shown to be one of the important factors in diminished exercise tolerance. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Johannsen, Neil M; Sharp, Rick L
2007-06-01
The purpose of this study was to investigate differences in substrate oxidation between dextrose (DEX) and unmodified (UAMS) and acid/alcohol-modified (MAMS) cornstarches. Seven endurance-trained men (VO2peak = 59.1 +/- 5.4 mL.kg-1.min-1) participated in 2 h of exercise (66.4% +/- 3.3% VO2peak) 30 min after ingesting 1 g/kg body weight of the experimental carbohydrate or placebo (PLA). Plasma glucose and insulin were elevated after DEX (P < 0.05) compared with UAMS, MAMS, and PLA. Although MAMS and DEX raised carbohydrate oxidation rate through 90 min of exercise, only MAMS persisted throughout 120 min (P < 0.05 compared with all trials). Exogenous-carbohydrate oxidation rate was higher in DEX than in MAMS and UAMS until 90 min of exercise. Acid/alcohol modification resulted in augmented carbohydrate oxidation with a small, sustained increase in exogenous-carbohydrate oxidation rate. MAMS appears to be metabolizable and available for oxidation during exercise.
Improvements to information management systems simulator
NASA Technical Reports Server (NTRS)
Bilek, R. W.
1972-01-01
The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.
Comparison of stiffness and interface pressure during rest and exercise among various arm sleeves.
Hirai, M; Niimi, K; Iwata, H; Sugimoto, I; Ishibashi, H; Ota, T; Nakamura, H
2010-08-01
To compare the interface pressure during rest and exercise among various kinds of arm sleeves. The interface pressure underneath nine different arm sleeves was measured during 10 maximal opening and closing movements of fingers using a pressure transducer (Air Pack Type Analyser) in 16 healthy volunteers. Furthermore, in order to evaluate the characteristics of each arm sleeve, the extensibility, stiffness and thickness were determined in vitro by several apparatuses. There was a significant correlation between stiffness and extensibility. The stiffness was significantly correlated with the pressure difference between muscle contraction and relaxation during exercise. The higher the value of stiffness, the greater the pressure amplitude during exercise. Short-stretch arm sleeves characterized with a high level stiffness, including thick round- and flat-knitted arm sleeves, are more beneficial for the augmentation of muscle pumping than long-stretch arm sleeves, in the same way as short-stretch bandages or stockings applied to the leg.
NASA Technical Reports Server (NTRS)
Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward
2007-01-01
A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.
Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise
Jankord, Ryan; McAllister, Richard M.; Ganjam, Venkataseshu K.; Laughlin, M. Harold
2009-01-01
Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NOx levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress. PMID:19144752
Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise.
Jankord, Ryan; McAllister, Richard M; Ganjam, Venkataseshu K; Laughlin, M Harold
2009-03-01
Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.
Vogt, Tobias; Herpers, Rainer; Askew, Christopher D.; Scherfgen, David; Strüder, Heiko K.; Schneider, Stefan
2015-01-01
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence. PMID:26366305
Vogt, Tobias; Herpers, Rainer; Askew, Christopher D; Scherfgen, David; Strüder, Heiko K; Schneider, Stefan
2015-01-01
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.
Saxagliptin Restores Vascular Mitochondrial Exercise Response in the Goto-Kakizaki Rat
Keller, Amy C.; Knaub, Leslie A.; Miller, Matthew W.; Birdsey, Nicholas; Klemm, Dwight J.
2015-01-01
Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature. PMID:25264749
Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.
Keller, Amy C; Knaub, Leslie A; Miller, Matthew W; Birdsey, Nicholas; Klemm, Dwight J; Reusch, Jane E B
2015-02-01
Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.
A lifting surface theory for thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilaqua, P. M.
1977-01-01
The circulation theory of airfoil lift has been applied to calculate the performance of thrust augmenting ejectors. The ejector shroud is considered to be 'flying' in the secondary velocity field induced by the entrainment of the primary jet, so that the augmenting thrust is viewed as analogous to the lift on an airfoil. Vortex lattice methods are utilized to compute the thrust augmentation from the force on the flaps. The augmentation is shown to be a function of the length and shape of the flaps, as well as their position and orientation. Predictions of this new theory are compared with the results of classical methods of calculating the augmentation by integration of the stream thrust.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)
NASA Technical Reports Server (NTRS)
Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori
2011-01-01
Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.
Jiang, Liangjun; Pan, Zhijun; Zheng, Qiang
2014-01-01
Augmentation plating has been used successfully to treat hypertrophic non-union after nail fixation. This study compared the efficacy of augmentation plating and exchange plating for treating hypertrophic non-union of femoral shaft fracture after intramedullary nail fixation. A total of 12 patients received augmentation plating and 15 patients received exchange plating as treatment for femoral shaft hypertrophic non-union. The procedures were conducted at our medical centre between January 2005 and January 2012. Clinical follow-up was conducted at 2 weeks, 1 month and then monthly until union was achieved to compare union time, operation time, bleeding and complications between the two groups. All patients underwent follow-up examinations until fracture union was achieved. The average length of follow-up time after the second treatment was (18.37 ± 3.28) months. The time needed for union was (4.17 ± 0.94) months in the augmentation plating group and (5.33 ± 1.72) months in the exchange plating group. The operation time was (90.00 ± 17.58) minutes in the augmentation plating group and (160.00 ± 25.35) minutes in the exchange plating group. The amount of blood loss during the operation was (270.00 ± 43.32) ml in the augmentation plating group and (530.00 ± 103.65) ml in the exchange plating group. Both groups showed significant difference (P < 0.05) in their results. No complications were reported after the second operation. Augmentation plating after nail fixation could remove local rotation instability, facilitate simple operation, create minimal damage and enable exercise for early functional recovery. Therefore, augmentation plating is excellent for treating hypertrophic non-union after nail fixation in femoral shaft fracture.
Aird, T P; Davies, R W; Carson, B P
2018-05-01
The effects of nutrition on exercise metabolism and performance remain an important topic among sports scientists, clinical, and athletic populations. Recently, fasted exercise has garnered interest as a beneficial stimulus which induces superior metabolic adaptations to fed exercise in key peripheral tissues. Conversely, pre-exercise feeding augments exercise performance compared with fasting conditions. Given these seemingly divergent effects on performance and metabolism, an appraisal of the literature is warranted. This review determined the effects of fasting vs pre-exercise feeding on continuous aerobic and anaerobic or intermittent exercise performance, and post-exercise metabolic adaptations. A search was performed using the MEDLINE and PubMed search engines. The literature search identified 46 studies meeting the relevant inclusion criteria. The Delphi list was used to assess study quality. A meta-analysis and meta-regression were performed where appropriate. Findings indicated that pre-exercise feeding enhanced prolonged (P = .012), but not shorter duration aerobic exercise performance (P = .687). Fasted exercise increased post-exercise circulating FFAs (P = .023) compared to fed exercise. It is evidenced that pre-exercise feeding blunted signaling in skeletal muscle and adipose tissue implicated in regulating components of metabolism, including mitochondrial adaptation and substrate utilization. This review's findings support the hypothesis that the fasted and fed conditions can divergently influence exercise metabolism and performance. Pre-exercise feeding bolsters prolonged aerobic performance, while seminal evidence highlights potential beneficial metabolic adaptations that fasted exercise may induce in peripheral tissues. However, further research is required to fully elucidate the acute and chronic physiological adaptations to fasted vs fed exercise. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Stern, Carrie S; Schreiber, Jillian E; Surek, Chris C; Garfein, Evan S; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M
2016-05-01
Given the widespread use of facial fillers and recent identification of distinct facial fat compartments, a better understanding of three-dimensional surface changes in response to volume augmentation is needed. Advances in three-dimensional imaging technology now afford an opportunity to elucidate these morphologic changes for the first time. A cadaver study was undertaken in which volumization of the deep medial cheek compartment was performed at intervals up to 4 cc (n = 4). Three-dimensional photographs were taken after each injection to analyze the topographic surface changes, which the authors define as the "augmentation zone." Perimeter, diameter, and projection were studied. The arcus marginalis of the inferior orbit consistently represented a fixed boundary of the augmentation zone, and additional cadavers underwent similar volumization following surgical release of this portion of the arcus marginalis (n = 4). Repeated three-dimensional computer analysis was performed comparing the augmentation zone with and without arcus marginalis release. Volumization of the deep medial cheek led to unique topographic changes of the malar region defined by distinct boundaries. Interestingly, the cephalic border of the augmentation zone was consistently noted to be at the level of the arcus marginalis in all specimens. When surgical release of the arcus marginalis was performed, the cephalic border of the augmentation zone was no longer restricted. Using advances in three-dimensional photography and computer analysis, the authors demonstrate characteristic surface anatomy changes in response to volume augmentation of facial compartments. This novel concept of the augmentation zone can be applied to volumization of other distinct facial regions. Therapeutic, V.
Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.
Silke, B; Frais, M A; Muller, P; Verma, S P; Reynolds, G; Taylor, S H
1985-01-01
The circulatory consequences of slow-calcium channel blockade with a new dihydropyridine nisoldipine were evaluated at rest and during exercise-induced angina in 16 patients with angiographically proven coronary artery disease. In 10 patients resting cardiac stroke output (thermodilution) and pulmonary artery occluded pressure were determined following four intravenous nisoldipine injections (cumulative dosage of 1, 2, 4 and 8 micrograms kg-1). The exercise effects of nisoldipine were evaluated by comparing the effects of the 8 micrograms kg-1 cumulative dosage with a control exercise period at the same workload. At rest nisoldipine reduced systemic vascular resistance and mean arterial pressure, and increased heart rate, cardiac and stroke volume indices. During 4 min supine-bicycle exercise nisoldipine reduced systemic mean arterial pressure and vascular resistance; this resulted in augmented cardiac and stroke volume indices at an unchanged pulmonary artery occluded pressure. In six additional patients rest and exercise ejection fractions were measured using a nonimaging nuclear probe. Nisoldipine (4 micrograms kg-1) resulted in a small trend to increase left ventricular rest and exercise ejection fraction. These data demonstrated improved rest and exercise cardiac performance following nisoldipine in patients with severe coronary artery disease. PMID:4091998
Devices for Deviling Classes in Theatre History.
ERIC Educational Resources Information Center
Bryan, George B.
In addition to the use of the lecture-discussion method of teaching theatre history, the author contends that this approach can be augmented by the process of "deviling" (adding spice to) the learning situation. At the University of Vermont, theatre history courses have been taught with a variety of deviling exercises, which include: (1)…
ERIC Educational Resources Information Center
Annavarjula, Madan; Trifts, Jack W.
2012-01-01
Practical project experience as a means of augmenting traditional classroom learning has long been viewed as a value adding curricular exercise. While students participating in the projects gain valuable skills that will enhance their personal marketability, successful projects also benefit the client companies involved and help enhance the image…
A comparison between computer-controlled and set work rate exercise based on target heart rate
NASA Technical Reports Server (NTRS)
Pratt, Wanda M.; Siconolfi, Steven F.; Webster, Laurie; Hayes, Judith C.; Mazzocca, Augustus D.; Harris, Bernard A., Jr.
1991-01-01
Two methods are compared for observing the heart rate (HR), metabolic equivalents, and time in target HR zone (defined as the target HR + or - 5 bpm) during 20 min of exercise at a prescribed intensity of the maximum working capacity. In one method, called set-work rate exercise, the information from a graded exercise test is used to select a target HR and to calculate a corresponding constant work rate that should induce the desired HR. In the other method, the work rate is controlled by a computer algorithm to achieve and maintain a prescribed target HR. It is shown that computer-controlled exercise is an effective alternative to the traditional set work rate exercise, particularly when tight control of cardiovascular responses is necessary.
Numerical shockwave anomalies in presence of hydraulic jumps in the SWE with variable bed elevation.
NASA Astrophysics Data System (ADS)
Navas-Montilla, Adrian; Murillo, Javier
2017-04-01
When solving the shallow water equations appropriate numerical solvers must allow energy-dissipative solutions in presence of steady and unsteady hydraulic jumps. Hydraulic jumps are present in surface flows and may produce significant morphological changes. Unfortunately, it has been documented that some numerical anomalies may appear. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump produced by a non-linearity of the Hugoniot locus connecting the states at both sides of the jump. Therefore, this problem remains unresolved in the context of Godunov's schemes applied to shallow flows. This issue is usually ignored as it does not affect to the solution in steady cases. However, it produces undesirable spurious oscillations in transient cases that can lead to misleading conclusions when moving to realistic scenarios. Using spike-reducing techniques based on the construction of interpolated fluxes, it is possible to define numerical methods including discontinuous topography that reduce the presence of the aforementioned numerical anomalies. References: T. W. Roberts, The behavior of flux difference splitting schemes near slowly moving shock waves, J. Comput. Phys., 90 (1990) 141-160. Y. Stiriba, R. Donat, A numerical study of postshock oscillations in slowly moving shock waves, Comput. Math. with Appl., 46 (2003) 719-739. E. Johnsen, S. K. Lele, Numerical errors generated in simulations of slowly moving shocks, Center for Turbulence Research, Annual Research Briefs, (2008) 1-12. D. W. Zaide, P. L. Roe, Flux functions for reducing numerical shockwave anomalies. ICCFD7, Big Island, Hawaii, (2012) 9-13. D. W. Zaide, Numerical Shockwave Anomalies, PhD thesis, Aerospace Engineering and Scientific Computing, University of Michigan, 2012. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources {98} (2016) 70-96.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
Deformation-based augmented reality for hepatic surgery.
Haouchine, Nazim; Dequidt, Jérémie; Berger, Marie-Odile; Cotin, Stéphane
2013-01-01
In this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration.
NASA Technical Reports Server (NTRS)
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Teodorescu, Mircea; Kurniawan,Sri; Agogino, Adrian; Kurniawan, Sri
2017-01-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
ChemPreview: an augmented reality-based molecular interface.
Zheng, Min; Waller, Mark P
2017-05-01
Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.
Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark
2018-04-03
To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.
Hands in space: gesture interaction with augmented-reality interfaces.
Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai
2014-01-01
Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.
Keller, David Melvin; Ogoh, Shigehiko; Greene, Shane; Olivencia-Yurvati, A; Raven, Peter B
2004-01-01
In the present investigation we examined the role of ATP-sensitive potassium (KATP) channel activity in modulating carotid baroreflex (CBR)-induced vasoconstriction in the vasculature of the leg. The CBR control of mean arterial pressure (MAP) and leg vascular conductance (LVC) was determined in seven subjects (25 ± 1 years, mean ± s.e.m.) using the variable-pressure neck collar technique at rest and during one-legged knee extension exercise. The oral ingestion of glyburide (5 mg) did not change mean arterial pressure (MAP) at rest (86 versus 89 mmHg, P > 0.05), but did appear to increase MAP during exercise (87 versus 92 mmHg, P = 0.053). However, the CBR–MAP function curves were similar at rest before and after glyburide ingestion. The CBR-mediated decrease in LVC observed at rest (∼39%) was attenuated during exercise in the exercising leg (∼15%, P < 0.05). Oral glyburide ingestion partially restored CBR-mediated vasoconstriction in the exercising leg (∼40% restoration, P < 0.05) compared to control exercise. These findings indicate that KATP channel activity modulates sympathetic vasoconstriction in humans and may prove to be an important mechanism by which functional sympatholysis operates in humans during exercise. PMID:15345750
Physical Exercise As Stabilizer For Alzheimer'S Disease Cognitive Decline: Current Status.
Machado, Sergio; Filho, Alberto Souza de Sá; Wilbert, Matheus; Barbieri, Gabriela; Almeida, Victor; Gurgel, Alexandre; Rosa, Charles V; Lins, Victor; Paixão, Alexandre; Santana, Kamila; Ramos, Gabriel; Neto, Geraldo Maranhão; Paes, Flá; Rocha, Nuno; Murillo-Rodriguez, Eric
2017-01-01
Mental health decline is one of the main responsible factors for augments in health care costs, and diagnosis of Alzheimer's disease (AD). Some studies stated physical exercise is useful for reduction in cognitive decline and AD. Moreover, a recent review argued that evidence are scarce due to few studies published and lack of configuration information of exercise protocol, such as intensity and duration of exercise, number of sessions and other relevant data, to allow appropriate assessment. Here, we discussed the possible confounders or factors responsible for these differences and possible neurophysiological mechanisms. Most studies revealed a possible positive association between physical exercise and cognitive assessments. There are inconsistencies in studies design responsible for varying use of cognitive assessments and different assessments of fitness. However, these studies do not fail to provide evidence about the benefits of exercise, but fail to make it possible because of the lack of dose-response information in AD patients. Physical exercise of moderate intensity should be considered as standard recommendation to reduce cognitive decline, probably due to the improvement in neurodegenerative mechanisms, and the increase in neuroplastic and neuroprotective neurotrophic factors. Therefore, it is suggested that physical exercise is an important neuroprotective modulator, bringing significant control of the disease and amplifying brain functions.
Berryman, Donna R
2012-01-01
Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.
Ambient temperature influences the neural benefits of exercise.
Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh
2016-02-15
Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.
Cameron-Tucker, Helen L; Wood-Baker, Richard; Owen, Christine; Joseph, Lyn; Walters, E Haydn
2014-01-01
Both exercise and self-management are advocated in pulmonary rehabilitation for people with chronic obstructive pulmonary disease (COPD). The widely used 6-week, group-based Chronic Disease Self-Management Program (CDSMP) increases self-reported exercise, despite supervised exercise not being a program component. This has been little explored in COPD. Whether adding supervised exercise to the CDSMP would add benefit is unknown. We investigated the CDSMP in COPD, with and without a formal supervised exercise component, to address this question. Adult outpatients with COPD were randomized to the CDSMP with or without one hour of weekly supervised exercise over 6 weeks. The primary outcome measure was 6-minute walk test distance (6MWD). Secondary outcomes included self-reported exercise, exercise stage of change, exercise self-efficacy, breathlessness, quality of life, and self-management behaviors. Within- and between-group differences were analyzed on an intention-to-treat basis. Of 84 subjects recruited, 15 withdrew. 6MWD increased similarly in both groups: CDSMP-plus-exercise (intervention group) by 18.6±46.2 m; CDSMP-alone (control group) by 20.0±46.2 m. There was no significant difference for any secondary outcome. The CDSMP produced à small statistically significant increase in 6MWD. The addition of a single supervised exercise session did not further increase exercise capacity. Our findings confirm the efficacy of a behaviorally based intervention in COPD, but this would seem to be less than expected from conventional exercise-based pulmonary rehabilitation, raising the question of how, if at all, the small gains observed in this study may be augmented.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.
Computer Exercises to Encourage Rethinking and Revision.
ERIC Educational Resources Information Center
Duin, Ann
1987-01-01
Discusses writing instruction with the use of ACCESS (A Computer Composing Educational Software System), a program that allows the design of virtually any lesson or exercise a teacher envisions. Describes how ACCESS does the actual programming while the instructor provides the menus and overall program design. Appends 22 practical exercises. (NKA)
Exercise Prescribing: Computer Application in Older Adults
ERIC Educational Resources Information Center
Kressig, Reto W.; Echt, Katharina V.
2002-01-01
Purpose: The purpose of this study was to determine if older adults are capable and willing to interact with a computerized exercise promotion interface and to determine to what extent they accept computer-generated exercise recommendations. Design and Methods: Time and requests for assistance were recorded while 34 college-educated volunteers,…
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers. PMID:26000713
NASA Technical Reports Server (NTRS)
Pennline, James; Mulugeta, Lealem
2013-01-01
Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur [1-3]. The most commonly used countermeasure against bone loss in microgravity has been prescribed exercise [4]. However, data has shown that existing exercise countermeasures are not as effective as desired for preventing bone loss in long duration, 4 to 6 months, spaceflight [1,3,5,6]. This spaceflight related bone loss may cause early onset of osteoporosis to place the astronauts at greater risk of fracture later in their lives. Consequently, NASA seeks to have improved understanding of the mechanisms of bone demineralization in microgravity in order to appropriately quantify this risk, and to establish appropriate countermeasures [7]. In this light, NASA's Digital Astronaut Project (DAP) is working with the NASA Bone Discipline Lead to implement well-validated computational models to help predict and assess bone loss during spaceflight, and enhance exercise countermeasure development. More specifically, computational modeling is proposed as a way to augment bone research and exercise countermeasure development to target weight-bearing skeletal sites that are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip fractures can be debilitating, the initial model development focused on the femoral neck. Future efforts will focus on including other key load bearing bone sites such as the greater trochanter, lower lumbar, proximal femur and calcaneus. The DAP has currently established an initial model (Beta Version) of bone loss due to skeletal unloading in femoral neck region. The model calculates changes in mineralized volume fraction of bone in this segment and relates it to changes in bone mineral density (vBMD) measured by Quantitative Computed Tomography (QCT). The model is governed by equations describing changes in bone volume fraction (BVF), and rates of changes in bone cell populations that remove and replace bone in packets within the bone region. The DAP bone model is unique in several respects. In particular in takes former models of volume fraction changes one step higher in fidelity and separates BVF into separate equations for mineralized and osteoid volume fractions governed by a mineralization rate. This more closely follows the physiology of the remodeling unit cycles where bone is first resorbed and then followed by the action of osteoblasts to lay down collagen matrix which eventually becomes mineralized. In another respect, the modules allow the functional description of the time rate of change of other parameters and variables in the model during a computational simulation. More detailed description of the model, preliminary validation results, current limitation and caveats, and planned advancements are provided in sections 2 through 5. The DAP bone model is being developed primarily as a research tool, and not as a clinical tool like QCT. Even if it transitions to a clinical tool, it is not intended to replace QCT or any other clinical tool. Moreover, the DAP bone model does not predict bone fracture. Its purpose is to provide valuable additional data via "forward prediction" simulations for during and after spaceflight missions to gain insight on, (1) mechanisms of bone demineralization in microgravity, and (2) the volumetric changes at the various bone sites in response to in-flight and post-flight exercise countermeasures. This data can then be used as input to the Keyak [8] (or equivalent) FE analysis method to gain insight on how bone strength may change during and after flight. This information can also be useful to help optimize exercise countermeasure protocols to minimize changes in bone strength during flight, and improve regain of bone strength post-flight. To achieve this goal, the bone model will be integrated with DAP's exercise countermeasure models to simulate the effect of exercise prescriptions on preserving bone. More specifically, the model will accept loading history due to muscle and joint force on bone and produce quantified remodeling within the bone region under influence of the applied stress. Furthermore, because they tend to respond differently, the bone remodeling model includes both trabecular bone and cortical bone.
1984-03-01
DITACODE TEAfxx. They are used interactively by PRCJNG during the game sessions. The PROJENG Instructions (Appendix F) discuss the DATABASE and DATACODE...DA.7R148 709 PROJMNG FORTRAN: AN INTERACTIVE COMPUTER PROGRAM FOR 1/4 USE WITH THE DEFENSE MANAGEMENT SIMULRTION EXERCISE(U) NAVRL POSTGRADUATE...California DTIC ELECTE Y4 194 THESISB PROJMNG FORTRAN: AN INTERACTIVE COMPUTER PROGRAM FOR USE WITH THE DEFENSE MANAGEMENT SIMULATION EXERCISE by LU
Donato, Anthony J.; Uberoi, Abhimanyu; Bailey, Damian M.; Walter Wray, D.
2010-01-01
Aging, vascular function, and exercise are thought to have a common link in oxidative stress. Of the 28 subjects studied (young, 26 ± 2 yr; old, 71 ± 6 yr), 12 took part in a study to validate an antioxidant cocktail (AOC: vitamins C, E, and α-lipoic acid), while the remaining 8 young and 8 old subjects performed submaximal forearm handgrip exercise with placebo or AOC. Old subjects repeated forearm exercise with placebo or AOC following knee-extensor (KE) exercise training. Brachial arterial diameter and blood velocity (Doppler ultrasound) were measured at rest and during exercise. During handgrip exercise, brachial artery vasodilation in the old subjects was attenuated compared with that in young subjects following placebo (maximum = ∼3.0 and ∼6.0%, respectively). In contrast to the previously documented attenuation in exercise-induced brachial artery vasodilation in the young group with AOC, in the old subjects the AOC restored vasodilation (maximum = ∼7.0%) to match the young. KE training also improved exercise-induced brachial artery vasodilation. However, in the trained state, AOC administration no longer augmented brachial artery vasodilation in the elderly, but rather attenuated it. These data reveal an age-related pro-/antioxidant imbalance that impacts vascular function and show that exercise training is capable of restoring equilibrium such that vascular function is improved and the AOC-mediated reduction in free radicals now negatively impacts brachial artery vasodilation, as seen in the young. PMID:19966056
The potential of virtual reality and gaming to assist successful aging with disability.
Lange, B S; Requejo, P; Flynn, S M; Rizzo, A A; Valero-Cuevas, F J; Baker, L; Winstein, C
2010-05-01
Using the advances in computing power, software and hardware technologies, virtual reality (VR), and gaming applications have the potential to address clinical challenges for a range of disabilities. VR-based games can potentially provide the ability to assess and augment cognitive and motor rehabilitation under a range of stimulus conditions that are not easily controllable and quantifiable in the real world. This article discusses an approach for maximizing function and participation for those aging with and into a disability by combining task-specific training with advances in VR and gaming technologies to enable positive behavioral modifications for independence in the home and community. There is potential for the use of VR and game applications for rehabilitating, maintaining, and enhancing those processes that are affected by aging with and into disability, particularly the need to attain a balance in the interplay between sensorimotor function and cognitive demands and to reap the benefits of task-specific training and regular physical activity and exercise.
Hiking with DiabetesRisks and Benefits.
Jenkins, David W; Jenks, Alexander
2017-09-01
Exercise is highly beneficial for persons with diabetes. Similar to many other patients, those with diabetes may be reluctant to exercise given a lack of motivation and proper instruction regarding an exercise prescription. In general, medical providers are poorly equipped to develop an exercise prescription and furnish motivation. Attempts to find activities that not only provide effective aerobic challenges but also are enjoyable to participate in are fraught with difficulty. Hiking as a potential option for a safe and enjoyable activity is discussed, including the possible downsides. Multiple publications were reviewed using key words. A review of the literature uncovered limited publications or controlled trials that discussed the use of hiking per se as an activity for the management of diabetes. Newer studies reviewing weightbearing exercise and diabetic polyneuropathy and those discussing the advantages of trekking poles for balance and proprioception are cited in support of the recommendation for hiking as an activity for those with diabetes. Exercise has been shown to substantially benefit individuals with diabetes, but convincing patients with diabetes to exercise is daunting. Hiking, unlike other, more tedious exercise programs, may be an exercise option that persons with diabetes might find enjoyable. Hiking may encourage balance training and reduced ground reaction forces. These benefits may be augmented by trekking poles, which may likewise counter the concerns of the uneven surfaces that present challenges to the hiker with diabetes.
Beck, Darren T; Martin, Jeffrey S; Casey, Darren P; Braith, Randy W
2013-09-01
Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120-139 mm Hg or diastolic blood pressure (DBP) = 80-89 mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18-35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm(2) and 612±167 dynes s/cm(2) (P < 0.05), respectively. PHRT and PHET reduced carotid-radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral-distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects.
2013-01-01
BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120–139mm Hg or diastolic blood pressure (DBP) = 80–89mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18–35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm2 and 612±167 dynes s/cm2 (P < 0.05), respectively. PHRT and PHET reduced carotid–radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral–distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. CONCLUSIONS This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111
Increased respiratory neural drive and work of breathing in exercise-induced laryngeal obstruction.
Walsted, Emil S; Faisal, Azmy; Jolley, Caroline J; Swanton, Laura L; Pavitt, Matthew J; Luo, Yuan-Ming; Backer, Vibeke; Polkey, Michael I; Hull, James H
2018-02-01
Exercise-induced laryngeal obstruction (EILO), a phenomenon in which the larynx closes inappropriately during physical activity, is a prevalent cause of exertional dyspnea in young individuals. The physiological ventilatory impact of EILO and its relationship to dyspnea are poorly understood. The objective of this study was to evaluate exercise-related changes in laryngeal aperture on ventilation, pulmonary mechanics, and respiratory neural drive. We prospectively evaluated 12 subjects (6 with EILO and 6 healthy age- and gender-matched controls). Subjects underwent baseline spirometry and a symptom-limited incremental exercise test with simultaneous and synchronized recording of endoscopic video and gastric, esophageal, and transdiaphragmatic pressures, diaphragm electromyography, and respiratory airflow. The EILO and control groups had similar peak work rates and minute ventilation (V̇e) (work rate: 227 ± 35 vs. 237 ± 35 W; V̇e: 103 ± 20 vs. 98 ± 23 l/min; P > 0.05). At submaximal work rates (140-240 W), subjects with EILO demonstrated increased work of breathing ( P < 0.05) and respiratory neural drive ( P < 0.05), developing in close temporal association with onset of endoscopic evidence of laryngeal closure ( P < 0.05). Unexpectedly, a ventilatory increase ( P < 0.05), driven by augmented tidal volume ( P < 0.05), was seen in subjects with EILO before the onset of laryngeal closure; there were however no differences in dyspnea intensity between groups. Using simultaneous measurements of respiratory mechanics and diaphragm electromyography with endoscopic video, we demonstrate, for the first time, increased work of breathing and respiratory neural drive in association with the development of EILO. Future detailed investigations are now needed to understand the role of upper airway closure in causing exertional dyspnea and exercise limitation. NEW & NOTEWORTHY Exercise-induced laryngeal obstruction is a prevalent cause of exertional dyspnea in young individuals; yet, how laryngeal closure affects breathing is unknown. In this study we synchronized endoscopic video with respiratory physiological measurements, thus providing the first detailed commensurate assessment of respiratory mechanics and neural drive in relation to laryngeal closure. Laryngeal closure was associated with increased work of breathing and respiratory neural drive preceded by an augmented tidal volume and a rise in minute ventilation.
Halliwill, John R; Sieck, Dylan C; Romero, Steven A; Buck, Tahisha M; Ely, Matthew R
2014-03-01
Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise.
Halliwill, John R.; Sieck, Dylan C.; Romero, Steven A.; Buck, Tahisha M.; Ely, Matthew R.
2013-01-01
Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise. PMID:24197081
Effects of Computer Animation Exercises on Student Cognitive Processes.
ERIC Educational Resources Information Center
Fowler, Will
A study examining the effects of computer animation exercises on cognitive development asked two groups of seventh graders to create computer animations, working from a simple mythic text. The ability of students to create narrative scenarios from this mythic text was analyzed. These scenarios were then recreated in the school computer lab, using…
Always Wanted to Hack the Pentagon? DoD Says Bring It
test and find vulnerabilities in the department's applications, websites and networks, he added Resolve/Foal Eagle 2010, a joint U.S. and South Korean command-post exercise with computer-based command-post exercise with computer-based simulations and field exercises. Cook said other networks
Augmented reality in neurosurgery
Tagaytayan, Raniel; Kelemen, Arpad
2016-01-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting. PMID:29765445
Augmented reality in neurosurgery.
Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia
2018-04-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.
Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.
Mercer, T H; Koufaki, P; Naish, P F
2004-05-01
A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.
Abdollahi, Abbas; LeBouthillier, Daniel M; Najafi, Mahmoud; Asmundson, Gordon J G; Hosseinian, Simin; Shahidi, Shahriar; Carlbring, Per; Kalhori, Atefeh; Sadeghi, Hassan; Jalili, Marzieh
2017-09-01
Suicidal ideation and depression are prevalent and costly conditions that reduce quality of life. This study was designed to determine the efficacy of exercise as an adjunct to cognitive behavioural therapy (CBT) for suicidal ideation and depression among depressed individuals. In a randomized clinical trial, 54 mildly to moderately depressed patients (54% female, mean age=48.25) were assigned to a combined CBT and exercise group or to a CBT only group. Both groups received one weekly session of therapy for 12 weeks, while the combined group also completed exercise three times weekly over the same period. Self-reported suicidal ideation, depression, and activities of daily living were measured at the beginning and the end of treatment. Multilevel modelling revealed greater improvements in suicidal ideation, depression, and activities of daily living in the combined CBT and exercise group, compared to the CBT only group. No follow-up data were collected, so the long-term effects (i.e., maintenance of gains) is unclear. The findings revealed that exercise adjunct to CBT effectively decreases both depressive symptoms and suicidal ideation in mildly to moderately depressed individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of simulated microgravity on the sympathetic response to exercise
NASA Technical Reports Server (NTRS)
Woodman, C. R.; Kregel, K. C.; Tipton, C. M.
1997-01-01
Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.
Absolute versus relative intensity of physical activity in a dose-response context.
Shephard, R J
2001-06-01
To examine the importance of relative versus absolute intensities of physical activity in the context of population health. A standard computer-search of the literature was supplemented by review of extensive personal files. Consensus reports (Category D Evidence) have commonly recommended moderate rather than hard physical activity in the context of population health. Much of the available literature provides Category C Evidence. It has often confounded issues of relative intensity with absolute intensity or total weekly dose of exercise. In terms of cardiovascular health, there is some evidence for a threshold intensity of effort, perhaps as high as 6 METs, in addition to a minimum volume of physical activity. Decreases in blood pressure and prevention of stroke seem best achieved by moderate rather than high relative intensities of physical activity. Many aspects of metabolic health depend on the total volume of activity; moderate relative intensities of effort are more effective in mobilizing body fat, but harder relative intensities may help to increase energy expenditures postexercise. Hard relative intensities seem needed to augment bone density, but this may reflect an associated increase in volume of activity. Hard relative intensities of exercise induce a transient immunosuppression. The optimal intensity of effort, relative or absolute, for protection against various types of cancer remains unresolved. Acute effects of exercise on mood state also require further study; long-term benefits seem associated with a moderate rather than a hard relative intensity of effort. The importance of relative versus absolute intensity of effort depends on the desired health outcome, and many issues remain to be resolved. Progress will depend on more precise epidemiological methods of assessing energy expenditures and studies that equate total energy expenditures between differing relative intensities. There is a need to focus on gains in quality-adjusted life expectancy.
Augmented virtuality for arthroscopic knee surgery.
Li, John M; Bardana, Davide D; Stewart, A James
2011-01-01
This paper describes a computer system to visualize the location and alignment of an arthroscope using augmented virtuality. A 3D computer model of the patient's joint (from CT) is shown, along with a model of the tracked arthroscopic probe and the projection of the camera image onto the virtual joint. A user study, using plastic bones instead of live patients, was made to determine the effectiveness of this navigated display; the study showed that the navigated display improves target localization in novice residents.
Virtual rehabilitation--benefits and challenges.
Burdea, G C
2003-01-01
To discuss the advantages and disadvantages of rehabilitation applications of virtual reality. VR can be used as an enhancement to conventional therapy for patients with conditions ranging from musculoskeletal problems, to stroke-induced paralysis, to cognitive deficits. This approach is called "VR-augmented rehabilitation." Alternately, VR can replace conventional interventions altogether, in which case the rehabilitation is "VR-based." If the intervention is done at a distance, then it is called "telerehabilitation." Simulation exercises for post-stroke patients have been developed using a "teacher object" approach or a video game approach. Simulations for musculo-skeletal patients use virtual replicas of rehabilitation devices (such as rubber ball, power putty, peg board). Phobia-inducing virtual environments are prescribed for patients with cognitive deficits. VR-augmented rehabilitation has been shown effective for stroke patients in the chronic phase of the disease. VR-based rehabilitation has been improving patients with fear of flying, Vietnam syndrome, fear of heights, and chronic stroke patients. Telerehabilitation interventions using VR have improved musculo-skeletal and post-stroke patients, however less data is available at this time. Virtual reality presents significant advantages when applied to rehabilitation of patients with varied conditions. These advantages include patient motivation, adaptability and variability based on patient baseline, transparent data storage, online remote data access, economy of scale, reduced medical costs. Challenges in VR use for rehabilitation relate to lack of computer skills on the part of therapists, lack of support infrastructure, expensive equipment (initially), inadequate communication infrastructure (for telerehabilitation in rural areas), and patient safety concerns.
Inattentional blindness increased with augmented reality surgical navigation.
Dixon, Benjamin J; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-01-01
Augmented reality (AR) surgical navigation systems, designed to increase accuracy and efficiency, have been shown to negatively impact on attention. We wished to assess the effect "head-up" AR displays have on attention, efficiency, and accuracy, while performing a surgical task, compared with the same information being presented on a submonitor (SM). Fifty experienced otolaryngology surgeons (n = 42) and senior otolaryngology trainees (n = 8) performed an endoscopic surgical navigation exercise on a predissected cadaveric model. Computed tomography-generated anatomic contours were fused with the endoscopic image to provide an AR view. Subjects were randomized to perform the task with a standard endoscopic monitor with the AR navigation displayed on an SM or with AR as a single display. Accuracy, task completion time, and the recognition of unexpected findings (a foreign body and a critical complication) were recorded. Recognition of the foreign body was significantly better in the SM group (15/25 [60%]) compared with the AR alone group (8/25 [32%]; p = 0.02). There was no significant difference in task completion time (p = 0.83) or accuracy (p = 0.78) between the two groups. Providing identical surgical navigation on a SM, rather than on a single head-up display, reduced the level of inattentional blindness as measured by detection of unexpected findings. These gains were achieved without any measurable impact on efficiency or accuracy. AR displays may distract the user and we caution injudicious adoption of this technology for medical procedures.
My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
Kansaku, Kenji; Hata, Naoki; Takano, Kouji
2010-02-01
A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.
Mobile Technologies and Augmented Reality in Open Education
ERIC Educational Resources Information Center
Kurubacak, Gulsun, Ed.; Altinpulluk, Hakan, Ed.
2017-01-01
Novel trends and innovations have enhanced contemporary educational environments. When applied properly, these computing advances can create enriched learning opportunities for students. "Mobile Technologies and Augmented Reality in Open Education" is a pivotal reference source for the latest academic research on the integration of…
Ramos-Infante, Samuel Jesús; Ten-Esteve, Amadeo; Alberich-Bayarri, Angel; Pérez, María Angeles
2018-01-01
This paper proposes a discrete particle model based on the random-walk theory for simulating cement infiltration within open-cell structures to prevent osteoporotic proximal femur fractures. Model parameters consider the cement viscosity (high and low) and the desired direction of injection (vertical and diagonal). In vitro and in silico characterizations of augmented open-cell structures validated the computational model and quantified the improved mechanical properties (Young's modulus) of the augmented specimens. The cement injection pattern was successfully predicted in all the simulated cases. All the augmented specimens exhibited enhanced mechanical properties computationally and experimentally (maximum improvements of 237.95 ± 12.91% and 246.85 ± 35.57%, respectively). The open-cell structures with high porosity fraction showed a considerable increase in mechanical properties. Cement augmentation in low porosity fraction specimens resulted in a lesser increase in mechanical properties. The results suggest that the proposed discrete particle model is adequate for use as a femoroplasty planning framework.
Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Chang, Courtney; Little, Jonathan P
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5-6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA 1c ), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness ([Formula: see text]), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (-0.5 ± 1.1 mmol/L), HbA 1c (-0.2 ± 0.4%), percent body fat (-0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, [Formula: see text] (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (-6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein.
Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.; Chang, Courtney; Little, Jonathan P.
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness (V˙O2peak), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1 mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, V˙O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein. PMID:28790929
Platt, Kristen M; Charnigo, Richard J; Shertzer, Howard G; Pearson, Kevin J
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter.
Ascensão, António; Ferreira, Rita; Magalhães, José
2007-04-12
Myocardial injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Regular exercise has been confirmed as a pragmatic countermeasure to protect against cardiac injury. Specifically, endurance exercise has been proven to provide cardioprotection against cardiac insults in both young and old animals. Proposed mechanisms to explain the cardioprotective effects of exercise are mediated, at least partially, by redox changes and include the induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of other cardioprotective molecules. Understanding the molecular basis for exercise-induced cardioprotection is important in developing exercise strategies to protect the heart during and after insults. Data suggest that these positive modulator effects occur at different levels of cellular organization, being mitochondria fundamental organelles that are sensitive to disturbances imposed by exercise on basal homeostasis. At present, which of these protective mechanisms is essential for exercise-induced cardioprotection remains unclear. This review analyzes the biochemical, morphological and functional outcomes of acute and chronic exercise on the overall cardiac muscle tissue and in isolated mitochondria. Some redox-based mechanisms behind the cross-tolerance effects particularly induced by endurance training, against certain stressors responsible for the impairments in cardiac homeostasis caused by aging, diabetes, drug administration or ischemia-reperfusion are also outlined. Further work should be addressed in order to clarify the precise regulatory mechanisms by which physical exercise augments heart tolerance against many cardiotoxic agents.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Computer vision and augmented reality in gastrointestinal endoscopy
Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M.
2015-01-01
Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy—which relies on the integration of high-definition video data with pathologic correlates—requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy. PMID:26133175
Dinc, Ayten; Kizilkaya Beji, Nezihe; Yalcin, Onay
2009-10-01
The aim of this study was to determine the effectiveness of pelvic floor muscle exercises on urinary incontinence during pregnancy and the postpartum period. The study was carried out on 80 pregnant women (study group, 40 subjects; control group, 40 subjects).The study group was trained by the researcher on how to do the pelvic floor muscle exercises. Both groups were evaluated for pelvic floor muscle strength and urinary complaints in their 36th to 38th week of pregnancy and postpartum sixth to eighth week. The study group had a significant decrease in urinary incontinence episodes during pregnancy and in the postpartum period, and their pelvic floor muscle strength increased to a larger extent. Control group had an increase in the postpartum muscle strength and decrease in the incontinence episodes in the postpartum period. Pelvic floor muscle exercises are quite effective in the augmentation of the pelvic floor muscle strength and consequently in the treatment of urinary incontinence.
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
Pulmonary Artery Wedge Pressure Relative to Exercise Work Rate in Older Men and Women.
Esfandiari, Sam; Wright, Stephen P; Goodman, Jack M; Sasson, Zion; Mak, Susanna
2017-07-01
An augmented pulmonary artery wedge pressure (PAWP) response may explain exercise intolerance in some humans. However, routine use of exercise hemodynamic testing is limited by a lack of data from normal older men and women. Our objective was to evaluate the exercise PAWP response and the potential for sexual dimorphism in healthy, nondyspneic older adults. Thirty-six healthy volunteers (18 men [54 ± 7 yr] and 18 women [58 ± 6 yr]) were studied at rest (control) and during two stages of semi-upright cycle ergometry, at heart rates of 100 bpm (light exercise) and 120 bpm (moderate exercise). Right heart catheterization was performed to measure pulmonary pressures. The PAWP response to exercise was assessed in context of exercise work rate and body size. At control, PAWP was similar between men and women. Work rates were significantly smaller in women at comparable HR (P < 0.001). PAWP increased similarly at light exercise, with no further increase at moderate exercise. When indexed to work rate alone or work rate adjusted to body weight and height, the PAWP response at light and moderate exercise was significantly elevated in women compared with men (P < 0.05 condition-sex interaction). The change in PAWP relative to the increase in cardiac output did not exceed 2 mm Hg·L·min in any volunteer at moderate exercise. The similar rise in the PAWP response to submaximal exercise occurs despite lower work rate in healthy older women compared with men, even when adjusted for smaller body size. It is important to consider sex in the development of normal reference ranges for exercise hemodynamic testing.
Umeda, Masataka; Kempka, Laura; Weatherby, Amy; Greenlee, Brennan; Mansion, Kimberly
2016-04-01
Physical activity is important to manage symptom of fibromyalgia (FM); however, individuals with FM typically experience augmented muscle pain during exercise. This study examined the effects of caffeinated chewing gum on exercise-induced muscle pain in individuals with FM. This study was conducted with a double-blind, placebo-controlled, cross-over design. Twenty-three patients with FM completed a caffeine condition where they consumed a caffeinated chewing gum that contains 100mg of caffeine, and a placebo condition where they consumed a non-caffeinated chewing gum. They completed isometric handgrip exercise at 25% of their maximal strength for 3 min, and muscle pain rating (MPR) was recorded every 30s during exercise. Clinical pain severity was assessed in each condition using a pain questionnaire. The order of the two conditions was randomly determined. MPR increased during exercise, but caffeinated chewing gum did not attenuate the increase in MPR compared to placebo gum. Clinical pain severity was generally associated with the average MPR and the caffeine effects on MPR, calculated as difference in the average MPR between the two conditions. The results suggest that more symptomatic individuals with FM may experience greater exercise-induced muscle pain, but benefit more from caffeinated chewing gum to reduce exercise-induced muscle pain. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gonzalez, Richard R.
1994-01-01
The problems of heat exchange during rest and exercise during long term space operations are covered in this report. Particular attention is given to the modeling and description of the consequences of requirement to exercise in a zero-g atmosphere during Space Shuttle flights, especially long term ones. In space environments, there exists no free convection therefore only forced convection occurring by movement, such as pedalling on a cycle ergometer, augments required heat dissipation necessary to regulate body temperature. The requirement to exercise at discrete periods of the day is good practice in order to resist the deleterious consequences of zero-gravity problems and improve distribution of body fluids. However, during exercise (ca. 180 to 250W), in zero-g environments, the mass of eccrine sweating rests as sheets on the skin surface and the sweat cannot evaporate readily. The use of exercise suits with fabrics that have hydrophobic or outwicking properties somewhat distributes the mass of sweat to a larger surface from which to evaporate. However, with no free convection, increased skin wettedness throughout the body surface induces increasing thermal discomfort, particularly during continuous exercise. This report presents several alternatives to aid in this problem: use of intermittent exercise, methods to quantify local skin wettedness, and introduction of a new effective temperature that integrates thermal stress and heat exchange avenues in a zero-g atmosphere.
Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.
Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene
2016-01-01
To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.
The Simulation of an Oxidation-Reduction Titration Curve with Computer Algebra
ERIC Educational Resources Information Center
Whiteley, Richard V., Jr.
2015-01-01
Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…
Analysis of Decision Making Skills for Large Scale Disaster Response
2015-08-21
Capability to influence and collaborate Compassion Teamwork Communication Leadership Provide vision of outcome / set priorities Confidence, courage to make...project evaluates the viability of expanding the use of serious games to augment classroom training, tabletop and full scale exercise, and actual...training, evaluation, analysis, and technology ex- ploration. Those techniques have found successful niches, but their wider applicability faces
Long-term effects of vertebroplasty: adjacent vertebral fractures.
Baroud, Gamal; Vant, Christianne; Wilcox, Ruth
2006-01-01
In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre-augmentation measurements. This translates to a high hydrostatic pressure adjacent to the augmented vertebra, representing the first evidence of increased loading. Computational finite element (FE) models have found that the rigid cement augmentation results in an increase in loading in the structures adjacent to the augmented vertebra. The mechanism of the increase of the loading is predicted to be the pillar effect of the rigid cement. The cement inhibits the normal endplate bulge into the augmented vertebra and thus pressurizes the adjacent disc, which subsequently increases the loading of the untreated vertebra. The mechanism for adjacent vertebral fractures is still unclear, but from experimental and computational studies, it appears that the change in mechanical loading following augmentation is responsible. The pillar effect of injected cement is hypothesized to decrease the endplate bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated to the adjacent vertebra. To confirm the viability of the pillar effect as the responsible mechanism, endplate bulge and disc pressure should be directly measured before and after augmentation. Future studies should be concerned with quantifying the current and ideal mechanical response of the spine and subsequently developing cements that can achieve this optimum response.
Treadmill walking with load carriage increases aortic pressure wave reflection.
Ribeiro, Fernando; Oliveira, Nórton L; Pires, Joana; Alves, Alberto J; Oliveira, José
2014-01-01
The study examined the effects of treadmill walking with load carriage on derived measures of central pressure and augmentation index in young healthy subjects. Fourteen male subjects (age 31.0 ± 1.0 years) volunteered in this study. Subjects walked 10 minutes on a treadmill at a speed of 5 km/h carrying no load during one session and a load of 10% of their body weight on both upper limbs in two water carboys with handle during the other session. Pulse wave analysis was performed at rest and immediately after exercise in the radial artery of the right upper limb by applanation tonometry. The main result indicates that walking with load carriage sharply increased augmentation index at 75 bpm (-5.5 ± 2.2 to -1.4 ± 2.2% vs. -5.2 ± 2.8 to -5.5 ± 2.1%, p<0.05), and also induced twice as high increments in central pulse pressure (7.4 ± 1.5 vs. 3.1 ± 1.4 mmHg, p<0.05) and peripheral (20.5 ± 2.7 vs. 10.3 ± 2.5 mmHg, p<0.05) and central systolic pressure (14.7 ± 2.1 vs. 7.4 ± 2.0 mmHg, p<0.05). Walking with additional load of 10% of their body weight (aerobic exercise accompanied by upper limb isometric contraction) increases derived measures of central pressure and augmentation index, an index of wave reflection and arterial stiffness. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises
ERIC Educational Resources Information Center
O'Brien, Myles
2012-01-01
The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…
Garcia, Elisângela Zacanti; Yamashita, Hélio Kiitiro; Garcia, Davi Sousa; Padovani, Marina Martins Pereira; Azevedo, Renata Rangel; Chiari, Brasília Maria
2016-01-01
Cone beam computed tomography (CBCT), which represents an alternative to traditional computed tomography and magnetic resonance imaging, may be a useful instrument to study vocal tract physiology related to vocal exercises. This study aims to evaluate the applicability of CBCT to the assessment of variations in the vocal tract of healthy individuals before and after vocal exercises. Voice recordings and CBCT images before and after vocal exercises performed by 3 speech-language pathologists without vocal complaints were collected and compared. Each participant performed 1 type of exercise, i.e., Finnish resonance tube technique, prolonged consonant "b" technique, or chewing technique. The analysis consisted of an acoustic analysis and tomographic imaging. Modifications of the vocal tract settings following vocal exercises were properly detected by CBCT, and changes in the acoustic parameters were, for the most part, compatible with the variations detected in image measurements. CBCT was shown to be capable of properly assessing the changes in vocal tract settings promoted by vocal exercises. © 2017 S. Karger AG, Basel.
Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients
Kung, Ethan; Perry, James C.; Davis, Christopher; Migliavacca, Francesco; Pennati, Giancarlo; Giardini, Alessandro; Hsia, Tain-Yen; Marsden, Alison
2014-01-01
Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output, and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by cardiac output. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol. PMID:25260878
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri
2017-07-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display
ERIC Educational Resources Information Center
Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami
2016-01-01
Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…
An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science
ERIC Educational Resources Information Center
Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen
2016-01-01
Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…
Augmenting Traditional Books with Context-Aware Learning Supports from Online Learning Communities
ERIC Educational Resources Information Center
Chen, Gwo-Dong; Chao, Po-Yao
2008-01-01
Recent advances in ubiquitous computing technologies have brought reality augmentation of traditional objects to context-aware and social supports. Although a significant proportion of students prefer poring over traditional paper textbooks over electronic books, few studies have enhanced reading practice of traditional books with ubiquitous…
Golabi, Pegah; Locklear, Cameron T; Austin, Patrick; Afdhal, Sophie; Byrns, Melinda; Gerber, Lynn; Younossi, Zobair M
2016-07-21
To investigate the efficacy of exercise interventions on hepatic fat mobilization in non-alcoholic fatty liver disease (NAFLD) patients. Ovid-Medline, PubMed, EMBASE and Cochrane database were searched for randomized trials and prospective cohort studies in adults aged ≥ 18 which investigated the effects of at least 8 wk of exercise only or combination with diet on NAFLD from 2010 to 2016. The search terms used to identify articles, in which exercise was clearly described by type, duration, intensity and frequency were: "NASH", "NAFLD", "non-alcoholic steatohepatitis", "non-alcoholic fatty liver disease", "fat", "steatosis", "diet", "exercise", "MR spectroscopy" and "liver biopsy". NAFLD diagnosis, as well as the outcome measures, was confirmed by either hydrogen-magnetic resonance spectroscopy (H-MRS) or biopsy. Trials that included dietary interventions along with exercise were accepted if they met all criteria. Eight studies met selection criteria (6 with exercise only, 2 with diet and exercise with a total of 433 adult participants). Training interventions ranged between 8 and 48 wk in duration with a prescribed exercise frequency of 3 to 7 d per week, at intensities between 45% and 75% of VO2 peak. The most commonly used imaging modality was H-MRS and one study utilized biopsy. The effect of intervention on fat mobilization was 30.2% in the exercise only group and 49.8% in diet and exercise group. There was no difference between aerobic and resistance exercise intervention, although only one study compared the two interventions. The beneficial effects of exercise on intrahepatic triglyceride (IHTG) were seen even in the absence of significant weight loss. Although combining an exercise program with dietary interventions augmented the reduction in IHTG, as well as improved measures of glucose control and/or insulin sensitivity, exercise only significantly decreased hepatic lipid contents. Prescribed exercise in subjects with NAFLD reduces IHTG independent of dietary intervention. Diet and exercise was more effective than exercise alone in reducing IHTG.
Palmer, Rebecca; Enderby, Pam
2016-10-01
The speech-language pathology profession has explored a number of approaches to support efficient delivery of interventions for people with stroke-induced aphasia. This study aimed to explore the role of volunteers in supporting self-managed practice of computerised language exercises. A qualitative interview study of the volunteer support role was carried out alongside a pilot randomised controlled trial of computer aphasia therapy. Patients with aphasia practised computer exercises tailored for them by a speech-language pathologist at home regularly for 5 months. Eight of the volunteers who supported the intervention took part in semi-structured interviews. Interviews were audio recorded, transcribed verbatim and analysed thematically. Emergent themes included: training and support requirements; perception of the volunteer role; challenges facing the volunteer, in general and specifically related to supporting computer therapy exercises. The authors concluded that volunteers helped to motivate patients to practise their computer therapy exercises and also provided support to the carers. Training and ongoing structured support of therapy activity and conduct is required from a trained speech-language pathologist to ensure the successful involvement of volunteers supporting impairment-based computer exercises in patients' own homes.
A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.
ERIC Educational Resources Information Center
Shea, James Herbert
1991-01-01
Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)
An Exercise in Biometrical Genetics Based on a Computer Simulation.
ERIC Educational Resources Information Center
Murphy, P. J.
1983-01-01
Describes an exercise in biometrical genetics based on the noninteractive use of a computer simulation of a wheat hydridization program. Advantages of using the material in this way are also discussed. (Author/JN)
ERIC Educational Resources Information Center
Linn, Marcia
This paper analyzes the capabilities of the computer learning environment identified by the Assessing the Cognitive Consequences of Computer Environments for Learning (ACCCEL) Project, augments the analysis with experimental work, and discusses how schools can implement policies which provide for the maximum potential of computers. The ACCCEL…
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131
D3D augmented reality imaging system: proof of concept in mammography.
Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene
2016-01-01
The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.
A Teaching Exercise for the Identification of Bacteria Using An Interactive Computer Program.
ERIC Educational Resources Information Center
Bryant, Trevor N.; Smith, John E.
1979-01-01
Describes an interactive Fortran computer program which provides an exercise in the identification of bacteria. Provides a way of enhancing a student's approach to systematic bacteriology and numerical identification procedures. (Author/MA)
Intestinal epithelial barrier function and tight junction proteins with heat and exercise
Zuhl, Micah N.; Moseley, Pope L.
2015-01-01
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485
Intestinal epithelial barrier function and tight junction proteins with heat and exercise.
Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L
2016-03-15
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. Copyright © 2016 the American Physiological Society.
Neurobiological markers of exercise-related brain plasticity in older adults
Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.
2012-01-01
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199
Potential benefits of exercise on blood pressure and vascular function.
Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen
2013-01-01
Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Domingues, Eduardo Pinheiro; Ribeiro, Rafael Fernandes; Horta, Martinho Campolina Rebello; Manzi, Flávio Ricardo; Côsso, Maurício Greco; Zenóbio, Elton Gonçalves
2017-10-01
Using computed tomography, to compare vertical and volumetric bone augmentation after interposition grafting with bovine bone mineral matrix (GEISTLICH BIO-OSS ® ) or hydroxyapatite/tricalcium phosphate (STRAUMANN ® BONECERAMIC) for atrophic posterior mandible reconstruction through segmental osteotomy. Seven patients received interposition grafts in the posterior mandible for implant rehabilitation. The computed tomography cone beam images were analysed with OsiriX Imaging Software 6.5 (Pixmeo Geneva, Switzerland) in the pre-surgical period (T0), at 15 days post-surgery (T1) and at 180 days post-surgery (T2). The tomographic analysis was performed by a single trained and calibrated radiologist. Descriptive statistics and nonparametric methods were used to analyse the data. There was a significant difference in vertical and volume augmentation with both biomaterials using the technique (P < 0.05). There were no significant differences (P > 0.05) in volume change of the graft, bone volume augmentation, or augmentation of the maximum linear vertical distance between the two analysed biomaterials. The GEISTLICH BIO-OSS ® and STRAUMANN ® BONECERAMIC interposition grafts exhibited similar and sufficient dimensional stability and volume gain for short implants in the atrophic posterior mandible. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Advanced Visual and Instruction Systems for Maintenance Support (AVIS-MS)
2006-12-01
Hayashi , "Augmentable Reality: Situated Communication through Physical and Digital Spaces," Proc. 2nd Int’l Symp. Wearable Computers, IEEE CS Press...H. Ohno , "An Optical See-through Display for Mutual Occlusion of Real and Virtual Environments," Proc. Int’l Symp. Augmented Reality 2000 (ISARO0
Review of Augmented Paper Systems in Education: An Orchestration Perspective
ERIC Educational Resources Information Center
Prieto, Luis P.; Wen, Yun; Caballero, Daniela; Dillenbourg, Pierre
2014-01-01
Augmented paper has been proposed as a way to integrate more easily ICTs in settings like formal education, where paper has a strong presence. However, despite the multiplicity of educational applications using paper-based computing, their deployment in authentic settings is still marginal. To better understand this gap between research proposals…
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.
Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.
Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin
We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.
Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification
Feng, Yang; Jiang, Jiancheng; Tong, Xin
2015-01-01
We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970
Volonté, Francesco; Pugin, François; Bucher, Pascal; Sugimoto, Maki; Ratib, Osman; Morel, Philippe
2011-07-01
New technologies can considerably improve preoperative planning, enhance the surgeon's skill and simplify the approach to complex procedures. Augmented reality techniques, robot assisted operations and computer assisted navigation tools will become increasingly important in surgery and in residents' education. We obtained 3D reconstructions from simple spiral computed tomography (CT) slides using OsiriX, an open source processing software package dedicated to DICOM images. These images were then projected on the patient's body with a beamer fixed to the operating table to enhance spatial perception during surgical intervention (augmented reality). Changing a window's deepness level allowed the surgeon to navigate through the patient's anatomy, highlighting regions of interest and marked pathologies. We used image overlay navigation for laparoscopic operations such cholecystectomy, abdominal exploration, distal pancreas resection and robotic liver resection. Augmented reality techniques will transform the behaviour of surgeons, making surgical interventions easier, faster and probably safer. These new techniques will also renew methods of surgical teaching, facilitating transmission of knowledge and skill to young surgeons.
2013-01-07
Contingency Operations Task Force, 2011, p. 4)...........................68 Figure 25. Original Organizational Makeup for the CASO (After Deputy...Workforce CAP Civilian Augmentation Program CAP Crisis Action Planning CASO Contingency Acquisition Support Office CBP Capability-Based...its inclusion in joint exercises; Identify and assign responsibilities to institutionalize OCS lesson development, analysis, documentation and use
ERIC Educational Resources Information Center
McFee, Renee M.; Cupp, Andrea S.; Wood, Jennifer R.
2018-01-01
Didactic lectures are prevalent in physiology courses within veterinary medicine programs, but more active learning methods have also been utilized. Our goal was to identify the most appropriate learning method to augment the lecture component of our physiology course. We hypothesized that case-based learning would be well received by students and…
ERIC Educational Resources Information Center
Marshall, Pamela A.
2007-01-01
In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive…
Platt, Kristen M.; Charnigo, Richard J.; Shertzer, Howard G.; Pearson, Kevin J.
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter. PMID:26716948
Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation.
McLeay, Yanita; Stannard, Stephen; Houltham, Stuart; Starck, Carlene
2017-01-01
Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.
Milne, Sarah; Orbell, Sheina; Sheeran, Paschal
2002-05-01
This study compared a motivational intervention based on protection motivation theory (PMT, Rogers, 1975, 1983) with the same motivational intervention augmented by a volitional intervention based on implementation intentions (Gollwitzer, 1993). The study had a longitudinal design, involving three waves of data collection over a 2-week period, incorporating an experimental manipulation of PMT variables at Time 1 and a volitional, implementation intention intervention at Time 2. Participants (N=248) were randomly allocated to a control group or one of two intervention groups. Cognitions and exercise behaviour were measured at three time-points over a 2-week period. The motivational intervention significantly increased threat and coping appraisal and intentions to engage in exercise but did not bring about a significant increase in subsequent exercise behaviour. In contrast, the combined protection motivation theory/implementation intention intervention had a dramatic effect on subsequent exercise behaviour. This volitional intervention did not influence behavioural intention or any other motivational variables. It is concluded that supplementing PMT with implementation intentions strengthens the ability of the model to explain behaviour. This has implications for health education programmes, which should aim to increase both participants' motivation and their volition.
An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study.
Assis, Gilda Aparecida de; Corrêa, Ana Grasielle Dionísio; Martins, Maria Bernardete Rodrigues; Pedrozo, Wendel Goes; Lopes, Roseli de Deus
2016-08-01
To determine the clinical feasibility of a system based on augmented reality for upper-limb (UL) motor rehabilitation of stroke participants. A physiotherapist instructed the participants to accomplish tasks in augmented reality environment, where they could see themselves and their surroundings, as in a mirror. Two case studies were conducted. Participants were evaluated pre- and post-intervention. The first study evaluated the UL motor function using Fugl-Meyer scale. Data were compared using non-parametric sign tests and effect size. The second study used the gain of motion range of shoulder flexion and abduction assessed by computerized biophotogrammetry. At a significance level of 5%, Fugl-Meyer scores suggested a trend for greater UL motor improvement in the augmented reality group than in the other. Moreover, effect size value 0.86 suggested high practical significance for UL motor rehabilitation using the augmented reality system. System provided promising results for UL motor rehabilitation, since enhancements have been observed in the shoulder range of motion and speed. Implications for Rehabilitation Gain of range of motion of flexion and abduction of the shoulder of post-stroke patients can be achieved through an augmented reality system containing exercises to promote the mental practice. NeuroR system provides a mental practice method combined with visual feedback for motor rehabilitation of chronic stroke patients, giving the illusion of injured upper-limb (UL) movements while the affected UL is resting. Its application is feasible and safe. This system can be used to improve UL rehabilitation, an additional treatment past the traditional period of the stroke patient hospitalization and rehabilitation.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide present: (1) the three gasoline consumption-reducing options for which attitudes are to be explored; (2) exercises; and (3) appendices including an energy attitudes survey. (MR)
ERIC Educational Resources Information Center
Kieren, Thomas E.
This last paper in a set of four reviews research on a wide variety of computer applications in the mathematics classroom. It covers computer-based instruction, especially drill-and-practice and tutorial modes; computer-managed instruction; and computer-augmented problem-solving. Analytical comments on the findings and status of the research are…
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.
2017-01-01
A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
High-Intensity Interval Cycling Exercise on Wave Reflection and Pulse Wave Velocity.
Kingsley, J Derek; Tai, Yu Lun; Vaughan, Jeremiah A; Mayo, Xián
2017-05-01
Kingsley, JD, Tai, YL, Vaughan, J, and Mayo, X. High-intensity interval cycling exercise on wave reflection and pulse wave velocity. J Strength Cond Res 31(5): 1313-1320, 2017-The purpose of this study was to assess the effects of high-intensity exercise on wave reflection and aortic stiffness. Nine young, healthy men (mean ± SD: age: 22 ± 2 years) participated in the study. The high-intensity interval cycling exercise consisted of 3 sets of Wingate Anaerobic Tests (WATs) with 7.5% of bodyweight as resistance and 2 minutes of rest between each set. Measurements were taken at rest and 1 minute after completion of the WATs. Brachial and aortic blood pressures, as well as wave reflection characteristics, were measured through pulse wave analysis. Aortic stiffness was assessed through carotid-femoral pulse wave velocity (cfPWV). A repeated-measures analysis of variance was used to investigate the effects of the WATs on blood pressure and vascular function across time. There was no change in brachial or aortic systolic pressure from rest to recovery. There was a significant (p ≤ 0.05) decrease in brachial diastolic pressure (rest: 73 ± 6 mm Hg; recovery: 67 ± 9 mm Hg) and aortic diastolic pressure (rest: 75 ± 6 mm Hg; recovery: 70 ± 9 mm Hg) from rest to recovery. In addition, there was no significant change in the augmentation index (rest: 111.4 ± 6.5%; recovery: 109.8 ± 5.8%, p = 0.65) from rest to recovery. However, there was a significant (p ≤ 0.05) increase in the augmentation index normalized at 75 b·min (rest: 3.29 ± 9.82; recovery 21.21 ± 10.87) during recovery compared with rest. There was no change in cfPWV (rest: 5.3 ± 0.8 m·s; recovery: 5.7 ± 0.5m·s; p = 0.09) in response to the WAT. These data demonstrate that high-intensity interval cycling exercise with short rest periods has a nonsignificant effect on vascular function.
Burd, Nicholas A; Gorissen, Stefan H; van Vliet, Stephan; Snijders, Tim; van Loon, Luc Jc
2015-10-01
Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. We aimed to compare protein digestion and absorption kinetics, postprandial amino acid availability, anabolic signaling, and the subsequent myofibrillar protein synthetic response after the ingestion of milk compared with beef during recovery from resistance-type exercise. In crossover trials, 12 healthy young men performed a single bout of resistance exercise. Immediately after cessation of exercise, participants ingested 30 g protein by consuming isonitrogenous amounts of intrinsically l-[1-(13)C]phenylalanine-labeled beef or milk. Blood and muscle biopsy samples were collected at rest and after exercise during primed continuous infusions of l-[ring-(2)H5]phenylalanine and l-[ring-3,5-(2)H2]tyrosine to assess protein digestion and absorption kinetics, plasma amino acid availability, anabolic signaling, and subsequent myofibrillar protein synthesis rates in vivo in young men. Beef protein-derived phenylalanine appeared more rapidly in circulation compared with milk ingestion (P < 0.001). The availability of phenylalanine during the 5-h postexercise period tended to be higher after beef (64% ± 3%) ingestion than after milk ingestion (57% ± 3%; P = 0.08). Both beef and milk ingestion were followed by an increase in the phosphorylation of mammalian target of rapamycin complex 1 and 70-kDa S6 protein kinase 1 during postexercise recovery. Milk ingestion increased myofibrillar protein synthesis rates to a greater extent than did beef ingestion during the 0- to 2-h postexercise phase (P = 0.013). However, the increase in myofibrillar protein synthesis rates did not differ between milk and beef ingestion during the entire 0- to 5-h postexercise phase (P = 0.114). Both milk and beef ingestion augment the postexercise myofibrillar protein synthetic response in young men, with a stronger stimulation of myofibrillar protein synthesis during the early postprandial stage after milk ingestion. This trial was registered at www.clinicaltrials.gov as NCT01578590. © 2015 American Society for Nutrition.
Laughlin, M. Harold
2015-01-01
Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply “more is better.” Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment. PMID:26408541
Rawstorn, Jonathan C; Gant, Nicholas; Warren, Ian; Doughty, Robert Neil; Lever, Nigel; Poppe, Katrina K; Maddison, Ralph
2015-03-20
Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Median heart rate (-0.30 to 1.10 b∙min -1 ) and respiratory rate (-1.25 to 0.39 br∙min -1 ) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments. ©Jonathan C Rawstorn, Nicholas Gant, Ian Warren, Robert Neil Doughty, Nigel Lever, Katrina K Poppe, Ralph Maddison. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.03.2015.
Coronary Exercise Hyperemia Is Impaired in Patients with Peripheral Arterial Disease.
Ross, Amanda J; Gao, Zhaohui; Luck, Jonathan Carter; Blaha, Cheryl A; Cauffman, Aimee E; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D
2017-01-01
Peripheral arterial disease (PAD) is an atherosclerotic vascular disease that affects over 200 million people worldwide. The hallmark of PAD is ischemic leg pain and this condition is also associated with an augmented blood pressure response to exercise, impaired vascular function, and high risk of myocardial infarction and cardiovascular mortality. In this study, we tested the hypothesis that coronary exercise hyperemia is impaired in PAD. Twelve patients with PAD and no overt coronary disease (65 ± 2 years, 7 men) and 15 healthy control subjects (64 ± 2 years, 9 men) performed supine plantar flexion exercise (30 contractions/min, increasing workload). A subset of subjects (n = 7 PAD, n = 8 healthy) also performed isometric handgrip exercise (40% of maximum voluntary contraction to fatigue). Coronary blood velocity in the left anterior descending artery was measured by transthoracic Doppler echocardiography; blood pressure and heart rate were monitored continuously. Coronary blood velocity responses to 4 min of plantar flexion exercise (PAD: Δ2.4 ± 1.2, healthy: Δ6.0 ± 1.6 cm/sec, P = 0.039) and isometric handgrip exercise (PAD: Δ8.3 ± 4.2, healthy: Δ16.9 ± 3.6, P = 0.033) were attenuated in PAD patients. These data indicate that coronary exercise hyperemia is impaired in PAD, which may predispose these patients to myocardial ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.
2017-01-01
Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116
Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki
2004-05-01
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
Sprick, Justin D; Rickards, Caroline A
2017-11-01
Remote ischemic preconditioning (RIPC) is characterized by the cyclical application of limb blood flow restriction and reperfusion and has been shown to protect vital organs during a subsequent ischemic insult. Blood flow restriction exercise (BFRE) similarly combines bouts of blood flow restriction with low-intensity exercise and thus could potentially emulate the protection demonstrated by RIPC. One concern with BFRE, however, is the potential for an augmented rise in sympathetic outflow due to greater activation of the exercise pressor reflex. Because of the use of lower workloads, however, we hypothesized that BFRE would elicit an attenuated increase in sympathetic outflow [assessed via plasma norepinephrine (NE) and mean arterial pressure (MAP)] and middle cerebral artery velocity (MCAv) when compared with conventional exercise (CE). Fifteen subjects underwent two leg press exercise interventions: 1 ) BFRE-220 mmHg bilateral thigh occlusion at 20% 1 rep-max (1RM), and 2 ) CE-65% 1RM without occlusion. Each condition consisted of 4 × 5-min cycles of exercise, with 3 × 10-reps in each cycle. Five minutes of rest and reperfusion (for BFRE) followed each cycle. MAP increased with exercise ( P < 0.001) and was 4-5 mmHg higher with CE versus BFRE ( P ≤ 0.09). Mean MCAv also increased with exercise ( P < 0.001) and was higher with CE compared with BFRE during the first bout of exercise only ( P = 0.07). Plasma NE concentration increased with CE only ( P < 0.001) and was higher than BFRE throughout exercise ( P ≤ 0.02). The attenuated sympathetic response, combined with similar cerebrovascular responses, suggest that cyclical BFRE could be explored as an alternative to CE in the clinical setting. Copyright © 2017 the American Physiological Society.
Regulation of coronary resistance vessel tone in response to exercise.
Duncker, Dirk J; Bache, Robert J; Merkus, Daphne
2012-04-01
Exercise is a primary stimulus for increased myocardial oxygen demand. The ~6-fold increase in oxygen demand of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already ~70% at rest) increase only modestly in most species. As a result, coronary blood flow is tightly coupled to myocardial oxygen consumption over a wide range of physical activity. This tight coupling has been proposed to depend on periarteriolar oxygen tension, signals released from cardiomyocytes and the endothelium as well as neurohumoral influences, but the contribution of each of these regulatory pathways, and their interactions, to exercise hyperemia in the heart remain incompletely understood. In humans, nitric oxide, adenosine and K(ATP) channels each appear to contribute to resting coronary resistance vessel tone, but evidence for a critical contribution to exercise hyperemia is lacking. In dogs K(ATP)-channel activation together with adenosine and nitric oxide contribute to exercise hyperemia in a non-linear redundant fashion. In contrast, in swine nitric oxide, adenosine and K(ATP) channels contribute to resting coronary resistance vessel tone control in a linear additive manner, but do not appear to be mandatory for exercise hyperemia. Rather, exercise hyperemia in swine appears to involve β-adrenergic activation in conjunction with exercise-induced blunting of an endothelin-mediated vasoconstrictor influence. In view of these remarkable species differences in coronary vasomotor control during exercise, future studies are required to determine the system of vasodilator components that mediate exercise hyperemia in humans. This article is part of a Special Issue entitled "Coronary Blood Flow". Copyright © 2011 Elsevier Ltd. All rights reserved.
Rustad, Lene A; Nytrøen, Kari; Amundsen, Brage H; Gullestad, Lars; Aakhus, Svend
2014-02-01
Heart transplant recipients have lower exercise capacity and impaired cardiac function compared with the normal population. High-intensity interval training (HIIT) improves exercise capacity and cardiac function in patients with heart failure and hypertension, but the effect on cardiac function in stable heart transplant recipients is not known. Thus, we investigated whether HIIT improved cardiac function and exercise capacity in stable heart transplant recipients by use of comprehensive rest- and exercise-echocardiography and cardiopulmonary exercise testing. Fifty-two clinically stable heart transplant recipients were randomised either to HIIT (4 × 4 minutes at 85-95% of peak heart rate three times per week for eight weeks) or to control. Three such eight-week periods were distributed throughout one year. Echocardiography (rest and submaximal exercise) and cardiopulmonary exercise testing were performed at baseline and follow-up. One year of HIIT increased VO 2peak from 27.7 ± 5.5 at baseline to 30.9 ± 5.0 ml/kg/min at follow-up, while the control group remained unchanged (28.5 ± 7.0 vs. 28.0 ± 6.7 ml/kg per min, p < 0.001 for difference between the groups). Systolic and diastolic left ventricular functions at rest and during exercise were generally unchanged by HIIT. Whereas HIIT is feasible in heart transplant recipients and effectively improves exercise capacity, it does not alter cardiac systolic and diastolic function significantly. Thus, the observed augmentation in exercise capacity is best explained by extra-cardiac adaptive mechanisms.
Intelligence-Augmented Rat Cyborgs in Maze Solving.
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
Intelligence-Augmented Rat Cyborgs in Maze Solving
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299
Acute resistance exercise using free weights on aortic wave reflection characteristics.
Tai, Yu Lun; Gerhart, Hayden; Mayo, Xián; Kingsley, J Derek
2018-01-01
Aortic wave reflection characteristics such as the augmentation index (AIx), wasted left ventricular pressure energy (ΔE w ) and aortic haemodynamics, such as aortic systolic blood pressure (ASBP), strongly predict cardiovascular events. The effects of acute resistance exercise (ARE) using free-weight exercises on these characteristics are unknown. Therefore, we sought to determine the effects of acute free-weight resistance exercise on aortic wave reflection characteristics and aortic haemodynamics in resistance-trained individuals. Fifteen young, healthy resistance-trained (9 ± 3 years) individuals performed two randomized sessions consisting of an acute bout of free-weight resistance exercise (ARE) or a quiet control (CON). The ARE consisted of three sets of 10 repetitions at 75% one repetition maximum for squat, bench press and deadlift. In CON, the participants rested in the supine position for 30 min. Measurements were made at baseline before sessions and 10 min after sessions. A two-way ANOVA was used to compare the effects of condition across time. There were no significant interactions for aortic or brachial blood pressures. Compared to rest, there were significant increases in augmentation pressure (rest: 5·7 ± 3·0 mmHg; recovery: 10·4 ± 5·7 mmHg, P = 0·002), AIx (rest: 116·8 ± 4·2%; recovery: 123·2 ± 8·4%, P = 0·002), AIx normalized at 75 bpm (rest: 5·2 ± 7·6%; recovery: 27·3 ± 13·2%, P<0·0001), ΔE w (rest: 1215 ± 674 dynes s cm -2 ; recovery: 2096 ± 1182 dynes s cm -2 , P = 0·008), and there was a significant decrease in transit time of the reflected wave (rest: 150·7 ± 5·8 ms; recovery 145·5 ± 5·6 ms, P<0·001) during recovery from ARE compared to CON. These data suggest that ARE using free-weight exercises may have no effect on aortic and brachial blood pressure but may significantly alter aortic wave reflection characteristics. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Design, Development and Implementation of a Middle School Computer Applications Curriculum.
ERIC Educational Resources Information Center
Pina, Anthony A.
This report documents the design, development, and implementation of computer applications curricula in a pilot program augmenting the regular curriculum for eighth graders at a private middle school. In assessing the needs of the school, a shift in focus was made from computer programming to computer application. The basic objectives of the…
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem
2015-01-01
The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.
Remote Adaptive Motor Resistance Training Exercise Apparatus and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Reich, Alton (Inventor); Shaw, James (Inventor)
2017-01-01
The invention comprises a method and/or an apparatus using a computer configured exercise system equipped with an electric motor to provide physical resistance to user motion in conjunction with means for sharing exercise system related data and/or user performance data with a secondary user, such as a medical professional, a physical therapist, a trainer, a computer generated competitor, and/or a human competitor. For example, the exercise system is used with a remote trainer to enhance exercise performance, with a remote medical professional for rehabilitation, and/or with a competitor in a competition, such as in a power/weightlifting competition or in a video game. The exercise system is optionally configured with an intelligent software assistant and knowledge navigator functioning as a personal assistant application.
Remote Adaptive Motor Resistance Training Exercise Apparatus and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Shaw, James (Inventor); Reich, Alton (Inventor)
2016-01-01
The invention comprises a method and/or an apparatus using a computer configured exercise system equipped with an electric motor to provide physical resistance to user motion in conjunction with means for sharing exercise system related data and/or user performance data with a secondary user, such as a medical professional, a physical therapist, a trainer, a computer generated competitor, and/or a human competitor. For example, the exercise system is used with a remote trainer to enhance exercise performance, with a remote medical professional for rehabilitation, and/or with a competitor in a competition, such as in a power/weightlifting competition or in a video game. The exercise system is optionally configured with an intelligent software assistant and knowledge navigator functioning as a personal assistant application.
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay
2014-01-01
Background Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. Methods The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Results Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects’ personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Conclusions Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography. PMID:24739255
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay.
Novak, Domen; Nagle, Aniket; Keller, Urs; Riener, Robert
2014-04-16
Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects' personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography.
The effect of augmented real-time image guidance on task workload during endoscopic sinus surgery.
Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Vescan, Allan D; Witterick, Ian J; Irish, Jonathan C
2012-01-01
Due to proximity to critical structures, the need for spatial awareness during endoscopic sinus surgery (ESS) is essential. We have developed an augmented, real-time image-guided surgery (ART-IGS) system that provides live navigational data and proximity alerts to the operating surgeon during ablation. We wished to test the hypothesis that task workload would be reduced when using this technology. A trial involved 8 otolaryngology residents and fellows performing ESS on cadaveric specimens; 1 side in a conventional method (control) and 1 side with ART-IGS. After computed tomography scanning, anatomical contouring, and registration of the head, a three-dimensional (3D) virtual endoscopic view, ablative tool tracking, and proximity alerts were enabled. Each subject completed ESS tasks and rated their workload during and after the exercise using the National Aeronautics and Space Administration (NASA) Task Load Index (TLX). A questionnaire and open feedback interview were completed after the procedure. There was a significant reduction in mental demand, temporal demand, effort, and frustration when using the ART-IGS system in comparison to the control (p < 0.02). Perceived performance was increased (p = 0.02). Most subjects agreed that the system was sufficiently accurate, caused minimal interruption, and increased confidence. Optical tracking line-of-sight issues were frequently cited as the main limitation early in the study; however, this was largely resolved. ART-IGS reduces task workload for trainees performing ESS. Live navigation and alert zones may be a valuable intraoperative teaching aid. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.
Sales, Allan R K; Silva, Bruno M; Neves, Fabricia J; Rocha, Natália G; Medeiros, Renata F; Castro, Renata R T; Nóbrega, Antonio C L
2012-09-01
Despite mortality from heart disease has been decreasing, the decline in death in women remains lower than in men. Hypertension (HT) is a major risk factor for cardiovascular disease. Therefore, approaches to prevent or delay the onset of HT would be valuable in women. Given this background, we investigated the effect of diet and exercise training on blood pressure (BP) and autonomic modulation in women with prehypertension (PHT). Ten women with PHT (39 ± 6 years, mean ± standard deviation) and ten with normotension (NT) (35 ± 11 years) underwent diet and exercise training for 12 weeks. Autonomic modulation was assessed through heart rate (HR) and systolic BP (SBP) variability, using time and frequency domain analyses. At preintervention, women with PHT had higher SBP (PHT: 128 ± 7 vs. NT: 111 ± 6 mmHg, p < 0.05) and lower HR variability [standard deviation of normal-to-normal beats (SDNN), PHT: 41 ± 18 vs. NT: 60 ± 19 ms, p < 0.05]. At post-intervention, peak oxygen consumption and muscular strength increased (p < 0.05), while body mass index decreased in both groups (p < 0.05). However, SBP decreased (118 ± 8 mmHg, p < 0.05 vs. preintervention) and total HR variability tended to increase (total power: 1,397 ± 570 vs. 2,137 ± 1,110 ms(2), p = 0.08) only in the group with PHT; consequently, HR variability became similar between groups at post-intervention (p > 0.05). Moreover, reduction in SBP was associated with augmentation in SDNN (r = -0.46, p < 0.05) and reduction in low-frequency power [LF (n.u.); r = 0.46, p < 0.05]. In conclusion, diet and exercise training reduced SBP in women with PHT, and this was associated with augmentation in parasympathetic and probably reduction in sympathetic cardiac modulation.
Jacquart, Jolene; Roquet, Rheall F; Papini, Santiago; Powers, Mark B; Rosenfield, David; Smits, Jasper A J; Monfils, Marie-H
2017-08-01
Exposure therapy is an established learning-based intervention for the treatment of anxiety disorders with an average response rate of nearly 50%, leaving room for improvement. Emerging strategies to enhance exposure therapy in humans and fear extinction retention in animal models are primarily pharmacological. These approaches are limited as many patients report preferring non-pharmacological approaches in therapy. With general cognitive enhancement effects, exercise has emerged as a plausible non-pharmacological augmentation strategy. The present study tested the hypothesis that fear extinction and exposure therapy would be enhanced by a pre-training bout of exercise. We conducted four experiments with rats that involved a standardized conditioning and extinction paradigm and a manipulation of exercise. In a fifth experiment, we manipulated vigorous-intensity exercise prior to a standardized virtual reality exposure therapy session among adults with fear of heights. In experiments 1-4, exercise did not facilitate fear extinction, long-term memory, or fear relapse tests. In experiment 5, human participants showed an overall reduction in fear of heights but exercise did not enhance symptom improvement. Although acute exercise prior to fear extinction or exposure therapy, as operationalized in the present 5 studies, did not enhance outcomes, these results must be interpreted within the context of a broader literature that includes positive findings. Taken all together, this suggests that more research is necessary to identify optimal parameters and key individual differences so that exercise can be implemented successfully to treat anxiety disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Obesity, growth hormone and exercise.
Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S
2013-09-01
Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.
Parkin is required for exercise-induced mitophagy in muscle: impact of aging.
Chen, Chris Chin Wah; Erlich, Avigail T; Crilly, Matthew J; Hood, David A
2018-05-29
The maintenance of muscle health with advancing age is dependent on mitochondrial homeostasis. While reductions in mitochondrial biogenesis have been observed with age, less is known regarding organelle degradation. Parkin is an E3 ubiquitin ligase implicated in mitophagy, but few studies have examined Parkin's contribution to mitochondrial turnover in muscle. Wild type (WT) and Parkin knockout (KO) mice were used to delineate a role for Parkin-mediated mitochondrial degradation in aged muscle, in concurrence with exercise. Aged animals exhibited declines in muscle mass and mitochondrial content, paralleled by a nuclear environment endorsing the transcriptional repression of mitochondrial biogenesis. Mitophagic signaling was enhanced following acute endurance exercise in young WT mice, but was abolished in the absence of Parkin. Basal mitophagy flux of the autophagosomal protein LC3II was augmented in aged animals, but did not increase additionally with exercise when compared to young animals. In the absence of Parkin, exercise increased the nuclear localization of PARIS, corresponding to a decrease in nuclear PGC-1α. Remarkably, exercise enhanced mitochondrial ubiquitination in both young WT and KO animals. This suggested compensation of alternative ubiquitin ligases that were, however, unable to restore the diminished exercise-induced mitophagy in KO mice. Under basal conditions, we demonstrated that Parkin was required for mitochondrial Mfn2 ubiquitination. We also observed an abrogation of exercise-induced mitophagy in aged muscle. Our results demonstrate that acute exercise-induced mitophagy is dependent on Parkin, and attenuated with age, which likely contributes to changes in mitochondrial content and quality in aging muscle.
Neural control of blood flow during exercise in human metabolic syndrome.
Limberg, Jacqueline K; Morgan, Barbara J; Sebranek, Joshua J; Proctor, Lester T; Eldridge, Marlowe W; Schrage, William G
2014-09-01
α-Adrenergic-mediated vasoconstriction is greater during simulated exercise in animal models of metabolic syndrome (MetSyn) when compared with control animals. In an attempt to translate such findings to humans, we hypothesized that adults with MetSyn (n = 14, 35 ± 3 years old) would exhibit greater α-adrenergic responsiveness during exercise when compared with age-matched healthy control subjects (n = 16, 31 ± 3 years old). We measured muscle sympathetic nerve activity (MSNA; microneurography) and forearm blood flow (Doppler ultrasound) during dynamic forearm exercise (15% of maximal voluntary contraction). α-Adrenergic agonists (phenylephrine and clonidine) and an antagonist (phentolamine) were infused intra-arterially to assess α-adrenergic receptor responsiveness and restraint, respectively. Resting MSNA was ∼35% higher in adults with MetSyn (P < 0.05), but did not change in either group with dynamic exercise. Clonidine-mediated vasoconstriction was greater in adults with MetSyn (P < 0.01). Group differences in vascular responses to phenylephrine and phentolamine were not detected (P > 0.05). Interestingly, exercise-mediated vasodilatation was greater in MetSyn (P < 0.05). Adults with MetSyn exhibit greater resting MSNA and clonidine-mediated vasoconstriction, yet preserved functional sympatholysis and higher exercise blood flow during low-intensity hand-grip exercise when compared with age-matched healthy control subjects. These results suggest that adults with MetSyn exhibit compensatory vascular control mechanisms capable of preserving blood flow responses to exercise in the face of augmented sympathetic adrenergic activity. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the teacher's guide to accompany the student guide which together comprise one of five computer-oriented environmental/energy education units. This unit is concerned with the attitude of people toward gasoline shortages and different steps the government could take to reduce gasoline consumption. Through the exercises, part of which make…
Saengsuwan, Jittima; Huber, Celine; Schreiber, Jonathan; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J
2015-09-26
We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O2peak), peak heart rate (HRpeak) and peak work rate (WRpeak) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O2max), 117 ± 32 beats/min (72 % of predicted HRmax) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O2 at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O2peak. Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O2 was 6.9 ml/kg/min (49 % of V'O2 reserve), mean HR was 90 beats/min (56 % of HRmax), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent-ambulatory stroke patients: the approach was found to be technically implementable, acceptable to the patients, and it showed substantial cardiopulmonary responsiveness. This work has clinical implications for patients with severe disability who otherwise are not able to be tested.
Sabesan, Vani; Callanan, Mark; Sharma, Vinay
2014-07-01
Total shoulder arthroplasty is technically demanding in regard to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior glenoid wear. Augmented glenoid implants are an important and innovative option; however, there is little evidence accessible to surgeons to guide in the selection of the appropriate size augmented glenoid. Solid computer models of commercially available augmented glenoid components (+3, +5, +7) contained within the software allowed placement of the best fit glenoid component within the three-dimensional reconstruct of each patient's scapula. Peg perforation, amount of bone reamed, and amount of medialization were recorded for each augment size. There was strong correlation between the medialization of the joint line and the glenoid retroversion for each augmented component at neutral correction and correction to 6° of retroversion. At neutral, the range of retroversion that restored the anatomic joint line was -3° to -17° with use of the +3 augmented glenoid, -5° to -24° with the +5 augmented glenoid, and -9° to -31° with the +7 augmented glenoid. At 6° of retroversion, the range of retroversion that restored the anatomic joint line was -4° to -21° with use of the +3 augmented glenoid, -7° to -27° with the +5 augmented glenoid, and -9° to -34° with the +7 augmented glenoid. There was a strong correlation between glenoid retroversion and medialization for all augment sizes, supporting the recommendation for glenoid retroversion as the primary guide in selecting the amount of augmentation. Copyright © 2014. Published by Mosby, Inc.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions
ERIC Educational Resources Information Center
Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.
2015-01-01
Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…
ERIC Educational Resources Information Center
Crowe, Dale; LaPierre, Martin; Kebritchi, Mansureh
2017-01-01
With augmented intelligence/knowledge based system (KBS) it is now possible to develop distance learning applications to support both curriculum and administrative tasks. Instructional designers and information technology (IT) professionals are now moving from the programmable systems era that started in the 1950s to the cognitive computing era.…
Downey, Ryan M; Liao, Peizhou; Millson, Erin C; Quyyumi, Arshed A; Sher, Salman; Park, Jeanie
2017-05-01
Chronic kidney disease (CKD) patients have exercise intolerance associated with increased cardiovascular mortality. Previous studies demonstrate that blood pressure (BP) and sympathetic nerve responses to handgrip exercise are exaggerated in CKD. These patients also have decreased nitric oxide (NO) bioavailability and endothelial dysfunction, which could potentially lead to an impaired ability to vasodilate during exercise. We hypothesized that CKD patients have exaggerated BP responses during maximal whole body exercise and that endothelial dysfunction correlates with greater exercise pressor responses in these patients. Brachial artery flow-mediated dilation (FMD) was assessed before maximal treadmill exercise in 56 participants: 38 CKD (56.7 ± 1.2 yr old, 38 men) and 21 controls (52.8 ± 1.8 yr old, 20 men). During maximal treadmill exercise, the slope-of-rise in systolic BP (+10.32 vs. +7.75 mmHg/stage, P < 0.001), mean arterial pressure (+3.50 vs. +2.63 mmHg/stage, P = 0.004), and heart rate (+11.87 vs. +10.69 beats·min -1 ·stage -1 , P = 0.031) was significantly greater in CKD compared with controls. Baseline FMD was significantly lower in CKD (2.76 ± 0.42% vs. 5.84 ± 0.97%, P = 0.008). Lower FMD values were significantly associated with a higher slope-of-rise in systolic BP (+11.05 vs. 8.71 mmHg/stage, P = 0.003) during exercise in CKD, as well as poorer exercise capacity measured as peak oxygen uptake (V̇o 2peak ; 19.47 ± 1.47 vs. 24.57 ± 1.51 ml·min -1 ·kg -1 , P < 0.001). These findings demonstrate that low FMD in CKD correlates with augmented BP responses during exercise and lower V̇o 2peak , suggesting that endothelial dysfunction may contribute to exaggerated exercise pressor responses and poor exercise capacity in CKD patients.
Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S
2015-06-01
The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Wanyi; Ding, Zhenping; Solares, Geoffrey J.; Choi, Soon-Mi; Wang, Bo; Yoon, Aram; Farrar, Roger P.; Ivy, John L.
2017-01-01
The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway. PMID:28296942
Exercise excess pressure and exercise-induced albuminuria in patients with type 2 diabetes mellitus.
Climie, Rachel E D; Srikanth, Velandai; Keith, Laura J; Davies, Justin E; Sharman, James E
2015-05-01
Exercise-induced albuminuria is common in patients with type 2 diabetes mellitus (T2DM) in response to maximal exercise, but the response to light-moderate exercise is unclear. Patients with T2DM have abnormal central hemodynamics and greater propensity for exercise hypertension. This study sought to determine the relationship between light-moderate exercise central hemodynamics (including aortic reservoir and excess pressure) and exercise-induced albuminuria. Thirty-nine T2DM (62 ± 9 yr; 49% male) and 39 nondiabetic controls (53 ± 9 yr; 51% male) were examined at rest and during 20 min of light-moderate cycle exercise (30 W; 50 revolutions/min). Albuminuria was assessed by the albumin-creatinine ratio (ACR) at rest and 30 min postexercise. Hemodynamics recorded included brachial and central blood pressure (BP), aortic stiffness, augmented pressure (AP), aortic reservoir pressure, and excess pressure integral (Pexcess). There was no difference in ACR between groups before exercise (P > 0.05). Exercise induced a significant rise in ACR in T2DM but not controls (1.73 ± 1.43 vs. 0.53 ± 1.0 mg/mol, P = 0.002). All central hemodynamic variables were significantly higher during exercise in T2DM (i.e., Pexcess, systolic BP and AP; P < 0.01 all). In T2DM (but not controls), exercise Pexcess was associated with postexercise ACR (r = 0.51, P = 0.002), and this relationship was independent of age, sex, body mass index, heart rate, aortic stiffness, antihypertensive medication, and ambulatory daytime systolic BP (β = 0.003, P = 0.003). Light-moderate exercise induced a significant rise in ACR in T2DM, and this was independently associated with Pexcess, a potential marker of vascular dysfunction. These novel findings suggest that Pexcess could be important for appropriate renal function in T2DM. Copyright © 2015 the American Physiological Society.
Identifiability of Additive Actuator and Sensor Faults by State Augmentation
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.
2014-01-01
A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.
Afterrise: Deep Body Temperature Following Exercise
1992-03-01
Egalement, les effets de la posture et des v~tements durant la recuperation et la temperature de la salle de recuperation furent examines. Cinq hommes se...chemise a manches courtes). Les temperatures rectales et de la peau furent mesurees A chaque minute durant les exercices et la r~cup~ration affectaient...overgarment. RESUME Cette etude fut entreprise pour documenter l’augmentation continue de la temperature rectale apres exercice dans la chaleur
Neuroplasticity in the context of motor rehabilitation after stroke
Dimyan, Michael A.; Cohen, Leonardo G.
2016-01-01
Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain–computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation. PMID:21243015
Neuroplasticity in the context of motor rehabilitation after stroke.
Dimyan, Michael A; Cohen, Leonardo G
2011-02-01
Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain-computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.
The hematocrit paradox--how does blood doping really work?
Böning, D; Maassen, N; Pries, A
2011-04-01
The wide-spread assumption that doping with erythropoietin or blood transfusion is only effective by increasing arterial blood O2 content because of rising hematocrit is not self-evident. "Natural blood dopers" (horses, dogs) increase both hematocrit and circulating blood volume during exercise by releasing stored erythrocytes from the spleen. Improvement of aerobic performance by augmenting hemoglobin concentration may be expected until the optimal hematocrit is reached; above this value maximal cardiac output declines due to the steep increase of blood viscosity. Therefore an enlarged blood oxygen content might only be useful if the normal hematocrit of man during exercise is suboptimal. However, recent studies suggest that cardiac power rises after erythropoietin allowing an unchanged cardiac output in spite of increased viscosity. Other factors underlying improved performance after blood doping might be: augmented diffusion capacity for oxygen in lungs and tissues, increased percentage of young red cells with good functional properties (after erythropoietin), increased buffer capacity, increase of blood volume, vasoconstriction, reduced damage by radicals, mood improvement by cerebral effects of erythropoietin. Also the importance of placebo is unknown since double-blind studies are rare. It is suggested that blood doping has multifactorial effects not restricted to the increase in arterial oxygen content. © Georg Thieme Verlag KG Stuttgart · New York.
Size, shape, and stamina: the impact of left ventricular geometry on exercise capacity.
Lam, Carolyn S P; Grewal, Jasmine; Borlaug, Barry A; Ommen, Steve R; Kane, Garvan C; McCully, Robert B; Pellikka, Patricia A
2010-05-01
Although several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction > or = 50% and no valvular disease, myocardial ischemia, or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. All of the subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60+/-14 years; 57% male) subjects, 166 (45%) had normal geometry, 106 (29%) had concentric remodeling, 40 (11%) had eccentric hypertrophy, and 54 (15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents were 9.9+/-2.8 in normal, 8.9+/-2.6 in concentric remodeling, 8.6+/-3.1 in eccentric hypertrophy, and 8.0+/-2.7 in concentric hypertrophy (all P<0.02 versus normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r=-0.14; P=0.009 and r=-0.21; P<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared with normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation, and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease.
Size, Shape and Stamina: The Impact of Left Ventricular Geometry on Exercise Capacity
Lam, Carolyn S.P.; Grewal, Jasmine; Borlaug, Barry A.; Ommen, Steve R.; Kane, Garvan C.; McCully, Robert B.; Pellikka, Patricia A.
2010-01-01
While several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction ≥ 50% and no valvular disease, myocardial ischemia or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy and concentric hypertrophy. All subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60±14 years; 57% male) subjects, 166(45%) had normal geometry, 106(29%) had concentric remodeling, 40(11%) had eccentric hypertrophy and 54(15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents was 9.9±2.8 in normal, 8.9±2.6 in concentric remodeling, 8.6±3.1 in eccentric hypertrophy and 8.0±2.7 in concentric hypertrophy (all p<0.02 vs normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r= -0.14; p=0.009 and r= -0.21; p<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared to normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease. PMID:20215563
Atorvastatin Increases Exercise Leg Blood Flow in Healthy Adults
Parker, Beth A.; Capizzi, Jeffrey A.; Augeri, Amanda L.; Grimaldi, Adam S.; White, C. Michael; Thompson, Paul D.
2011-01-01
OBJECTIVES We sought to examine the effect of atorvastatin therapy on exercise leg blood flow in healthy middle-aged and older, men and women. BACKGROUND The vasodilatory response to exercise decreases in humans with aging and disease and this reduction may contribute to reduced exercise capacity. METHODS We used a double-blind, randomly assigned, placebo-controlled protocol to assess the effect of atorvastatin treatment on exercising leg hemodynamics. We measured femoral artery blood flow (FBF) using Doppler ultrasound and calculated femoral vascular conductance (FVC) from brachial mean arterial pressure (MAP) before and during single knee-extensor exercise in healthy adults (ages 40–71) before (PRE) and after (POST) 6 months of 80 mg atorvastatin (A: 14 men, 16 women) or placebo (P: 14 men, 22 women) treatment. FBF and FVC were normalized to exercise power output and estimated quadriceps muscle mass. RESULTS Atorvastatin reduced LDL cholesterol by approximately 50%, but not in the placebo group (p < 0.01). Atorvastatin also increased exercise FBF from 44.2 ± 19.0 to 51.4 ± 22.0 mL/min/W/kg muscle whereas FBF in the placebo group was unchanged (40.1 ± 16.0 vs 39.5 ± 16.1) (p <0.01). FVC also increased with atorvastatin from 0.5 ± 0.2 to. 0.6 ± 0.2 mL/min/mmHg/W/kg muscle, but not in the placebo subjects (P: 0.4 ± 0.2 vs 0.4 ± 0.2) ( p < 0.01). CONCLUSIONS High-dose atorvastatin augments exercising leg hyperemia. Statins may mitigate reductions in the exercise vasodilatory response in humans that are associated with aging and disease. PMID:22018642
Bunsawat, Kanokwan; Ranadive, Sushant M; Lane-Cordova, Abbi D; Yan, Huimin; Kappus, Rebecca M; Fernhall, Bo; Baynard, Tracy
2017-04-01
Central arterial stiffness is associated with incident hypertension and negative cardiovascular outcomes. Obese individuals have higher central blood pressure (BP) and central arterial stiffness than their normal-weight counterparts, but it is unclear whether obesity also affects hemodynamics and central arterial stiffness after maximal exercise. We evaluated central hemodynamics and arterial stiffness during recovery from acute maximal aerobic exercise in obese and normal-weight individuals. Forty-six normal-weight and twenty-one obese individuals underwent measurements of central BP and central arterial stiffness at rest and 15 and 30 min following acute maximal exercise. Central BP and normalized augmentation index (AIx@75) were derived from radial artery applanation tonometry, and central arterial stiffness was obtained via carotid-femoral pulse wave velocity (cPWV) and corrected for central mean arterial pressure (cPWV/cMAP). Central arterial stiffness increased in obese individuals but decreased in normal-weight individuals following acute maximal exercise, after adjusting for fitness. Obese individuals also exhibited an overall higher central BP ( P < 0.05), with no exercise effect. The increase in heart rate was greater in obese versus normal-weight individuals following exercise ( P < 0.05), but there was no group differences or exercise effect for AIx@75 In conclusion, obese (but not normal-weight) individuals increased central arterial stiffness following acute maximal exercise. An assessment of arterial stiffness response to acute exercise may serve as a useful detection tool for subclinical vascular dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn
2016-01-01
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488
Asahara, Ryota; Endo, Kana; Liang, Nan; Matsukawa, Kanji
2018-05-31
We have reported using near-infrared spectroscopy that an increase in prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) at the start of cycling exercise has relation to central command, defined as a feedforward signal descending from higher brain centers. The final output of central command evokes the exercise effort-dependent cardiovascular responses. If the prefrontal cortex may output the final signal of central command toward the autonomic nervous system, the prefrontal oxygenation should increase depending on exercise effort. To test the hypothesis, we investigated the effects of exercise intensity and muscle mass on prefrontal oxygenation in 13 subjects. The subjects performed one- or two-legged cycling at various relative intensities for 1 min. The prefrontal Oxy-Hb and cardiovascular variables were simultaneously measured during exercise. The increase in cardiac output and the decrease in total peripheral resistance at the start of one- and two-legged cycling were augmented in proportion to exercise intensity and muscle mass recruitment. The prefrontal Oxy-Hb increased at the start of voluntary cycling, while such increase was not developed during passive cycling. Mental imagery of cycling also increased the prefrontal Oxy-Hb, concomitantly with peripheral muscle vasodilatation. However, the increase in prefrontal Oxy-Hb at the start of voluntary cycling seemed independent of exercise intensity and muscle mass recruitment. It is likely that the increased prefrontal activity at the start of cycling exercise is not representative of the final output signal of central command itself toward the autonomic nervous system but may trigger neuronal activity in the caudal brain responsible for the generation of central command.
Exercise training increases basal tone in arterioles distal to chronic coronary occlusion
Heaps, Cristine L.; Mattox, Mildred L.; Kelly, Katherine A.; Meininger, Cynthia J.; Parker, Janet L.
2014-01-01
Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (~150 µm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (Nω-nitro-l-arginine methylester; 100 µM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. PMID:16243909
Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn
2016-08-22
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.
Al-Ardah, Aladdin; Alqahtani, Nasser; AlHelal, Abdulaziz; Goodacre, Brian; Swamidass, Rajesh; Garbacea, Antoanela; Lozada, Jaime
2018-05-02
This technique describes a novel approach for planning and augmenting a large bony defect using a titanium mesh (TiMe). A 3-dimensional (3D) surgical model was virtually created from a cone beam computed tomography (CBCT) and wax-pattern of the final prosthetic outcome. The required bone volume (horizontally and vertically) was digitally augmented and then 3D printed to create a bone model. The 3D model was then used to contour the TiMe in accordance with the digital augmentation. With the contoured / preformed TiMe on the 3D printed model a positioning jig was made to aid the placement of the TiMe as planned during surgery. Although this technique does not impact the final outcome of the augmentation procedure, it allows the clinician to virtually design the augmentation, preform and contour the TiMe, and create a positioning jig reducing surgical time and error.
Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels
NASA Astrophysics Data System (ADS)
Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.
2015-12-01
Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattsson, Ann E.
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less
Automatic differentiation for Fourier series and the radii polynomial approach
NASA Astrophysics Data System (ADS)
Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian
2016-11-01
In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).
NASA Technical Reports Server (NTRS)
Schulte, Erin
2017-01-01
As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.
Wright, Serena; Hull, Tom; Sivyer, David B.; Pearce, David; Pinnegar, John K.; Sayer, Martin D. J.; Mogg, Andrew O. M.; Azzopardi, Elaine; Gontarek, Steve; Hyder, Kieran
2016-01-01
Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments. PMID:27445104
Ashor, Ammar W.; Lara, Jose; Siervo, Mario; Celis-Morales, Carlos; Mathers, John C.
2014-01-01
Background and Objectives Physical activity is associated with lower cardiovascular and all-cause mortality. However, the effects of different exercise modalities on arterial stiffness are currently unclear. Our objectives were to investigate the effects of exercise modalities (aerobic, resistance or combined) on pulse wave velocity (PWV) and augmentation index (AIx), and to determine whether the effects on these indices differed according to the participants' or exercise characteristics. Methods We searched the Medline, Embase and Cochrane Library databases from inception until April 2014 for randomized controlled trials lasting ≥4 weeks investigating the effects of exercise modalities on PWV and AIx in adults aged ≥18 years. Results Forty-two studies (1627 participants) were included in this analysis. Aerobic exercise improved both PWV (WMD: −0.63 m/s, 95% CI: −0.90, −0.35) and AIx (WMD:−2.63%, 95% CI: −5.25 to −0.02) significantly. Aerobic exercise training showed significantly greater reduction in brachial-ankle (WMD: −1.01 m/s, 95% CI: −1.57, −0.44) than in carotid-femoral (WMD: -0.39 m/s, 95% CI: −0.52, −0.27) PWV. Higher aerobic exercise intensity was associated with larger reductions in AIx (β: −1.55%, CI −3.09, 0.0001). In addition, aerobic exercise had a significantly larger effect in reducing PWV (WMD:−1.0 m/s, 95% CI: −1.43, −0.57) in participants with stiffer arteries (PWV ≥8 m/s). Resistance exercise had no effect on PWV and AIx. There was no significant effect of combined exercise on PWV and AIx. Conclusions We conclude that aerobic exercise improved arterial stiffness significantly and that the effect was enhanced with higher aerobic exercise intensity and in participants with greater arterial stiffness at baseline. Trial Registration PROSPERO Database registration: CRD42014009744,. PMID:25333969
Trivedi, Madhukar H; Greer, Tracy L; Rethorst, Chad D; Carmody, Thomas; Grannemann, Bruce D; Walker, Robrina; Warden, Diane; Shores-Wilson, Kathy; Stoutenberg, Mark; Oden, Neal; Silverstein, Meredith; Hodgkins, Candace; Love, Lee; Seamans, Cindy; Stotts, Angela; Causey, Trey; Szucs-Reed, Regina P; Rinaldi, Paul; Myrick, Hugh; Straus, Michele; Liu, David; Lindblad, Robert; Church, Timothy; Blair, Steven N; Nunes, Edward V
To evaluate exercise as a treatment for stimulant use disorders. The STimulant Reduction Intervention using Dosed Exercise (STRIDE) study was a randomized clinical trial conducted in 9 residential addiction treatment programs across the United States from July 2010 to February 2013. Of 497 adults referred to the study, 302 met all eligibility criteria, including DSM-IV criteria for stimulant abuse and/or dependence, and were randomized to either a dosed exercise intervention (Exercise) or a health education intervention (Health Education) control, both augmenting treatment as usual and conducted thrice weekly for 12 weeks. The primary outcome of percent stimulant abstinent days during study weeks 4 to 12 was estimated using a novel algorithm adjustment incorporating self-reported Timeline Followback (TLFB) stimulant use and urine drug screen (UDS) data. Mean percent of abstinent days based on TLFB was 90.8% (SD = 16.4%) for Exercise and 91.6% (SD = 14.7%) for Health Education participants. Percent of abstinent days using the eliminate contradiction (ELCON) algorithm was 75.6% (SD = 27.4%) for Exercise and 77.3% (SD = 25.1%) for Health Education. The primary intent-to-treat analysis, using a mixed model controlling for site and the ELCON algorithm, produced no treatment effect (P = .60). In post hoc analyses controlling for treatment adherence and baseline stimulant use, Exercise participants had a 4.8% higher abstinence rate (78.7%) compared to Health Education participants (73.9%) (P = .03, number needed to treat = 7.2). The primary analysis indicated no significant difference between exercise and health education. Adjustment for intervention adherence showed modestly but significantly higher percent of abstinent days in the exercise group, suggesting that exercise may improve outcomes for stimulant users who have better adherence to an exercise dose. ClinicalTrials.gov identifier: NCT01141608. © Copyright 2017 Physicians Postgraduate Press, Inc.
Townsend, Jeremy R.; Hoffman, Jay R.; Gonzalez, Adam M.; Jajtner, Adam R.; Boone, Carleigh H.; Robinson, Edward H.; Mangine, Gerald T.; Wells, Adam J.; Fragala, Maren S.; Fukuda, David H.; Stout, Jeffrey R.
2015-01-01
Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation. PMID:25792982
Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease.
van de Bool, Coby; Steiner, Michael C; Schols, Annemie M W J
2012-11-01
This review presents current knowledge regarding the rationale and efficacy of nutrition as an ergogenic aid to enhance the effects of exercise and training in chronic obstructive pulmonary disease (COPD). Altered body composition and skeletal muscle dysfunction in COPD suggest that exercise capacity can be targeted via several metabolic routes. Muscle metabolic alterations in COPD include a reduced oxidative metabolism and enhanced susceptibility for oxidative stress. Muscle wasting may be associated with deficiencies of vitamin D and low branched-chain amino acid levels. Exercise training is of established benefit in COPD but clear-cut clinical trial evidence to support the performance enhancing effect of nutritional intervention is lacking. One randomized controlled trial suggested that augmentation of training with polyunsaturated fatty acids may improve exercise capacity. Conflicting results are reported on dietary creatine supplementation in patients with COPD receiving pulmonary rehabilitation and results from acute intervention studies do not directly imply long-term effects of glutamate or glutamine supplementation as an ergogenic aid in COPD. Recent data indicate that not only muscle but also visceral fat may be an important additional target for combined nutrition and exercise intervention in COPD to improve physical performance and decrease cardiometabolic risk. There is a clear need for adequately powered and controlled intervention and maintenance trials to establish the role of nutritional supplementation in the enhancement of exercise performance and training and the wider management of the systemic features of the disease.
Walser, Buddy; Stebbins, Charles L
2008-10-01
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
ERIC Educational Resources Information Center
Cheng, Kun-Hung; Tsai, Chin-Chung
2016-01-01
Following a previous study (Cheng & Tsai, 2014. "Computers & Education"), this study aimed to probe the interaction of child-parent shared reading with the augmented reality (AR) picture book in more depth. A series of sequential analyses were thus conducted to infer the behavioral transition diagrams and visualize the continuity…
Redox interventions to increase exercise performance
2015-01-01
Abstract Skeletal muscle continually produces reactive oxygen species (ROS) and nitric oxide (NO) derivatives. Both oxidant cascades have complex effects on muscle contraction, metabolic function and tissue perfusion. Strenuous exercise increases oxidant production by muscle, limiting performance during endurance exercise tasks. Conversely, redox interventions that modulate ROS or NO activity have the potential to improve performance. Antioxidants have long been known to buffer ROS activity and lessen oxidative perturbations during exercise. The capacity to enhance human performance varies among antioxidant categories. Vitamins, provitamins and nutriceuticals often blunt oxidative changes at the biochemical level but do not enhance performance. In contrast, reduced thiol donors have been shown to delay fatigue or increase endurance under a variety of experimental conditions. Dietary nitrate supplementation has recently emerged as a second redox strategy for increasing endurance. Purified nitrate salts and nitrate‐rich foods, notably beetroot and beetroot juice, are reported to lessen the oxygen cost of exercise, increase efficiency, and enhance performance during endurance tasks. These findings are exciting but enigmatic since nitrate per se has little bioactivity and cannot be converted to NO by mammalian cells. Overall, the available data suggest exercise endurance can be augmented by redox‐active supplements, either reduced thiol donors or dietary nitrates. These findings have clear implications for athletes seeking a competitive edge. More importantly, interventions that increase endurance may benefit individuals whose physical activity is limited by illness, ageing, or frailty. PMID:26584644
Alkhatib, Ahmad; Atcheson, Roisin
2017-08-15
Yerba Maté (YM), has become a popular herb ingested for enhancing metabolic health and weight-loss outcomes. No studies have tested the combined metabolic, satiety, and psychomotor effects of YM during exercise. We tested whether YM ingestion affects fatty acid oxidation (FAO), profile of mood state score (POMS), and subjective appetite scale (VAS), during prolonged moderate exercise. Twelve healthy active females were randomized to ingest either 2 g of YM or placebo (PLC) in a repeated-measures design. Participants rested for 120 min before performing a 30-min cycling exercise corresponding to individuals' crossover point intensity (COP). FAO, determined using indirect calorimetry, was significantly higher during the 30-min exercise in YM vs. PLC (0.21 ± 0.07 vs. 0.17 ± 0.06 g/min, p < 0.05). VAS scores for hunger, prospective eating, and desire to eat were all reduced ( p < 0.05). Whereas, POMS measures of focus, energy, and concentration were all increased ( p < 0.05). There was no significant time-effect for any of the measured variables, nor was there any interaction effects between YM treatment and time. Combining YM intake with prolonged exercise at targeted "fat-loss"' intensities augments FAO and improves measures of satiety and mood state. Such positive combined metabolic, satiety, and psychomotor effects may provide an important role for designing future fat and weight-loss lifestyle interventions.
Endurance Exercise in Hypoxia, Hyperoxia and Normoxia: Mitochondrial and Global Adaptations.
Przyklenk, Axel; Gutmann, Boris; Schiffer, Thorsten; Hollmann, Wildor; Strueder, Heiko K; Bloch, Wilhelm; Mierau, Andreas; Gehlert, Sebastian
2017-07-01
We hypothesized short-term endurance exercise (EN) in hypoxia (HY) to exert decreased mitochondrial adaptation, peak oxygen consumption (VO 2peak ) and peak power output (PPO) compared to EN in normoxia (NOR) and hyperoxia (PER). 11 male subjects performed repeated unipedal cycling EN in HY, PER, and NOR over 4 weeks in a cross-over design. VO 2peak , PPO, rate of perceived exertion (RPE) and blood lactate (Bla) were determined pre- and post-intervention to assess physiological demands and adaptation. Skeletal muscle biopsies were collected to determine molecular mitochondrial signaling and adaptation. Despite reduced exercise intensity (P<0.05), increased Bla and RPE levels in HY revealed higher metabolic load compared to PER (P<0.05) and NOR (n.s.). PPO increased in all groups (P<0.05) while VO 2peak and mitochondrial signaling were unchanged (P>0.05). Electron transport chain complexes tended to increase in all groups with the highest increase in HY (n.s.). EN-induced mitochondrial adaptability and exercise capacity neither decreased significantly in HY nor increased in PER compared to NOR. Despite decreased exercise intensity, short term EN under HY may not necessarily impair mitochondrial adaptation and exercise capacity while PER does not augment adaptation. HY might strengthen adaptive responses under circumstances when absolute training intensity has to be reduced. © Georg Thieme Verlag KG Stuttgart · New York.
Heyn, Patricia C; Baumgardner, Chad A; McLachlan, Leslie; Bodine, Cathy
2014-01-01
The purpose of this pilot study was to investigate the effectiveness of a mixed-reality (MR) exercise environment on engagement and enjoyment levels of individuals with spinal cord injury (SCI) and intellectual and developmental disabilities (IDD). Six people participated in this cross-sectional, observational pilot study involving one MR exercise trial. The augmented reality environment was based on a first-person perspective video of a scenic biking/walking trail in Colorado. Males and females (mean age, 43.3 ± 13.7 years) were recruited from a research database for their participation in previous clinical studies. Of the 6 participants, 2 had SCI, 2 had IDD, and 2 were without disability. The primary outcome measurement of this pilot study was the self-reported engagement and enjoyment level of each participant after the exercise trial. All participants reported increased levels of engagement, enjoyment, and immersion involving the MR exercise environment as well as positive feedback recommending this type of exercise approach to peers with similar disabilities. All the participants reported higher than normal levels of enjoyment and 66.7% reported higher than normal levels of being on a real trail. Participants' feedback suggested that the MR environment could be entertaining, motivating, and engaging for users with disabilities, resulting in a foundation for further development of this technology for use in individuals with cognitive and physical disabilities.
Low-level carbon monoxide exposure and work capacity at 1600 meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiser, P.C.; Cropp, G.J.A.; Morrill, C.G.
At sea level, low-level carbon monoxide (CO) exposure impairs exercise performance. To determine if altitude residence at 1600 m augments this CO effect, two studies of graded treadmill work capacity were done. The Initial Study investigated nine, non-smoking male subjects breathing either filtered air (FA) or 28 ppm CO in filtered air. End-exercise carboxyhemoglobin (HbCO) levels averaged 0.9 %HbCO breathing FA and 4.7 %HbCO breathing CO. Total work performance and aerobic work capacity were reduced. Work heart rate was elevated, and post-exercise left ventricular ejection time breathing CO did not shorten to the same degree as with FA exposure. COmore » exposure resulted in a lower anaerobic threshold, and a greater minute ventilation occurred at work rates heavier than the anaerobic threshold due to an increased blood lactate level. The Dose-Response Study exposed twelve subjects to FA or CO such that the end-exercise HbCO levels were 0.7, 3.5, 5.4 and 8.7 %HbCO. Exercise performance and aerobic work capacity were impaired in proportion to the CO exposure. In both studies, maximal cardio-pulmonary responses were not different, but submaximal exercise changes were elevated breathing CO. Thus, in healthy young men residing near 1600 m, an increase in low-level CO exposure produced a linear decrement in maximal aerobic performance similar to that reported at sea level.« less
Duan, Liya; Guan, Tao; Yang, Bo
2009-01-01
Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. Registration is one of the most difficult problems currently limiting the usability of AR systems. In this paper, we propose a novel natural feature tracking based registration method for AR applications. The proposed method has following advantages: (1) it is simple and efficient, as no man-made markers are needed for both indoor and outdoor AR applications; moreover, it can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) Thanks to the reduced SIFT based augmented optical flow tracker, the virtual scene can still be augmented on the specified areas even under the circumstances of occlusion and large changes in viewpoint during the entire process. (3) It is easy to use, because the adaptive classification tree based matching strategy can give us fast and accurate initialization, even when the initial camera is different from the reference image to a large degree. Experimental evaluations validate the performance of the proposed method for online pose tracking and augmentation.
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
Kim, Ji-Min; Sohn, Dong-Seok; Heo, Jeong-Uk; Park, Jun-Sub; Jung, Heui-Seung; Moon, Jee-Won; Lee, Ju-Hyoung; Park, In-Sook
2012-12-01
The purpose of this study was to evaluate the success rate of implants and vertical bone gain of edentulous posterior maxilla using ultrasonic piezoelectric vibration and hydraulic pressure, namely the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique through a crestal approach. A total of 250 maxillary sinuses were augmented using HPISE and 353 implants (averaging 11.8 mm in length and 4.5 mm in diameter), with 12 different systems, were placed simultaneously with or without additional bone grafting. Plain radiograms and cone beam computed tomograms were taken in all patients to evaluate sinus augmentation. Membrane perforation was recorded at 10 of the 353 implant sites. The perforation rate was 2.83%. The total success rate of implantation was 97.2% after an average of 69.3 weeks of loading. The crestally approached sinus augmentation using ultrasonic piezoelectric vibration and hydraulic pressure is an additional method of maxillary sinus augmentation.
OpenSim Model Improvements to Support High Joint Angle Resistive Exercising
NASA Technical Reports Server (NTRS)
Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts
Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians.
Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, B O
2016-01-01
African Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared with their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. The purpose of this study was to examine the effect of 8 wk of moderate- to high-intensity aerobic training in young healthy sedentary AA and CA men and women. Sixty-four healthy volunteers (men, 28; women, 36) with mean age 24 yr underwent measures of arterial structure, function, and blood pressure (BP) variables at baseline, after the 4-wk control period, and 8 wk after training. There was a significant increase in VO2peak among both groups after exercise training. Brachial systolic BP decreased significantly after the control period in both groups but not after exercise training. Carotid pulse pressure decreased significantly in both groups after exercise training as compared with that in baseline. There was no change in any of the other BP variables. AA had higher intima-media thickness at baseline and after the control period but it significantly decreased after exercise training compared with that of CA. AA had significantly lower baseline forearm blood flow and reactive hyperemia compared with those of CA, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (central pulse wave velocity) and wave-reflection (augmentation index) between the two groups at any time point. This is the first study to show that 8 wk of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AA, making it comparable with the CA and with minimal effects on BP variables.
Community-based group aquatic programme for individuals with multiple sclerosis: a pilot study.
Salem, Yasser; Scott, Anne Hiller; Karpatkin, Herbert; Concert, George; Haller, Leah; Kaminsky, Eva; Weisbrot, Rivky; Spatz, Eugene
2011-01-01
The purpose of this study was to determine the feasibility of providing a community-based aquatic exercise programme and to examine the effects of a group aquatic exercise programme in individuals with multiple sclerosis. This study illustrates the implementation of a multidisciplinary community-based programme in a university community wellness centre coordinated with a local advocacy group. Eleven subjects with multiple sclerosis participated in a 5-week community-based aquatic exercise programme. Aquatic exercises were held twice weekly for 60 minutes and included aerobic exercises, strength training, flexibility exercises, balance training and walking activities. The 10-Metre Walk test, the Berg Balance Scale (BBS), the 'Timed Up and Go' (TUG) test, grip strength and the Modified Fatigue Impact Scale were used to assess motor function. Analysis of the scores demonstrated improved gait speed, BBS, TUG test and grip strength. The average attendance of the training sessions was good (88%), and no incidence of injuries, no incidence of falls and no adverse effects related to the exercise programme were reported. All participants reported that they enjoyed the programme, and they had improved after the training. A community-based aquatic exercise programme is feasible and resulted in improvement in motor functions of individuals with multiple sclerosis. These findings indicate that an aquatic training programme is appropriate and beneficial for individuals with multiple sclerosis and should be considered to augment the rehabilitation of those individuals. This programme may provide a viable model for a community-based wellness programme for people with disability including individuals with multiple sclerosis.
Ferguson, Richard A; Dodd, Matthew J; Paley, Victoria R
2014-10-01
A novel technique of neuromuscular electrical stimulation (NMES) via the peroneal nerve has been shown to augment limb blood flow which could enhance recovery following exercise. The present study examined the effects of NMES, compared to graduated compression socks on muscle soreness, strength, and markers of muscle damage and inflammation following intense intermittent exercise. Twenty-one (age 21 ± 1 years, height 179 ± 7 cm, body mass 76 ± 9 kg,) healthy males performed a 90-min intermittent shuttle running test on three occasions. Following exercise, the following interventions were applied: passive recovery (CON), graduated compression socks (GCS) or NMES. Perceived muscle soreness (PMS) and muscle strength (isometric maximal voluntary contraction of knee extensors and flexors) were measured and a venous blood sample taken pre-exercise and 0, 1, 24, 48 and 72 h following exercise for measurement of creatine kinase (CK) and Lactate dehydrogenase (LDH) activity and IL-6 and CRP concentrations. PMS increased in all conditions immediately, 1 and 24 h post-exercise. At 24 h PMS was lower in NMES compared to GCS and CON (2.0 ± 1.6, 3.2 ± 2.1, 4.6 ± 2.0, respectively). At 48 h PMS was lower in NMES compared to CON (1.3 ± 1.5 and 3.1 ± 1.8, respectively). There were no differences between treatments for muscle strength, CK and LDH activity, IL-6 and CRP concentrations. The novel NMES technique is superior to GCS in reducing PMS following intense intermittent endurance exercise.
Engeli, Stefan; Stinkens, Rudi; Heise, Tim; May, Marcus; Goossens, Gijs H.; Blaak, Ellen E.; Havekes, Bas; Jax, Thomas; Albrecht, Diego; Pal, Parasar; Tegtbur, Uwe; Haufe, Sven; Langenickel, Thomas H.
2018-01-01
Sacubitril/valsartan (LCZ696), a novel angiotensin receptor-neprilysin inhibitor, was recently approved for the treatment of heart failure with reduced ejection fraction. Neprilysin degrades several peptides that modulate lipid metabolism, including natriuretic peptides. In this study, we investigated the effects of 8 weeks’ treatment with sacubitril/valsartan on whole-body and adipose tissue lipolysis and lipid oxidation during defined physical exercise compared with the metabolically neutral comparator amlodipine. This was a multicenter, randomized, double-blind, active-controlled, parallel-group study enrolling subjects with abdominal obesity and moderate hypertension (mean sitting systolic blood pressure ≥130–180 mm Hg). Lipolysis during rest and exercise was assessed by microdialysis and [1,1,2,3,3-2H]-glycerol tracer kinetics. Energy expenditure and substrate oxidation were measured simultaneously using indirect calorimetry. Plasma nonesterified fatty acids, glycerol, insulin, glucose, adrenaline and noradrenaline concentrations, blood pressure, and heart rate were also determined. Exercise elevated plasma glycerol, free fatty acids, and interstitial glycerol concentrations and increased the rate of glycerol appearance. However, exercise-induced stimulation of lipolysis was not augmented on sacubitril/valsartan treatment compared with amlodipine treatment. Furthermore, sacubitril/valsartan did not alter energy expenditure and substrate oxidation during exercise compared with amlodipine treatment. In conclusion, sacubitril/valsartan treatment for 8 weeks did not elicit clinically relevant changes in exercise-induced lipolysis or substrate oxidation in obese patients with hypertension, implying that its beneficial cardiovascular effects cannot be explained by changes in lipid metabolism during exercise. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01631864. PMID:29180454
Engeli, Stefan; Stinkens, Rudi; Heise, Tim; May, Marcus; Goossens, Gijs H; Blaak, Ellen E; Havekes, Bas; Jax, Thomas; Albrecht, Diego; Pal, Parasar; Tegtbur, Uwe; Haufe, Sven; Langenickel, Thomas H; Jordan, Jens
2018-01-01
Sacubitril/valsartan (LCZ696), a novel angiotensin receptor-neprilysin inhibitor, was recently approved for the treatment of heart failure with reduced ejection fraction. Neprilysin degrades several peptides that modulate lipid metabolism, including natriuretic peptides. In this study, we investigated the effects of 8 weeks' treatment with sacubitril/valsartan on whole-body and adipose tissue lipolysis and lipid oxidation during defined physical exercise compared with the metabolically neutral comparator amlodipine. This was a multicenter, randomized, double-blind, active-controlled, parallel-group study enrolling subjects with abdominal obesity and moderate hypertension (mean sitting systolic blood pressure ≥130-180 mm Hg). Lipolysis during rest and exercise was assessed by microdialysis and [1,1,2,3,3- 2 H]-glycerol tracer kinetics. Energy expenditure and substrate oxidation were measured simultaneously using indirect calorimetry. Plasma nonesterified fatty acids, glycerol, insulin, glucose, adrenaline and noradrenaline concentrations, blood pressure, and heart rate were also determined. Exercise elevated plasma glycerol, free fatty acids, and interstitial glycerol concentrations and increased the rate of glycerol appearance. However, exercise-induced stimulation of lipolysis was not augmented on sacubitril/valsartan treatment compared with amlodipine treatment. Furthermore, sacubitril/valsartan did not alter energy expenditure and substrate oxidation during exercise compared with amlodipine treatment. In conclusion, sacubitril/valsartan treatment for 8 weeks did not elicit clinically relevant changes in exercise-induced lipolysis or substrate oxidation in obese patients with hypertension, implying that its beneficial cardiovascular effects cannot be explained by changes in lipid metabolism during exercise. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01631864. © 2017 The Authors.
Computer Exercises in Meteorology.
ERIC Educational Resources Information Center
Trapasso, L. Michael; Conner, Glen; Stallins, Keith
Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…
Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry
ERIC Educational Resources Information Center
Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.
2014-01-01
A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…
Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.
ERIC Educational Resources Information Center
Perez, J. M.; Quereda, R.
1983-01-01
Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)
Informing Mechanistic Toxicology with Computational Molecular Models
Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo effo...
Food choice, appetite and physical activity.
Bellisle, F
1999-09-01
Food choices and diet composition have been studied less often than energy intake in subjects with varying levels of physical activity. The reported effects of exercise on food choices are not fully consistent, especially on the short term. Type of exercise, intensity, duration can affect the results as well as subjects' characteristics (gender, age, previous training and fitness). A crucial role could also be played by psychological (chronic dieting, attitudes toward health and food, long-established food habits and preferences) and social (traditions, food availability, appropriate times and places) factors. In short-term intervention studies, where a meal is ingested a few minutes following a bout of exercise of varying duration and intensity, an increase in CHO intake is most often reported, while increased protein intake is an occasional observation. In long-term (several weeks) training interventions, intake is assessed from dietary records. Again CHO intake is augmented in exercised subjects as compared to controls, while that of saturated fats and cholesterol may also be affected. Epidemiological studies (without dietary or exercise intervention) often report that habitually active persons eat more and ingest more fruits and vegetables than less active peers. It is not known to what extent such food choices are driven by biological needs (e.g. replacement of glycogen) or elicited by social and psychological factors.
Carbon monoxide and lethal arrhythmias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farber, J.P.; Schwartz, P.J.; Vanoli, E.
1990-12-01
The effect of acute exposure to carbon monoxide on ventricular arrhythmias was studied in a previously described chronically maintained animal model of sudden cardiac death. In 60 percent of dogs with a healed anterior myocardial infarction, the combination of mild exercise and acute myocardial ischemia induces ventricular fibrillation. The events in this model are highly reproducible, thus allowing study by internal control analysis. Dogs that develop ventricular fibrillation during the test of exercise and acute myocardial ischemia are considered at high risk for sudden death and are defined as 'susceptible'; dogs that survive the test without a fatal arrhythmia aremore » considered at low risk for sudden death and are defined as 'resistant.' In the current study, the effects of carboxyhemoglobin levels ranging from 5 to 15 percent were tested in resistant and susceptible dogs. A trend toward higher heart rates was observed at all levels of carboxyhemoglobin, although significant differences were observed only with 15 percent carboxyhemoglobin. This trend was observed at rest and during exercise in both resistant and susceptible dogs. In resistant animals, in which acute myocardial ischemia is typically associated with bradycardia even under the control condition, this reflex response occurred earlier and was augmented after exposure to carbon monoxide. This effect may depend on the increased hypoxic challenge caused by carbon monoxide, and thus on an augmentation of the neural reflex activation or a sensitization of the sinus node to acetylcholine induced by hypoxia. In both resistant and susceptible dogs, carbon monoxide exposure induced a worsening of ventricular arrhythmias in a minority of cases. This worsening was not reproducible in subsequent trials. These data indicate that acute exposure to carbon monoxide is seldom arrhythmogenic in dogs that have survived myocardial infarction. (Abstract Truncated)« less
Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen
2016-07-01
An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.
Rethorst, C D; Greer, T L; Toups, M S P; Bernstein, I; Carmody, T J; Trivedi, M H
2015-01-01
Given the role of sleep in the development and treatment of major depressive disorder (MDD), it is becoming increasingly clear that elucidation of the biological mechanisms underlying sleep disturbances in MDD is crucial to improve treatment outcomes. Sleep disturbances are varied and can present as insomnia and/or hypersomnia. Though research has examined the biological underpinnings of insomnia in MDD, little is known about the role of biomarkers in hypersomnia associated with MDD. This paper examines biomarkers associated with changes in hypersomnia and insomnia and as predictors of improvements in sleep quality following exercise augmentation in persons with MDD. Subjects with non-remitted MDD were randomized to augmentation with one of two doses of aerobic exercise: 16 kilocalories per kilogram of body weight per week (KKW) or 4 KKW for 12 weeks. The four sleep-related items on the clinician-rated Inventory of Depressive Symptomatology (sleep onset insomnia, mid-nocturnal insomnia, early morning insomnia and hypersomnia) assessed self-reported sleep quality. Inflammatory cytokines (tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6) and brain-derived neurotrophic factor (BDNF) were assessed in blood samples collected before and following the 12-week intervention. Reduction in hypersomnia was correlated with reductions in BDNF (ρ=0.26, P=0.029) and IL-1β (ρ=0.37, P=0.002). Changes in these biomarkers were not associated with changes in insomnia; however, lower baseline levels of IL-1β were predictive of greater improvements in insomnia (F=3.87, P=0.050). In conclusion, improvement in hypersomnia is related to reductions in inflammatory markers and BDNF in persons with non-remitted MDD. Distinct biological mechanisms may explain reductions in insomnia. PMID:26241349
Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M
2013-08-01
Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.
Integrating autonomous distributed control into a human-centric C4ISR environment
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-05-01
This paper considers incorporating autonomy into human-centric Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) environments. Specifically, it focuses on identifying ways that current autonomy technologies can augment human control and the challenges presented by additive autonomy. Three approaches to this challenge are considered, stemming from prior work in two converging areas. In the first, the problem is approached as augmenting what humans currently do with automation. In the alternate approach, the problem is approached as treating humans as actors within a cyber-physical system-of-systems (stemming from robotic distributed computing). A third approach, combines elements of both of the aforementioned.
Applied Operations Research: Augmented Reality in an Industrial Environment
NASA Technical Reports Server (NTRS)
Cole, Stuart K.
2015-01-01
Augmented reality is the application of computer generated data or graphics onto a real world view. Its use provides the operator additional information or a heightened situational awareness. While advancements have been made in automation and diagnostics of high value critical equipment to improve readiness, reliability and maintenance, the need for assisting and support to Operations and Maintenance staff persists. AR can improve the human machine interface where computer capabilities maximize the human experience and analysis capabilities. NASA operates multiple facilities with complex ground based HVCE in support of national aerodynamics and space exploration, and the need exists to improve operational support and close a gap related to capability sustainment where key and experienced staff consistently rotate work assignments and reach their expiration of term of service. The initiation of an AR capability to augment and improve human abilities and training experience in the industrial environment requires planning and establishment of a goal and objectives for the systems and specific applications. This paper explored use of AR in support of Operation staff in real time operation of HVCE and its maintenance. The results identified include identification of specific goal and objectives, challenges related to availability and computer system infrastructure.
Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins
2018-04-01
Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S.; Sant, T.; Micallef, D.
Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understandmore » rotational augmentation of blade aerodynamics.« less
The effect of exercise therapy on knee osteoarthritis: a randomized clinical trial
Nejati, Parisa; Farzinmehr, Azizeh; Moradi-Lakeh, Maziar
2015-01-01
Background: Knee osteoarthritis (OA) is the most common musculoskeletal disease among old individuals which affects ability for sitting on the chair, standing, walking and climbing stairs. Our objective was to investigate the short and long-term effects of the most simple and the least expensive exercise protocols in combination to conventional conservative therapy for knee OA. Methods: It was a single blind RCT study with a 12-months follow-up. Totally, 56 patients with knee OA were assigned into 2 random groups. The patients in exercise group received exercise for knee muscles in combination with non-steroid anti-inflammatory drugs (NSAIDs) and 10 sessions acupuncture and physiotherapy modalities. Non-exercise group received similar treatments except exercise program. The changes in patients’ pain and functional status were evaluated by visual analog scale (VAS), knee and osteoarthritis outcome score (KOOS) questionnaire and functional tests (4 steps, 5 sit up, and 6 min walk test) before and after treatment (1 and 3 months after intervention), and 1 year later at the follow-up. Results: The results showed that the patients with knee OA in exercise group had significant improvement in pain, disability, walking, stair climbing, and sit up speed after treatment at first and second follow-up when compared with their initial status and when compared with non-exercise group. At third follow up (1 year later) there was significant difference between groups in VAS and in three items of KOOS questionnaire in functional status. Conclusion: Non aerobic exercises for muscles around knee can augment the effect of other therapeutic interventions like medical therapy, acupuncture, and modalities for knee OA. PMID:26034739
Nock, Nora L; Dimitropoulos, Anastasia; Rao, Stephen M; Flask, Chris A; Schluchter, Mark; Zanotti, Kristine M; Rose, Peter G; Kirwan, John P; Alberts, Jay
2014-11-01
Obesity is a leading risk factor for endometrial cancer (EC), particularly Type I forms, which are increasing in the U.S. Although death rates from most cancers have been decreasing, overall mortality in EC is increasing in the U.S. EC survivors' poor fitness combined with their surgical treatments may make weight loss particularly challenging. High intensity exercise increases neurotrophins and neurological reward via altered striatal dopamine in animals, and, in humans, chronic high intensity exercise enhances meal-induced satiety and may reduce hedonic eating. "Assisted" exercise, a mode of exercise whereby a patient's voluntary exercise rate is augmented mechanically, may modulate brain dopamine levels in Parkinson's Disease patients but has not been previously evaluated as a treatment for obesity. We describe the rationale and design of the REWARD trial, which has the overarching goal of randomizing 120 obese EC survivors to "assisted" or voluntary rate cycling to evaluate the efficacy of "assisted" exercise in enhancing and sustaining weight loss. Patients in both arms will receive 3 days/week of supervised exercise and 1 day/week of a group dietary behavioral intervention for 16 weeks and, then, will be followed for 6 months. The primary outcome is weight loss. Secondary outcomes include measures for body composition, fitness, eating behavior, exercise motivation and, quality of life as well as cognition and food reward and motivation as assessed by functional magnetic resonance imaging (fMRI) tasks. If successful, the REWARD program could be extended to help sustain weight loss in obese cancer and non-cancer patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Acute exercises induce disorders of the gastrointestinal integrity in a murine model.
Gutekunst, Katrin; Krüger, Karsten; August, Christian; Diener, Martin; Mooren, Frank-Christoph
2014-03-01
Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.
Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.
Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E
2017-07-01
Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.
Cochran, Andrew J R; Little, Jonathan P; Tarnopolsky, Mark A; Gibala, Martin J
2010-03-01
Exercise training under conditions of reduced carbohydrate (CHO) availability has been reported to augment gains in skeletal muscle oxidative capacity; however, the underlying mechanisms are unclear. We examined the effect of manipulating CHO intake on the acute metabolic response to high-intensity interval exercise, including signaling cascades linked to mitochondrial biogenesis. Ten men performed two trials in random order separated by >or=1 wk. Each trial consisted of a morning (AM) and afternoon (PM) training session (5 x 4 min cycling at approximately 90-95% of heart rate reserve) separated by 3 h of recovery during which subjects ingested a high-CHO drink (HI-HI) or nonenergetic placebo (HI-LO) before PM exercise. Biopsies (vastus lateralis) revealed that muscle phosphocreatine and ATP content were similar after AM exercise but decreased to a greater extent during PM exercise in HI-LO vs. HI-HI. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) increased approximately 4-fold and 2-fold, respectively, during AM exercise with no difference between conditions. After PM exercise, p38 MAPK phosphorylation was higher in HI-LO vs. HI-HI, whereas AMPK was not different between conditions. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) gene expression increased approximately 8-fold during recovery from AM exercise and remained elevated during PM exercise with no differences between conditions. Cytochrome oxidase subunit 4 (COXIV) mRNA was also elevated 3 h after AM exercise, with no difference between conditions. These data provide evidence that p38 MAPK is a nutrient-sensitive signaling molecule that could be involved in the altered skeletal muscle adaptive response reported after exercise training under conditions of restricted CHO intake, but further research is required to confirm this hypothesis.
Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes
Irby, Megan B.; Bond, Dale S.; Lipton, Richard B.; Nicklas, Barbara; Houle, Timothy T.; Penzien, Donald B.
2016-01-01
Background Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Overview Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Conclusion Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. PMID:26643584
Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes.
Irby, Megan B; Bond, Dale S; Lipton, Richard B; Nicklas, Barbara; Houle, Timothy T; Penzien, Donald B
2016-02-01
Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. © 2015 American Headache Society.
Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion
NASA Technical Reports Server (NTRS)
Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.
2015-01-01
Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
Augmenting Our Influence: Alliance Revitalization and Partner Development
2014-04-01
actual sub- stance over cosmetics remains to be determined. Broadening Regional Partnerships. Widening the network of U.S. security ties to in- clude...of Virginia, February 20, 2013; Clinton, pp. 13-24; Condoleezza Rice , “Remarks at the U.S. University Presidents Summit on Interna- tional Education...require the showing of presence, such as rotational naval exercises in the Bal- tic Sea and Black Sea conducted by U.S. Naval Forces Europe and
1980-11-01
Systems: A Raytheon Project History", RADC-TR-77-188, Final Technical Report, June 1977. 4. IBM Federal Systems Division, "Statistical Prediction of...147, June 1979. 4. W. D. Brooks, R. W. Motley, "Analysis of Discrete Software Reliability Models", IBM Corp., RADC-TR-80-84, RADC, New York, April 1980...J. C. King of IBM (Reference 9) and Lori A. Clark (Reference 10) of the University of Massachusetts. Programs, so exercised must be augmented so they
Political Kidnappings in Turkey, 1971-1972
1977-07-01
diet , one TPLA member replied, "No, your minds must be clear in case you have to make an important decision." The hostages never learned what that...and inadequate exercise and diet augmented the intense anxiety and discomfort they suffered. As has happened in other polit- ical kidnappings, the...card from one of the airmen. Meanwhile, after his arrest, Ertekin had revealed the names of the group members, and the GOT learned that four of the
Going Solo: Creative Ideas for the One-Computer Classroom.
ERIC Educational Resources Information Center
DuBois, Jeanine
1998-01-01
A teacher who became computer literate by playing with one over the summer, describes how even just one computer in the classroom can help differentiate curriculum, be used for individualized instruction, augment resource materials, access the World Wide Web for the latest discoveries, assist visual learners, and create new student and teacher…
Hypertensive response to exercise: mechanisms and clinical implication.
Kim, Darae; Ha, Jong-Won
2016-01-01
A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates that a HRE is associated with functional and structural abnormalities of left ventricle, especially when accompanied by increased central blood pressure. A HRE harbors prognostic significance in future development of hypertension and increased cardiovascular events, particularly if a HRE is documented in moderate intensity of exercise. As supported by previous studies, a HRE is not a benign phenomenon, however, currently, whether to treat a HRE is controversial with uncertain treatment strategy. Considering underlying mechanisms, angiotensin receptor blockers and beta blockers can be suggested in individuals with HRE, however, evidences for efficacy and outcomes of treatment of HRE in individuals without hypertension is scarce and therefore warrants further studies.
Gossellin, J; Wren, J A; Sunderland, S J
2007-08-01
Canine patients are generally regarded as being clinically obese when their body weight is at least 15% above ideal. The incidence of obesity in dogs is thought to be in the range of 20-40% of the general population and, since obesity is known to predispose or exacerbate a range of serious medical conditions, its importance cannot be overstated. Management of obesity through dietary restriction and increased exercise is often difficult to achieve and dependent upon owner compliance. Until recently there has been no authorized therapeutic medication available for weight reduction in dogs, and drugs used in people have proved unsuitable. However, with the development of microsomal triglyceride transfer protein inhibitors for canine use, such as dirlotapide, the veterinarian has a novel method with which to augment traditional weight control programmes. This approach has the additional advantage that weight loss is achieved without dietary restriction or change in exercise regimen, providing encouragement for the owner to comply with subsequent dietary and exercise recommendations, thereby increasing the likelihood for long-term success.
Durkalec-Michalski, Krzysztof; Zawieja, Emilia Ewa; Zawieja, Bogna Ewa; Podgórski, Tomasz; Jurkowska, Dominika; Jeszka, Jan
2017-12-18
The study was aimed at assessing the influence of 3-week low glycemic index (LGI) versus moderate glycemic index (MGI) diet on substrate oxidation during incremental exercise. 17 runners completed two 3-week trials of either LGI or MGI diet in a randomised counterbalanced manner. Before and after each trial the incremental cycling test was performed. Metabolic alternations were observed only within tested diets and no significant differences in fat and carbohydrate (CHO) oxidation were found between MGI and LGI diets. Following MGI diet CHO oxidation rate increased. The AUC of fat oxidation decreased after both diets. Percent contribution of fat to energy yield declined, whereas contribution of CHO was augmented following MGI diet. This study indicates that the 3-week MGI diet increased the rate of carbohydrate oxidation during incremental cycling test and improved performance in acute intense exercise test, while both high-carbohydrate diets downregulated fat oxidation rate.
ERIC Educational Resources Information Center
Inlow, Jennifer K.; Miller, Paige; Pittman, Bethany
2007-01-01
We describe two bioinformatics exercises intended for use in a computer laboratory setting in an upper-level undergraduate biochemistry course. To introduce students to bioinformatics, the exercises incorporate several commonly used bioinformatics tools, including BLAST, that are freely available online. The exercises build upon the students'…
Spätjens, Roel L H M G; Bébarová, Markéta; Seyen, Sandrine R M; Lentink, Viola; Jongbloed, Roselie J; Arens, Yvonne H J M; Heijman, Jordi; Volders, Paul G A
2014-10-01
Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during β-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Disaster medicine through Google Glass.
Carenzo, Luca; Barra, Federico Lorenzo; Ingrassia, Pier Luigi; Colombo, Davide; Costa, Alessandro; Della Corte, Francesco
2015-06-01
Nontechnical skills can make a difference in the management of disasters and mass casualty incidents and any tool helping providers in action might improve their ability to respond to such events. Google Glass, released by Google as a new personal communication device, could play a role in this field. We recently tested Google Glass during a full-scale exercise to perform visually guided augmented-reality Simple Triage and Rapid Treatment triage using a custom-made application and to identify casualties and collect georeferenced notes, photos, and videos to be incorporated into the debriefing. Despite some limitations (battery life and privacy concerns), Glass is a promising technology both for telemedicine applications and augmented-reality disaster response support to increase operators' performance, helping them to make better choices on the field; to optimize timings; and finally represents an excellent option to take professional education to a higher level.
ERIC Educational Resources Information Center
Winberg, T. Mikael; Berg, C. Anders R.
2007-01-01
To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…
Computer-Based Exercises To Supplement the Teaching of Stereochemical Aspects of Drug Action.
ERIC Educational Resources Information Center
Harrold, Marc W.
1995-01-01
At the Duquesne University (PA) school of pharmacy, five self-paced computer exercises using a molecular modeling program have been implemented to teach stereochemical concepts. The approach, designed for small-group learning, has been well received and found effective in enhancing students' understanding of the concepts. (Author/MSE)
ERIC Educational Resources Information Center
Stokes-Huby, Heather; Vitale, Dale E.
2007-01-01
This exercise integrates the infrared unknown identification ("IR-ID") experiment common to most organic laboratory syllabi with computer molecular modeling. In this modification students are still required to identify unknown compounds from their IR spectra, but must additionally match some of the absorptions with computed frequencies they…
Developing Computer-Interactive Tape Exercises for Intermediate-Level Business French.
ERIC Educational Resources Information Center
Garnett, Mary Anne
One college language teacher developed computer-interactive audiotape exercises for an intermediate-level class in business French. The project was undertaken because of a need for appropriate materials at that level. The use of authoring software permitted development of a variety of activity types, including multiple-choice, fill-in-the-blank,…
Davis, Robert T.; Stabley, John N.; Dominguez, James M.; Ramsey, Michael W.; McCullough, Danielle J.; Lesniewski, Lisa A.; Delp, Michael D.
2013-01-01
Adipose tissue (AT), which typically comprises an increased percentage of body mass with advancing age, receives a large proportion of resting cardiac output. During exercise, an old age-associated inability to increase vascular resistance within the intra-abdominal AT may compromise the ability of the cardiovascular system to redistribute blood flow to the active musculature, contributing to the decline in exercise capacity observed in this population. We tested the hypotheses that 1) there would be an elevated perfusion of AT during exercise with old age that was associated with diminished vasoconstrictor responses of adipose-resistance arteries, and 2) chronic exercise training would mitigate the age-associated alterations in AT blood flow and vascular function. Young (6 mo; n = 40) and old (24 mo; n = 28) male Fischer 344 rats were divided into young sedentary (YSed), old sedentary (OSed), young exercise trained (YET), or old exercise trained (OET) groups, where training consisted of 10-12 wk of treadmill exercise. In vivo blood flow at rest and during exercise and in vitro α-adrenergic and myogenic vasoconstrictor responses in resistance arteries from AT were measured in all groups. In response to exercise, there was a directionally opposite change in AT blood flow in the OSed group (∼150% increase) and YSed (∼55% decrease) vs. resting values. Both α-adrenergic and myogenic vasoconstriction were diminished in OSed vs. YSed AT-resistance arteries. Exercise training resulted in a similar AT hyperemic response between age groups during exercise (YET, 9.9 ± 0.5 ml·min−1·100−1 g; OET, 8.1 ± 0.9 ml·min−1·100−1 g) and was associated with enhanced myogenic and α-adrenergic vasoconstriction of AT-resistance arteries from the OET group relative to OSed. These results indicate that there is an inability to increase vascular resistance in AT during exercise with old age, due, in part, to a diminished vasoconstriction of AT arteries. Furthermore, the results indicate that exercise training can augment vasoconstriction of AT arteries and mitigate age-related alterations in the regulation of AT blood flow during exercise. PMID:23349454
Smits, Jasper A J; Rosenfield, David; Davis, Michelle L; Julian, Kristin; Handelsman, Pamela R; Otto, Michael W; Tuerk, Peter; Shiekh, Michael; Rosenfield, Ben; Hofmann, Stefan G; Powers, Mark B
2014-06-01
Preclinical and clinical trials suggest that yohimbine may augment extinction learning without significant side effects. However, previous clinical trials have only examined adults with specific phobias. Yohimbine has not yet been investigated in the augmentation of exposure therapy for other anxiety disorders. Adults (n = 40) with a DSM-IV diagnosis of social anxiety disorder were randomized to placebo or yohimbine HCl (10.8 mg) 1 hour before each of four exposure sessions. Outcome measures were collected at baseline, each treatment session, posttreatment, and 1-month follow-up. Yohimbine was well tolerated. Yohimbine augmentation, relative to placebo augmentation, resulted in faster improvement and better outcomes on self-report measures of social anxiety disorder severity (Liebowitz Social Anxiety Scale, d = .53) and depressed mood severity (Beck Depression Inventory, d = .37) but not on the clinician-rated measures (Clinical Global Impressions-Severity Scale, d = .09; Clinical Global Impressions-Improvement Scale, d = .25). Between-group differences on the Liebowitz Social Anxiety Scale were moderated by the level of fear reported at the end of an exposure exercise (end fear), such that the advantage of yohimbine over placebo was only evident among patients who reported low end fear. The results provide moderate support for yohimbine as a therapeutic augmentation strategy for exposure therapy in social anxiety disorder, one that may be especially effective when coupled with successful exposure experiences. Beneficial effects for yohimbine were readily evident for self-report measures but not for clinician-rated outcomes of social anxiety severity and improvement. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Feasibility of virtual reality augmented cycling for health promotion of people poststroke.
Deutsch, Judith E; Myslinski, Mary Jane; Kafri, Michal; Ranky, Richard; Sivak, Mark; Mavroidis, Constantinos; Lewis, Jeffrey A
2013-09-01
A virtual reality (VR) augmented cycling kit (VRACK) was developed to address motor control and fitness deficits of individuals with chronic stroke. In this article, we report on the safety, feasibility, and efficacy of using the VR augmented cycling kit to improve cardiorespiratory (CR) fitness of individuals in the chronic phase poststroke. Four individuals with chronic stroke (47-65 years old and ≥3 years poststroke), with residual lower extremity impairments (Fugl-Meyer 24-26/34), who were limited community ambulators (gait speed range 0.56-1.1 m/s) participated in this study. Safety was defined as the absence of adverse events. Feasibility was measured using attendance, total exercise time, and "involvement" measured with the presence questionnaire (PQ). Efficacy of CR fitness was evaluated using a submaximal bicycle ergometer test before and after an 8-week training program. The intervention was safe and feasible with participants having 1 adverse event, 100% adherence, achieving between 90 and 125 minutes of cycling each week, and a mean PQ score of 39 (SD 3.3). There was a statistically significant (13%; P = 0.035) improvement in peak VO(2), with a range of 6% to 24.5%. For these individuals, poststroke, VR augmented cycling, using their heart rate to set their avatar's speed, fostered training of sufficient duration and intensity to promote CR fitness. In addition, there was a transfer of training from the bicycle to walking endurance. VR augmented cycling may be an addition to the therapist's tools for concurrent training of mobility and health promotion of individuals poststroke.
The virtual mirror: a new interaction paradigm for augmented reality environments.
Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir
2009-09-01
Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.
Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David
2013-01-01
Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perform light and optic experiments in Augmented Reality
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai
2015-10-01
In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.
Kraemer, William J; Hatfield, Disa L; Comstock, Brett A; Fragala, Maren S; Davitt, Patrick M; Cortis, Cristina; Wilson, Jacob M; Lee, Elaine C; Newton, Robert U; Dunn-Lewis, Courtenay; Häkkinen, Keijo; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Looney, David P; White, Mark T; Volek, Jeff S; Maresh, Carl M
2014-01-01
The purpose of this study was to determine the effects of a multinutritional supplement including amino acids, β-hydroxy-β-methylbutyrate (HMB), and carbohydrates on cytokine responses to resistance exercise and training. Seventeen healthy, college-aged men were randomly assigned to a Muscle Armor™ (MA; Abbott Nutrition, Columbus, OH) or placebo supplement group and 12 weeks of resistance training. An acute resistance exercise protocol was administered at 0, 6, and 12 weeks of training. Venous blood samples at pre-, immediately post-, and 30-minutes postexercise were analyzed via bead multiplex immunoassay for 17 cytokines. After 12 weeks of training, the MA group exhibited decreased interferon-gamma (IFN-γ) and interleukin (IL)-10. IL-1β differed by group at various times. Granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-7, IL-8, IL-12p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) changed over the 12-week training period but did not differ by group. Twelve weeks of resistance training alters the cytokine response to acute resistance exercise, and supplementation with HMB and amino acids appears to further augment this result.
García-Gutiérrez, M T; Hazell, T J; Marín, P J
2016-09-07
To evaluate the effects of whole-body vibration (WBV) on skeletal muscle activity and power performance of the upper body during decline bench press exercise at different loads. Forty-seven healthy young and active male students volunteered. Each performed dynamic decline bench press repetitions with and without WBV (50 Hz, 2.2 mm) applied through a hamstring bridge exercise at three different loads of their 1-repetition maximum (1RM): 30%, 50%, and 70% 1RM. Muscle activity of the triceps brachii (TB), biceps brachii (BB), pectoralis major (PM), and biceps femoris (BF) was measured with surface electromyography electrodes and kinetic parameters of the repetitions were measured with a rotary encoder. WBV increased peak power (PP) output during the 70% 1RM condition (p<0.01). Muscle activity was increased with WBV in the TB and BF muscles at all loads (p<0.05). There were no effects of WBV on BB or PM muscles. WBV applied through a hamstring bridge exercise increases TB muscle activity during a decline bench press and this augmentation contributes to an increased peak power at higher loads and increased peak acceleration at lower loads.
Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho
2016-01-01
In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.
Human computer confluence applied in healthcare and rehabilitation.
Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen
2012-01-01
Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.
Acute exercise and motor memory consolidation: Does exercise type play a role?
Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J
2017-11-01
A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P < 0.001) and HOC (P < 0.001) compared to CON from POST to R1d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
Stephens, Francis B; Roig, Marc; Armstrong, Gerald; Greenhaff, Paul L
2008-01-15
The aim of the present study was to determine the effect of post-exercise ingestion of a unique, high molecular weight glucose polymer solution, known to augment gastric emptying and post-exercise muscle glycogen re-synthesis, on performance during a subsequent bout of intense exercise. On three randomized visits, eight healthy men cycled to exhaustion at 73.0% (s = 1.3) maximal oxygen uptake (90 min, s = 15). Immediately after this, participants consumed a one-litre solution containing sugar-free flavoured water (control), 100 g of a low molecular weight glucose polymer or 100 g of a very high molecular weight glucose polymer, and rested on a bed for 2 h. After recovery, a 15-min time-trial was performed on a cycle ergometer, during which work output was determined. Post-exercise ingestion of the very high molecular weight glucose polymer solution resulted in faster and greater increases in blood glucose (P < 0.001) and serum insulin (P < 0.01) concentrations than the low molecular weight glucose polymer solution, and greater work output during the 15-min time-trial (164.1 kJ, s = 21.1) than both the sugar-free flavoured water (137.5 kJ, s = 24.2; P < 0.05) and the low molecular weight glucose polymer (149.4 kJ, s = 21.8; P < 0.05) solutions. These findings could be of practical importance for athletes wishing to optimize performance by facilitating rapid re-synthesis of the muscle glycogen store during recovery following prolonged sub-maximal exercise.
Fadel, Paul J; Wang, Zhongyun; Watanabe, Hitoshi; Arbique, Debbie; Vongpatanasin, Wanpen; Thomas, Gail D
2004-01-01
Sympathetic vasoconstriction is normally attenuated in exercising muscles of young men and women. Recent evidence indicates that such modulation, termed functional sympatholysis, may be impaired in older men. Whether a similar impairment occurs in older women, and what role oestrogen deficiency might play in this impairment, are not known. Based on the strong positive correlation between circulating oestrogen levels and functional sympatholysis previously reported in female rats, we hypothesized that sympatholysis would be impaired in oestrogen-deficient postmenopausal women, and that this impairment would be reversed by oestrogen replacement. To test these hypotheses, we measured vasoconstrictor responses in the forearms of pre- and postmenopausal women using near infrared spectroscopy to detect decreases in muscle oxygenation in response to reflex activation of sympathetic nerves evoked by lower body negative pressure (LBNP). In eight premenopausal women, LBNP decreased muscle oxygenation by 20 ± 1% in resting forearm, but only by 3 ± 2% in exercising forearm (P < 0.05). In contrast, in eight postmenopausal women, LBNP decreased muscle oxygenation by 15 ± 3% in resting forearm, and by 12 ± 4% in exercising forearm (P > 0.05). After 1 month of transdermal oestradiol replacement in these women, the normal effect of exercise to blunt sympathetic vasoconstriction was restored (rest, −19 ± 3%; exercise, −2 ± 3%; P < 0.05). These data indicate that functional sympatholysis is impaired in oestrogen-deficient postmenopausal women. The effect of short-term unopposed oestrogen replacement to correct this impairment implicates a role for oestrogen in the sympathetic neural control of muscle haemodynamics during exercise. PMID:15498809
Thompson, Andrew B; Stolyarova, Alexandra; Ying, Zhe; Zhuang, Yumei; Gómez-Pinilla, Fernando; Izquierdo, Alicia
2015-12-01
Exposure to drugs of abuse can produce many neurobiological changes which may lead to increased valuation of rewards and decreased sensitivity to their costs. Many of these behavioral alterations are associated with activity of D2-expressing medium spiny neurons in the striatum. Additionally, Bdnf in the striatum has been shown to play a role in flexible reward-seeking behavior. Given that voluntary aerobic exercise can affect the expression of these proteins in healthy subjects, and that exercise has shown promise as an anti-addictive therapy, we set out to quantify changes in D2 and Bdnf expression in methamphetamine-exposed rats given access to running wheels. Sixty-four rats were treated for two weeks with an escalating dose of methamphetamine or saline, then either sacrificed, housed in standard cages, or given free access to a running wheel for 6 weeks prior to sacrifice. Rats treated with methamphetamine ran significantly greater distances than saline-treated rats, suggesting an augmentation in the reinforcement value of voluntary wheel running. Transcription of Drd2 and Bdnf was assessed via RT-qPCR. Protein expression levels of D2 and phosphorylation of the TrkB receptor were measured via western blot. Drd2 and Bdnf mRNA levels were impacted independently by exercise and methamphetamine, but exposure to methamphetamine prior to the initiation of exercise blocked the exercise-induced changes seen in rats treated with saline. Expression levels of both proteins were elevated immediately after methamphetamine, but returned to baseline after six weeks, regardless of exercise status. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arciero, Paul J.; Ives, Stephen J.; Norton, Chelsea; Escudero, Daniela; Minicucci, Olivia; O’Brien, Gabe; Paul, Maia; Ormsbee, Michael J.; Miller, Vincent; Sheridan, Caitlin; He, Feng
2016-01-01
The beneficial cardiometabolic and body composition effects of combined protein-pacing (P; 5–6 meals/day at 2.0 g/kg BW/day) and multi-mode exercise (resistance, interval, stretching, endurance; RISE) training (PRISE) in obese adults has previously been established. The current study examines PRISE on physical performance (endurance, strength and power) outcomes in healthy, physically active women. Thirty exercise-trained women (>4 days exercise/week) were randomized to either PRISE (n = 15) or a control (CON, 5–6 meals/day at 1.0 g/kg BW/day; n = 15) for 12 weeks. Muscular strength (1-RM bench press, 1-RM BP) endurance (sit-ups, SUs; push-ups, PUs), power (bench throws, BTs), blood pressure (BP), augmentation index, (AIx), and abdominal fat mass were assessed at Weeks 0 (pre) and 13 (post). At baseline, no differences existed between groups. Following the 12-week intervention, PRISE had greater gains (p < 0.05) in SUs, PUs (6 ± 7 vs. 10 ± 7, 40%; 8 ± 13 vs. 14 ± 12, 43% ∆reps, respectively), BTs (11 ± 35 vs. 44 ± 34, 75% ∆watts), AIx (1 ± 9 vs. −5 ± 11, 120%), and DBP (−5 ± 9 vs. −11 ± 11, 55% ∆mmHg). These findings suggest that combined protein-pacing (P; 5–6 meals/day at 2.0 g/kg BW/day) diet and multi-component exercise (RISE) training (PRISE) enhances muscular endurance, strength, power, and cardiovascular health in exercise-trained, active women. PMID:27258301
ERIC Educational Resources Information Center
Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.
2015-01-01
An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…
Keyboard Success. Computer Flip Book. MECC Version.
ERIC Educational Resources Information Center
Fidanque, Ann; And Others
Designed for use by elementary and middle school students, this computer flip book contains the exercises for each lesson in a 30-lesson keyboarding program, a brief outline of the development of writing devices, and exercises for 25 bonus lessons. For each lesson, the flip book provides a keyboard diagram with the keys that have been introduced…
Keyboard Success! Microtype "PAWS" Version. Computer Flip Book.
ERIC Educational Resources Information Center
Fidanque, Ann; And Others
Designed for use by elementary and middle school students, this computer flip book contains the exercises for each lesson in a 30-lesson keyboarding program, a brief outline of the development of writing devices, and exercises for 25 bonus lessons. For each lesson, the flip book provides a keyboard diagram with the keys that have been introduced…
Using Geographic Information Systems (GIS) at Schools without a Computer Laboratory
ERIC Educational Resources Information Center
Demirci, Ali
2011-01-01
This article reports the results of a study that explored the applicability and effectiveness of a GIS-based exercise implemented by a teacher on a single computer in an ordinary classroom. The GIS-based exercise was implemented in two different environments with two different groups of students. The study reveals that implementing GIS exercises…
ERIC Educational Resources Information Center
Pribela, Ivan; Ivanovic, Mirjana; Budimac, Zoran
2009-01-01
This paper discusses Svetovid, cross-platform software that helps instructors to assess the amount of effort put into practical exercises and exams in courses related to computer programming. The software was developed as an attempt at solving problems associated with practical exercises and exams. This paper discusses the design and use of…
2012-12-01
Makeup for the CASO (After Deputy Assistant Secretary of Defense for Manufacturing and Industrial Base, n.d., p. 7) .......73 xiv Figure 26. JCASO...Augmentation Program CAP Crisis Action Planning CASO Contingency Acquisition Support Office CBP Capability-Based Planning CCAS Contingency...enhance joint doctrine; 69 Develop and refine joint non-acquisition OCS training and education and ensure its inclusion in joint exercises; Identify
Estrogen or raloxifene during postmenopausal weight loss: adiposity and cardiometabolic outcomes.
Van Pelt, R E; Gozansky, W S; Wolfe, P; Kittelson, J M; Jankowski, C M; Schwartz, R S; Kohrt, W M
2014-04-01
Estrogen-based hormone therapy (HT) attenuates abdominal fat gain after menopause, but whether HT improves abdominal fat loss during weight loss is unknown. It was hypothesized that HT or a selective estrogen receptor modulator (raloxifene) would augment reductions in abdominal visceral fat during weight loss when compared to placebo, potentially increasing improvements in glucose tolerance and lipid profile. Healthy postmenopausal women (n = 119; age 50-70 yr) underwent a 6-month weight-loss (primarily exercise) intervention with randomization to raloxifene (60 mg/d), HT (conjugated estrogens, 0.625 mg/d), or placebo. Outcomes were change in total and abdominal (visceral and subcutaneous) fat mass, lipid profile, and fasting and post-challenge glucose and insulin. Neither HT nor raloxifene augmented loss of total or abdominal fat mass during exercise-induced weight loss when compared with placebo. Weight loss-induced improvements in risk factors were similar among the three groups, except for a greater reduction in fasted glucose in the HT group (difference in change [95%CI] from placebo; -0.40 [-0.76, -0.05]) and greater reductions in LDL (-0.36 [-0.63, -0.09]) and increases in HDL (0.15 [0.07, 0.24]) in both treatment groups. Postmenopausal HT and raloxifene did not increase abdominal fat loss during weight loss, but did improve some cardiometabolic outcomes. Copyright © 2013 The Obesity Society.
Research on an augmented Lagrangian penalty function algorithm for nonlinear programming
NASA Technical Reports Server (NTRS)
Frair, L.
1978-01-01
The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.
p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.
Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M
2009-09-25
Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.
Hughes, William E.; Ueda, Kenichi
2016-01-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59–0.64) and leg exercise intensities (r = 0.55–0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. PMID:27032899
Hughes, William E; Ueda, Kenichi; Casey, Darren P
2016-06-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59-0.64) and leg exercise intensities (r = 0.55-0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. Copyright © 2016 the American Physiological Society.
Multiaxis, Lightweight, Computer-Controlled Exercise System
NASA Technical Reports Server (NTRS)
Haynes, Leonard; Bachrach, Benjamin; Harvey, William
2006-01-01
The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via a remote terminal, to support exercises in one or more of the usual exercise modes (isometric, isokinetic, or isotonic) along complex, multiaxis trajectories. The motions of, and forces applied by, the subject can be monitored in real time and recorded for subsequent evaluation. Through suitable programming, the exercise can be adjusted in real time according to the physical condition of the subject. The remote- programming capability makes it possible to connect multiple exercise machines into a network for supervised exercise by multiple subjects or even for competition by geographically dispersed subjects.
Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.
Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T
2016-01-01
This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy.
A Multimedia, Augmented Reality Interactive System for the Application of a Guided School Tour
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Huang, Sheng-Wen; Chu, Sheng-Kai; Su, Ming-Wei; Chen, Chia-Yen; Chen, Chi-Fa
The paper describes an implementation of a multimedia, augmented reality system used for a guided school tour. The aim of this work is to improve the level of interactions between a viewer and the system by means of augmented reality. In the implemented system, hand motions are captured via computer vision based approaches and analyzed to extract representative actions which are used to interact with the system. In this manner, tactile peripheral hardware such as keyboard and mouse can be eliminated. In addition, the proposed system also aims to reduce hardware related costs and avoid health risks associated with contaminations by contact in public areas.
Time Counts! Some Comments on System Latency in Head-Referenced Displays
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.
2013-01-01
System response latency is a prominent characteristic of human-computer interaction. Laggy systems are; however, not simply annoying but substantially reduce user productivity. The impact of latency on head referenced display systems, particularly head-mounted systems, is especially disturbing since not only can it interfere with dynamic registration in augmented reality displays but it also can in some cases indirectly contribute to motion sickness. We will summarize several experiments using standard psychophysical discrimination techniques that suggest what system latencies will be required to achieve perceptual stability for spatially referenced computer-generated imagery. In conclusion I will speculate about other system performance characteristics that I would hope to have for a dream augmented reality system.
Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Staruch, Adam D; Kepka, Cezary; Rokicki, Jakub K; Sieradzki, Bartosz; Witkowski, Adam
2017-11-01
Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) may be facilitated by projection of coronary computed tomography angiography (CTA) datasets in the catheterization laboratory. There is no data on the feasibility and safety outcomes of CTA-assisted CTO PCI using a wearable augmented-reality glass. A total of 15 patients scheduled for elective antegrade CTO intervention were prospectively enrolled and underwent preprocedural coronary CTA. Three-dimensional and curved multiplanar CT reconstructions were transmitted to a head-mounted hands-free computer worn by interventional cardiologists during CTO PCI to provide additional information on CTO tortuosity and calcification. The results of CTO PCI using a wearable computer were compared with a time-matched prospective angiographic registry of 59 patients undergoing antegrade CTO PCI without a wearable computer. Operators' satisfaction was assessed by a 5-point Likert scale. Mean age was 64 ± 8 years and the mean J-CTO score was 2.1 ± 0.9 in the CTA-assisted group. The voice-activated co-registration and review of CTA images in a wearable computer during CTO PCI were feasible and highly rated by PCI operators (4.7/5 points). There were no major adverse cardiovascular events. Compared with standard CTO PCI, CTA-assisted recanalization of CTO using a wearable computer showed more frequent selection of the first-choice stiff wire (0% vs 40%, p < 0.001) and lower contrast exposure (166 ± 52 vs 134 ± 43 ml, p = 0.03). Overall CTO success rates and safety outcomes remained similar between both groups. CTA-assisted CTO PCI using an augmented-reality glass is feasible and safe, and might reduce the resources required for the interventional treatment of CTO. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Alkhatib, Ahmad; Atcheson, Roisin
2017-01-01
Yerba Maté (YM), has become a popular herb ingested for enhancing metabolic health and weight-loss outcomes. No studies have tested the combined metabolic, satiety, and psychomotor effects of YM during exercise. We tested whether YM ingestion affects fatty acid oxidation (FAO), profile of mood state score (POMS), and subjective appetite scale (VAS), during prolonged moderate exercise. Twelve healthy active females were randomized to ingest either 2 g of YM or placebo (PLC) in a repeated-measures design. Participants rested for 120 min before performing a 30-min cycling exercise corresponding to individuals’ crossover point intensity (COP). FAO, determined using indirect calorimetry, was significantly higher during the 30-min exercise in YM vs. PLC (0.21 ± 0.07 vs. 0.17 ± 0.06 g/min, p < 0.05). VAS scores for hunger, prospective eating, and desire to eat were all reduced (p < 0.05). Whereas, POMS measures of focus, energy, and concentration were all increased (p < 0.05). There was no significant time-effect for any of the measured variables, nor was there any interaction effects between YM treatment and time. Combining YM intake with prolonged exercise at targeted ”fat-loss”’ intensities augments FAO and improves measures of satiety and mood state. Such positive combined metabolic, satiety, and psychomotor effects may provide an important role for designing future fat and weight-loss lifestyle interventions. PMID:28809814
Mechanisms of aerobic performance impairment with heat stress and dehydration.
Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N
2010-12-01
Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.
Gioscia-Ryan, Rachel A; Battson, Micah L; Cuevas, Lauren M; Zigler, Melanie C; Sindler, Amy L; Seals, Douglas R
2016-11-22
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.
Optimizing functional exercise capacity in the elderly surgical population.
Carli, Franco; Zavorsky, Gerald S
2005-01-01
There are several studies on the effect of exercise post surgery (rehabilitation), but few studies have looked at augmenting functional capacity prior to surgical admission (prehabilitation). A programme of prehabilitation is proposed in order to enhance functional exercise capacity in elderly patients with the intent to minimize the postoperative morbidity and accelerate postsurgical recovery. Few studies have looked at exercise prehabilitation to improve functional capacity prior to surgical admission. Prehabilitation prior to orthopaedic surgery does not seem to improve quality of life or recovery. However, prehabilitation prior to abdominal or cardiac surgery, based on 275 elderly patients, results in fewer postoperative complications, shorter postoperative length of stay, improved quality of life, and reduced declines in functional disability compared to sedentary controls. A concentrated 3-month progressive exercise prehabilitation programme consisting of aerobic training at 45-65% of maximal heart rate reserve (%HRR) along with periodic high-intensity interval training ( approximately 90% HRR) four times per week, 30-50 minutes per session, is recommended for improving cardiovascular functioning. A strength training programme of about 10 different exercises focused on large, multi-jointed muscle groups should also be implemented twice per week at a mean training intensity of 80% of one-repetition maximum. Finally, a minimum of 140 g ( approximately 560 kcal) of carbohydrate (CHO) should be taken 3 h before training to increase liver and muscle glycogen stores and a minimum of about 200 kcal of mixed protein-CHO should be ingested within 30 min following training to enhance muscle hypertrophy.
Teaching emergency medical services management skills using a computer simulation exercise.
Hubble, Michael W; Richards, Michael E; Wilfong, Denise
2011-02-01
Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare
Development of Listening Proficiency in Russian.
ERIC Educational Resources Information Center
Robin, Richard M.; Leaver, Betty Lou
1989-01-01
Describes the Listening Comprehension Exercise Network, a system that allows for the sharing of listening exercises in Russian via computer networks. The network, which could be emulated in other languages, alleviates the problem of time spent on developing essentially "throw-away" exercises. (21 references) (Author/CB)
Patient-specific finite element modeling for femoral bone augmentation
Basafa, Ehsan; Armiger, Robert S.; Kutzer, Michael D.; Belkoff, Stephen M.; Mears, Simon C.; Armand, Mehran
2015-01-01
The aim of this study was to provide a fast and accurate finite element (FE) modeling scheme for predicting bone stiffness and strength suitable for use within the framework of a computer-assisted osteoporotic femoral bone augmentation surgery system. The key parts of the system, i.e. preoperative planning and intraoperative assessment of the augmentation, demand the finite element model to be solved and analyzed rapidly. Available CT scans and mechanical testing results from nine pairs of osteoporotic femur bones, with one specimen from each pair augmented by polymethylmethacrylate (PMMA) bone cement, were used to create FE models and compare the results with experiments. Correlation values of R2 = 0.72–0.95 were observed between the experiments and FEA results which, combined with the fast model convergence (~3 min for ~250,000 degrees of freedom), makes the presented modeling approach a promising candidate for the intended application of preoperative planning and intraoperative assessment of bone augmentation surgery. PMID:23375663
Fitzgerald, Diarmaid; Foody, John; Kelly, Dan; Ward, Tomas; Markham, Charles; McDonald, John; Caulfield, Brian
2007-01-01
This paper describes the design and development of a computer game for instructing an athlete through a series of prescribed rehabilitation exercises. In an attempt to prevent or treat musculoskeletal type injuries along with trying to improve physical performance, athletes are prescribed exercise programmes by appropriately trained specialists. Typically athletes are shown how to perform each exercise in the clinic following examination but they often have no way of knowing if their technique is correct while they are performing their home exercise programme. We describe a system that allows an automatic audit of this activity. Our system utilises ten inertial motion tracking sensors incorporated in a wearable body suit which allows a bluetooth connection from a root hub to a laptop/computer. Using our specifically designed software programme, the athlete can be instructed and analysed as he/she performs the individually tailored exercise programme and a log is recorded of the time and performance level of each exercise completed. We describe a case study that illustrates how a clinician can at a later date review the athletes progress and subsequently alter the exercise programme as they see fit.
Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing
Arzani, Amirhossein; Les, Andrea S.; Dalman, Ronald L.; Shadden, Shawn C.
2014-01-01
SUMMARY Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. Magnetic resonance imaging was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields, and associated Lagrangian coherent structures, were computed from blood velocity data, and used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing, and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. PMID:24493404
Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.
Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile
2015-05-01
This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.
NASA Astrophysics Data System (ADS)
Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.
2000-08-01
We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.
Percival, Michael E.; Martin, Brian J.; Gillen, Jenna B.; Skelly, Lauren E.; MacInnis, Martin J.; Green, Alex E.; Tarnopolsky, Mark A.
2015-01-01
We tested the hypothesis that ingestion of sodium bicarbonate (NaHCO3) prior to an acute session of high-intensity interval training (HIIT) would augment signaling cascades and gene expression linked to mitochondrial biogenesis in human skeletal muscle. On two occasions separated by ∼1 wk, nine men (mean ± SD: age 22 ± 2 yr, weight 78 ± 13 kg, V̇o2 peak 48 ± 8 ml·kg−1·min−1) performed 10 × 60-s cycling efforts at an intensity eliciting ∼90% of maximal heart rate (263 ± 40 W), interspersed with 60 s of recovery. In a double-blind, crossover manner, subjects ingested a total of 0.4 g/kg body weight NaHCO3 before exercise (BICARB) or an equimolar amount of a placebo, sodium chloride (PLAC). Venous blood bicarbonate and pH were elevated at all time points after ingestion (P < 0.05) in BICARB vs. PLAC. During exercise, muscle glycogen utilization (126 ± 47 vs. 53 ± 38 mmol/kg dry weight, P < 0.05) and blood lactate accumulation (12.8 ± 2.6 vs. 10.5 ± 2.8 mmol/liter, P < 0.05) were greater in BICARB vs. PLAC. The acute exercise-induced increase in the phosphorylation of acetyl-CoA carboxylase, a downstream marker of AMP-activated protein kinase activity, and p38 mitogen-activated protein kinase were similar between treatments (P > 0.05). However, the increase in PGC-1α mRNA expression after 3 h of recovery was higher in BICARB vs. PLAC (approximately sevenfold vs. fivefold compared with rest, P < 0.05). We conclude that NaHCO3 before HIIT alters the mRNA expression of this key regulatory protein associated with mitochondrial biogenesis. The elevated PGC-1α mRNA response provides a putative mechanism to explain the enhanced mitochondrial adaptation observed after chronic HIIT supplemented with NaHCO3 in rats. PMID:26384407
Dirks, Marlou L; Tieland, Michael; Verdijk, Lex B; Losen, Mario; Nilwik, Rachel; Mensink, Marco; de Groot, Lisette C P G M; van Loon, Luc J C
2017-07-01
Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content. A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel. Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo. Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics. In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P < .01). Myonuclear domain size increased over time in both groups and fiber types (P < .001), with no significant differences between groups (P > .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy. Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
Update on the effects of physical activity on insulin sensitivity in humans
Bird, Stephen R; Hawley, John A
2016-01-01
Purpose and methods This review presents established knowledge on the effects of physical activity (PA) on whole-body insulin sensitivity (SI) and summarises the findings of recent (2013–2016) studies. Discussion and conclusions Recent studies provide further evidence to support the notion that regular PA reduces the risk of insulin resistance, metabolic syndrome and type 2 diabetes, and SI improves when individuals comply with exercise and/or PA guidelines. Many studies indicate a dose response, with higher energy expenditures and higher exercise intensities, including high intensity interval training (HIIT), producing greater benefits on whole-body SI, although these findings are not unanimous. Aerobic exercise interventions can improve SI without an associated increase in cardiorespiratory fitness as measured by maximal or peak oxygen consumption. Both aerobic and resistance exercise can induce improvements in glycaemic regulation, with some suggestions that exercise regimens including both may be more efficacious than either exercise mode alone. Some studies report exercise-induced benefits to SI that are independent of habitual diet and weight loss, while others indicate an association with fat reduction, hence the debate over the relative importance of PA and weight loss continues. During exercise, muscle contraction stimulated improvements in SI are associated with increases in AMPK activity, which deactivates TCB1D1, promoting GLUT4 translocation to the cell membrane and thereby increasing glucose uptake. Postexercise, increases in Akt deactivate TCB1D4 and thereby increase GLUT4 translocation to the cell membrane. The reduction in intramuscular saturated fatty acids and concomitant reductions in ceramides, but not diacylglycerols, provide a potential link between intramuscular lipid content and SI. Increased skeletal muscle capillarisation provides another independent adaptation through which SI is improved, as does enhanced β cell activity. Recent studies are combining exercise interventions with dietary and feeding manipulations to investigate the potential for augmenting the exercise-induced improvements in SI and glycaemic control. PMID:28879026
Update on the effects of physical activity on insulin sensitivity in humans.
Bird, Stephen R; Hawley, John A
2016-01-01
This review presents established knowledge on the effects of physical activity (PA) on whole-body insulin sensitivity (SI) and summarises the findings of recent (2013-2016) studies. Recent studies provide further evidence to support the notion that regular PA reduces the risk of insulin resistance, metabolic syndrome and type 2 diabetes, and SI improves when individuals comply with exercise and/or PA guidelines. Many studies indicate a dose response, with higher energy expenditures and higher exercise intensities, including high intensity interval training (HIIT), producing greater benefits on whole-body SI, although these findings are not unanimous. Aerobic exercise interventions can improve SI without an associated increase in cardiorespiratory fitness as measured by maximal or peak oxygen consumption. Both aerobic and resistance exercise can induce improvements in glycaemic regulation, with some suggestions that exercise regimens including both may be more efficacious than either exercise mode alone. Some studies report exercise-induced benefits to SI that are independent of habitual diet and weight loss, while others indicate an association with fat reduction, hence the debate over the relative importance of PA and weight loss continues. During exercise, muscle contraction stimulated improvements in SI are associated with increases in AMPK activity, which deactivates TCB1D1, promoting GLUT4 translocation to the cell membrane and thereby increasing glucose uptake. Postexercise, increases in Akt deactivate TCB1D4 and thereby increase GLUT4 translocation to the cell membrane. The reduction in intramuscular saturated fatty acids and concomitant reductions in ceramides, but not diacylglycerols, provide a potential link between intramuscular lipid content and SI. Increased skeletal muscle capillarisation provides another independent adaptation through which SI is improved, as does enhanced β cell activity. Recent studies are combining exercise interventions with dietary and feeding manipulations to investigate the potential for augmenting the exercise-induced improvements in SI and glycaemic control.
Craig, Jesse C; Broxterman, Ryan M; Smith, Joshua R; Allen, Jason David; Barstow, Thomas J
2018-05-03
Dietary nitrate supplementation has positive effects on mitochondrial and muscle contractile efficiency during large muscle mass exercise in humans, and on skeletal muscle blood flow (Q̇) in rats. However, concurrent measurement of these effects has not been performed in humans. Therefore, we assessed the influence of nitrate supplementation on Q̇ and muscle oxygenation characteristics during moderate (40%peak) and severe (85%peak) intensity handgrip exercise in a randomized, double-blind, crossover-design. Nine healthy men (age: 25{plus minus}2 yrs) completed four constant-power exercise tests (two per intensity) randomly assigned to condition (nitrate-rich (Nitrate) or nitrate-poor (Placebo) beetroot supplementation) and intensity (40%peak or 85%peak). Resting mean arterial pressure was lower after Nitrate compared to Placebo (84{plus minus}4 vs 89{plus minus}4 mmHg; p<0.01). All subjects were able to sustain 10 min of exercise at 40%peak in both conditions. Nitrate had no effect on exercise tolerance during 85%peak (Nitrate: 358{plus minus}29, Placebo: 341{plus minus}34 s; p=0.3). Brachial artery Q̇ was not different after Nitrate at rest or any time during exercise. Deoxygenated-[hemoglobin+myoglobin] was not different for 40%peak (p>0.05), but was elevated throughout 85%peak (p<0.05) after Nitrate. The metabolic cost (V̇O2) was not different at end exercise, however, the V̇O 2 primary amplitude at the onset of exercise was elevated after Nitrate for the 85%peak work rate (96{plus minus}20 vs 72{plus minus}12 ml/min; p<0.05) and had a faster response. These findings suggest that an acute dose of Nitrate reduces resting blood pressure and speeds V̇O 2 kinetics in young adults, but does not augment Q̇ or reduce steady-state V̇O 2 during small muscle mass handgrip exercise.
NASA Astrophysics Data System (ADS)
Aubert, A. H.; Schnepel, O.; Kraft, P.; Houska, T.; Plesca, I.; Orlowski, N.; Breuer, L.
2015-11-01
This paper addresses education and communication in hydrology and geosciences. Many approaches can be used, such as the well-known seminars, modelling exercises and practical field work but out-door learning in our discipline is a must, and this paper focuses on the recent development of a new out-door learning tool at the landscape scale. To facilitate improved teaching and hands-on experience, we designed the Studienlandschaft Schwingbachtal. Equipped with field instrumentation, education trails, and geocache, we now implemented an augmented reality App, adding virtual teaching objects on the real landscape. The App development is detailed, to serve as methodology for people wishing to implement such a tool. The resulting application, namely the Schwingbachtal App, is described as an example. We conclude that such an App is useful for communication and education purposes, making learning pleasant, and offering personalized options.
Dipla, Konstantina; Makri, Maria; Zafeiridis, Andreas; Soulas, Dimitrios; Tsalouhidou, Sofia; Mougios, Vassilis; Kellis, Spyros
2008-08-01
Resistance exercise is recommended to individuals following high-protein diets in order to augment changes in body composition. However, alterations in macronutrient composition may compromise physical performance. The present study investigated the effects of an isoenergetic high-protein diet on upper and lower limb strength and fatigue during high-intensity resistance exercise. Ten recreationally active women, aged 25-40 years, followed a control diet (55, 15 and 30 % of energy from carbohydrate, protein and fat, respectively) and a high-protein diet (respective values, 30, 40 and 30) for 7 d each in a random counterbalanced design. Each participant underwent strength testing of upper limb (isometric handgrip strength and endurance) and lower limb (four sets of sixteen maximal knee flexions and extensions on an isokinetic dynamometer) before and after applying each diet. Body weight, body fat and RER were significantly reduced following the high-protein diet (P < 0.05). No differences were found between diets in any of the strength performance parameters (handgrip strength, handgrip endurance, peak torque, total work and fatigue) or the responses of heart rate, systolic and diastolic arterial pressure, blood lactate and blood glucose to exercise. Women on a short-term isoenergetic high-protein, moderate-fat diet maintained muscular strength and endurance of upper and lower limbs during high-intensity resistance exercise without experiencing fatigue earlier compared with a control diet.
Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education
ERIC Educational Resources Information Center
Armer, Gina R. M.
2011-01-01
This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.
Using Computer Games to Train Information Warfare Teams
2004-01-01
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 2004 Paper No 1729 Page 1 of 10 Using Computer Games to...responses they will experience on real missions is crucial. 3D computer games have proved themselves to be highly effective in engaging players...motivationally and emotionally. This effort, therefore, uses gaming technology to provide realistic simulations. These games are augmented with
Objective and Item Banking Computer Software and Its Use in Comprehensive Achievement Monitoring.
ERIC Educational Resources Information Center
Schriber, Peter E.; Gorth, William P.
The current emphasis on objectives and test item banks for constructing more effective tests is being augmented by increasingly sophisticated computer software. Items can be catalogued in numerous ways for retrieval. The items as well as instructional objectives can be stored and test forms can be selected and printed by the computer. It is also…
Kassab, Ghassan S.; An, Gary; Sander, Edward A.; Miga, Michael; Guccione, Julius M.; Ji, Songbai; Vodovotz, Yoram
2016-01-01
In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for 1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with 2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery. PMID:27015816
Khavrutskii, Ilja V; Wallqvist, Anders
2010-11-09
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
ERIC Educational Resources Information Center
Montgomery, Craig D.
2013-01-01
An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…
NASA Astrophysics Data System (ADS)
Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar
2002-05-01
Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.
Effect of exercise on hemodynamic conditions in the abdominal aorta.
Taylor, C A; Hughes, T J; Zarins, C K
1999-06-01
The beneficial effect of exercise in the retardation of the progression of cardiovascular disease is hypothesized to be caused, at least in part, by the elimination of adverse hemodynamic conditions, including flow recirculation and low wall shear stress. In vitro and in vivo investigations have provided qualitative and limited quantitative information on flow patterns in the abdominal aorta and on the effect of exercise on the elimination of adverse hemodynamic conditions. We used computational fluid mechanics methods to examine the effects of simulated exercise on hemodynamic conditions in an idealized model of the human abdominal aorta. A three-dimensional computer model of a healthy human abdominal aorta was created to simulate pulsatile aortic blood flow under conditions of rest and graded exercise. Flow velocity patterns and wall shear stress were computed in the lesion-prone infrarenal aorta, and the effects of exercise were determined. A recirculation zone was observed to form along the posterior wall of the aorta immediately distal to the renal vessels under resting conditions. Low time-averaged wall shear stress was present in this location, along the posterior wall opposite the superior mesenteric artery and along the anterior wall between the superior and inferior mesenteric arteries. Shear stress temporal oscillations, as measured with an oscillatory shear index, were elevated in these regions. Under simulated light exercise conditions, a region of low wall shear stress and high oscillatory shear index remained along the posterior wall immediately distal to the renal arteries. Under simulated moderate exercise conditions, all the regions of low wall shear stress and high oscillatory shear index were eliminated. This numeric investigation provided detailed quantitative data on the effect of exercise on hemodynamic conditions in the abdominal aorta. Our results indicated that moderate levels of lower limb exercise are necessary to eliminate the flow reversal and regions of low wall shear stress in the abdominal aorta that exist under resting conditions. The lack of flow reversal and increased wall shear stress during exercise suggest a mechanism by which exercise may promote arterial health, namely with the elimination of adverse hemodynamic conditions.
Two Crystallographic Laboratory and Computational Exercises for Undergraduates.
ERIC Educational Resources Information Center
Lessinger, Leslie
1988-01-01
Describes two introductory exercises designed to teach the fundamental ideas and methods of crystallography, and to convey some important features of inorganic and organic crystal structures to students in an advanced laboratory course. Exercises include "The Crystal Structure of NiO" and "The Crystal Structure of Beta-Fumaric Acid." (CW)
Phylogenetics Exercise Using Inherited Human Traits
ERIC Educational Resources Information Center
Tuimala, Jarno
2006-01-01
A bioinformatics laboratory exercise based on inherited human morphological traits is presented. It teaches how morphological characters can be used to study the evolutionary history of humans using parsimony. The exercise can easily be used in a pen-and-paper laboratory, but if computers are available, a more versatile analysis can be carried…
Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J
2011-08-10
To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.
2011-01-01
physiological adjustments that compensate for hypoxemia, with augmented ventilation being one of the most important and consistently reported (17, 18, 22, 28... physiological outcomes were affected favorably relative to no treatment utilized HH treatment prior to HH residence (2–4, 18) or NH treatment prior to NH...erythropoietin (EPO; Quantikine IVD ELISA, R & D Systems, Minneapolis, MN), epinephrine and norepinephine (HPLC; Bio-Rad), and cortisol and aldosterone
Augmentative Communication with Computer Assist.
ERIC Educational Resources Information Center
Kinzer, Gay
To provide a communication method for children who are non-verbal due to hearing impairments, brain damage, or malformed oral structures, sign language and language boards have been utilized. However, these methods have limitations, and alternate means of communication have been explored. An Apple 2E computer with an echo speech synthesizer was…
"Life" and Education Policy: Intervention, Augmentation and Computation
ERIC Educational Resources Information Center
Gulson, Kalervo N.; Webb, P. Taylor
2018-01-01
In this paper, we are interested in the notion of multiple ways of thinking, knowing and transforming life, namely an increasing capacity to intervene in "life" as a "molecular biopolitics," and the changing ways in which "life" can be understood computationally. We identify and speculate on the ways different ideas…
Modeling User Behavior in Computer Learning Tasks.
ERIC Educational Resources Information Center
Mantei, Marilyn M.
Model building techniques from Artifical Intelligence and Information-Processing Psychology are applied to human-computer interface tasks to evaluate existing interfaces and suggest new and better ones. The model is in the form of an augmented transition network (ATN) grammar which is built by applying grammar induction heuristics on a sequential…
An Interactive Graphical Modeling Game for Teaching Musical Concepts.
ERIC Educational Resources Information Center
Lamb, Martin
1982-01-01
Describes an interactive computer game in which players compose music at a computer screen. They experiment with pitch and melodic shape and the effects of transposition, augmentation, diminution, retrograde, and inversion. The user interface is simple enough for children to use and powerful enough for composers to work with. (EAO)
Weisman, David
2010-01-01
Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.
Social Cognitive Theory Predictors of Exercise Behavior in Endometrial Cancer Survivors
Basen-Engquist, Karen; Carmack, Cindy L.; Li, Yisheng; Brown, Jubilee; Jhingran, Anuja; Hughes, Daniel C.; Perkins, Heidi Y.; Scruggs, Stacie; Harrison, Carol; Baum, George; Bodurka, Diane C.; Waters, Andrew
2014-01-01
Objective This study evaluated whether social cognitive theory (SCT) variables, as measured by questionnaire and ecological momentary assessment (EMA), predicted exercise in endometrial cancer survivors. Methods One hundred post-treatment endometrial cancer survivors received a 6-month home-based exercise intervention. EMAs were conducted using hand-held computers for 10- to 12-day periods every 2 months. Participants rated morning self-efficacy and positive and negative outcome expectations using the computer, recorded exercise information in real time and at night, and wore accelerometers. At the midpoint of each assessment period participants completed SCT questionnaires. Using linear mixed-effects models, we tested whether morning SCT variables predicted minutes of exercise that day (Question 1) and whether exercise minutes at time point Tj could be predicted by questionnaire measures of SCT variables from time point Tj-1 (Question 2). Results Morning self-efficacy significantly predicted that day’s exercise minutes (p<.0001). Morning positive outcome expectations was also associated with exercise minutes (p=0.0003), but the relationship was attenuated when self-efficacy was included in the model (p=0.4032). Morning negative outcome expectations was not associated with exercise minutes. Of the questionnaire measures of SCT variables, only exercise self-efficacy predicted exercise at the next time point (p=0.003). Conclusions The consistency of the relationship between self-efficacy and exercise minutes over short (same day) and longer (Tj to Tj-1) time periods provides support for a causal relationship. The strength of the relationship between morning self-efficacy and exercise minutes suggest that real-time interventions that target daily variation in self-efficacy may benefit endometrial cancer survivors’ exercise adherence. PMID:23437853
Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.
2018-01-01
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262
Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.
Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J
2016-09-01
Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.
SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.D.; Scherrer, B; Don, S
Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient.more » The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.« less
Eddy Viscosity for Variable Density Coflowing Streams,
EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.
Augmented Reality and Mobile Art
NASA Astrophysics Data System (ADS)
Gwilt, Ian
The combined notions of augmented-reality (AR) and mobile art are based on the amalgamation of a number of enabling technologies including computer imaging, emergent display and tracking systems and the increased computing-power in hand-held devices such as Tablet PCs, smart phones, or personal digital assistants (PDAs) which have been utilized in the making of works of art. There is much published research on the technical aspects of AR and the ongoing work being undertaken in the development of faster more efficient AR systems [1] [2]. In this text I intend to concentrate on how AR and its associated typologies can be applied in the context of new media art practices, with particular reference to its application on hand-held or mobile devices.
NASA Astrophysics Data System (ADS)
Ruzanka, Silvia; Chang, Ben; Behar, Katherine
2013-03-01
In this paper we present appARel, a creative research project at the intersection of augmented reality, fashion, and performance art. appARel is a mobile augmented reality application that transforms otherwise ordinary garments with 3D animations and modifications. With appARel, entire fashion collections can be uploaded in a smartphone application, and "new looks" can be downloaded in a software update. The project will culminate in a performance art fashion show, scheduled for March 2013. appARel includes textile designs incorporating fiducial markers, garment designs that incorporate multiple markers with the human body, and iOS and Android apps that apply different augments, or "looks", to a garment. We discuss our philosophy for combining computer-generated and physical objects; and share the challenges we encountered in applying fiduciary markers to the 3D curvatures of the human body.
Usability engineering for augmented reality: employing user-based studies to inform design.
Gabbard, Joseph L; Swan, J Edward
2008-01-01
A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.
Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M
2009-01-01
The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.
1970-01-01
A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.
Heffernan, Kevin S; Jae, Sae Young; Tomayko, Emily; Ishaque, Muhammad R; Fernhall, Bo; Wilund, Kenneth R
2009-05-01
Increased carotid intima-media thickness (IMT) with aging is a significant predictor of mortality. Older endurance trained (ET) individuals have lower carotid artery stiffness but similar carotid IMT when compared to sedentary (SED) age-matched peers. The purpose of this study was to examine the contribution of arterial wave reflections to carotid hemodynamics and IMT in older ET and SED with pre-hypertension. Subjects consisted of endurance-trained master athletes and age-matched sedentary controls (mean age 67 years). Carotid artery Beta-stiffness index and IMT was assessed with ultrasonography. Carotid pressure and augmented pressure from wave reflections (obtained from pulse contour analysis) was measured with applanation tonometry. Carotid systolic blood pressure (SBP) and IMT were not different between groups (P>0.05). Carotid stiffness was significantly lower in ET versus SED (7.3 +/- 0.8 versus 9.9 +/- 0.6, P<0.05). Augmented pressure was significantly greater in ET versus SED (17.7 +/- 1.6 versus 13.3 +/- 1.5 mmHg, P<0.05). When adjusting for differences in resting heart rate, there were no group differences in augmented pressure. In conclusion, older ET persons with pre-hypertension have reduced carotid artery stiffness, but similar carotid SBP and carotid IMT when compared to SED. The lack of change in carotid SBP and IMT in older ET may be related to the inability of chronic exercise training to reduce bradycardia-related augmented pressure from wave reflections with aging.
A new augmentation based algorithm for extracting maximal chordal subgraphs
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2014-10-18
If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less
A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2015-02-01
A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.
Adaptive thinking & leadership simulation game training for special forces officers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raybourn, Elaine Marie; Mendini, Kip; Heneghan, Jerry
Complex problem solving approaches and novel strategies employed by the military at the squad, team, and commander level are often best learned experimentally. Since live action exercises can be costly, advances in simulation game training technology offer exciting ways to enhance current training. Computer games provide an environment for active, critical learning. Games open up possibilities for simultaneous learning on multiple levels; players may learn from contextual information embedded in the dynamics of the game, the organic process generated by the game, and through the risks, benefits, costs, outcomes, and rewards of alternative strategies that result from decision making. Inmore » the present paper we discuss a multiplayer computer game simulation created for the Adaptive Thinking & Leadership (ATL) Program to train Special Forces Team Leaders. The ATL training simulation consists of a scripted single-player and an immersive multiplayer environment for classroom use which leverages immersive computer game technology. We define adaptive thinking as consisting of competencies such as negotiation and consensus building skills, the ability to communicate effectively, analyze ambiguous situations, be self-aware, think innovatively, and critically use effective problem solving skills. Each of these competencies is an essential element of leader development training for the U.S. Army Special Forces. The ATL simulation is used to augment experiential learning in the curriculum for the U.S. Army JFK Special Warfare Center & School (SWCS) course in Adaptive Thinking & Leadership. The school is incorporating the ATL simulation game into two additional training pipelines (PSYOPS and Civil Affairs Qualification Courses) that are also concerned with developing cultural awareness, interpersonal communication adaptability, and rapport-building skills. In the present paper, we discuss the design, development, and deployment of the training simulation, and emphasize how the multiplayer simulation game is successfully used in the Special Forces Officer training program.« less
Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.
Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C
2014-02-01
Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.
Martyn-St James, Marrissa; Carroll, Sean
2010-05-01
Our objective was to assess the effects of differing modes of impact exercise on bone density at the hip and spine in premenopausal women through systematic review and meta-analysis. Electronic databases, key journals and reference lists were searched for controlled trials investigating the effects of impact exercise interventions on lumbar spine (LS), femoral neck (FN) and total hip (TH) bone mineral density (BMD) in premenopausal women. Exercise protocols were categorised according to impact loading characteristics. Weighted mean difference (WMD) meta-analyses were undertaken. Heterogeneity amongst trials was assessed. Fixed and random effects models were applied. Inspection of funnel plot symmetry was performed. Trial quality assessment was also undertaken. Combined protocols integrating odd- or high-impact exercise with high-magnitude loading (resistance exercises), were effective in increasing BMD at both LS and FN [WMD (fixed effect) 0.009 g cm(-2) 95% CI (0.002-0.015) and 0.007 g cm(-2) 95% CI (0.001-0.013); P = 0.011 and 0.017, respectively]. High-impact only protocols were effective on femoral neck BMD [WMD (fixed effect) 0.024 g cm(-2) 95% CI (0.002-0.027); P < 0.00001]. Funnel plots showed some asymmetry for positive BMD outcomes. Insufficient numbers of protocols assessing TH BMD were available for assessment. Exercise programmes that combine odd- or high-impact activity with high-magnitude resistance training appear effective in augmenting BMD in premenopausal women at the hip and spine. High-impact-alone protocols are effective only on hip BMD in this group. However, diverse methodological and reporting discrepancies are evident in published trials.
Stöhr, Eric J; McDonnell, Barry; Thompson, Jane; Stone, Keeron; Bull, Tom; Houston, Rory; Cockcroft, John; Shave, Rob
2012-01-01
Individuals with high aerobic fitness have lower systolic left ventricular strain, rotation and twist (‘left ventricular (LV) mechanics’) at rest, suggesting a beneficial reduction in LV myofibre stress and more efficient systolic function. However, the mechanisms responsible for this functional adaptation are not known and the influence of aerobic fitness on LV mechanics during dynamic exercise has never been studied. We assessed LV mechanics, LV wall thickness and dimensions, central augmentation index (AIx), aortic pulse wave velocity (aPWV), blood pressure and heart rate in 28 males (age: 21 ± 2 years SD) with a consistent physical activity level (no change >6 months). Individuals were examined at rest and during exercise (40% peak exercise capacity) and separated post hoc into a moderate and high aerobic fitness group (: 49 ± 5 and 63 ± 7 ml kg−1 min−1, respectively, P < 0.0001). At rest and during exercise, there were no significant differences in gross LV structure, AIx, blood pressure or heart rate (P > 0.05). However, for the same AIx, the high group had significantly lower LV apical rotation (P = 0.002) and LV twist (P = 0.003) while basal rotation and strain indices did not differ between groups (P > 0.05). We conclude that young males with high aerobic fitness have lower LV apical rotation at rest and during submaximal exercise that can occur without changes in gross LV structure, arterial haemodynamics or heart rate. The findings suggest a previously unknown type of physiological adaptation of the left ventricle that may have important implications for exercise training in older individuals and patient populations in which exercise training has previously failed to show clear benefits for LV function. PMID:22431336
Cold habituation does not improve manual dexterity during rest and exercise in 5 °C
NASA Astrophysics Data System (ADS)
Muller, Matthew D.; Seo, Yongsuk; Kim, Chul-Ho; Ryan, Edward J.; Pollock, Brandon S.; Burns, Keith J.; Glickman, Ellen L.
2014-04-01
When exposed to a cold environment, a barehanded person experiences pain, cold sensation, and reduced manual dexterity. Both acute (e.g. exercise) and chronic (e.g. cold acclimatization or habituation) processes might lessen these negative effects. The purpose of this experiment was to determine the effect of cold habituation on physiology, perception, and manual dexterity during rest, exercise, and recovery in 5 °C. Six cold weather athletes (CWA) and eight non habituated men (NON) volunteered to participate in a repeated measures cross-over design. The protocol was conducted in 5 °C and was 90 min of resting cold exposure, 30 min of cycle ergometry exercise (50 % VO2 peak), and 60 min of seated recovery. Core and finger skin temperature, metabolic rate, Purdue Pegboard dexterity performance, hand pain, thermal sensation, and mood were quantified. Exercise-induced finger rewarming (EIFRW) was calculated for each hand. During 90 min of resting exposure to 5 °C, the CWA had a smaller reduction in finger temperature, a lower metabolic rate, less hand pain, and less negative mood. Despite this cold habituation, dexterity performance was not different between groups. In response to cycle ergometry, EIFRW was greater in CWA (~12 versus 7 °C) and occurred at lower core temperatures (37.02 versus 37.31 °C) relative to NON but dexterity was not greater during post-exercise recovery. The current data indicate that cold habituated men (i.e., CWA) do not perform better on the Purdue Pegboard during acute cold exposure. Furthermore, despite augmented EIFRW in CWA, dexterity during post-exercise recovery was similar between groups.
Jacobsen, Paul B; Phillips, Kristin M; Jim, Heather S L; Small, Brent J; Faul, Leigh Anne; Meade, Cathy D; Thompson, Lora; Williams, Charles C; Loftus, Loretta S; Fishman, Mayer; Wilson, Rick W
2013-06-01
Research has shown that self-directed stress management training improves mental well-being in patients undergoing chemotherapy. The present study extends this work by evaluating separate and combined effects of stress management training and home-based exercise. Following assessment of mental and physical well-being, depression, anxiety, exercise, and stress reduction activity before chemotherapy started, patients were randomized to stress management training (SM), exercise (EX), combined stress management and exercise (SMEX), or usual care only (UCO). Outcomes were reassessed 6 and 12 weeks after chemotherapy started. Significance testing of group-by-time interactions in 286 patients who completed all assessments was used to evaluate intervention efficacy. Interaction effects for mental and physical well-being scores were not significant. Depression scores yielded a linear interaction comparing UCO and SMEX (p = 0.019), with decreases in SMEX but not UCO. Anxiety scores yielded a quadratic interaction comparing UCO and SMEX (p = 0.049), with trends for changes in SMEX but not UCO. Additional analyses yielded quadratic interactions for exercise activity comparing UCO and SMEX (p = 0.022), with positive changes in SMEX but not UCO, and for stress management activity comparing UCO and SM (p < 0.001) and UCO and SMEX (p = 0.013), with positive changes in SM and SMEX but not UCO. Only the combined intervention yielded effects on quality of life outcomes, and these were limited to anxiety and depression. These findings are consistent with evidence that only the combined intervention yielded increases in both exercise and stress management activity. Future research should investigate ways to augment this intervention to enhance its benefits. Copyright © 2012 John Wiley & Sons, Ltd.
Lee, Ya-Yun; Wu, Ching-Yi; Teng, Ching-Hung; Hsu, Wen-Chuin; Chang, Ku-Chou; Chen, Poyu
2016-10-28
Nonpharmacologic interventions, such as cognitive training or physical exercise, are effective in improving cognitive functions for older adults with mild cognitive impairment (MCI). Some researchers have proposed that combining physical exercise with cognitive training may augment the benefits of cognition. However, strong evidence is lacking regarding whether a combined therapy is superior to a single type of training for older adults with MCI. Moreover, which combination approach - combining physical exercise with cognitive training sequentially or simultaneously - is more advantageous for cognitive improvement is not yet clear. This proposed study is designed to clarify these questions. This study is a single-blinded, multicenter, randomized controlled trial. Eighty individuals with MCI will be recruited and randomly assigned to cognitive training (COG), physical exercise training (PE), sequential training (SEQ), and dual-task training (DUAL) groups. The intervention programs will be 90 min/day, 2-3 days/week, for a total of 36 training sessions. The participants in the SEQ group will first perform 45 min of physical exercise followed by 45 min of cognitive training, whereas those in the DUAL group will perform physical exercise and cognitive training simultaneously. Participants will be assessed at baseline, after the intervention, and at 6-month follow-up. The primary cognitive outcome tests will include the Montreal Cognitive Assessment and the color-naming Stroop test. Other outcomes will include assessments that evaluate the cognitive, physical, and daily functions of older adults with MCI. The results of this proposed study will provide important information regarding the feasibility and intervention effects of combining physical exercise and cognitive training for older individuals with MCI. ClinicalTrials.gov Identifier: NCT02512627 , registered on 20 July 2015.
Kim, Areum; Deo, Shekhar H.; Fisher, James P.
2012-01-01
To date, no studies have examined whether there are either sex- or ovarian hormone-related alterations in arterial baroreflex resetting and function during dynamic exercise. Thus we studied 16 young men and 18 young women at rest and during leg cycling at 50% heart rate (HR) reserve. In addition, 10 women were studied at three different phases of the menstrual cycle. Five-second pulses of neck pressure (NP) and neck suction (NS) from +40 to −80 Torr were applied to determine full carotid baroreflex (CBR) stimulus response curves. An upward and rightward resetting of the CBR function curve was observed during exercise in all groups with a similar magnitude of CBR resetting for mean arterial pressure (MAP) and HR between sexes (P > 0.05) and at different phases of the menstrual cycle (P > 0.05). For CBR control of MAP, women exhibited augmented pressor responses to NP at rest and exercise during mid-luteal compared with early and late follicular phases. For CBR control of HR, there was a greater bradycardic response to NS in women across all menstrual cycle phases with the operating point (OP) located further away from centering point (CP) on the CBR-HR curve during rest (OP-CP; in mmHg: −13 ± 3 women vs. −3 ± 3 men; P < 0.05) and exercise (in mmHg: −31 ± 2 women vs. −15 ± 3 men; P < 0.05). Collectively, these findings suggest that sex and fluctuations in ovarian hormones do not influence exercise resetting of the baroreflex. However, women exhibited greater CBR control of HR during exercise, specifically against acute hypertension, an effect that was present throughout the menstrual cycle. PMID:22267388
Horii, Naoki; Hasegawa, Natsuki; Fujie, Shumpei; Uchida, Masataka; Miyamoto-Mikami, Eri; Hashimoto, Takeshi; Tabata, Izumi; Iemitsu, Motoyuki
2017-04-01
The purpose of this study was to investigate the effect of chronic chlorella intake alone or in combination with high-intensity intermittent exercise (HIIE) training on exercise performance and muscle glycolytic and oxidative metabolism in rats. Forty male Sprague-Dawley rats were randomly assigned to the four groups: sedentary control, chlorella intake (0.5% chlorella powder in normal feed), HIIE training, and combination of HIIE training and chlorella intake for 6 wk ( n = 10 each group). HIIE training comprised 14 repeats of a 20-s swimming session with a 10-s pause between sessions, while bearing a weight equivalent to 16% of body weight, 4 days/week. Exercise performance was tested after the interventions by measuring the maximal number of HIIE sessions that could be completed. Chlorella intake and HIIE training significantly increased the maximal number of HIIE sessions and enhanced the expression of monocarboxylate transporter (MCT)1, MCT4, and peroxisome proliferator-activated receptor γ coactivator-1α concomitantly with the activities of lactate dehydrogenase (LDH), phosphofructokinase, citrate synthase (CS), and cytochrome- c oxidase (COX) in the red region of the gastrocnemius muscle. Furthermore, the combination further augmented the increased exercise performance and the enhanced expressions and activities. By contrast, in the white region of the muscle, MCT1 expression and LDH, CS, and COX activities did not change. These results showed that compared with only chlorella intake and only HIIE training, chlorella intake combined with HIIE training has a more pronounced effect on exercise performance and muscle glycolytic and oxidative metabolism, in particular, lactate metabolism. Copyright © 2017 the American Physiological Society.
Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre
2015-01-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908
Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P
2016-02-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Hessley, Rita K.
2000-02-01
In an effort to engage students more deeply in their laboratory work and provide them with valuable learning experiences in the applications and limitations of computational chemistry as a research tool, students are instructed to carry out a computational pre-lab exercise. Before carrying out a laboratory experiment that investigates the mechanism for the formation of N-t-butylbenzamide, students construct and obtain heats of formation for reactants, products, postulated reaction intermediates, and one transition state structure for each proposed mechanism. This is designed as a companion to an open-ended laboratory experiment that hones skills learned early in most traditional organic chemistry courses. The incorporation of a preliminary computational exercise enables students to move beyond guessing what the outcome of the reaction will be. It challenges them to test what they believe they "know" about such fundamental concepts as stability of carbocations, or the significance and utility of thermodynamic data relative to kinetic data. On the basis of their computations and their own experimental data, students then verify or dispute their hypothesis, finally arriving at a defensible and logical conclusion about the course of the reaction mechanism. The manner of implementation of the exercise and typical computational data are described.
Julian, Kristin; Beard, Courtney; Schmidt, Norman B.; Powers, Mark B.; Smits, Jasper A. J.
2012-01-01
Cognitive theories suggest that social anxiety is maintained, in part, by an attentional bias toward threat. Recent research shows that a single session of attention modification training (AMP) reduces attention bias and vulnerability to a social stressor (Amir, Weber, Beard, Bomyea, & Taylor, 2008). In addition, exercise may augment the effects of attention training by its direct effects on attentional control and inhibition, thereby allowing participants receiving the AMP to more effectively disengage attention from the threatening cues and shift attention to the neutral cues. We attempted to replicate and extend previous findings by randomizing participants (N = 112) to a single session of: a) Exercise + attention training (EX + AMP); b) Rest + attention training (REST + AMP); c) Exercise + attention control condition (EX + ACC); or d) Rest + attention control condition (REST + ACC) prior to completing a public speaking challenge. We used identical assessment and training procedures to those employed by Amir et al. (2008). Results showed there was no effect of attention training on attention bias or anxiety reactivity to the speech challenge and no interactive effects of attention training and exercise on attention bias or anxiety reactivity to the speech challenge. The failure to replicate previous findings is discussed. PMID:22466022
Using E-Exercise Bases in Mathematics: Case Studies at University
ERIC Educational Resources Information Center
Cazes, Claire; Gueudet, Ghislaine; Hersant, Magali; Vandebrouck, Fabrice
2006-01-01
E-Exercise Bases (EEB) are now used in the teaching of mathematics, especially at university. We discuss here the consequences of their use on the students' activity during computer lab sessions. Results stem from observations of several teaching designs organised in different French universities with three e-exercise bases. The analysis focuses…
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO. National Assessment of Educational Progress.
Included in Chapter 1 of this report are background information on the 1972-73 mathematics assessment; details of the computational formulas used in reporting results; and explanations of the technical documentation, exercise presentation, documentation pages, scoring guides, and data tables for released and unreleased exercises. The remainder of…