The Design of Immersive English Learning Environment Using Augmented Reality
ERIC Educational Resources Information Center
Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei
2016-01-01
The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
NASA Astrophysics Data System (ADS)
Meldi, M.; Poux, A.
2017-10-01
A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.
Using augmented reality to teach and learn biochemistry.
Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo
2017-09-01
Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract concepts because students can manipulate 3D molecules in real time. Here we describe an application named Augmented Reality Metabolic Pathways (ARMET), which allowed students to visualize the 3D molecular structure of substrates and products, thus perceiving changes in each molecule. The structural modification of molecules shows students the flow and exchange of compounds and energy through metabolism. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):417-420, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Nonsteady-Flow Thrust Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Foa, J. V.
1979-01-01
Ejector augmenters in which the transfer of mechanical energy from the primary to the secondary flow takes place through the work of interface pressure forces are investigated. Nonsteady flow processes are analyzed from the standpoint of energy transfer efficiency and a comparison of a rotary jet augmenter to an ejector is presented.
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
2016-11-09
software, and their networking to augment optical diagnostics employed in supersonic reacting and non-reacting flow experiments . A high-speed...facility at Caltech. Experiments to date have made use of this equipment, extending previous capabilities to high-speed schlieren quantitative flow...visualization and image correlation velocimetry, with further experiments currently in progress. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data
NASA Astrophysics Data System (ADS)
Ahuja, Avtar S.
1980-01-01
The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.
Unsteady Ejector Performance: an Experimental Investigation Using a Pulsejet Driver
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack; Dougherty, Kevin T.
2002-01-01
An experimental investigation is described in which thrust augmentation and mass entrainment were measured for a variety of simple cylindrical ejectors driven by a gasoline-fueled pulsejet. The ejectors were of varying length, diameter, and inlet radius. Measurements were also taken to determine the effect on performance of the distance between pulsejet exit and ejector inlet. Limited tests were also conducted to determine the effect of driver cross-sectional shape. Optimal values were found for all three ejector parameters with respect to thrust augmentation. This was not the case with mass entrainment, which increased monotonically with ejector diameter. Thus, it was found that thrust augmentation is not necessarily directly related to mass entrainment, as is often supposed for ejectors. Peak thrust augmentation values of 1.8 were obtained. Peak mass entrainment values of 30 times the driver mass flow were also observed. Details of the experimental setup and results are presented. Preliminary analysis of the results indicates that the enhanced performance obtained with an unsteady jet (primary source) over comparably sized ejectors driven with steady jets is due primarily to the structure of the starting vortex-type flow associated with the former.
Improvement of trout streams in Wisconsin by augmenting low flows with ground water
Novitzki, R.P.
1973-01-01
Approximately 2 cubic feet per second of ground water were introduced into the Little Plover River in 1968 when natural streamflow ranged from 3 to 4 cubic feet per second. These augmentation flows were retained undiminished through the 2-mile reach of stream monitored. Maximum stream temperatures were reduced as much as 5?F (3?C) at the augmentation site during the test period, although changes became insignificant more than 1 mile downstream. Maximum temperatures might be reduced as much as 10?F (6?C) during critical periods, based on estimates using a stream temperature model developed as part of the study. During critical periods significant temperature improvement may extend 2 miles or more downstream. Changes in minimum DO (dissolved oxygen) levels were slight, primarily because of the high natural DO levels occurring during the test period. Criteria for considering other streams for flow augmentation are developed on the basis of the observed hydrologic responses in the Little Plover River. Augmentation flows of nearly 2? cubic feet per second of ground water were introduced into the headwater reach of Black Earth Creek from the end of June through mid-October 1969. Streamflow ranged from 1 to 2 cubic feet per second at the augmentation site, and the average flow at the gaging station at Black Earth, approximately 8 miles downstream, ranged from 25 to 50 cubic feet per second. Augmentation flows were retained through the 8-mile reach of stream. Temperature of the augmentation flow as it entered the stream ranged from 60? to 70?F (about 16? to 21?C) during the test period, and minimum stream temperatures were raised 5?F (3?C) or more at the augmentation site, with changes extending from 2 to 3 miles downstream. Augmentation during critical periods could maintain stream temperatures between 40? and 70?F (4? and 21?C) through most of the study reach. DO levels were increased by as much as 2 milligrams per liter or more below the augmentation site, although the improvement diminished to approximately 1 milligram per liter downstream in the problem reach. During critical periods DO improvement in the problem reach would be somewhat greater. Flow augmentation would not be necessary during normal conditions in either of the streams studied. Critical DO and temperature levels are not known to occur in the Little Plover River. Since the construction of secondary treatment facilities at the Cross Plains sewage-treatment plant, critical DO levels are no longer expected to be a problem in Black Earth Creek. However, results from this study may be used to estimate the effectiveness of flow augmentation in other streams in similar areas in which critical DO or temperature levels may occur.
Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming
NASA Astrophysics Data System (ADS)
Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo
2017-11-01
It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.
NASA Astrophysics Data System (ADS)
Ligrani, P. M.
2018-03-01
A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, Albert E.; Schlecte, J.Warren
1997-07-01
The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2016-01-01
In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2015-08-15
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.
Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin
2012-11-01
Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-01-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988
Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges
2013-03-01
The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.
Porous silicon structures with high surface area/specific pore size
Northrup, M.A.; Yu, C.M.; Raley, N.F.
1999-03-16
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.
Porous silicon structures with high surface area/specific pore size
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
NASA Astrophysics Data System (ADS)
Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun
2013-08-01
A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.
The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)
2008-06-10
flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
NASA Astrophysics Data System (ADS)
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Lee, Changhoon; Park, Sangro
2016-11-01
Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.
Entrainment and thrust augmentation in pulsatile ejector flows
NASA Technical Reports Server (NTRS)
Sarohia, V.; Bernal, L.; Bui, T.
1981-01-01
This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.
Logic flowgraph methodology - A tool for modeling embedded systems
NASA Technical Reports Server (NTRS)
Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.
1991-01-01
The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.
NASA Astrophysics Data System (ADS)
Curran, M. L.; Hales, G.; Michalak, M.
2016-12-01
Digital Terrain Models (DTMs) generated in Agisoft Photoscan from photogrammetry provide a basis for a high resolution, quantitative analysis of geomorphic features that are difficult to describe using conventional, commonly used techniques. Photogrammetric analysis can be particularly useful in investigating the spatial and temporal dispersal of gravel in high gradient mountainous streams. The Oak Grove Fork (OGF), located in northwestern Oregon, is one of the largest tributaries to the Clackamas River. Lake Harriet Dam and diversion was built on the OGF in 1924 as part of a hydroelectric development by Portland General Electric. Decreased flow and sediment supply downstream of Lake Harriet Dam has resulted in geomorphic and biological changes, including reduced salmonid habitat. As part of a program to help restore a portion of the natural sediment supply and improve salmonid habitat, gravel augmentation is scheduled to begin September 2016. Tracking the downstream movement of augmented gravels is crucial to establishing program success. The OGF provides a unique setting for this study; flow is regulated at the dam, except for spillover during high flow events, and a streamflow gaging station downstream of the study area reports discharge. As such, the controlled environment of the OGF provides a natural laboratory to study how a sediment-depleted channel responds geomorphically to a known volume of added gravel. This study uses SfM to evaluate deposition of the augmented gravel following its introduction. The existing channel is characterized by coarse, angular gravel, cobble, and boulder; the augmented gravel is finer, rounded, and 5% of the volume is an exotic lithology to provide a visual tracer. Baseline, pre-gravel introduction DTMs are constructed and will be differenced with post-gravel introduction DTMs to calculate change at four study sites. Our preliminary pilot testing on another river shows that centimeter-scale accretion and aggradation within the wetted channel and on exposed gravel bars can be detected using this methodology. The resolution of the baseline DTMs on the Oak Grove Fork support these initial results. Continued monitoring and quantifying of vertical change within the study reach will inform future rehabilitation efforts and gravel augmentation practices.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-11-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. © 2014 Wiley Periodicals, Inc.
Experiments in free shear flows: Status and needs for the future
NASA Technical Reports Server (NTRS)
Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.
1973-01-01
Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.
Eddy Viscosity for Variable Density Coflowing Streams,
EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.
Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio
2009-10-01
Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.
ERIC Educational Resources Information Center
Bressler, D. M.; Bodzin, A. M.
2013-01-01
Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…
NASA Technical Reports Server (NTRS)
Ferguson, D. R.; Keith, J. S.
1975-01-01
The improvements which have been incorporated in the Streamtube Curvature Program to enhance both its computational and diagnostic capabilities are described. Detailed descriptions are given of the revisions incorporated to more reliably handle the jet stream-external flow interaction at trailing edges. Also presented are the augmented boundary layer procedures and a variety of other program changes relating to program diagnostics and extended solution capabilities. An updated User's Manual, that includes information on the computer program operation, usage, and logical structure, is presented. User documentation includes an outline of the general logical flow of the program and detailed instructions for program usage and operation. From the standpoint of the programmer, the overlay structure is described. The input data, output formats, and diagnostic printouts are covered in detail and illustrated with three typical test cases.
Theoretical Study of Turbulent Mixing in Inclined Ducted Jets.
Jet mixing flow, * Thrust augmentation , Curved profiles, Short takeoff aircraft, Flow fields, Ducts, Ejectors , Mathematical models, Secondary flow, Theory, Angles, Problem solving, Incompressible flow
Thermally induced gas flows in ratchet channels with diffuse and specular boundaries
Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen
2017-01-01
A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism. PMID:28128309
Vortical flow management techniques
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Campbell, James F.
1987-01-01
The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Experiments on high speed ejectors
NASA Technical Reports Server (NTRS)
Wu, J. J.
1986-01-01
Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.
Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko
2016-02-01
Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
A preliminary look at control augmented dynamic response of structures
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jewell, R. E.
1983-01-01
The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.
Entrainment and mixing in thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1983-01-01
An experimental investigation of two-dimensional thrust augmenting ejector flows has been conducted. Measurements of the shroud surface pressure distribution, mean velocity, turbulent intensities and Reynolds stresses were made in two shroud geometries at various primary nozzle pressure ratios. The effects of shroud geometry and primary nozzle pressure ratio on the shroud surface pressure distribution, mean flow field and turbulent field were determined. From these measurements the evolution of mixing within the shroud of the primary flow and entrained fluid was obtained. The relationship between the mean flow field, the turbulent field and the shroud surface pressure distribution is discussed.
Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)
2010-09-28
augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions
Duan, Liya; Guan, Tao; Yang, Bo
2009-01-01
Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. Registration is one of the most difficult problems currently limiting the usability of AR systems. In this paper, we propose a novel natural feature tracking based registration method for AR applications. The proposed method has following advantages: (1) it is simple and efficient, as no man-made markers are needed for both indoor and outdoor AR applications; moreover, it can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) Thanks to the reduced SIFT based augmented optical flow tracker, the virtual scene can still be augmented on the specified areas even under the circumstances of occlusion and large changes in viewpoint during the entire process. (3) It is easy to use, because the adaptive classification tree based matching strategy can give us fast and accurate initialization, even when the initial camera is different from the reference image to a large degree. Experimental evaluations validate the performance of the proposed method for online pose tracking and augmentation.
Abrupt increase in rat carotid blood flow induces rapid alteration of artery mechanical properties
Monson, Kenneth L.; Matsumoto, Melissa M.; Young, William L.; Manley, Geoffrey T.; Hashimoto, Tomoki
2010-01-01
Vascular remodeling is essential to proper vessel function. Dramatic changes in mechanical environment, however, may initiate pathophysiological vascular remodeling processes that lead to vascular disease. Previous work by some of our group has demonstrated a dramatic rise in matrix metalloproteinase (MMP) expression shortly following an abrupt increase in carotid blood flow. We hypothesized that there would be a corresponding change in carotid mechanical properties. Unilateral carotid ligation surgery was performed to produce an abrupt, sustained increase in blood flow through the contralateral carotid artery of rats. The flow-augmented artery was harvested after sham surgery or 1, 2, or 6 days after flow augmentation. Vessel mechanical response in the circumferential direction was then evaluated through a series of pressure-diameter tests. Results show that the extent of circumferential stretch (normalized change in diameter) at in vivo pressure levels was significantly different (p<0.05) from normo-flow controls at 1 and 2 days following flow augmentation. Measurements at 1, 2, and 6 days were not significantly different from one another, but a trend in the data suggested that circumferential stretch was largest 1 day following surgery and subsequently decreased toward baseline values. Because previous work with this model indicated a similar temporal pattern for MMP-9 expression, an exploratory set of experiments was conducted where vessels were tested 1 day following surgery in animals treated with broad spectrum MMP inhibitors (either doxycycline or GM6001). Results showed a trend for the inhibitors to minimize changes in mechanical properties. Observations demonstrate that vessel mechanical properties change rapidly following flow augmentation and that alterations may be linked to expression of MMPs. PMID:21094476
The drive for Aircraft Energy Efficiency
NASA Technical Reports Server (NTRS)
James, R. L., Jr.; Maddalon, D. V.
1984-01-01
NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.
A three-dimensional potential-flow program with a geometry package for input data generation
NASA Technical Reports Server (NTRS)
Halsey, N. D.
1978-01-01
Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.
Control-Volume Analysis Of Thrust-Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1990-01-01
New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.
A Simple Model of Pulsed Ejector Thrust Augmentation
NASA Technical Reports Server (NTRS)
Wilson, Jack; Deloof, Richard L. (Technical Monitor)
2003-01-01
A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.
A Determinate Model of Thrust-Augmenting Ejectors
NASA Astrophysics Data System (ADS)
Whitley, N.; Krothapalli, A.; van Dommelen, L.
1996-01-01
A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.
Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips
NASA Technical Reports Server (NTRS)
Tse, David G.N.; Steuber, Gary
1996-01-01
Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Starting Vortex Identified as Key to Unsteady Ejector Performance
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2004-01-01
Unsteady ejectors are currently under investigation for use in some pulse-detonation-engine-based propulsion systems. Experimental measurements made in the past, and recently at the NASA Glenn Research Center, have demonstrated that thrust augmentation can be enhanced considerably when the driver is unsteady. In ejector systems, thrust augmentation is defined as = T(sup Total)/T(sup j), where T(sup Total) is the total thrust of the combined ejector and driving jet and T(sup j) is the thrust due to the driving jet alone. There are three images in this figure, one for each of the named thrust sources. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left, and the shape and location of each driver is shown on the far right of each image. The emitted vortex is a clearly defined "doughnut" of highly vortical (spinning) flow. In these planar images, the vortex appears as two distorted circles, one above, and one below the axis of symmetry. Because they are spinning in the opposite direction, the two circles have vorticity of opposite sign and thus are different colors. There is also a rectangle shown in each image. Its width represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. The exact mechanism behind the enhanced performance is unclear; however, it is believed to be related to the powerful vortex emitted with each pulse of the unsteady driver. As such, particle imaging velocimetry (PIV) measurements were obtained for three unsteady drivers: a pulsejet, a resonance tube, and a speaker-driven jet. All the drivers were tested with ejectors, and all exhibited performance enhancement over similarly sized steady drivers. The characteristic starting vortices of each driver are shown in these images. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left. The shape and location of each driver is shown on the far right of each image. The rectangle shown in each image represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. Although not shown, it was observed that the emitted vortex spread as it traveled downstream. The spreading rate for the pulsejet is shown as the dashed lines in the top image. A tapered ejector was fabricated that matched this shape. When tested, the ejector demonstrated superior performance to all those previously tested at Glenn (which were essentially of straight, cylindrical form), achieving a remarkable thrust augmentation of 2. The measured thrust augmentation is shown as a function of ejector length. Also shown are the thrust augmentation values achieved with the straight, cylindrical ejectors of varying diameters. Here, thrust augmentation is plotted as a function of ejector length for several families of ejector diameters. It can be seen that large thrust augmentation values are indeed obtained and that they are sensitive to both ejector length and diameter, particularly the latter. Five curves are shown. Four correspond to straight ejector diameters of 2.2, 3.0, 4.0, and 6.0 in. The fifth curve corresponds to the tapered ejector contoured to bound the emitted vortex. For each curve, there are several data points corresponding to different lengths. The largest value of thrust augmentation is 2.0 for the tapered ejector and 1.81 for the straight ejectors. Regardless of their diameters, all the ejectors trend toward peak performance at a particular leng. That the cross-sectional dimensions of optimal ejectors scaled precisely with the vortex dimensions on three separate pulsed thrust sources demonstrates that the action of the vortex is responsible for the enhanced ejector performance. The result also suggests that, in the absence of a complete understanding of the entrainment and augmentation mechanisms, methods of characterizing starting vortices may be useful for correlating and predicting unsteady ejector performance.
Hybrid Manipulation of Streamwise Vorticity in a Diffuser Boundary Layer
NASA Astrophysics Data System (ADS)
Gissen, Abraham; Vukasinovic, Bojan; Culp, John; Glezer, Ari
2010-11-01
The formation of streamwise vorticity concentrations by exploiting the interaction of surface-mounted passive (micro-vanes) and active (synthetic jets) flow control elements with the cross flow is investigated experimentally in a small-scale serpentine duct at high subsonic speeds (up to M = 0.6). Streamwise vortices can be a key element in the mitigation of the adverse effects on pressure recovery and distortion caused by the naturally occurring secondary flows in embedded propulsion systems with complex inlet geometries. Counter rotating and single-sense vortices are formed using conventional passive micro-vanes and active high-power synthetic jet actuators. Interaction of the flow control elements is examined through a hybrid actuation scheme whereby synthetic jet actuation augments the primary vanes' vortices resulting in dynamic enhancement of their strength. It is shown that such sub-boundary layer individual vortices can merge and evolve into duct-scale vortical structures that counteract the inherent secondary flow and mitigates global flow distortion.
Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.
Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng
2007-01-01
Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.
1992-01-01
Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy; Perusek, Gail P.; Ibrahim, Mounir
1992-01-01
Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow paramenter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
ERIC Educational Resources Information Center
Engelke, Christopher Robert
2013-01-01
Technically Speaking: On the Structure and Experience of Interaction Involving Augmentative Alternative Communications examines the ways that communication is structured and experienced by looking at interactions involving augmented communicators--people with severe speech disabilities who use forms of assistive technology in order to communicate…
NASA Technical Reports Server (NTRS)
Storms, Bruce Lowell
1989-01-01
Flow field measurements were obtained in a three-dimensional thrust augmenting ejector using laser Doppler velocimetry and hot wire anemometry. The primary nozzle, segmented into twelve slots of aspect ratio 3.0, was tested at a pressure ratio of 1.15. Results are presented on the mean velocity, turbulence intensity, and Reynolds stress progressions in the mixing chamber of the constant area ejector. The segmented nozzle was found to produce streamwise vortices that may increase the mixing efficiency of the ejector flow field. Compared to free jet results, the jet development is reduced by the presence of the ejector walls. The resulting thrust augmentation ratio of this ejector was also calculated to be 1.34.
Transcranial Doppler and cerebral augmentation in acute ischemic stroke.
Saqqur, Maher; Ibrahim, Mohamed; Butcher, Ken; Khan, Khurshid; Emery, Derek; Manawadu, Dulka; Derksen, Carol; Schwindt, Brenda; Shuaib, Ashfaq
2013-07-01
Collateral flow augmentation using partial aortic occlusion may improve cerebral perfusion in acute stroke. We assessed the effect of partial aortic occlusion on arterial flow velocities of acute stroke patients. Patients with neurological deficits following thrombolysis were treated with partial aortic occlusion. Transcranial Doppler ultrasound (TCD) was used to measure arterial flow velocities at baseline, before and during balloon inflation. The augmented mean flow velocity (MFV), peak systolic velocity (PSV), and end diastolic velocity flow percentages (aMFV%, aPSV%, aEDV%) were calculated and compared based on outcome. Of 11 patients, 3 did not have a temporal window and thus were excluded from our analysis. Six of the remaining 8 patients had middle cerebral artery (MCA) occlusions; the final 2 had terminal internal carotid artery (TICA) occlusions. Three of these 8 patients had good outcome at 90 days (mRS < 3). Before intra-aortic balloon inflation (IABI), the mean affected artery MFV was 23 ± 11 cm/s; during the procedure it was 26 ± 12 cm/s (P = .2). Mean affected artery PSV at baseline and during balloon inflation were 37 ± 16 and 46 ± 23, respectively (P = .1). Mean augmented affected artery MFV% in patients with good long-term outcome was 65.4 ± 46, while the result in those with poor outcome was -3.7 ± 21 (P = .03). Three patients developed anterior cross-filling, and of these 2 had good long-term outcome. TCD monitoring of patients treated with IABI may help in predicting outcome in this novel device. Copyright © 2012 by the American Society of Neuroimaging.
Static performance tests of a flight-type STOVL ejector
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1991-01-01
The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.
3-D Digitization of Stereoscopic Jet-in-Crossflow Vortex Structure Images via Augmented Reality
NASA Astrophysics Data System (ADS)
Sigurdson, Lorenz; Strand, Christopher; Watson, Graeme; Nault, Joshua; Tucker, Ryan
2006-11-01
Stereoscopic images of smoke-laden vortex flows have proven useful for understanding the topology of the embedded 3-D vortex structures. Images from two cameras allow a perception of the 3-D structure via the use of red/blue eye glasses. The human brain has an astonishing capacity to calculate and present to the observer the complex turbulent smoke volume. We have developed a technique whereby a virtual cursor is introduced to the perception, which creates an ``augmented reality.'' The perceived position of this cursor in the 3-D field can be precisely controlled by the observer. It can be brought near a characteristic vortex structure in order to digitally estimate the spatial coordinates of that feature. A calibration procedure accounts for camera positioning. Vortex tubes can be traced and recorded for later or real time supersposition of tube skeleton models. These models can be readily digitally obtained for display in graphics systems to allow complete exploration from any location or perspective. A unique feature of this technology is the use of the human brain to naturally perform the difficult computation of the shape of the translucent smoke volume. Examples are given of application to low velocity ratio and Reynolds number elevated jets-in-crossflow.
Undulated Nozzle for Enhanced Exit Area Mixing
NASA Technical Reports Server (NTRS)
Seiner, John M. (Inventor); Gilinsky, Mikhail M. (Inventor)
2000-01-01
A nozzle having an undulating surface for enhancing the mixing of a primary flow with a secondary flow or ambient air, without requiring an ejector. The nozzle includes a nozzle structure and design for introducing counter-rotating vorticity into the primary flow either through (i) internal surface corrugations where an axisymmetric line through each corrugation is coincident with an axisymmetric line through the center of the flow passageway or (ii) through one or more sets of alternating convexities and cavities in the internal surface of the nozzle where an axisymmetric line through each convexity and cavity is coincident with an axisymmetric line through the center of the flow passageway, and where the convexities contract from the entrance end towards the exit end. Exit area mixing is also enhanced by one or more chevrons attached to the exit edge of the nozzle. The nozzle is ideally suited for application as a jet engine nozzle. When used as a jet engine nozzle, noise suppression with simultaneous thrust augmentation/minimal thrust loss is achieved.
Flow interaction of diffuser augmented wind turbines
NASA Astrophysics Data System (ADS)
Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.
2016-09-01
Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.
NASA Astrophysics Data System (ADS)
Fu, Zhidong; Qin, Suyang; Liu, Hong
2014-01-01
The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.
Ultrasoft microgels displaying emergent platelet-like behaviours
NASA Astrophysics Data System (ADS)
Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.
2014-12-01
Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.
NASA Technical Reports Server (NTRS)
Bathe, M.; Kamm, R. D.
1999-01-01
A new model is used to analyze the fully coupled problem of pulsatile blood flow through a compliant, axisymmetric stenotic artery using the finite element method. The model uses large displacement and large strain theory for the solid, and the full Navier-Stokes equations for the fluid. The effect of increasing area reduction on fluid dynamic and structural stresses is presented. Results show that pressure drop, peak wall shear stress, and maximum principal stress in the lesion all increase dramatically as the area reduction in the stenosis is increased from 51 to 89 percent. Further reductions in stenosis cross-sectional area, however, produce relatively little additional change in these parameters due to a concomitant reduction in flow rate caused by the losses in the constriction. Inner wall hoop stretch amplitude just distal to the stenosis also increases with increasing stenosis severity, as downstream pressures are reduced to a physiological minimum. The contraction of the artery distal to the stenosis generates a significant compressive stress on the downstream shoulder of the lesion. Dynamic narrowing of the stenosis is also seen, further augmenting area constriction at times of peak flow. Pressure drop results are found to compare well to an experimentally based theoretical curve, despite the assumption of laminar flow.
Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R
2015-04-01
Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.
Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.
2015-01-01
Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183
Advanced supersonic propulsion system technology study, phase 2
NASA Technical Reports Server (NTRS)
Allan, R. D.
1975-01-01
Variable cycle engines were identified, based on the mixed-flow low-bypass-ratio augmented turbofan cycle, which has shown excellent range capability in the AST airplane. The best mixed-flow augmented turbofan engine was selected based on range in the AST Baseline Airplane. Selected variable cycle engine features were added to this best conventional baseline engine, and the Dual-Cycle VCE and Double-Bypass VCE were defined. The conventional mixed-flow turbofan and the Double-Bypass VCE were on the subjects of engine preliminary design studies to determine mechanical feasibility, confirm weight and dimensional estimates, and identify the necessary technology considered not yet available. Critical engine components were studied and incorporated into the variable cycle engine design.
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
Augmented reality based real-time subcutaneous vein imaging system
Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian
2016-01-01
A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690
Augmented reality based real-time subcutaneous vein imaging system.
Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian
2016-07-01
A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.
Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Mace, James L.; Mani, Mori
2009-01-01
The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.
Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2011-01-01
Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.
NASA Astrophysics Data System (ADS)
Downs, P. W.; Gilvear, D. J.
2017-12-01
Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed particle dynamics thus have implications both for the biological effectiveness of gravel augmentation and the efficacy criterion of `minimum mobility'. They also reflect the challenges inherent to constraint-limited natural experiments that are, conversely, important in proving the value of geomorphology to resource managers.
Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E
2013-10-01
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Turbulence modeling and surface heat transfer in a stagnation flow region
NASA Technical Reports Server (NTRS)
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guntur, S.; Schreck, S.; Sorensen, N. N.
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) themore » National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.« less
NASA Astrophysics Data System (ADS)
Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor
2017-12-01
The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.
Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho
2010-06-01
The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.
Exact renormalization group in Batalin-Vilkovisky theory
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2018-03-01
In this paper, inspired by the Costello's seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T [1]ℝ. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski's form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree -1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.
Currens, J.C.
1999-01-01
Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.
Precision control of drying using rhythmic dancing of sessile nanoparticle laden droplets
NASA Astrophysics Data System (ADS)
Sanyal, Apratim; Basu, Saptarshi; Chowdhuri, Subham; Kabi, Prasenjit; Chaudhuri, Swetaprovo
2014-04-01
This work analyses the unique spatio-temporal alteration of the deposition pattern of evaporating nanoparticle laden droplets resting on a hydrophobic surface through targeted low frequency substrate vibrations. External excitation near the lowest resonant mode (n = 2) of the droplet initially de-pins and then subsequently re-pins the droplet edge creating pseudo-hydrophilicity (low contact angle). Vibration subsequently induces droplet shape oscillations (cyclic elongation and flattening) resulting in strong flow recirculation. This strong radially outward liquid flow augments nanoparticle transport, vaporization, and agglomeration near the pinned edge resulting in much reduced drying time under certain characteristic frequency of oscillations. The resultant deposit exhibits a much flatter structure with sharp, defined peripheral wedge topology as compared to natural drying. Such controlled manipulation of transport enables tailoring of structural and topological morphology of the deposits and offers possible routes towards controlling the formation and drying timescales which are crucial for applications ranging from pharmaceutics to surface patterning.
Aerodynamic surface stress intermittency and conditionally averaged turbulence statistics
NASA Astrophysics Data System (ADS)
Anderson, William; Lanigan, David
2015-11-01
Aeolian erosion is induced by aerodynamic stress imposed by atmospheric winds. Erosion models prescribe that sediment flux, Q, scales with aerodynamic stress raised to exponent, n, where n > 1 . Since stress (in fully rough, inertia-dominated flows) scales with incoming velocity squared, u2, it follows that q ~u2n (where u is some relevant component of the flow). Thus, even small (turbulent) deviations of u from its time-mean may be important for aeolian activity. This rationale is augmented given that surface layer turbulence exhibits maximum Reynolds stresses in the fluid immediately above the landscape. To illustrate the importance of stress intermittency, we have used conditional averaging predicated on stress during large-eddy simulation of atmospheric boundary layer flow over an arid, bare landscape. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field. This work was supported by the National Sci. Foundation, Phys. and Dynamic Meteorology Program (PM: Drs. N. Anderson, C. Lu, and E. Bensman) under Grant # 1500224. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.
Augmenting ejector endwall effects. [V/STOL aircraft
NASA Technical Reports Server (NTRS)
Porter, J. L.; Squyers, R. A.
1979-01-01
Rectangular inlet ejectors which had multiple hypermixing nozzles for their primary jets were investigated for the effects of endwall blowing on thrust augmentation performance. The ejector configurations tested had both straight wall and active boundary layer control type diffusers. Endwall flows were energized and controlled by simple blowing jets suitably located in the ejector. Both the endwall and boundary layer control diffuser blowing rates were varied to determine optimum performance. High area ratio diffusers with insufficient endwall blowing showed endwall separation and rapid degradation of thrust performance. Optimized values of diffuser boundary layer control and endwall nozzle blowing rates in an ejector augmenter were shown to achieve high levels of augmentation performance for maximum compactness.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
NASA Astrophysics Data System (ADS)
Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.
2016-12-01
In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.
Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
Graft Utilization in the Augmentation of Large-to-Massive Rotator Cuff Repairs: A Systematic Review.
Ferguson, Devin P; Lewington, Matthew R; Smith, T Duncan; Wong, Ivan H
2016-11-01
Current treatment options for symptomatic large-to-massive rotator cuff tears can reduce pain, but failure rates remain high. Surgeons have incorporated synthetic and biologic grafts to augment these repairs, with promising results. Multiple reviews exist that summarize these products; however, no systematic review has investigated the grafts' ability to maintain structural integrity after augmentation of large-to-massive rotator cuff repairs. To systematically review and evaluate the effectiveness of grafts in the augmentation of large-to-massive rotator cuff repairs. Systematic review. A comprehensive search of 4 reputable databases was completed. Inclusion criteria were (1) large-to-massive rotator cuff tear, (2) graft augmentation of primary repairs ± primary repair control group, and (3) minimum clinical and radiologic follow-up of 12 months. Two reviewers screened the titles, abstracts, and full articles and extracted the data from eligible studies. Results were summarized into evidence tables stratified by graft origin and level of evidence. Ten studies fit the inclusion criteria. Allograft augmentation was functionally and structurally superior to primary repair controls, with intact repairs in 85% versus 40% of patients (P < .01). This was supported by observational study data. Xenograft augmentation failed to demonstrate superiority to primary repair controls, with worse structural healing rates (27% vs 60%; P =.11). Both comparative studies supported this finding. There have also been many reports of inflammatory reactions with xenograft use. Polypropylene patches are associated with improved structural (83% vs 59% and 49%; P < .01) and functional outcomes when compared with controls and xenograft augmentation; however, randomized data are lacking. Augmentation of large-to-massive rotator cuff repairs with human dermal allografts is associated with superior functional and structural outcome when compared with conventional primary repair. Xenograft augmentation failed to demonstrate a statistically significant difference and may be associated with worse rerupture rates and occasional severe inflammatory reactions. Polypropylene patches have initial promising results. Research in this field is limited; future researchers should continue to develop prospective, randomized controlled trials to establish clear recommendations. © 2016 The Author(s).
Yager, Richard M.; Metz, P.A.
2004-01-01
Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T
ERIC Educational Resources Information Center
Squires, David R.
2017-01-01
The structure of the literature review features the current trajectory of Augmented Reality in the field including the current literature detailing how Augmented Reality has been applied in educational environments; how Augmented Reality has been applied in training environments; how Augmented Reality has been used to measure cognition and the…
Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, W.; Austin, J. M.
2013-10-01
We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Recent development of a jet-diffuser ejector
NASA Technical Reports Server (NTRS)
Alperin, M.; Wu, J. J.
1980-01-01
The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.
Belcik, J. Todd; Davidson, Brian P.; Xie, Aris; Wu, Melinda D.; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y.; Field, Joshua; Harmann, Leanne; Chilian, William M.; Linden, Joel; Lindner, Jonathan R.
2017-01-01
Background Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signalling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Methods Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for ten minutes after intravenous injection of 2×108 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signalling pathways were assessed by studying interventions that either (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or KATP channels; or (3) inhibited downstream signalling pathways involving endothelial nitric oxide synthase (eNOS) or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease (SCD). Results Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hrs in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with SCD. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced a nearly 40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or through adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of eNOS abolished the effects of therapeutic ultrasound, indicating downstream signalling through both NO and prostaglandins. Conclusions Therapeutic ultrasound using microbubble cavitation to increase muscle perfusion relies on shear-dependent increases in ATP which can act through a diverse portfolio of purinergic signalling pathways. These events can reverse hindlimb ischemia in mice for >24 hours, and increase muscle blood flow in patients with sickle cell disease. Clinical Trial Registration NCT01566890 (https://clinicaltrials.gov/ct2/show/NCT01566890) PMID:28174191
Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R
2017-03-28
Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of endothelial nitric oxide synthase abolished the effects of therapeutic ultrasound, indicating downstream signaling through both nitric oxide and prostaglandins. Therapeutic ultrasound using microbubble cavitation to increase muscle perfusion relies on shear-dependent increases in ATP, which can act through a diverse portfolio of purinergic signaling pathways. These events can reverse hindlimb ischemia in mice for >24 hours and increase muscle blood flow in patients with sickle cell disease. URL: http://clinicaltrials.gov. Unique identifier: NCT01566890. © 2017 American Heart Association, Inc.
Piao, Jin-Chun; Kim, Shin-Dug
2017-11-07
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
Extensions of Fundamental Flow Physics to Practical MAV Aerodynamics
2016-05-01
performances aérodynamiques. En cas de génération instable de la portance, certaines structures formées par la séparation de l’écoulement, telles...que le vortex du bord d’attaque, peuvent augmenter la portance bien au-delà des espérances à l’état stable. Le présent document étudie les rotations...une accélération dans le sens de l’écoulement à incidence constante (également lissée). Nous examinons de quelle façon la vitesse du mouvement
A full-scale STOVL ejector experiment
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1993-01-01
The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.
Two-Phase Flow Model and Experimental Validation for Bubble Augmented Waterjet Propulsion Nozzle
NASA Astrophysics Data System (ADS)
Choi, J.-K.; Hsiao, C.-T.; Wu, X.; Singh, S.; Jayaprakash, A.; Chahine, G.
2011-11-01
The concept of thrust augmentation through bubble injection into a waterjet has been the subject of many patents and publications over the past several decades, and there are simplified computational and experimental evidence of thrust increase. In this work, we present more rigorous numerical and experimental studies which aim at investigating two-phase water jet propulsion systems. The numerical model is based on a Lagrangian-Eulerian method, which considers the bubbly mixture flow both in the microscopic level where individual bubble dynamics are tracked and in the macroscopic level where bubbles are collectively described by the local void fraction of the mixture. DYNAFLOW's unsteady RANS solver, 3DYNAFS-Vis is used to solve the macro level variable density mixture medium, and a fully unsteady two-way coupling between this and the bubble dynamics/tracking code 3DYNAFS-DSM is utilized. Validation studies using measurements in a half 3-D experimental setup composed of divergent and convergent sections are presented. Visualization of the bubbles, PIV measurements of the flow, bubble size and behavior are observed, and the measured flow field data are used to validate the models. Thrust augmentation as high as 50% could be confirmed both by predictions and by experiments. This work was supported by the Office of Naval Research under the contract N00014-07-C-0427, monitored by Dr. Ki-Han Kim.
Analysis of managed aquifer recharge for retiming streamflow in an alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.
2017-01-01
Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
NASA Technical Reports Server (NTRS)
Ames, Forrest E.
1994-01-01
A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Augmentation of machine structure to improve its diagnosability
NASA Technical Reports Server (NTRS)
Hsieh, L.
1973-01-01
Two methods of augmenting the structure of a sequential machine so that it is diagnosable are presented. The checkable (checking sequences) and repeated symbol distinguishing sequences (RDS) are discussed. It was found that as few as twice the number of outputs of the given machine is sufficient for constructing a state-output augmentation with RDS. Techniques for minimizing the number of states in resolving convergences and in resolving equivalent and nonreduced cycles are developed.
Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B
2015-07-01
Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.
A computational model for three-dimensional incompressible wall jets with large cross flow
NASA Technical Reports Server (NTRS)
Murphy, W. D.; Shankar, V.; Malmuth, N. D.
1979-01-01
A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Astrophysics Data System (ADS)
Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md
2017-10-01
Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.
Viscid/inviscid interaction analysis of thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilacqua, P. M.; Dejoode, A. D.
1979-01-01
A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.
Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configurations
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Hubbard, Harvey H.
1959-01-01
Experimental noise studies were conducted on model configurations of some proposed jet-augmented flaps to determine their far-field noise characteristics. The tests were conducted using cold-air jets of circular and rectangular exits having equal areas, at pressure ratios corresponding to exit velocities slightly below choking. Results indicated that the addition of a flap to a nozzle may change both its noise radiation pattern and frequency spectrum. Large reductions in the noise radiated in the downward direction are realized when the flow from a long narrow rectangular nozzle as permitted to attach to and flow along a large flap surface. Deflecting or turning the jet flow by means of impingement on the under surfaces increases the noise radiated in all directions and especially in the downward direction for the jet-flap configurations tested. Turning of the flow from nozzles by means of a flap turns the noise pattern approximately an equal amount. The principle of using a jet-flap shield with flow attachment may have some application as a noise suppressor.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Internal-external flow integration for a thin ejector-flapped wing section
NASA Technical Reports Server (NTRS)
Woolard, H. W.
1979-01-01
Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.
Xu, Yan-Jun; Elimban, Vijayan; Dhalla, Naranjan S
2017-08-01
In this study, we investigated the effects of CO 2 water-bath therapy on blood flow and angiogenesis in the ischemic hind limb, as well as some plasma angiogenic factors in peripheral ischemic model. The hind limb ischemia was induced by occluding the femoral artery for 2 weeks in rats and treated with or without CO 2 water-bath therapy at 37 °C for 4 weeks (20 min treatment every day for 5 days per week). The peak blood flow and minimal and mean blood flow in the ischemic skeletal muscle were markedly increased by the CO 2 water-bath therapy. This increase in blood flow was associated with development of angiogenesis in the muscle, as well as reduction in the ischemia-induced increase in plasma malondialdehyde levels. Although plasma vascular endothelial growth factor and nitric oxide levels were increased in animals with peripheral ischemia, the changes in these biomarkers were not affected by CO 2 water-bath therapy. These results suggest that augmentation of blood flow in the ischemic hind limb by CO 2 water-bath therapy may be due to the development of angiogenesis and reduction in oxidative stress.
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.
Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile
2015-05-01
This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.
Piao, Jin-Chun; Kim, Shin-Dug
2017-01-01
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143
ERIC Educational Resources Information Center
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan
2010-01-01
Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799
Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan
2010-02-09
Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.
An experimental investigation of two-dimensional thrust augmenting ejectors, part 2
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1984-01-01
The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data.
Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2009-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
Compression Pad Cavity Heating Augmentation on Orion Heat Shield
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2011-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
Behavior sensitivities for control augmented structures
NASA Technical Reports Server (NTRS)
Manning, R. A.; Lust, R. V.; Schmit, L. A.
1987-01-01
During the past few years it has been recognized that combining passive structural design methods with active control techniques offers the prospect of being able to find substantially improved designs. These developments have stimulated interest in augmenting structural synthesis by adding active control system design variables to those usually considered in structural optimization. An essential step in extending the approximation concepts approach to control augmented structural synthesis is the development of a behavior sensitivity analysis capability for determining rates of change of dynamic response quantities with respect to changes in structural and control system design variables. Behavior sensitivity information is also useful for man-machine interactive design as well as in the context of system identification studies. Behavior sensitivity formulations for both steady state and transient response are presented and the quality of the resulting derivative information is evaluated.
Ramos-Infante, Samuel Jesús; Ten-Esteve, Amadeo; Alberich-Bayarri, Angel; Pérez, María Angeles
2018-01-01
This paper proposes a discrete particle model based on the random-walk theory for simulating cement infiltration within open-cell structures to prevent osteoporotic proximal femur fractures. Model parameters consider the cement viscosity (high and low) and the desired direction of injection (vertical and diagonal). In vitro and in silico characterizations of augmented open-cell structures validated the computational model and quantified the improved mechanical properties (Young's modulus) of the augmented specimens. The cement injection pattern was successfully predicted in all the simulated cases. All the augmented specimens exhibited enhanced mechanical properties computationally and experimentally (maximum improvements of 237.95 ± 12.91% and 246.85 ± 35.57%, respectively). The open-cell structures with high porosity fraction showed a considerable increase in mechanical properties. Cement augmentation in low porosity fraction specimens resulted in a lesser increase in mechanical properties. The results suggest that the proposed discrete particle model is adequate for use as a femoroplasty planning framework.
2007-02-01
and Astronautics 11 PS3C W3 P3 T3 FAR3 Ps3 W41 P41 T41 FAR41 Ps41 W4 P4 T4 FAR4 Ps4 7 NozFlow 6 Flow45 5 Flow44 4 Flow41 3 Flow4 2 Flow3 1 N2Bal... Motivation for Modeling and Simulation Work The Augmented Generic Engine Model (AGEM) Model Verification and Validation (V&V) Assessment of AGEM V&V
Ultrasonically-assisted Polymer Molding: An Evaluation
NASA Astrophysics Data System (ADS)
Moles, Matthew; Roy, Anish; Silberschmidt, Vadim
Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.
NASA Astrophysics Data System (ADS)
Dhar, Jayabrata; Chakraborty, Suman
2017-09-01
Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.
Pulsed Ejector Thrust Amplification Tested and Modeled
NASA Technical Reports Server (NTRS)
Wilson, Jack
2004-01-01
There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Thrust augmentation in tandem flapping foils by foil-wake interaction
NASA Astrophysics Data System (ADS)
Anderson, Erik; Lauder, George
2006-11-01
Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.
Learning Molecular Structures in a Tangible Augmented Reality Environment
ERIC Educational Resources Information Center
Asai, Kikuo; Takase, Norio
2011-01-01
This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…
Construction of ontology augmented networks for protein complex prediction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian
2013-01-01
Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
Metz, Patricia A.; Sacks, Laura A.
2002-01-01
The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite, indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)
Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus
Holtschlag, David J.
2009-01-01
AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.
Flow Experience and Educational Effectiveness of Teaching Informatics Using AR
ERIC Educational Resources Information Center
Giasiranis, Stefanos; Sofos, Loizos
2017-01-01
The purpose of this study was the investigation of the added value of technology of augmented reality (AR) in education and, particularly, whether this contributes to both student performance improvement, as well as the appearance of the psychological condition of Flow, which according to research, has had a positive effect on their performance…
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Device for passive flow control around vertical axis marine turbine
NASA Astrophysics Data System (ADS)
Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.
2012-11-01
The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
NASA Astrophysics Data System (ADS)
Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.
2018-01-01
In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.
Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port
NASA Astrophysics Data System (ADS)
Marshall, Joel H.
A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.
Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.
Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.
1974-01-01
This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928
NASA Astrophysics Data System (ADS)
Trujillo, Steven Mathew
Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a more uniform flow in the near-wall region resulting from wall oscillation. Quantitative analyses of the visualizations supported the velocity-based Reynolds-stress reductions; the same data also revealed that the quasi-streamwise vortical structures above the wall did not appear to be altered significantly by the wall motion.
Improved approximations for control augmented structural synthesis
NASA Technical Reports Server (NTRS)
Thomas, H. L.; Schmit, L. A.
1990-01-01
A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.
NASA Astrophysics Data System (ADS)
Nazari, Saeed; Zamani, Mahdi; Moshizi, Sajad A.
2018-03-01
The ensuing study is dedicated to a series of numerical investigations concerning the effects of various geometric parameters of dimpled plates on the flow structure and heat transfer performance in a rectangular duct compared to the smooth plate. These parameters are the arrangement, number and depth of dimples. Two widely used staggered and square patterns in addition to a triangular arrangement, and three dimple depths (Δ = δ/d = 0.25, 0.375 and 0.5) have been chosen for this particular study. All studies have been conducted at three different Reynolds numbers Re = 25,000, 50,000 and 100,000. In order to capture the flow structures in the vicinity of dimples and contributing phenomena related to the boundary layer interactions, fully structured grids with y+ < 1 have been generated for all the cases. The realizable k t -ɛ two-layer model was selected as a proper turbulent model. It can be observed from the obtained results that higher effective area for heat transfer and a myriad of turbulent vortices mixing the hot fluid near the surface with the passing cold fluid generated from the downwind rims of dimples are the causes for improved average Nusselt number in the dimpled surface in comparison to the smooth plate. However, more pressure loss due to the higher friction drag and recirculation zones inside dimples will exist as a drawback in this system. Moreover, for all arrangements increasing dimple ratio Δ has a negative impact on the heat transfer augmentation and also deteriorates the pressure loss, which leads to this fact that Δ = 0.25 serves as the best option for the dimple depth.
NASA Technical Reports Server (NTRS)
Khare, J. M.; Kentfield, J. A. C.
1979-01-01
A flexible, and easily modified, test rig is described which allows a one dimensional nonsteady flow stream to be generated, economically from a steady flow source of compressed air. This nonsteady flow is used as the primary stream in a nonsteady flow ejector constituting part of the test equipment. Standard piezo-electric pressure transducers etc. allow local pressures to be studied, as functions of time, in both the primary and secondary (mixed) flow portions of the apparatus. Provision is also made for measuring the primary and secondary mass flows and the thrust generated. Sample results obtained with the equipment are presented.
Distributed robust finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2016-04-01
This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.
2007-11-01
information into awareness. Broadbent’s (1958) " Filter " model of attention (see Figure 1) maps the flow of information from the senses through a number of...benefits of an attentional cueing paradigm can be explained within these models . For example, the selective filter is augmented by the information...capacity filter ’, while Wickens’ model represents this with a limited amount of ’attentional resources’ available to perception, decision making
Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.
2016-03-31
Augmentation scenarios were based on historical hydrological and meteorological data, combined with prescribed flow and temperature releases from Lewiston Dam provided by the Bureau of Reclamation. Water releases were scheduled to achieve targeted flows of 2,500, 2,800, and 3,200 cubic feet per second in the lower Klamath River from mid-August through late September, coinciding with the upstream migration of adult fall-run Chinook salmon (Oncorhynchus tshawytscha). Water temperatures simulated at river mile 5.7 on the Klamath River showed a 5 °C decrease from the No Action historical baseline, which was near or greater than 23 °C when augmentation began in mid-August. Thereafter, an approximate 1 °C difference among augmentation scenarios emerged, with the decrease in water temperature commensurate to the level of augmentation. All augmentation scenarios simulated water temperatures equal to or less than 21 °C from mid-August through late September. Water temperatures equal to or greater than 23 °C are of particular interest because of a thermal threshold known to inhibit upstream migration of salmon. When temperatures exceed this approximate 23 °C threshold, Chinook salmon are known to congregate in high densities in thermal refugias and show extended residence times, which can potentially trigger epizootic outbreaks such as of Ichthyophthirius multifiliis (“Ich”) and Flavobacterium columnare (“Columnaris”) that were the causative factors of the Klamath River fish kill in 2002. A model with the ability to simulate water temperatures in response to management actions at the basin scale is a valuable asset for water managers who must make decisions about how best to use limited water resources, which directly affect the state of fisheries in the Klamath Basin.
A new approach to enforce element-wise mass/species balance using the augmented Lagrangian method
NASA Astrophysics Data System (ADS)
Chang, J.; Nakshatrala, K.
2015-12-01
The least-squares finite element method (LSFEM) is one of many ways in which one can discretize and express a set of first ordered partial differential equations as a mixed formulation. However, the standard LSFEM is not locally conservative by design. The absence of this physical property can have serious implications in the numerical simulation of subsurface flow and transport. Two commonly employed ways to circumvent this issue is through the Lagrange multiplier method, which explicitly satisfies the element-wise divergence by introducing new unknowns, or through appending a penalty factor to the continuity constraint, which reduces the violation in the mass balance. However, these methodologies have some well-known drawbacks. Herein, we propose a new approach to improve the local balance of species/mass balance. The approach augments constraints to a least-square function by a novel mathematical construction of the local species/mass balance, which is different from the conventional ways. The resulting constrained optimization problem is solved using the augmented Lagrangian, which corrects the balance errors in an iterative fashion. The advantages of this methodology are that the problem size is not increased (thus preserving the symmetry and positive definite-ness) and that one need not provide an accurate guess for the initial penalty to reach a prescribed mass balance tolerance. We derive the least-squares weighting needed to ensure accurate solutions. We also demonstrate the robustness of the weighted LSFEM coupled with the augmented Lagrangian by solving large-scale heterogenous and variably saturated flow through porous media problems. The performance of the iterative solvers with respect to various user-defined augmented Lagrangian parameters will be documented.
Detonation wave augmentation of gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1984-01-01
The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.
Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog
2015-09-01
Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.
A study of the Flint River, Michigan, as it relates to low-flow augmentation
Hulbert, Gordon C.
1972-01-01
One of the uses of the Flint River is dilution of waste-water. Population and industrial growth in the Flint area hah placed new demands on the stream and emphasized the need for an analysis of the surface water resources of the basin. This report describes selected streamflow characteristics of the Flint River and its tributaries, and presents draft-storage relations for the river basin. Flow characteristics for 17 sites show that the 7-day 2-year low flow ranges from 0 to 0.17 cfs (cubic feet per second) per square mile. Draft-storage relations for the basin show that existing storage, if fully utilized, could, on an average, provide a minimum discharge at Montrose of 160 cfs in 19 out of 20 years. The discharge, in conjunction with water diverted from Lake Huron to the Flint River through the Detroit and Flint water systems (about 60 cfs in 1971), indicates that low flows would seldom be less than about 200 cfs at Montrose. Diversions from the basin for irrigation may reduce low flows by about 12 cfs. Ground-water sources offer small potential for development of large supplies of water for streamflow augmentation, although wells in the glacial deposits may provide a supplemental source of water at some locations.
Effective equations governing an active poroelastic medium
2017-01-01
In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138
Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian
2012-01-01
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.
[Augmentation with PMMA cement].
Kühn, K-D; Höntzsch, D
2015-09-01
Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects.
Augmenting Trastuzumab Therapy against Breast Cancer through Selective Activation of NK Cells
2014-12-01
purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines including MCF7 (A and E...purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A...and Whiteside, T.L. 2007. A novel multiparametric flow cytometry -based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons
Homaifar, Beeta; Matarazzo, Bridget; Wortzel, Hal S
2013-09-01
This column is the second in a series presenting a model for therapeutic risk management of the suicidal patient. As discussed in the first part of the series, the model involves several elements including augmenting clinical risk assessment with structured instruments, stratifying risk in terms of both severity and temporality, and developing and documenting a safety plan. This column explores in more detail how to augment clinical risk assessment with structured instruments. Unstructured clinical interviews have the potential to miss important aspects of suicide risk assessment. By augmenting the free-form clinical interview with structured instruments that demonstrate reliability and validity, a more nuanced and multifaceted approach to suicide risk assessment is achieved. Incorporating structured instruments into practice also serves a medicolegal function, since these instruments may become a living part of the medical record, establishing baseline levels of suicidal thoughts and behaviors and facilitating future clinical determinations regarding safety needs. We describe several instruments used in a multidisciplinary suicide consultation service, each of which has demonstrated relevance to suicide risk assessment and screening, ease of administration, and strong psychometric properties. In addition, we emphasize the importance of viewing suicide risk assessment as an ongoing process rather than as a singular event. Finally, we discuss special considerations in the evolving practice of risk assessment.
Shaikh, Amir Y; Wang, Na; Yin, Xiaoyan; Larson, Martin G; Vasan, Ramachandran S; Hamburg, Naomi M; Magnani, Jared W; Ellinor, Patrick T; Lubitz, Steven A; Mitchell, Gary F; Benjamin, Emelia J; McManus, David D
2016-09-01
The relations of measures of arterial stiffness, pulsatile hemodynamic load, and endothelial dysfunction to atrial fibrillation (AF) remain poorly understood. To better understand the pathophysiology of AF, we examined associations between noninvasive measures of vascular function and new-onset AF. The study sample included participants aged ≥45 years from the Framingham Heart Study offspring and third-generation cohorts. Using Cox proportional hazards regression models, we examined relations between incident AF and tonometry measures of arterial stiffness (carotid-femoral pulse wave velocity), wave reflection (augmentation index), pressure pulsatility (central pulse pressure), endothelial function (flow-mediated dilation), resting brachial arterial diameter, and hyperemic flow. AF developed in 407/5797 participants in the tonometry sample and 270/3921 participants in the endothelial function sample during follow-up (median 7.1 years, maximum 10 years). Higher augmentation index (hazard ratio, 1.16; 95% confidence interval, 1.02-1.32; P=0.02), baseline brachial artery diameter (hazard ratio, 1.20; 95% confidence interval, 1.01-1.43; P=0.04), and lower flow-mediated dilation (hazard ratio, 0.79; 95% confidence interval, 0.63-0.99; P=0.04) were associated with increased risk of incident AF. Central pulse pressure, when adjusted for age, sex, and hypertension (hazard ratio, 1.14; 95% confidence interval, 1.02-1.28; P=0.02) was associated with incident AF. Higher pulsatile load assessed by central pulse pressure and greater apparent wave reflection measured by augmentation index were associated with increased risk of incident AF. Vascular endothelial dysfunction may precede development of AF. These measures may be additional risk factors or markers of subclinical cardiovascular disease associated with increased risk of incident AF. © 2016 American Heart Association, Inc.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Code Validation Studies of High-Enthalpy Flows
2006-12-01
stage of future hypersonic vehicles. The development and design of such vehicles is aided by the use of experimentation and numerical simulation... numerical predictions and experimental measurements. 3. Summary of Previous Work We have studied extensively hypersonic double-cone flows with and in...the experimental measurements and the numerical predictions. When we accounted for that effect in numerical simulations, and also augmented the
Flow separation on flapping and rotating profiles with spanwise gradients.
Wong, J G; laBastide, B P; Rival, D E
2017-02-15
The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles has been investigated experimentally. Three time-varying cases were considered: a two-dimensional reference case with a spanwise-uniform angle-of-attack variation α; a case with increasing α towards the profile tip (similar to flapping flyers); and a case with increasing α towards the profile root (similar to rotor blades experiencing an axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient produces a vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the profile. Specifically, when replicating the angle-of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-vorticity gradient is aligned such that circulation increases within the measurement domain. This in turn increases the local LEV growth rate, which is suggestive of force augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity gradient and spanwise flow, thereby replicating that arrangement found in a flapping flyer, was found to reduce local circulation. From this, we can conclude that spanwise flow can be arranged to vary LEV growth to prolong lift augmentation and reduce the unsteadiness of cyclic loads.
Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.
Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali
2017-01-01
This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.
Basafa, Ehsan; Murphy, Ryan J; Kutzer, Michael D; Otake, Yoshito; Armand, Mehran
2013-01-01
Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R(2) = 0.86) and normalized pressure (R(2) = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.
A Synthetic Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection
Murray, Preston R.; Thomson, Scott L.; Smith, Marshall E.
2013-01-01
Objective Design and evaluate a platform for studying the mechanical effects of augmentation injections using synthetic self-oscillating vocal fold models. Study Design Basic science. Methods Life-sized, synthetic, multi-layer, self-oscillating vocal fold models were created that simulated bowing via volumetric reduction of the body layer relative to that of a normal, unbowed model. Material properties of the layers were unchanged. Models with varying degrees of bowing were created and paired with normal models. Following initial acquisition of data (onset pressure, vibration frequency, flow rate, and high-speed image sequences), bowed models were injected with silicone that had material properties similar to those used in augmentation procedures. Three different silicone injection quantities were tested: sufficient to close the glottal gap, insufficient to close the glottal gap, and excess silicone to create convex bowing of the bowed model. The above-mentioned metrics were again taken and compared. Pre- and post-injection high-speed image sequences were acquired using a hemilarynx setup, from which medial surface dynamics were quantified. Results The models vibrated with mucosal wave-like motion and at onset pressures and frequencies typical of human phonation. The models successfully exhibited various degrees of bowing which were then mitigated by injecting filler material. The models showed general pre- to post-injection decreases in onset pressure, flow rate, and open quotient, and a corresponding increase in vibration frequency. Conclusion The model may be useful in further explorations of the mechanical consequences of augmentation injections. PMID:24476985
ChemPreview: an augmented reality-based molecular interface.
Zheng, Min; Waller, Mark P
2017-05-01
Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.
The Role of Multiphysics Simulation in Multidisciplinary Analysis
NASA Technical Reports Server (NTRS)
Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.
1998-01-01
This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.
Free androgen index as a determinant of arterial stiffness in menopause: a mediation analysis.
Lambrinoudaki, Irene; Georgiopoulos, Georgios A; Athanasouli, Fani; Armeni, Elena; Rizos, Demetrios; Augoulea, Areti; Chatzidou, Sofia; Koutli, Evangelia; Makris, Nikolaos; Kanakakis, Ioannis; Stamatelopoulos, Kimon
2017-06-01
Associations of endogenous androgens in menopause with blood pressure (BP) and indices of arterial stiffness are reported, but directional relationships are not clear. Structural equation modeling is a contemporary statistical method, which allows assessment of such relationships and improves pathway understanding. We recruited 411 consecutive apparently healthy postmenopausal women who underwent noninvasive vascular evaluation. This included pulse wave analysis (aortic pressures and arterial wave reflections [augmentation index]), measurement of aortic stiffness by pulse wave velocity (PWV), stiffness index (SI), and flow-mediated dilatation. A cumulative marker combining PWV and SI (combined local and aortic arterial stiffness [CAS]) was also assessed. Free androgen index (FAI) was calculated from circulating total testosterone and sex hormone-binding globulin. FAI was an independent determinant of systolic BP (SBP) (P = 0.032), SI (P = 0.042), and PWV (P = 0.027). Under structural equation modeling analysis, FAI was a direct predictor for PWV (beta = 0.149, P = 0.014), SI (beta = 0.154, P = 0.022), and CAS (beta = 0.193, P = 0.02), whereas SBP was a parallel mediator of androgen's vascular effects on PWV (beta = 0.280, P < 0.001) and CAS (beta = 0.248, P = 0.004), but not SI (beta = 0.024, P = 0.404). FAI-induced increase in arterial stiffness via flow-mediated dilatation was not established. FAI was not a determinant of augmentation index. In healthy postmenopausal women, FAI was directly associated with PWV, SI, and CAS. FAI also directly correlated with SBP, which in turn concurrently increased PWV and CAS. The directional correlations found herein, imply that endogenous androgens may be causally associated with indices of arterial stiffness both directly and indirectly. This hypothesis should be confirmed in further studies with causal design.
Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight
NASA Astrophysics Data System (ADS)
Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo
2016-11-01
Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.
Augmented Visual Experience of Simulated Solar Phenomena
NASA Astrophysics Data System (ADS)
Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.
2017-12-01
The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.
The Effects of Rotation on Boundary Layers in Turbomachine Rotors
NASA Technical Reports Server (NTRS)
Johnston, J. P.
1974-01-01
The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.
50 years of computer simulation of the human thermoregulatory system.
Hensley, Daniel W; Mark, Andrew E; Abella, Jayvee R; Netscher, George M; Wissler, Eugene H; Diller, Kenneth R
2013-02-01
This paper presents an updated and augmented version of the Wissler human thermoregulation model that has been developed continuously over the past 50 years. The existing Fortran code is translated into C with extensive embedded commentary. A graphical user interface (GUI) has been developed in Python to facilitate convenient user designation of input and output variables and formatting of data presentation. Use of the code with the GUI is described and demonstrated. New physiological elements were added to the model to represent the hands and feet, including the unique vascular structures adapted for heat transfer associated with glabrous skin. The heat transfer function and efficacy of glabrous skin is unique within the entire body based on the capacity for a very high rate of blood perfusion and the novel capability for dynamic regulation of blood flow. The model was applied to quantify the absolute and relative contributions of glabrous skin flow to thermoregulation for varying levels of blood perfusion. The model also was used to demonstrate how the unique features of glabrous skin blood flow may be recruited to implement thermal therapeutic procedures. We have developed proprietary methods to manipulate the control of glabrous skin blood flow in conjunction with therapeutic devices and simulated the effect of these methods with the model.
FFATA: Mechine Augmented Composites for Structures with High Damping with High Stiffness
2012-12-05
applied , the inner channel will be the same width. The best LHG machines have the Z...Instron5567 screw controlled machine is suited to experiments up to 0.2Hz and a bit higher if operators are careful. These experiments applied ...REPORT FFATA: MACHINE AUGMENTED COMPOSITES FOR STRUCTURES WITH HIGH DAMPING WITH HIGH STIFFNESS 14. ABSTRACT 16. SECURITY CLASSIFICATION OF:
An experimental test of alternative population augmentation scenarios.
Kronenberger, John A; Gerberich, Jill C; Fitzpatrick, Sarah W; Broder, E Dale; Angeloni, Lisa M; Funk, W Chris
2018-01-19
Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression. Despite well-cited guidelines for the best practice selection of immigrant sources, often only highly divergent populations remain, and experimental tests of these riskier augmentation scenarios are essentially nonexistent. We conducted a mesocosm experiment with Trinidadian guppies (Poecilia reticulata) to test the multigenerational demographic and genetic effects of augmenting 2 target populations with 3 types of divergent immigrants. We found no evidence of demographic rescue, but we did observe genetic rescue in one population. Divergent immigrant treatments tended to maintain greater genetic diversity, abundance, and hybrid fitness than controls that received immigrants from the source used to seed the mesocosms. In the second population, divergent immigrants had a slightly negative effect in one treatment, and the benefits of augmentation were less apparent overall, likely because this population started with higher genetic diversity and a lower reproductive rate that limited genetic admixture. Our results add to a growing consensus that gene flow can increase population fitness even when immigrants are more highly divergent and may help reduce uncertainty about the use of augmentation in conservation. © 2018 Society for Conservation Biology.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
Effective matrix-free preconditioning for the augmented immersed interface method
NASA Astrophysics Data System (ADS)
Xia, Jianlin; Li, Zhilin; Ye, Xin
2015-12-01
We present effective and efficient matrix-free preconditioning techniques for the augmented immersed interface method (AIIM). AIIM has been developed recently and is shown to be very effective for interface problems and problems on irregular domains. GMRES is often used to solve for the augmented variable(s) associated with a Schur complement A in AIIM that is defined along the interface or the irregular boundary. The efficiency of AIIM relies on how quickly the system for A can be solved. For some applications, there are substantial difficulties involved, such as the slow convergence of GMRES (particularly for free boundary and moving interface problems), and the inconvenience in finding a preconditioner (due to the situation that only the products of A and vectors are available). Here, we propose matrix-free structured preconditioning techniques for AIIM via adaptive randomized sampling, using only the products of A and vectors to construct a hierarchically semiseparable matrix approximation to A. Several improvements over existing schemes are shown so as to enhance the efficiency and also avoid potential instability. The significance of the preconditioners includes: (1) they do not require the entries of A or the multiplication of AT with vectors; (2) constructing the preconditioners needs only O (log N) matrix-vector products and O (N) storage, where N is the size of A; (3) applying the preconditioners needs only O (N) flops; (4) they are very flexible and do not require any a priori knowledge of the structure of A. The preconditioners are observed to significantly accelerate the convergence of GMRES, with heuristical justifications of the effectiveness. Comprehensive tests on several important applications are provided, such as Navier-Stokes equations on irregular domains with traction boundary conditions, interface problems in incompressible flows, mixed boundary problems, and free boundary problems. The preconditioning techniques are also useful for several other problems and methods.
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
Bhagavat, Raghu; Sankar, Santhosh; Srinivasan, Narayanaswamy; Chandra, Nagasuma
2018-03-06
Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Heuslein, Joshua L.; Meisner, Joshua K.; Li, Xuanyue; Song, Ji; Vincentelli, Helena; Leiphart, Ryan J.; Ames, Elizabeth G.; Price, Richard J.
2015-01-01
Objective Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of flow direction reversal, occurring in numerous collateral artery segments after femoral artery ligation (FAL), is unknown. Our objective was to determine if flow direction reversal in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis. Approach and Results Collateral segments experiencing flow reversal after FAL in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post-FAL) remodeling. Genome-wide transcriptional analyses on HUVECs exposed to flow reversal conditions mimicking those occurring in-vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (NFκB, VEGF, FGF2, TGFβ) and arteriogenic canonical pathways (PKA, PDE, MAPK). Augmented expression of key pro-arteriogenic molecules (KLF2, ICAM-1, eNOS) was also verified by qRT-PCR, leading us to test whether ICAM-1 and/or eNOS regulate amplified arteriogenesis in flow-reversed collateral segments in-vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after FAL in ICAM-1−/− mice; however, eNOS−/− mice showed no such differences. Conclusions Flow reversal leads to a broad amplification of pro-arteriogenic endothelial signaling and a sustained ICAM-1-dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by flow reversal may lead to more effective and durable therapeutic options for arterial occlusive diseases. PMID:26338297
NASA Astrophysics Data System (ADS)
Murillo, J.; García-Navarro, P.
2012-02-01
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.
The impact of circulation control on rotary aircraft controls systems
NASA Technical Reports Server (NTRS)
Kingloff, R. F.; Cooper, D. E.
1987-01-01
Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.
1995-08-01
Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less
Approximate similarity principle for a full-scale STOVL ejector
NASA Astrophysics Data System (ADS)
Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.
1994-03-01
Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.
Augmentation and impulsive behaviors in restless legs syndrome: Coexistence or association?
Heim, Beatrice; Djamshidian, Atbin; Heidbreder, Anna; Stefani, Ambra; Zamarian, Laura; Pertl, Marie-Theres; Brandauer, Elisabeth; Delazer, Margarete; Seppi, Klaus; Poewe, Werner; Högl, Birgit
2016-07-05
To assess the frequency of impulse control disorders (ICDs) in patients with restless legs syndrome (RLS) with and without augmentation under dopaminergic therapy in a case-control study. Augmentation and ICDs are both serious complications of dopaminergic treatment of RLS but little is known about possible associations between these drug-induced disorders. In total, 58 patients with idiopathic RLS diagnosed according to the International Restless Legs Syndrome Study Group criteria were recruited. Of these, 35 patients had augmentation. The frequency of ICD symptoms was assessed using semi-structural interviews. Demographic variables did not differ between patients with RLS with and without augmentation but those with augmentation took higher dopaminergic medication than patients without augmentation. Twenty-three patients with RLS (39.7%) had ICD symptoms, with 12 patients (20.7%) having definitive ICDs. Patients with augmentation had an increased risk of expressing ICD symptoms (p = 0.007, odds ratio 5.64, 95% confidence interval 1.59-20.02). Patients with RLS with augmentation have an almost 6-fold increased risk of exhibiting ICD symptoms. This implies that augmentation and ICDs are related and may share a common pathophysiology. Moreover, our results have clinical implications, suggesting that patients with RLS with augmentation should be screened for ICD symptoms. © 2016 American Academy of Neurology.
Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing
NASA Technical Reports Server (NTRS)
Pedreiro, Nelson
1997-01-01
Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains the model to two degrees-of-freedom, roll and yaw, was designed and built. The apparatus was used to conduct dynamic experiments which showed that the system was unstable, its natural motion divergent. A model for the unsteady aerodynamic loads was developed based on the basic physics of the flow and results from flow visualization experiments. Parameters of the aerodynamic model were identified from experimental data. The model was validated using data from dynamic experiments. The aerodynamic model completes the equations of motion of the system which were used in the design of control laws using blowing as the only actuator. The unsteady aerodynamic model was implemented as part of the real-time vehicle control system. A control strategy using asymmetric blowing was demonstrated experimentally. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, and roll and yaw angles on the flow structure were determined. It is shown that superimposing symmetric and asymmetric blowing has a linearizing effect on the actuator characteristics. Transient responses of roll and yaw moments to step input blowing were characterized, and their differences were explained based on the physical mechanisms through which these loads are generated.
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
Rocky Mountain Center for Conservation Genetics and Systematics
Oyler-McCance, S.J.; Quinn, T.W.
2005-01-01
The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.
Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A
1988-03-01
Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored.
NASA Astrophysics Data System (ADS)
Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.
2016-09-01
A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.
The art and science of flow control
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.
NASA Technical Reports Server (NTRS)
Jones, William L.; Dowman, Harry W.
1947-01-01
Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
NASA Technical Reports Server (NTRS)
VanFossen, G. James; Bunker, Ronald S.
2000-01-01
Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2014 CFR
2014-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2012 CFR
2012-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Heater head for stirling engine
Corey, John A.
1985-07-09
A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.
In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.
Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M
2001-04-01
OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.
Diéguez, Godofredo; García-Villalón, Angel Luis
2011-01-01
The relative role of NO derived from endothelium NO synthase (eNOS) and neuronal NO synthase (nNOS) in renovascular reactivity during renal hypotension is unknown. To examine this issue, we recorded the effects of unspecific inhibitor of NO synthase N(w)-nitro-L-arginine methyl esther (L-NAME) and inhibitor of nNOS 7-nitroindazole monosodium salt (7-NINA) on renal vasodilator and vasoconstrictor responses in anesthetized goats during renal hypotension by constricting the abdominal aorta. Intrarenal administration of L-NAME and hypotension, either untreated or treated with L-NAME, decreased resting renal blood flow, and the increases in renal blood flow by acetylcholine but not those by sodium nitroprusside were tempered, and the decreases by norepinephrine and angiotensin II were augmented. Intraperitoneal administration of 7-NINA did not affect, and 7-NINA+hypotension decreased renal blood flow, and under these conditions the increases in renal blood flow by acetylcholine and sodium nitroprusside were not modified, and the decreases by norepinephrine and angiotensin II were slightly (during 7-NINA) or consistently augmented (7-NINA+hypotension). Therefore, NO derived from eNOS plays a significant role, while that derived from nNOS plays a little role, if any, to regulate renal blood flow and to mediate acetylcholine-induced vasodilation, as well to modulate renal vasoconstriction by norepinephrine and angiotensin II. Copyright © 2011 Elsevier Inc. All rights reserved.
Performance Enhancement of Unsteady Ejectors Investigated Using a Pulsejet Driver
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
Unsteady ejectors are currently under investigation for use in some pulse detonation engine (PDE) propulsion systems. This is due primarily to their potential high performance in comparison to steady ejectors of similar dimensions relative to the source or driver jet. Although some experimental work has been done in the past to study thrust augmentation with unsteady ejectors, there is no proven theory by which optimal design parameters can be selected and an effective ejector constructed for a given pulsed flow. Therefore, an experimental facility was developed at the NASA Glenn Research Center to study the correlation between ejector design and performance, and to get a better understanding of the flow phenomena that result in thrust augmentation. A commercially available pulsejet was used for the unsteady driving jet. This was paired with a basic, yet flexible, ejector design that allowed parametric evaluation of the effects that length, diameter, and inlet radius have on performance.
Electrohydrodynamic convective heat transfer in a square duct.
Grassi, Walter; Testi, Daniele
2009-04-01
Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2017-01-01
An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.
Multithreaded hybrid feature tracking for markerless augmented reality.
Lee, Taehee; Höllerer, Tobias
2009-01-01
We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.
Preliminary dynamic tests of a flight-type ejector
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1992-01-01
A thrust augmenting ejector was tested to provide experimental data to assist in the assessment of theoretical models to predict duct and ejector fluid-dynamic characteristics. Eleven full-scale thrust augmenting ejector tests were conducted in which a rapid increase in the ejector nozzle pressure ratio was effected through a unique bypass/burst-disk subsystem. The present work examines two cases representative of the test performance window. In the first case, the primary nozzle pressure ration (NPR) increased 36 percent from one unchoked (NPR = 1.29) primary flow condition to another (NPR = 1.75) over a 0.15 second interval. The second case involves choked primary flow conditions, where a 17 percent increase in primary nozzle flowrate (from NPR = 2.35 to NPR = 2.77) occurred over approximately 0.1 seconds. Transient signal treatment of the present dataset is discussed and initial interpretations of the results are compared with theoretical predictions for a similar STOVL ejector model.
Dion, Gregory R; Achlatis, Efstratios; Teng, Stephanie; Fang, Yixin; Persky, Michael; Branski, Ryan C; Amin, Milan R
2017-11-01
Compromised cough effectiveness is correlated with dysphagia and aspiration. Glottic insufficiency likely yields decreased cough strength and effectiveness. Although vocal fold augmentation favorably affects voice and likely improves cough strength, few data exist to support this hypothesis. To assess whether vocal fold augmentation improves peak airflow measurements during maximal-effort cough following augmentation. This case series study was conducted in a tertiary, academic laryngology clinic. Participants included 14 consecutive individuals with glottic insufficiency due to vocal fold paralysis, which was diagnosed via videostrobolaryngoscopy as a component of routine clinical examination. All participants who chose to proceed with augmentation were considered for the study whether office-based or operative augmentation was planned. Postaugmentation data were collected only at the first follow-up visit, which was targeted for 14 days after augmentation but varied on the basis of participant availability. Data were collected from June 5, 2014, to October 1, 2015. Data analysis took place between October 2, 2015, and March 3, 2017. Peak airflow during maximal volitional cough was quantified before and after vocal fold augmentation. Participants performed maximal coughs, and peak expiratory flow during the maximal cough was captured according to American Thoracic Society guidelines. Among the 14 participants (7 men and 7 women), the mean (SD) age was 62 (18) years. Three types of injectable material were used for vocal fold augmentation: carboxymethylcellulose in 5 patients, hyaluronic acid in 5, and calcium hydroxylapatite in 4. Following augmentation, cough strength increased in 11 participants and decreased cough strength was observed in 3. Peak airflow measurements during maximal cough varied from a decrease of 40 L/min to an increase of 150 L/min following augmentation. When preaugmentation and postaugmentation peak airflow measurements were compared, the median improvement was 50 L/min (95% CI, 10-75 L/min; P = .01). Immediate peak airflow measurements during cough collected within 30 minutes of augmentation varied when compared with measurements collected at follow-up (103-380 vs 160-390 L/min). Peak airflow during maximal cough may improve with vocal fold augmentation. Additional assessment and measurements are needed to further delineate which patients will benefit most regarding their cough from vocal fold augmentation.
Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds
NASA Astrophysics Data System (ADS)
Menon, Suresh
2015-06-01
Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.
Development of Augmented Spark Impinging Igniter System for Methane Engines
NASA Technical Reports Server (NTRS)
Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.
2017-01-01
The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
NASA Astrophysics Data System (ADS)
Maldonado, Jaime J.
1994-04-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
NASA Technical Reports Server (NTRS)
Maldonado, Jaime J.
1994-01-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
Lee, Edmund W J; Shin, Mincheol; Kawaja, Ariffin; Ho, Shirley S
2016-05-01
As knowledge acquisition is an important component of health communication research, this study examines factors associated with Singaporean women's breast cancer knowledge using an augmented cognitive mediation model. We conducted a nationally representative study that surveyed 802 women between the ages of 30 and 70 using random-digit dialing. The results supported the augmented cognitive mediation model, which proposes the inclusion of risk perception as a motivator of health information seeking and structural knowledge as an additional knowledge dimension. There was adequate support for the hypothesized paths in the model. Risk perception was positively associated with attention to newspaper, television, Internet, and interpersonal communication. Attention to the three media channels was associated with interpersonal communication, but only newspaper and television attention were associated with elaboration. Interpersonal communication was positively associated with structural knowledge, whereas elaboration was associated with both factual and structural knowledge. Differential indirect effects between media attention and knowledge dimensions via interpersonal communication and elaboration were found. Theoretical and practical implications are discussed.
Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R
2017-08-01
Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.
Blood flow dynamics in heart failure
NASA Technical Reports Server (NTRS)
Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.
1999-01-01
BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
Staab, Katie Lynn; Holzman, Roi; Hernandez, L Patricia; Wainwright, Peter C
2012-05-01
A protrusible upper jaw has independently evolved multiple times within teleosts and has been implicated in the success of two groups in particular: Acanthomorpha and Cypriniformes. We use digital particle image velocimetry (DPIV) to compare suction feeding flow dynamics in a representative of each of these clades: goldfish and bluegill. Using DPIV, we contrast the spatial pattern of flow, the temporal relationship between flow and head kinematics, and the contribution of jaw protrusion to the forces exerted on prey. As expected, the spatial patterns of flow were similar in the two species. However, goldfish were slower to reach maximal kinematic excursions, and were more flexible in the relative timing of jaw protrusion, other jaw movements and suction flows. Goldfish were also able to sustain flow speeds for a prolonged period of time as compared with bluegill, in part because goldfish generate lower peak flow speeds. In both species, jaw protrusion increased the force exerted on the prey. However, slower jaw protrusion in goldfish resulted in less augmentation of suction forces. This difference in force exerted on prey corresponds with differences in trophic niches and feeding behavior of the two species. The bluegill uses powerful suction to capture insect larvae whereas the goldfish uses winnowing to sort through detritus and sediment. The kinethmoid of goldfish may permit jaw protrusion that is independent of lower jaw movement, which could explain the ability of goldfish to decouple suction flows (due to buccal expansion) from upper jaw protrusion. Nevertheless, our results show that jaw protrusion allows both species to augment the force exerted on prey, suggesting that this is a fundamental benefit of jaw protrusion to suction feeders.
Effects of local and global mechanical distortions to hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, William P.
The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.
High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C.; Dibrani, B.; Richmond, M.
2006-01-01
This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004. Although temperature, and hence density, differences during flow augmentation periods between the Clearwater and Snake rivers were approximately equal (7-12 C) for all four years, the discharge ratio varied which resulted in significant differences in entrainment of cooler Clearwater River water into the Lower Granite Reservoir epilimnion. However, as a direct result of system management, Lower Granite Dam tailrace temperatures were maintained near 20 C during all years. Primary differences in the other three lower Snake River reservoirs were therefore a result of meteorological conditions and dam operations, which produced variations in wind setup and surface heating. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are capable of matching diurnal and long-term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the three-dimensional non-hydrostatic model Flow3D. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake river discharge. Simulation results were linked with the particle tracking model FINS to develop reservoir-integrated metrics that varied due to these alternative operation schemes. Findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir, which may also impact the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less
Synthetic and degradable patches: an emerging solution for rotator cuff repair
Hakimi, Osnat; Mouthuy, Pierre-Alexis; Carr, Andrew
2013-01-01
The use of rotator cuff augmentation has increased dramatically over the last 10 years in response to the high rate of failure observed after non-augmented surgery. However, although augmentations have been shown to reduce shoulder pain, there is no consensus or clear guideline as to what is the safest or most efficacious material. Current augmentations, either available commercially or in development, can be classified into three categories: non-degradable structures, extra cellular matrix (ECM)-based patches and degradable synthetic scaffolds. Non-degradable structures have excellent mechanical properties, but can cause problems of infection and loss of integrity in the long-term. ECM-based patches usually demonstrate excellent biological properties in vitro, but studies have highlighted complications in vivo due to poor mechanical support and to infection or inflammation. Degradable synthetic scaffolds represent the new generation of implants. It is proposed that a combination of good mechanical properties, active promotion of biological healing, low infection risk and bio-absorption are the ideal characteristics of an augmentation material. Among the materials with these features, those processed by electrospinning have shown great promis. However, their clinical effectiveness has yet to be proven and well conducted clinical trials are urgently required. PMID:23837794
A Shallow Layer Approach for Geo-flow emplacement
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Mecedonio, G.
2009-04-01
Geophysical flows such as lahars or lava flows severely threat the communities located on or near the volcano flanks. Risks and damages caused by the propagation of this kind of flows require a quantitative description of this phenomenon and reliable tools for forecasting their emplacement. Computational models are a valuable tool for planning risk mitigation countermeasures, such as human intervention to force flow diversion, artificial barriers, and allow for significant economical and social benefits. A FORTRAN 90 code based on a Shallow Layer Approach for Geo-flows (SLAG) for describing transport and emplacement of diluted lahars, water and lava was developed in both serial and parallel version. Three rheological models, such as those describing i) a viscous, ii) a turbulent, and iii) a dilatant flow respectively, were implemented in order to describe transport of lavas, water and diluted lahars. The code was made user-friendly by creating some interfaces that allow the user to easily define the problem, extract and interpolate the topography of the simulation domain. Moreover SLAG outputs can be written in both GRD format (e.g., Surfer), NetCDF format, or visualized directly in GoogleEarth. In SLAG the governing equations were treated using a Godunov splitting method following George (2008) algorithm based on a Riemann solver for the shallow water equations that decomposes an augmented state variable the depth, momentum, momentum flux, and bathymetry into four propagating discontinuities or waves. For our application, the algorithm was generalized for solving the energy equation. For validating the code in simulating real geophysical flows, we performed few simulations the lava flow event of the the 3rd and 4th January 1992 Etna eruption, the July 2001 Etna lava flows, January 2002 Nyragongo lava flows and few test cases for simulating transport of diluted lahars. Ref: George, D.L. (2008), Augmented Riemann Solvers for the Shallow Water Equations over Variable Topography with Steady States and Inundation, J. Comput. Phys., 227 (6), 3089-3113, doi:10.1016/j.jcp.2007.10.027.
The Influence of Electrode and Channel Configurations on Flow Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, RM; Perry, ML
2014-05-21
Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society.more » All rights reserved.« less
Nagm, Alhusain; Horiuchi, Tetsuyoshi; Hasegawa, Takatoshi; Hongo, Kazuhiro
2016-04-01
In reverse bypass that used a naturally formed "bonnet" superficial temporal artery, intraoperative volume flow measurement quantifies flow augmentation after revascularization, confirms flow preservation, and identifies inadvertent vessel compromise. A 75-year-old man presented with transient ischemic attacks attributed to right internal carotid artery stenosis. He underwent successful reverse bypass via a naturally formed "bonnet" superficial temporal artery middle cerebral artery bypass. As the result of proper intraoperative volume flow evaluation, a successful reverse bypass was achieved. Modification of the intraoperative stroke risk and prediction of the long-term patency after reverse bypass can be achieved by meticulous intraoperative blood flow evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
A control-volume method for analysis of unsteady thrust augmenting ejector flows
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1988-01-01
A method for predicting transient thrust augmenting ejector characteristics is presented. The analysis blends classic self-similar turbulent jet descriptions with a control volume mixing region discretization to solicit transient effects in a new way. Division of the ejector into an inlet, diffuser, and mixing region corresponds with the assumption of viscous-dominated phenomenon in the latter. Inlet and diffuser analyses are simplified by a quasi-steady analysis, justified by the assumptions that pressure is the forcing function in those regions. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane
2017-03-01
Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.
NASA Astrophysics Data System (ADS)
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
Flow Control Research at NASA Langley in Support of High-Lift Augmentation
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.
2002-01-01
The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.
Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke
Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R
2010-01-01
Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321
Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River
Elias, Edwin P.L.; Gelfenbaum, Guy R.; van der Westhuysen, André J.
2012-01-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River
NASA Astrophysics Data System (ADS)
Elias, Edwin P. L.; Gelfenbaum, Guy; Van der Westhuysen, André J.
2012-09-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
Flow Structure and Turbulence Distributions In The Coastal Ocean From Piv Data
NASA Astrophysics Data System (ADS)
Nimmo Smith, W. A. M.; Luznik, L.; Zhu, W.; Katz, J.; Osborn, T. R.
Particle Image Velocimetry (PIV) allows measurements of the instantaneous distribu- tion of two velocity components within a sample plane. This technique overcomes the inability to separate the unsteady flows associated with turbulence from those induced by surface waves in the coastal ocean, which adversely affects the data obtained using point measurement techniques. A submersible PIV system was deployed close to the LEO-15 site in 12-20m deep water. The system comprises two 2Kx2K pixels, 12bits/pixel digital cameras operating simultaneously, each with a sample area of up to 0.5x0.5m. The sample areas are illuminated by a pair of flashlamp pumped-dye lasers located at the surface, which transmit pulses along optical fibres to submerged probes used for expanding the beams into light sheets. We record two exposures within each frame of the digital cameras. A hardware based `image shifter' creates a known fixed offset between exposures on the CCD array to remove directional ambiguity. Naturally occurring particles are used as tracers. An auto-correlation method is used for data analysis. The components of the PIV system are mounted on a rigid sea bed platform, which enables us to align the sample areas with the direction of the mean current and to perform profiles from very close to the bottom up to 10m above the bed. Data were collected at different elevations and under different mean flow and wave conditions for periods in excess of 20min each, and at rates of up to 3.3Hz. The PIV data are augmented with data from an airfoil probe, a pressure transducer and ADCP profiles of the water column. The results include vertical distributions of mean velocity, dissipation rate and shear stress under different mean current and wave conditions, including periods of zero mean flow. There is clear evidence that a log layer exists only when the amplitude of the wave induced motion is significantly smaller than the mean flow. Distributions of vorticity enable us to identify and follow the transport and development of large scale eddy structures within the sample areas. The flow structure appears to consist of periods (about 70% of the time) of relatively calm flow interspersed with powerful `gusts' of giant vortical structures. The occurrence of these `gusts' does not appear to correlate with any specific phase of the surface wave motion.
Webizing mobile augmented reality content
NASA Astrophysics Data System (ADS)
Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun
2014-01-01
This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.
Heat transfer with very high free-stream turbulence and streamwise vortices
NASA Technical Reports Server (NTRS)
Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne
1986-01-01
Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.
Bauer, Daniel P.; Steele, Timothy Doak; Anderson, Richard D.
1978-01-01
An analysis of the waste-load assimilative capacity of the Yampa River from Steamboat Springs to Hayden, Colo., a distance of 38 miles, was made during September 1975 to obtain information on the effects of projected waste loadings on this stream reach. Simulations of effects of waste loadings on streamflow quality were made using a steady-state water-quality model. The simulations were based on 7-day low-flow values with a 10-year recurrence interval and population projections for 2010. Model results for December and September streamflow conditions indicated that the recommended 1978 Colorado and 1976 U.S. Environmental Protection Agency water-quality standard of 0.02 milligram per liter for nonionized ammonia concentration would be exceeded. Model simulations also included the effect of a flow augmentation of 20 cubic feet per second from a proposed upstream reservoir. The permissible ammonia loading in the study reach could be increased approximately 25 percent with this amount of flow augmentation. Simulations of concentrations of dissolved oxygen, fecal-coliform bacteria, and nitrate nitrogen indicated that the State 's water-quality goals proposed for 1978, 1983, or 1985 would not be exceeded. (Woodard-USGS)
Augment clinical measurement using a constraint-based esophageal model
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Acharya, Shashank; Kahrilas, Peter; Patankar, Neelesh; Pandolfino, John
2017-11-01
Quantifying the mechanical properties of the esophageal wall is crucial to understanding impairments of trans-esophageal flow characteristic of several esophageal diseases. However, these data are unavailable owing to technological limitations of current clinical diagnostic instruments that instead display esophageal luminal cross sectional area based on intraluminal impedance change. In this work, we developed an esophageal model to predict bolus flow and the wall property based on clinical measurements. The model used the constraint-based immersed-boundary method developed previously by our group. Specifically, we first approximate the time-dependent wall geometry based on impedance planimetry data on luminal cross sectional area. We then fed these along with pressure data into the model and computed wall tension based on simulated pressure and flow fields, and the material property based on the strain-stress relationship. As examples, we applied this model to augment FLIP (Functional Luminal Imaging Probe) measurements in three clinical cases: a normal subject, achalasia, and eosinophilic esophagitis (EoE). Our findings suggest that the wall stiffness was greatest in the EoE case, followed by the achalasia case, and then the normal. This is supported by NIH Grant R01 DK56033 and R01 DK079902.
Determination of Villous Rigidity in the Distal Ileum of the Possum (Trichosurus vulpecula)
Lim, Yuen Feung; Lentle, Roger G.; Janssen, Patrick W. M.; Williams, Martin A. K.; de Loubens, Clément; Mansel, Bradley W.; Chambers, Paul
2014-01-01
We investigated the passive mechanical properties of villi in ex vivo preparations of sections of the wall of the distal ileum from the brushtail possum (Trichosurus vulpecula) by using a flow cell to impose physiological and supra-physiological levels of shear stress on the tips of villi. We directly determined the stress applied from the magnitude of the local velocities in the stress inducing flow and additionally mapped the patterns of flow around isolated villi by tracking the trajectories of introduced 3 µm microbeads with bright field micro particle image velocimetry (mPIV). Ileal villi were relatively rigid along their entire length (mean 550 µm), and exhibited no noticeable bending even at flow rates that exceeded calculated normal physiological shear stress (>0.5 mPa). However, movement of villus tips indicated that the whole rigid structure of a villus could pivot about the base, likely from laxity at the point of union of the villous shaft with the underlying mucosa. Flow moved upward toward the tip on the upper portions of isolated villi on the surface facing the flow and downward toward the base on the downstream surface. The fluid in sites at distances greater than 150 µm below the villous tips was virtually stagnant indicating that significant convective mixing in the lower intervillous spaces was unlikely. Together the findings indicate that mixing and absorption is likely to be confined to the tips of villi under conditions where the villi and intestinal wall are immobile and is unlikely to be greatly augmented by passive bending of the shafts of villi. PMID:24956476
Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces
NASA Astrophysics Data System (ADS)
Coletti, Filippo; Jacono, David Lo; Cresci, Irene; Arts, Tony
2014-04-01
The turbulent flow inside a rotating channel provided with transverse ribs along one wall is studied by means of two-dimensional time-resolved particle image velocimetry. The measurement set-up is mounted on the same rotating disk with the test section, allowing to obtain the same accuracy and resolution as in a non-rotating rig. The Reynolds number is 15 000, and the rotation number is 0.38. As the ribbed wall is heated, both the Coriolis force and the centrifugal force play a role in the fluid dynamics. The mean velocity fields highlight the major impact of the rotational buoyancy (characterized by a buoyancy number of 0.31) on the flow along the leading side of the duct. In particular, since the flow is directed radially outward, the near-wall layers experience significant centripetal buoyancy. The recirculation area behind the obstacles is enlarged to the point of spanning the whole inter-rib space. Also the turbulent fluctuations are significantly altered, and overall augmented, with respect to the non-buoyant case, resulting in higher turbulence levels far from the rib. On the other hand the centrifugal force has little or no impact on the flow along the trailing wall. Vortex identification, proper orthogonal decomposition, and two-point correlations are used to highlight rotational effects, and in particular to determine the dominant scales of the turbulent unsteady flow, the time-dependent behavior of the shear layer and of the recirculation bubble behind the wall-mounted obstacles, the lifetime and advection velocity of the coherent structures.
Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...
Augmenting an observation network to facilitate flow and transport model discrimination.
USDA-ARS?s Scientific Manuscript database
Improving understanding of subsurface conditions includes performance comparison for competing models, independently developed or obtained via model abstraction. The model comparison and discrimination can be improved if additional observations will be included. The objective of this work was to i...
NASA Astrophysics Data System (ADS)
Candon, M. J.; Ogawa, H.
2018-06-01
Scramjets are a class of hypersonic airbreathing engine that offer promise for economical, reliable and high-speed access-to-space and atmospheric transport. The expanding flow in the scramjet nozzle comprises of unburned hydrogen. An after-burning scheme can be used to effectively utilize the remaining hydrogen by supplying additional oxygen into the nozzle, aiming to augment the thrust. This paper presents the results of a single-objective design optimization for a strut fuel injection scheme considering four design variables with the objective of maximizing thrust augmentation. Thrust is found to be augmented significantly owing to a combination of contributions from aerodynamic and combustion effects. Further understanding and physical insights have been gained by performing variance-based global sensitivity analysis, scrutinizing the nozzle flowfields, analyzing the distributions and contributions of the forces acting on the nozzle wall, and examining the combustion efficiency.
Performance Evaluation of a SLA Negotiation Control Protocol for Grid Networks
NASA Astrophysics Data System (ADS)
Cergol, Igor; Mirchandani, Vinod; Verchere, Dominique
A framework for an autonomous negotiation control protocol for service delivery is crucial to enable the support of heterogeneous service level agreements (SLAs) that will exist in distributed environments. We have first given a gist of our augmented service negotiation protocol to support distinct service elements. The augmentations also encompass related composition of the services and negotiation with several service providers simultaneously. All the incorporated augmentations will enable to consolidate the service negotiation operations for telecom networks, which are evolving towards Grid networks. Furthermore, our autonomous negotiation protocol is based on a distributed multi-agent framework to create an open market for Grid services. Second, we have concisely presented key simulation results of our work in progress. The results exhibit the usefulness of our negotiation protocol for realistic scenarios that involves different background traffic loading, message sizes and traffic flow asymmetry between background and negotiation traffics.
Yoon, Sujung; Kim, Jieun E; Hwang, Jaeuk; Kim, Tae-Suk; Kang, Hee Jin; Namgung, Eun; Ban, Soonhyun; Oh, Subin; Yang, Jeongwon; Renshaw, Perry F; Lyoo, In Kyoon
2016-09-15
Creatine monohydrate (creatine) augmentation has the potential to accelerate the clinical responses to and enhance the overall efficacy of selective serotonin reuptake inhibitor treatment in women with major depressive disorder (MDD). Although it has been suggested that creatine augmentation may involve the restoration of brain energy metabolism, the mechanisms underlying its antidepressant efficacy are unknown. In a randomized, double-blind, placebo-controlled trial, 52 women with MDD were assigned to receive either creatine augmentation or placebo augmentation of escitalopram; 34 subjects participated in multimodal neuroimaging assessments at baseline and week 8. Age-matched healthy women (n = 39) were also assessed twice at the same intervals. Metabolic and network outcomes were measured for changes in prefrontal N-acetylaspartate and changes in rich club hub connections of the structural brain network using proton magnetic resonance spectroscopy and diffusion tensor imaging, respectively. We found MDD-related metabolic and network dysfunction at baseline. Improvement in depressive symptoms was greater in patients receiving creatine augmentation relative to placebo augmentation. After 8 weeks of treatment, prefrontal N-acetylaspartate levels increased significantly in the creatine augmentation group compared with the placebo augmentation group. Increment in rich club hub connections was also greater in the creatine augmentation group than in the placebo augmentation group. N-acetylaspartate levels and rich club connections increased after creatine augmentation of selective serotonin reuptake inhibitor treatment. Effects of creatine administration on brain energy metabolism and network organization may partly underlie its efficacy in treating women with MDD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.
2008-01-01
An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1996-01-01
This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.
Performance of a solar augmented heat pump
NASA Astrophysics Data System (ADS)
Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.
Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.
Satellite Gravity Drilling the Earth
NASA Technical Reports Server (NTRS)
vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.
2005-01-01
Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
Chest x-ray generation and data augmentation for cardiovascular abnormality classification
NASA Astrophysics Data System (ADS)
Madani, Ali; Moradi, Mehdi; Karargyris, Alexandros; Syeda-Mahmood, Tanveer
2018-03-01
Medical imaging datasets are limited in size due to privacy issues and the high cost of obtaining annotations. Augmentation is a widely used practice in deep learning to enrich the data in data-limited scenarios and to avoid overfitting. However, standard augmentation methods that produce new examples of data by varying lighting, field of view, and spatial rigid transformations do not capture the biological variance of medical imaging data and could result in unrealistic images. Generative adversarial networks (GANs) provide an avenue to understand the underlying structure of image data which can then be utilized to generate new realistic samples. In this work, we investigate the use of GANs for producing chest X-ray images to augment a dataset. This dataset is then used to train a convolutional neural network to classify images for cardiovascular abnormalities. We compare our augmentation strategy with traditional data augmentation and show higher accuracy for normal vs abnormal classification in chest X-rays.
Schmidt, Mark Christopher
2000-01-01
In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.
On the Quantification of Cellular Velocity Fields.
Vig, Dhruv K; Hamby, Alex E; Wolgemuth, Charles W
2016-04-12
The application of flow visualization in biological systems is becoming increasingly common in studies ranging from intracellular transport to the movements of whole organisms. In cell biology, the standard method for measuring cell-scale flows and/or displacements has been particle image velocimetry (PIV); however, alternative methods exist, such as optical flow constraint. Here we review PIV and optical flow, focusing on the accuracy and efficiency of these methods in the context of cellular biophysics. Although optical flow is not as common, a relatively simple implementation of this method can outperform PIV and is easily augmented to extract additional biophysical/chemical information such as local vorticity or net polymerization rates from speckle microscopy. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
1975-10-01
63 29 Variation of Profile Shape with Time for Axisyinmetric Camphor Models 63 30 The Development of Ablated Nose Shapes Over Which Flow...ablation tests using camphor models and inferred from downrange observation of full scale flight missions. Regions of gross instability on nose...been verified in wind tunnel tests of camphor models where shapes similar to those shown on Figure 29 can be developed under transitional conditions
2013-06-26
flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take
An application of the suction analog for the analysis of asymmetric flow situations
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1976-01-01
A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.
Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail
NASA Technical Reports Server (NTRS)
Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.
2016-01-01
This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
Transitional flow in thin tubes for space station freedom radiator
NASA Technical Reports Server (NTRS)
Loney, Patrick; Ibrahim, Mounir
1995-01-01
A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.
Schaffranek, R.W.
2001-01-01
The U. S. Geological Survey (USGS) has a prominent role in the Federal Government's comprehensive restoration plan for the south Florida ecosystem encompassing the Everglades-the largest remaining subtropical wilderness in the continental United States. USGS scientists, in collaboration with researchers from the National Park Service (NPS), other governmental agencies, and academia, are providing scientific information to land and resource managers for planning, executing, and evaluating restoration actions. One major thrust of the restoration effort is to restore the natural functioning of the ecosystem to predrainage conditions, an objective that requires knowledge of the hydrologic and hydraulic factors that affect the flow of water. A vast network of interlaced canals, rimmed with levees and fitted with hydraulic control structures, and highways, built on elevated embankments lined by borrow ditches and undercut by culverts, now act to control and direct the flow of water through the shallow low-gradient wetlands. As water flows south from Lake Okeechobee past the city of Miami and through Everglades National Park (ENP), it is diminished by canal diversions, augmented by seasonably variable precipitation, and depleted through evapotranspiration. Along its path, the shallow flowing water, referred to as sheet flow, interacts with surficial aquifers and is subject to the resistance effects of variably dense vegetation and forcing effects of winds. New scientific investigations are providing additional insight into the hydrologic and hydraulic processes governing the flow, and recent data-collection efforts are supplying more comprehensive data describing the flow behavior, both of which are benefiting development of improved numerical models to evaluate and restore the natural functioning of the ecosystem.
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
Three essays on price dynamics and causations among energy markets and macroeconomic information
NASA Astrophysics Data System (ADS)
Hong, Sung Wook
This dissertation examines three important issues in energy markets: price dynamics, information flow, and structural change. We discuss each issue in detail, building empirical time series models, analyzing the results, and interpreting the findings. First, we examine the contemporaneous interdependencies and information flows among crude oil, natural gas, and electricity prices in the United States (US) through the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal structures and Bernanke factorization for price dynamic processes. Test results show that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from residuals of within-sample-fit. The result supports innovation accounting analysis based on DAGs using residuals of out-of-sample-forecast. Second, we look at the effects of the federal fund rate and/or WTI crude oil price shock on US macroeconomic and financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) model and a graphical model without any deductive assumption. The results show that, in contemporaneous time, the federal fund rate shock is exogenous as the identifying assumption in the Vector Autoregression (VAR) framework of the monetary shock transmission mechanism, whereas the WTI crude oil price return is not exogenous. Third, we examine price dynamics and contemporaneous causality among the price returns of WTI crude oil, gasoline, corn, and the S&P 500. We look for structural break points and then build an econometric model to find the consistent sub-periods having stable parameters in a given VAR framework and to explain recent movements and interdependency among returns. We found strong evidence of two structural breaks and contemporaneous causal relationships among the residuals, but also significant differences between contemporaneous causal structures for each sub-period.
Sympathetic vascular transduction is augmented in young normotensive blacks
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.
Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John
2014-12-01
We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.
Performance Metrics for Monitoring Parallel Program Executions
NASA Technical Reports Server (NTRS)
Sarukkai, Sekkar R.; Gotwais, Jacob K.; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Existing tools for debugging performance of parallel programs either provide graphical representations of program execution or profiles of program executions. However, for performance debugging tools to be useful, such information has to be augmented with information that highlights the cause of poor program performance. Identifying the cause of poor performance necessitates the need for not only determining the significance of various performance problems on the execution time of the program, but also needs to consider the effect of interprocessor communications of individual source level data structures. In this paper, we present a suite of normalized indices which provide a convenient mechanism for focusing on a region of code with poor performance and highlights the cause of the problem in terms of processors, procedures and data structure interactions. All the indices are generated from trace files augmented with data structure information.. Further, we show with the help of examples from the NAS benchmark suite that the indices help in detecting potential cause of poor performance, based on augmented execution traces obtained by monitoring the program.
NASA Astrophysics Data System (ADS)
Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.
2001-05-01
We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
Multiple-cycle Simulation of a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Yungster, S.; Perkins, H. D.
2002-01-01
This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.
Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego
2014-03-01
To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.
NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.
Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L
2018-05-01
Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.
Early Sentence Productions of 5-Year-Old Children Who Use Augmentative and Alternative Communication
ERIC Educational Resources Information Center
Binger, Cathy; Kent-Walsh, Jennifer; King, Marika; Webb, Eliza; Buenviaje, Elijia
2017-01-01
Four 5-year-old children with receptive language within normal limits and who required augmentative and alternative communication (AAC) received instruction in producing six different semantic--syntactic structures (three treatment and three generalization targets). Participants accessed single-meaning graphic symbols using an AAC app on an iPad…
Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.
Kim, Jinho; Jeong, Yong
2013-01-01
Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.
Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.
2016-12-01
Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow alluvial aquifers.
Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality
NASA Astrophysics Data System (ADS)
Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas
Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.
Navier-Stokes computations for circulation control airfoils
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.
1987-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Effects of regulated river flows on habitat suitability for the robust redhorse
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2015-01-01
The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Richards, Jennifer C; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A
2014-01-01
In healthy humans, ageing is typically associated with reduced skeletal muscle blood flow and vascular conductance during exercise. Further, there is a marked increase in resting sympathetic nervous system (SNS) activity with age, yet whether augmented SNS-mediated α-adrenergic vasoconstriction contributes to the age-associated impairment in exercising muscle blood flow and vascular tone in humans is unknown. We tested the hypothesis that SNS-mediated vasoconstriction is greater in older than young adults and limits muscle (forearm) blood flow (FBF) during graded handgrip exercise (5, 15, 25% maximal voluntary contraction (MVC)). FBF was measured (Doppler ultrasound) and forearm vascular conductance (FVC) was calculated in 11 young (21 ± 1 years) and 12 older (62 ± 2 years) adults in control conditions and during combined local α- and β-adrenoreceptor blockade via intra-arterial infusions of phentolamine and propranolol, respectively. Under control conditions, older adults exhibited significantly lower FBF and FVC at 15% MVC exercise (22.6 ± 1.3 vs. 29 ± 3.3 ml min−1 100 g forearm fat-free mass (FFM)−1 and 21.7 ± 1.2 vs. 33.6 ± 4.0 ml min−1 100 g FFM−1 100 mmHg−1; P < 0.05) and 25% MVC exercise (37.4 ± 1.4 vs. 46.0 ± 4.9 ml min−1 100 g FFM−1 and 33.7 ± 1.4 vs. 49.0 ± 5.7 ml min−1 100 g FFM−1 100 mmHg−1; P < 0.05), whereas there was no age group difference at 5% MVC exercise. Local adrenoreceptor blockade increased FBF and FVC at rest and during exercise in both groups, although the increase in FBF and FVC from rest to steady-state exercise was similar in young and older adults across exercise intensities, and thus the age-associated impairment in FBF and FVC persisted. Our data indicate that during graded intensity handgrip exercise, the reduced FVC and subsequently lower skeletal muscle blood flow in older healthy adults is not due to augmented sympathetic vasoconstriction, but rather due to impairments in local signalling or structural limitations in the peripheral vasculature with advancing age. PMID:25194040
ERIC Educational Resources Information Center
Pardini, Matteo; Elia, Maurizio; Garaci, Francesco G.; Guida, Silvia; Coniglione, Filadelfo; Krueger, Frank; Benassi, Francesca; Gialloreti, Leonardo Emberti
2012-01-01
Recent evidence points to white-matter abnormalities as a key factor in autism physiopathology. Using Diffusion Tensor Imaging, we studied white-matter structural properties in a convenience sample of twenty-two subjects with low-functioning autism exposed to long-term augmentative and alternative communication, combined with sessions of cognitive…
NASA Technical Reports Server (NTRS)
Kohlman, D. L.
1982-01-01
An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.
Transient flow thrust prediction for an ejector propulsion concept
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A method for predicting transient thrust augmenting ejector characteristics is introduced. The analysis blends classic self-similar turbulent jet descriptions with a mixing region control volume analysis to predict transient effects in a new way. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Hypersonic and Supersonic Flow Roadmaps Using Bibliometrics and Database Tomography.
ERIC Educational Resources Information Center
Kostoff, R. N.; Eberhart, Henry J.; Toothman, Darrell Ray
1999-01-01
Database Tomography (DT) is a textual database-analysis system consisting of algorithms for extracting multiword phrase frequencies and proximities from a large textual database, to augment interpretative capabilities of the expert human analyst. Describes use of the DT process, supplemented by literature bibliometric analyses, to derive technical…
Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.
2006-01-30
This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol
2016-12-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
Phan, Hoang Vu; Au, Thi Kim Loan
2016-01-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112
Rusu, Darian; Stratul, Stefan-Ioan; Festila, Dana; Surlin, Petra; Kasaj, Adrian; Baderca, Flavia; Boariu, Marius; Jentsch, Holger; Locovei, Cosmin; Calenic, Bogdan
2017-01-01
The objective of the present case series is to describe the histology and surface ultrastructure of augmented keratinized gingival mucosa in humans during the early healing phase after surgical placement of a xenogeneic collagen matrix. Six patients underwent surgical augmentation of keratinized tissue by placement of a three-dimensional (3D) xenogeneic collagen matrix. Full-depth mucosal biopsies including original attached gingiva, augmented gingiva, and the separation zone were performed at baseline and at postoperative days 7 and 14. The specimens were stained with hematoxylin-eosin, Masson-trichrome, picrosirius red, and Papanicolaou's trichrome. Low-vacuum scanning electron microscopy (SEM) surface analysis was correlated with histology. The separation zone was clearly visible upon histologic and SEM examination at 7 days. The portions of augmented mucosa consisted of well-structured, immature gingival tissue with characteristics of per secundam healing underlying a completely detached amorphous collagenous membrane-like structure of approximately 100 μm thick. At 14 days, histologic and ultrastructural examinations showed an almost complete maturation process. There were no detectable remnants of the collagen matrix within the newly formed tissues at either time point. Within their limits the results suggest that the 3D collagen matrix appears to play an indirect role during the early phase of wound healing by protecting the newly formed underlying tissue and guiding the epithelialization process.
Fujii, Yuichi; Fujimura, Noritaka; Mikami, Shinsuke; Maruhashi, Tatsuya; Kihara, Yasuki; Chayama, Kazuaki; Noma, Kensuke; Higashi, Yukihito
2011-12-01
A healthy endothelium maintains vascular tone and structure. The purpose of this study was to evaluate endothelial function in corkscrew collateral arteries in Buerger disease. We measured flow-mediated vasodilation (FMD) in corkscrew arteries in 26 patients with Buerger disease, in control arteries in 26 healthy subjects, and in native arteries in 16 patients with Buerger disease. Hyperemic flow was lower in corkscrew arteries than in native arteries in patients with Buerger disease and in control arteries in healthy subjects. There was no significant difference between hyperemic flow in patients with Buerger disease in whom measurements were performed in native arteries and that in healthy subjects. FMD was lower in corkscrew arteries and native arteries in patients with Buerger disease than in control arteries in healthy subjects. There was no significant difference between FMD in corkscrew arteries in patients with Buerger disease and in that in native arteries. The ratio of FMD to hyperemic flow was significantly smaller in native arteries in patients with Buerger disease than in corkscrew arteries and in control arteries in healthy subjects (5.5 ± 6.2 vs 8.8 ± 8.9 and 9.6 ± 7.6 mL/min, P < .001, respectively). There was no significant difference in the ratio of FMD to hyperemic flow between corkscrew arteries in Buerger disease and control arteries in healthy subjects. Nitroglycerin-induced vasodilation was similar in all leg arteries. Endothelial function of a corkscrew collateral artery in patients with Buerger disease is maintained, while endothelial function is impaired in a native artery in Buerger disease. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dawson, Joshua
A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly simple and as a result of the rapid combustion process the engine cycle is more efficient compared to its combined cycle counterparts. The flow path geometry consists of an inlet system, followed just downstream by a mixing chamber where an ejector structure is placed within the flow path. Downstream of the ejector structure is a duct leading to a convergent-divergent nozzle. During mode one operation and within the ejector, products from the detonation of a stoichiometric hydrogen/air mixture are exhausted directly into the surrounding secondary air stream. Mixing then occurs between both the primary and secondary flow streams, at which point the air mass containing the high pressure, high temperature reaction products is convected downstream towards the nozzle. The engine cycle is engineered to a specific number of detonations per second, creating the pulsating characteristic of the primary flow. The pulsing nature of the primary flow serves as a momentum augmentation, enhancing the thrust and specific impulse at low speeds. Consequently it is necessary to understand the transient mixing process between the primary and secondary flow streams occurring during mode one operation. Using OPENFOAMRTM, an analytic tool is developed to simulate the dynamics of the turbulent detonation process along with detailed chemistry in order to understand the physics involved with the stream interactions. The computational code has been developed within the framework of OPENFOAMRTM, an open-source alternative to commercial CFD software. A conservative formulation of the Farve averaged Navier-Stokes equations is implemented to facilitate programming and numerical stability. Time discretization is accomplished by using the Crank-Nicolson method, achieving second order convergence in time. Species mass fraction transport equations are implemented and a Seulex ODE solver was used to resolve the system of ordinary differential equations describing the hydrogen-air reaction mechanism detailed in Appendix A. The Seulex ODE solution algorithm is an extrapolation method based on the linearly implicit Euler method with step size control. A second order total variation diminishing method with a modified Sweby flux limiter was used for space discretization. And finally the use of operator splitting (PISO algorithm, and chemical kinetics) is essential due to the significant differences in characteristic time scales evolving simultaneously in turbulent reactive flow. Capturing the turbulent nature of the combustion process was done using the k-o-SST turbulence model, as formulated by Mentor [1]. Mentor's formulation is well suited to resolve the boundary layer while remaining relatively insensitive to freestream conditions, blending the merits of both the k-o and k-epsilon models. Further development of the tool is possible, most notably with the Numerical Propulsion System Simulation application. NPSS allows the user to take advantage of a "zooming" functionality in which high fidelity models of engine components can be integrated into NPSS models, allowing for a more robust propulsion system simulation.
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
Noise of deflectors used for flow attachment with STOL-OTW configurations
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.; Groesbeck, D.
1977-01-01
Future STOL aircraft may utilize engine-over-the-wing installations in which the exhaust nozzles are located above and separated from the upper surface of the wing. An external jet flow deflector can be used with such installations to provide flow attachment to the wing/flap surfaces for lift augmentation. Deflector noise in the flyover plane measured with several model-scale nozzle/deflector/wing configurations is examined. The deflector-associated noise is correlated in terms of velocity and geometry parameters. The data also indicate that the effective overall sound pressure level of the deflector-associated noise peaks in the forward quadrant near 40 deg from the inlet axis.
Jones, Richard B; Wright, Thomas W; Roche, Christopher P
2015-12-01
Large glenoid defects are a difficult reconstructive problem for surgeons performing reverse shoulder arthroplasty (rTSA). Options to address glenoid defects include eccentric reaming, bone grafting, and augmented glenoid baseplates. Augmented glenoid baseplates may provide a simpler, cost-effective, bone-preserving option compared to other techniques. No studies report the use of augmented baseplates to correct glenoid deformity in rTSA relative to the use of glenoid bone graft. We retrospectively reviewed 80 patients that received a primary rTSA and received either a structural bone graft or an augmented glenoid baseplate to address a significant glenoid defect. There were 39 patients in the augmented baseplate cohort and 41 patients in the bone graft cohort. The augmented baseplate cohort contained 24 8° posterior augment implants and 15 10° superior augment baseplates. The bone graft cohort consisted of 36 autograft humeral heads and 5 allograft femoral heads. The average follow-up for rTSA patients with an augmented baseplate was 28.3 ± 5.7 months, and the average follow-up for rTSA patients with glenoid bone graft was 34.1 ± 15.0 months. Each patient was scored preoperatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI metrics. Range of motion data was obtained as well. All patients demonstrated significant improvements in pain, ROM, and functional scores following treatment with rTSA using either augmented baseplates or glenoid bone graft to correct glenoid defects. The database contained no complications for the augmented glenoid baseplate cohort, and six complications (14.6%) for the glenoid bone graft cohort (including two glenoid loosenings and graft failures). Additionally, the augmented baseplate cohort showed a lower scapular notching rate of 10% as compared to the bone graft cohort which had a notching rate of 18.5%. The results of this study suggest that either augmented glenoid baseplates or glenoid bone graft can be used to address large glenoid defects during rTSA with significant improvement in outcomes. Augmented glenoid baseplates may achieve a lower complication and scapular notching rate, but additional and longer-term clinical follow-up is required to confirm these results.
The cognitive life of mechanical molecular models.
Charbonneau, Mathieu
2013-12-01
The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S.; Sant, T.; Micallef, D.
Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understandmore » rotational augmentation of blade aerodynamics.« less
Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim
2011-03-11
β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Estimating long-term behavior of periodically driven flows without trajectory integration
NASA Astrophysics Data System (ADS)
Froyland, Gary; Koltai, Péter
2017-05-01
Periodically driven flows are fundamental models of chaotic behavior and the study of their transport properties is an active area of research. A well-known analytic construction is the augmentation of phase space with an additional time dimension; in this augmented space, the flow becomes autonomous or time-independent. We prove several results concerning the connections between the original time-periodic representation and the time-extended representation, focusing on transport properties. In the deterministic setting, these include single-period outflows and time-asymptotic escape rates from time-parameterized families of sets. We also consider stochastic differential equations with time-periodic advection term. In this stochastic setting one has a time-periodic generator (the differential operator given by the right-hand-side of the corresponding time-periodic Fokker-Planck equation). We define in a natural way an autonomous generator corresponding to the flow on time-extended phase space. We prove relationships between these two generator representations and use these to quantify decay rates of observables and to determine time-periodic families of sets with slow escape rate. Finally, we use the generator on the time-extended phase space to create efficient numerical schemes to implement the various theoretical constructions. These ideas build on the work of Froyland et al (2013 SIAM J. Numer. Anal. 51 223-47), and no expensive time integration is required. We introduce an efficient new hybrid approach, which treats the space and time dimensions separately.
Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C
2018-06-01
Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Majka, Zbigniew; Kolodziejski, Waclaw
2015-07-01
Tiotropium bromide is an anticholinergic bronchodilator used in the management of chronic obstructive pulmonary disease. The crystal structures of this compound and its monohydrate have been previously solved and published. However, in this paper, we showed that those structures contain some major errors. Our methodology based on combination of the solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum mechanical gauge-including projector-augmented wave (GIPAW) calculations of NMR shielding constants enabled us to correct those errors and obtain reliable structures of the studied compounds. It has been proved that such approach can be used not only to perform the structural analysis of a drug substance and to identify its polymorphs, but also to verify and optimize already existing crystal structures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows
Li, Zhilin; Lai, Ming-Chih
2012-01-01
In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
NASA Astrophysics Data System (ADS)
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.
The XFV-12A Thrust-Augmented Wing (TAW) prototype aircraft
NASA Technical Reports Server (NTRS)
Murphy, R.; Lewis, E. L.
1979-01-01
The XFV-12A, a unique V/STOL technology prototype aircraft being developed for the Navy, is described. The innovative design features a thrust augmented wing and a canard ejector. Structural, functional, and control test performances are discussed. Static tether test results are also discussed. Assessment of test results are given along with projections for future modification areas.
Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase
2012-08-30
drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with
Davidson, Dennisa; Evans, Lois
2018-03-01
To explore online study groups as augmentation tools in preparing for the Royal Australian and New Zealand College of Psychiatrists Observed Structured Clinical Examinations (OSCE) for fellowship. An online survey of New Zealand trainees was carried out to assess exam preparedness and openness to virtual study groups and results analysed. Relevant material around virtual study groups for fellowship examinations was reviewed and used to inform a pilot virtual study group. Four New Zealand trainees took part in the pilot project, looking at using a virtual platform to augment OSCE preparation. Of the 50 respondents 36% felt adequately prepared for the OSCE. Sixty-four per cent were interested in using a virtual platform to augment their study. Virtual study groups were noted to be especially important for rural trainees, none of whom felt able to form study groups for themselves. The pilot virtual study group was trialled successfully. All four trainees reported the experience as subjectively beneficial to their examination preparation. Virtual platforms hold promise as an augmentation strategy for exam preparation, especially for rural trainees who are more geographically isolated and less likely to have peers preparing for the same examinations.
Augmented reality for breast imaging.
Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio
2018-06-01
Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. Gadolinium was injected as a contrast agent (0.1 mmol/kg at 2 mL/s) using a programmable power injector. Dicom formatted images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into augmented reality images. ABI demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. ABI can improve clinical outcomes, providing an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.
Dalmau-Pastor, M; Yasui, Y; Calder, J D; Karlsson, J; Kerkhoffs, G M M J; Kennedy, J G
2016-04-01
The inferior extensor retinaculum (IER) is an aponeurotic structure, which is in continuation with the anterior part of the sural fascia. The IER has often been used to augment the reconstruction of the lateral ankle ligaments, for instance in the Broström-Gould procedure, with good outcomes reported. However, its anatomy has not been described in detail and only a few studies are available on this structure. The presence of a non-constant oblique supero-lateral band appears to be important. This structure defines whether the augmentation of the lateral ankle ligaments reconstruction is performed using true IER or only the anterior part of the sural fascia. It is concluded that the use of this structure will have an impact on the resulting ankle stability.
Long-term effects of vertebroplasty: adjacent vertebral fractures.
Baroud, Gamal; Vant, Christianne; Wilcox, Ruth
2006-01-01
In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre-augmentation measurements. This translates to a high hydrostatic pressure adjacent to the augmented vertebra, representing the first evidence of increased loading. Computational finite element (FE) models have found that the rigid cement augmentation results in an increase in loading in the structures adjacent to the augmented vertebra. The mechanism of the increase of the loading is predicted to be the pillar effect of the rigid cement. The cement inhibits the normal endplate bulge into the augmented vertebra and thus pressurizes the adjacent disc, which subsequently increases the loading of the untreated vertebra. The mechanism for adjacent vertebral fractures is still unclear, but from experimental and computational studies, it appears that the change in mechanical loading following augmentation is responsible. The pillar effect of injected cement is hypothesized to decrease the endplate bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated to the adjacent vertebra. To confirm the viability of the pillar effect as the responsible mechanism, endplate bulge and disc pressure should be directly measured before and after augmentation. Future studies should be concerned with quantifying the current and ideal mechanical response of the spine and subsequently developing cements that can achieve this optimum response.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.
1989-01-01
A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.
NASA Astrophysics Data System (ADS)
Campbell, David R.
Arc-heated wind tunnels are the primary test facility for screening and qualification of candidate materials for hypersonic thermal protection systems (TPS). Via an electric arc that largely augments the enthalpy (by tens of MJ/kg) of the working fluid (Air, Nitrogen, CO2 in case of Mars-entry studies) passed through a converging-diverging nozzle at specific stagnation conditions, different regimes encountered in entry and re-entry hypersonic aerothermodynamics can be simulated. Because of the high-enthalpies (and associated temperatures that generally exceed the limits required by the thermo-structural integrity of the facility) the active cooling of the arc-heated wind tunnel's parts exposed to the working gas is critical. This criticality is particularly severe in these facilities due to the time scales associated with their continuous operation capabilities (order of minutes). This research focuses on the design and the conjugate heat transfer and resultant thermo-structural analysis of a multi-segment nozzle and low-Reynolds, hypersonic diffuser for the new arc-heated wind tunnel (AHWT-II) of the University of Texas at Arlington. Nozzles and hypersonic diffusers are critical components that experience highly complex flows (non-equilibrium aerothermochemistry) and high (local and distributed) heat-flux loads which significantly augment the complexity of the problems associated with their thermal management. The proper design and thermo-mechanical analysis of these components are crucial elements for the operability of the new facility. This work is centered on the design considerations, methodologies and the detailed analysis of the aforementioned components which resulted in the definition of final parts and assemblies that are under manufacturing at this writing. The project is jointly sponsored by the Office of Naval Research (ONR) and the Defense Advanced Research Project Agency (DARPA).
Ahn, Hyo-Won; Seo, Dong-Hwi; Kim, Seong-Hun; Park, Young-Guk; Chung, Kyu-Rhim; Nelson, Gerald
2016-10-01
Our aim in this study was to evaluate the effect of augmented corticotomy on the decompensation pattern of mandibular anterior teeth, alveolar bone, and surrounding periodontal tissues during presurgical orthodontic treatment. Thirty skeletal Class III adult patients were divided into 2 groups according to the application of augmented corticotomy labial to the anterior mandibular roots: experimental group (with augmented corticotomy, n = 15) and control group (without augmented corticotomy, n = 15). Lateral cephalograms and cone-beam computed tomography images were taken before orthodontic treatment and before surgery. The measurements included the inclination and position of the mandibular incisors, labial alveolar bone area, vertical alveolar bone height, root length, and alveolar bone thickness at 3 levels surrounding the mandibular central incisors, lateral incisors, and canines. The mandibular incisors were significantly proclined in both groups (P <0.001); however, the labial movement of the incisor tip was greater in the experimental group (P <0.05). Significant vertical alveolar bone loss was observed only in the control group (P <0.001). The middle and lower alveolar thicknesses and labial alveolar bone area increased in the experimental group. In the control group, the upper and middle alveolar thicknesses and labial alveolar bone area decreased significantly. There were no significant differences in dentoalveolar changes between the 3 kinds of anterior teeth in each group, except for root length in the experimental group (P <0.05). Augmented corticotomy provided a favorable decompensation pattern of the mandibular incisors, preserving the periodontal structures surrounding the mandibular anterior teeth for skeletal Class III patients. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
NMR and NQR parameters of ethanol crystal
NASA Astrophysics Data System (ADS)
Milinković, M.; Bilalbegović, G.
2012-04-01
Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.
Measurement of bronchial blood flow in the sheep by video dilution technique.
Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E
1985-01-01
Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564
Lean stability augmentation study. [on gas turbine combustion chambers
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.
1979-01-01
An analytical conceptual design study and an experimental test program were conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. The use of hot gas pilots, catalyzed flameholder elements, and heat recirculation to augment lean stability limits was considered in the conceptual design study. Tests of flameholders embodying selected concepts were conducted at a pressure of 10 arm and over a range of entrance temperatures simulating conditions to be encountered during stratospheric cruise. The tests were performed using an axisymmetric flametube test rig having a nominal diameter of 10.2 cm. A total of sixteen test configurations were examined in which lean blowout limits, pollutant emission characteristics, and combustor performance were evaluated. The use of a piloted perforated plate flameholder employing a pilot fuel flow rate equivalent to 4 percent of the total fuel flow at a simulated cruise condition resulted in a lean blowout equivalence ratio of less than 0.25 with a design point (T sub zero = 600k, Phi = 0.6) NOx emission index of less than 1.0 g/kg.
Use of dissolved oxygen modeling results in the management of river quality
Rickert, D.A.
1984-01-01
In 1973, the U.S. Geological Survey initiated a study of the Willamette River, Oregon, to determine the major causes of dissolved oxygen (DO) depletion, and whether advanced treatment of municipal wastewaters was needed to achieve the DO standards. The study showed that rates of carbonaceous decay were low (kr = 0.03-0.06/day) and that point-source loadings of carbonaceous biochemical oxygen demand (BOD) accounted for less than one-third of the satisfied oxygen demand. Nitrification of industrially discharged ammonia was the dominant cause of DO depletion. The study led to the calibration and verification of a steady-state DO model which was used to examine selected scenarios of BOD loading, ammonia loading, and flow augmentation. In 1976, the modeling projections for the Willamette River were presented to resource managers. A review in 1981 indicated that the State of Oregon had instituted an effluent standard on the major discharger of ammonia, rescinded an order for all municipal wastewaters to receive advanced secondary treatment by 1980, and more fully acknowledged the need for flow augmentation during summer to attain the DO standards.
Rarefaction and blood pressure in systemic and pulmonary arteries
OLUFSEN, METTE S.; HILL, N. A.; VAUGHAN, GARETH D. A.; SAINSBURY, CHRISTOPHER; JOHNSON, MARTIN
2012-01-01
The effects of vascular rarefaction (the loss of small arteries) on the circulation of blood are studied using a multiscale mathematical model that can predict blood flow and pressure in the systemic and pulmonary arteries. We augmented a model originally developed for the systemic arteries (Olufsen et al. 1998, 1999, 2000, 2004) to (a) predict flow and pressure in the pulmonary arteries, and (b) predict pressure propagation along the small arteries in the vascular beds. The systemic and pulmonary arteries are modelled as separate, bifurcating trees of compliant and tapering vessels. Each tree is divided into two parts representing the `large' and `small' arteries. Blood flow and pressure in the large arteries are predicted using a nonlinear cross-sectional area-averaged model for a Newtonian fluid in an elastic tube with inflow obtained from magnetic resonance measurements. Each terminal vessel within the network of the large arteries is coupled to a vascular bed of small `resistance' arteries, which are modelled as asymmetric structured trees with specified area and asymmetry ratios between the parent and daughter arteries. For the systemic circulation, each structured tree represents a specific vascular bed corresponding to major organs and limbs. For the pulmonary circulation, there are four vascular beds supplied by the interlobar arteries. This manuscript presents the first theoretical calculations of the propagation of the pressure and flow waves along systemic and pulmonary large and small arteries. Results for all networks were in agreement with published observations. Two studies were done with this model. First, we showed how rarefaction can be modelled by pruning the tree of arteries in the microvascular system. This was done by modulating parameters used for designing the structured trees. Results showed that rarefaction leads to increased mean and decreased pulse pressure in the large arteries. Second, we investigated the impact of decreasing vessel compliance in both large and small arteries. Results showed, that the effects of decreased compliance in the large arteries far outweigh the effects observed when decreasing the compliance of the small arteries. We further showed that a decrease of compliance in the large arteries results in pressure increases consistent with observations of isolated systolic hypertension, as occurs in ageing. PMID:22962497
Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters
NASA Astrophysics Data System (ADS)
Jiang, H.; Wheeler, J.; Anderson, E.
2016-02-01
Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.
Augmenting Trastuzumab Therapy Against Breast Cancer Through Selective Activation of NK Cells
2013-10-01
selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines...at a ratio of 1:1. After 24 hours, NK cells were isolated by negative selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow ... cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A), BT474M1 (B), HER18 (C), and SKBR3
Project SQUID. On the Performance Analysis of the Ducted Pulsejet
1951-10-01
by the mixing losses except for possible thrust augmentation at static operation or at extremely low flight velocities. The analysis, in the presented...oressure S btu/i- heir". added per pound of air "iass flow ratio = ft.’ "’i.Ug,pO gas constant A Btuaib.OR specifi" entropy t sec. time 1 lb. thrust = (a...from the tail pipe acts as an ejector jet in the surrounding flow, accelerating it, and thus tUnding to decrease the strength of the upstream moving
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
NASA Astrophysics Data System (ADS)
Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.
2017-08-01
In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.
Aerodynamics of dynamic wing flexion in translating wings
NASA Astrophysics Data System (ADS)
Liu, Yun; Cheng, Bo; Sane, Sanjay P.; Deng, Xinyan
2015-06-01
We conducted a systematic experimental study to investigate the aerodynamic effects of active trailing-edge flexion on a high-aspect-ratio wing translating from rest at a high angle of attack. We varied the timing and speed of the trailing-edge flexion and measured the resulting aerodynamic effects using a combination of direct force measurements and two-dimensional PIV flow measurements. The results indicated that the force and flow characteristics depend strongly on the timing of flexion, but relatively weakly on its speed. This is because the force and vortical flow structure are more sensitive to the timing of flexion relative to the shedding of starting vortex and leading-edge vortex. When the trailing-edge flexion occurred slightly before the starting vortex was shed, the lift production was greatly improved with the instantaneous peak lift increased by 54 % and averaged lift increased by 21 % compared with the pre-flexed case where the trailing-edge flexed before wing translation. However, when the trailing-edge flexed during or slightly after the leading-edge vortex shedding, the lift was significantly reduced by the disturbed development of leading-edge vortex. The force measurement results also imply that the trailing-edge flexion prior to wing translation does not augment lift but increases drag, thus resulting in a lower lift-drag ratio as compared to the case of flat wing.
Muela, Henrique Cotchi Simbo; Costa-Hong, Valeria A; Yassuda, Monica Sanches; Machado, Michel Ferreira; Nogueira, Ricardo de Carvalho; Moraes, Natalia C; Memória, Claudia Maia; Macedo, Thiago A; Bor-Seng-Shu, Edson; Massaro, Ayrton Roberto; Nitrini, Ricardo; Bortolotto, Luiz A
2017-01-01
Aging, hypertension (HTN), and other cardiovascular risk factors contribute to structural and functional changes of the arterial wall. To evaluate whether arterial stiffness (AS) is related to cerebral blood flow changes and its association with cognitive function in patients with hypertension. 211 patients (69 normotensive and 142 hypertensive) were included. Patients with hypertension were divided into 2 stages: HTN stage-1 and HTN stage-2. The mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA) and a battery of neuropsychological (NPE) tests were used to determine cognitive function. Pulse wave velocity was measured using the Complior ® . Carotid properties were assessed by radiofrequency ultrasound. Central arterial pressure and augmentation index were obtained using applanation tonometry. Middle cerebral artery flow velocity was measured by transcranial Doppler ultrasonography. Both arterial stiffness parameters and cerebral vasoreactivity worsened in line with HTN severity. There was a negative correlation between breath holding index (BHI) and arterial stiffness parameters. Cognitive performance worsened in line with HTN severity, with statistical difference occurring mainly between the HTN-2 and normotension groups on both the MMSE and MoCA. The same tendency was observed on the NPE tests. Hypertension severity was associated with higher AS, worse BHI, and lower cognitive performance.
NASA Astrophysics Data System (ADS)
Allen, Jeffery M.
This research involves a few First-Order System Least Squares (FOSLS) formulations of a nonlinear-Stokes flow model for ice sheets. In Glen's flow law, a commonly used constitutive equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero. This typically occurs near the ice surface or where there is basal sliding. The computational difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of Glen's law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis are designed to overcome this difficulty. The first FOSLS formulation is just the first-order representation of the standard nonlinear, full-Stokes and is known as the viscosity formulation and suffers from the problem above. To overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity. Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system. Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems. Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness of the various formulations. These test show that the viscosity based method is more expensive and less accurate. The basic fluidity system shows optimal finite-element convergence. However, there is not yet an efficient iterative solver for this type of system and this is the topic of future research. Alternatively, AMG performs better on the augmented fluidity system when using specific scaling. Unfortunately, this scaling results in reduced finite-element convergence.
NASA Astrophysics Data System (ADS)
Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.
2007-04-01
We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.
Efficient Exact Inference With Loss Augmented Objective in Structured Learning.
Bauer, Alexander; Nakajima, Shinichi; Muller, Klaus-Robert
2016-08-19
Structural support vector machine (SVM) is an elegant approach for building complex and accurate models with structured outputs. However, its applicability relies on the availability of efficient inference algorithms--the state-of-the-art training algorithms repeatedly perform inference to compute a subgradient or to find the most violating configuration. In this paper, we propose an exact inference algorithm for maximizing nondecomposable objectives due to special type of a high-order potential having a decomposable internal structure. As an important application, our method covers the loss augmented inference, which enables the slack and margin scaling formulations of structural SVM with a variety of dissimilarity measures, e.g., Hamming loss, precision and recall, Fβ-loss, intersection over union, and many other functions that can be efficiently computed from the contingency table. We demonstrate the advantages of our approach in natural language parsing and sequence segmentation applications.
Computational analysis of vertical axis wind turbine arrays
NASA Astrophysics Data System (ADS)
Bremseth, J.; Duraisamy, K.
2016-10-01
Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.
Modeling lateral circulation and its influence on the along-channel flow in a branched estuary
NASA Astrophysics Data System (ADS)
Zhu, Lei; He, Qing; Shen, Jian
2018-02-01
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.
Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O
1958-01-01
A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.
The role of surface vorticity during unsteady separation
NASA Astrophysics Data System (ADS)
Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán
2018-04-01
Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,
2003-01-01
In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.
Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.
Holm, Darryl D; Jacobs, Henry O
2017-01-01
Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.
Flight-determined correction terms for angle of attack and sideslip
NASA Technical Reports Server (NTRS)
Shafer, M. F.
1982-01-01
The effects of local flow, upwash, and sidewash on angle of attack and sideslip (measured with boom-mounted vanes) were determined for subsonic, transonic, and supersonic flight using a maximum likelihood estimator. The correction terms accounting for these effects were determined using a series of maneuvers flown at a large number of flight conditions in both augmented and unaugmented control modes. The correction terms provide improved angle-of-attack and sideslip values for use in the estimation of stability and control derivatives. In addition to detailing the procedure used to determine these correction terms, this paper discusses various effects, such as those related to Mach number, on the correction terms. The use of maneuvers flown in augmented and unaugmented control modes is also discussed.
Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2008-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.
Ghosh, Uddipta; Chakraborty, Suman
2012-04-01
In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.
An orange fluorescent protein tagging system for real-time pollen tracking.
Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal
2013-09-27
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.
Cheng, Chui Ling
2016-08-03
Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.
NASA Astrophysics Data System (ADS)
MacLean, M.; Holden, M.
2009-01-01
The effect of gas/surface interaction in making CFD predictions of convective heating has been considered with application to ground tests performed in high enthalpy shock tunnels where additional heating augmentation attributable to surface recombination has been observed for nitrogen, air and carbon dioxide flows. For test articles constructed of stainless steel and aluminum, measurements have been made with several types of heat transfer instrumentation including thin- film, calorimeter, and coaxial thermocouple sensors. These experiments have been modeled by computations made with the high quality, chemically reacting, Navier- Stokes solver, DPLR and the heating results compared. Some typical cases considered include results on an axisymmetric sphere-cone, axisymmetric spherical capsule, spherical capsule at angle of attack, and two- dimensional cylinder. In nitrogen flows, cases considered show a recombination probability on the order of 10-3, which agrees with published data. In many cases in air and CO2, measurements exceeding the predicted level of convective heating have been observed which are consistent with approximately complete recombination (to O2/N2 or CO2) on the surface of the model (sometimes called a super-catalytic wall). It has been recognized that the conclusion that this behavior is tied to an excessively high degree of catalytic efficiency is dependent on the current understanding of the freestream and shock-layer state of the gas.
Interacting with Visual Poems through AR-Based Digital Artwork
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen
2012-01-01
In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…
The Infrared Signature of the High Altitude Supersonic Target (HAST) at Sea Level
1975-08-01
T h revr se o f: t h i p a g is b la n k ) r : -- : : - -= : - -- . .. IM TABLE OF CONTENTS Section Title Page ji I INTRODUCTION ...of merit, ,, in watts/steradian/gram/second, computed from the radiometer data (8) The infrared augmentation ratio ( Jaug /J)flow is the ratio of the
James Sedell; Maitland Sharpe; Daina Dravnieks Apple; Max Copenhagen; Mike Furniss
2000-01-01
Public concern about adequate supplies of clean water led to the establishment in 1891 of federally protected forest reserves. The Forest Service Natural Resources Agenda is refocusing the agency on its original purpose. This report focuses on the role of forests in water supplyâincluding quantity, quality, timing of release, flood reductions and low flow augmentation...
The Use of an Information Brokering Tool in an Electronic Museum Environment.
ERIC Educational Resources Information Center
Zimmermann, Andreas; Lorenz, Andreas; Specht, Marcus
When art and technology meet, a huge information flow has to be managed. The LISTEN project conducted by the Fraunhofer Institut in St. Augustin (Germany) augments every day environments with audio information. In order to distribute and administer this information in an efficient way, the Institute decided to employ an information brokering tool…
Izumi, So; Okada, Kenji; Hasegawa, Tomomi; Omura, Atsushi; Munakata, Hiroshi; Matsumori, Masamichi; Okita, Yutaka
2010-05-01
Paraplegia from spinal cord ischemia remains an unresolved complication in thoracoabdominal aortic surgery, with high morbidity and mortality. This study investigated postoperative effects of systemic blood pressure augmentation during ischemia. Spinal cord ischemia was induced in rabbits by infrarenal aortic occlusion for 15 minutes with infused phenylephrine (high blood pressure group, n = 8) or nitroprusside (low blood pressure group, n = 8) or without vasoactive agent (control, n = 8). Spinal cord blood flow, transcranial motor evoked potentials, neurologic outcome, and motor neuron cell damage (apoptosis, necrosis, superoxide generation, myeloperoxidase activity) were evaluated. Mean arterial pressures during ischemia were controlled at 121.9 +/- 2.8, 50.8 +/- 4.3, and 82.3 +/- 10.7 mm Hg in high blood pressure, low blood pressure, and control groups, respectively. In high blood pressure group, high spinal cord blood flow (P < .01), fast recovery of transcranial motor evoked potentials (P < .01), and high neurologic score (P < .05) were observed after ischemia relative to low blood pressure and control groups. At 48 hours after ischemia, there were significantly more viable neurons, fewer terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive neurons, and less alpha-fodrin expression in high blood pressure group than low blood pressure and control groups. Superoxide generation and myeloperoxidase activity at 3 hours after ischemia were suppressed in high blood pressure group relative to low blood pressure group. Augmentation of systemic blood pressure during spinal cord ischemia can reduce ischemic insult and postoperative neurologic adverse events. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non-linear extensibility-Peterlin) model which was used for the first LDR simulation by Sureshkumar et al. (1997). Flow and polymer parameters are close to realistic polymer drag reducing conditions. High drag reductions are achieved by using finite differences and a robust time stepping technique. A minimal channel flow is also used as a numerical experiment to investigate the effect of the outer region turbulent structures on the overall drag at HDR. The drag reducing action of the model is finally studied through the structure of energy transfers from the polymers to the velocity components. This investigation sheds some light on the details of polymer drag reduction.
Usability engineering: domain analysis activities for augmented-reality systems
NASA Astrophysics Data System (ADS)
Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.
2002-05-01
This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Teotonio, Thais L; Minbiole, Kevin P C; Belden, Lisa K
2015-01-01
The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum), or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection.
Walke, Jenifer B.; Becker, Matthew H.; Loftus, Stephen C.; House, Leanna L.; Teotonio, Thais L.; Minbiole, Kevin P. C.; Belden, Lisa K.
2015-01-01
The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum), or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection. PMID:26445500
Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models
NASA Technical Reports Server (NTRS)
Davenport, Edwin E.
1961-01-01
Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.
Socket augmentation using a commercial collagen-based product--an animal study in pigs.
Kunert-Keil, Christiane; Gredes, Tomasz; Heinemann, Friedhelm; Dominiak, Marzena; Botzenhart, Ute; Gedrange, Tomasz
2015-01-01
The aim of the present study was to identify properties of pure collagen for augmentation techniques and compare to a proved xenogenic material and natural bone regeneration. For that the osteogenesis of extraction alveoli after augmentation with a collagen cone covered with an absorbable collagen membrane in a single product (PARASORB Sombrero®, Resorba) was evaluated in a pig model. Extraction alveoli were treated with the collagen cone and the collagen membrane in a single product (test group; n=7) or demineralized bovine bone mineral and a collagen membrane (two separate products; positive control; n=7). Untreated alveoli were used (n=6) as negative controls.(1) Bone specimens were extracted 1 and 3 months after teeth extraction. Serial longitudinal sections were stained with Masson Goldner trichrome. Furthermore, bone specimens were examined using X-ray analyses. Significant differences of bone atrophy were detected 12 weeks after material insertion using X-ray analyses. The bone atrophy was reduced by approximately 32% after insertion of the positive control (P=0.046). Bone atrophy reached 37.6% of those from untreated alveoli (P=0.002) using the test group. After 4 weeks, bone formation was noticeable in most sites, whereas after 12 weeks of healing, specimens of all groups exhibited nearly complete osseous organization of the former defected area. The mandibulary bone texture showed typical spongious bone structures. Histomorphometric analyses revealed after 4 and 12 weeks significant higher levels of bone marrow in test and negative control than in positive control. Quantification of bone tissue and osteoid does not show any significant difference. The present study confirms reduced bone resorption following socket augmentation with an absorbable collagen membrane with collagen cone while the resulting bone structure is similar to natural bone regeneration. Pure collagen can be used for bone augmentation, and shows over other xenogenic materials, a clear advantage with respect to the bone density and structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Catalytic Microtube Rocket Igniter
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Deans, Matthew C.
2011-01-01
Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.
Sex hormone effects on autonomic mechanisms of thermoregulation in humans.
Charkoudian, Nisha; Stachenfeld, Nina
2016-04-01
Autonomic mechanisms are fundamental to human physiological thermoregulation, and female reproductive hormones have substantial influences on several aspects of these mechanisms. Of these, the best recognized are the thermoregulatory responses that occur at menopause (hot flushes) and the changes in body temperature within the menstrual cycle which may help couples predict ovulation. Our goal in this brief review is to summarize current knowledge regarding the influences of reproductive hormones on autonomic mechanisms in human thermoregulation. In general, estrogens tend to promote lower body temperatures via augmentation of heat dissipation responses, whereas progesterone tends to promote higher body temperatures. Recent evidence suggests specific influences of estrogens on central autonomic nuclei involved in control of skin blood flow and sweating. Estrogens also augment vasodilation by direct effects on peripheral blood vessels. Influences of progesterone are less well understood, but include both centrally regulated changes in thermoregulatory set-point as well as and peripheral effects, including augmented vasoconstriction in the skin. We conclude with a brief discussion of thermoregulatory adjustments associated with changing hormone levels during menopause, pregnancy and polycystic ovary syndrome. Published by Elsevier B.V.
Kleydman, Kate; Cohen, Joel L; Marmur, Ellen
2012-12-01
Skin necrosis after soft tissue augmentation with dermal fillers is a rare but potentially severe complication. Nitroglycerin paste may be an important treatment option for dermal and epidermal ischemia in cosmetic surgery. To summarize the knowledge about nitroglycerin paste in cosmetic surgery and to understand its current use in the treatment of vascular compromise after soft tissue augmentation. To review the mechanism of action of nitroglycerin, examine its utility in the dermal vasculature in the setting of dermal filler-induced ischemia, and describe the facial anatomy danger zones in order to avoid vascular injury. A literature review was conducted to examine the mechanism of action of nitroglycerin, and a treatment algorithm was proposed from clinical observations to define strategies for impending facial necrosis after filler injection. Our experience with nitroglycerin paste and our review of the medical literature supports the use of nitroglycerin paste on the skin to help improve flow in the dermal vasculature because of its vasodilatory effect on small-caliber arterioles. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Simonetto, E.; Froment, C.; Labergerie, E.; Ferré, G.; Séchet, B.; Chédorge, H.; Cali, J.; Polidori, L.
2013-07-01
Terrestrial Laser Scanning (TLS), 3-D modeling and its Web visualization are the three key steps needed to perform storage and grant-free and wide access to cultural heritage, as highlighted in many recent examples. The goal of this study is to set up 3-D Web resources for "virtually" visiting the exterior of the Abbaye de l'Epau, an old French abbey which has both a rich history and delicate architecture. The virtuality is considered in two ways: the flowing navigation in a virtual reality environment around the abbey and a game activity using augmented reality. First of all, the data acquisition consists in GPS and tacheometry survey, terrestrial laser scanning and photography acquisition. After data pre-processing, the meshed and textured 3-D model is generated using 3-D Reshaper commercial software. The virtual reality visit and augmented reality animation are then created using Unity software. This work shows the interest of such tools in bringing out the regional cultural heritage and making it attractive to the public.
The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan D. Deaton; Ryan E. lrwin; Luiz A. DaSilva
As early as 2014, wireless network operators spectral capacity will be overwhelmed by a data tsunami brought on by new devices and applications. To augment spectral capacity, operators could deploy a Dynamic Spectrum Access (DSA) overlay. In the light of the many planned Long Term Evolution (LTE) network deployments, the affects of a DSA overlay have not been fully considered into the existing LTE standards. Coalescing many different aspects of DSA, this paper develops the Spectrum Accountability (SA) framework. The SA framework defines specific network element functionality, protocol interfaces, and signaling flow diagrams for LTE to support service requests andmore » enforce rights of responsibilities of primary and secondary users, respectively. We also include a network simulation to quantify the benefits of using DSA channels to augment capacity. Based on our simulation we show that, network operators can benefit up to %40 increase in operating capacity when sharing DSA bands to augment spectral capacity. With our framework, this paper could serve as an guide in developing future LTE network standards that include DSA.« less
Optimal placement of actuators and sensors in control augmented structural optimization
NASA Technical Reports Server (NTRS)
Sepulveda, A. E.; Schmit, L. A., Jr.
1990-01-01
A control-augmented structural synthesis methodology is presented in which actuator and sensor placement is treated in terms of (0,1) variables. Structural member sizes and control variables are treated simultaneously as design variables. A multiobjective utopian approach is used to obtain a compromise solution for inherently conflicting objective functions such as strucutal mass control effort and number of actuators. Constraints are imposed on transient displacements, natural frequencies, actuator forces and dynamic stability as well as controllability and observability of the system. The combinatorial aspects of the mixed - (0,1) continuous variable design optimization problem are made tractable by combining approximation concepts with branch and bound techniques. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.
Combining 3D structure of real video and synthetic objects
NASA Astrophysics Data System (ADS)
Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon
1998-04-01
This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.
Augmented reality environment for temporomandibular joint motion analysis.
Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R
1996-01-01
The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Biddiss, Elaine; Erickson, David; Li, Dongqing
2004-06-01
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, C. C.
2016-05-15
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
NASA Astrophysics Data System (ADS)
Fung, C. F.; Lopez, A.; New, M.
2009-04-01
Climate change is likely to impact on freshwater ecology, the delivery of regulatory commitments to ecological status and the management of water resources. It is becoming increasingly important for European environment agencies to use and develop methods to aid planning and abstraction licensing procedures and policies in the face of climate change and with the introduction of the Water Framework Directive. Studies have been carried out in the past to investigate the implications of climate change for biodiversity. However, predicting the future is fraught with uncertainty, an area which has not been dealt with in great depth in the past. This study has been undertaken to draw on the results of new methodologies to address the uncertainties inherent in modelling future climate and assess their usability for decision-making in water resources allocations specifically in considering interactions between flow and invertebrate communities The River Itchen was chosen as the case study catchment on the strength of having a long-term coupled ecological and flow dataset and having been an area of intensive study in the past. It is a chalk stream located in the south of England and a candidate Special Area of Conservation. It has also been designated a Special Site of Scientific Interest achieved due to the number of rare species, and the richness of the macro-invertebrate community in the river catchment. An ensemble of 246 transient simulations for future climate was obtained from ClimatePrediction.net which were then used to drive a rainfall-runoff model. In order to link the modelled river flow to ecology, the Lotic Invertebrate Flow Evaluation score has been used where the invertebrate community is linked to flow largely through sensitivity to water velocity and siltation, driven by flow variability at sites with fixed channel dimensions The large ensemble of climate scenarios and thereby flow and ecological indices allows the exploration of the risk of the river of not meeting environmental flow targets in the future. Three sets of environmental flow targets which were drawn up by the Environment Agency for England and Wales for the River Itchen were tested and show that it may be difficult to maintain a natural chalk stream invertebrate community in the River Itchen in the future. The ensemble also shows low flows regularly extending from August to December which could result in the loss of a high proportion of individuals recruited that year. This would in turn lead to diminished over-wintering populations, with potentially catastrophic consequences for the following years breeding and recruitment programme. Due to a paucity of quantitative data for the response of macroinvertebrates to multi-year droughts, to provide a richer story, a matrix has been proposed for analysing the effects on biodiversity of the river which combines both the thresholds derived previously and expert opinion on how the ecology of the River Itchen will react to climate change. The matrices also provide a more accessible way of communicating rather complex information to a wider community of decision-makers. Should large changes in flow arise in the future it is likely that some form of action will be taken to mitigate or adapt to the impacts of climate change. Maintaining the ecological status of the river throug river support, i.e. augmenting river flow by pumping from the groundwater aquifer, has also been investigated. However, by augmenting the flow, the high flows are also reduced which can be important for scouring the river bed and removing silt to the benefit of the invertebrate community. Therefore at some point further augmentation may need to be curtailed in order to maintain high flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; Schilp, Reinhard; Ross, Christopher W.
A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the airmore » flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).« less
Mechanisms for Flow-Enhanced Cell Adhesion
Zhu, Cheng; Yago, Tadayuki; Lou, Jizhong; Zarnitsyna, Veronika I.; McEver, Rodger P.
2009-01-01
Cell adhesion is mediated by specific receptor—ligand bonds. In several biological systems, increasing flow has been observed to enhance cell adhesion despite the increasing dislodging fluid shear forces. Flow-enhanced cell adhesion includes several aspects: flow augments the initial tethering of flowing cells to a stationary surface, slows the velocity and increases the regularity of rolling cells, and increases the number of rollingly adherent cells. Mechanisms for this intriguing phenomenon may include transport-dependent acceleration of bond formation and force-dependent deceleration of bond dissociation. The former includes three distinct transport modes: sliding of cell bottom on the surface, Brownian motion of the cell, and rotational diffusion of the interacting molecules. The latter involves a recently demonstrated counterintuitive behavior called catch bonds where force prolongs rather than shortens the lifetimes of receptor—ligand bonds. In this article, we summarize our recently published data that used dimensional analysis and mutational analysis to elucidate the above mechanisms for flow-enhanced leukocyte adhesion mediated by L-selectinligand interactions. PMID:18299992
Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartand, Chris; Jagers, Bert
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.
Laminar and turbulent heating predictions for mars entry vehicles
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei
2016-11-01
Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.
2017-01-01
A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
NASA Technical Reports Server (NTRS)
Baker, David (Inventor)
1998-01-01
A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
Recent developments in ejector technology in the Air Force: An overview
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.
1979-01-01
Basic and applied studies in thrust augmentation conducted at the Aerospace Research Laboratory at Wright-Patterson AFB which led to an effective configuration of the jet flap diffuser ejector, are reviewed. A method for compressible ejector flow analysis, developed in support of the preliminary design of an ejector thrust aircraft, is discussed and applied to single- and two-stage ejectors.
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Imakiire, Akihiro; Iimori, Kenichi
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by electric double-layer capacitors (EDLCs) is proposed. In the proposed system, EDLCs are arranged in series with batteries so that a lesser number of the EDLCs and batteries will be required. The proposed system has two bi-directional voltage boosters: one is for both the batteries and EDLCs to control the dc-link voltage of a PWM inverter and the other is for only the EDLCs and is used to control the energy flow from and to the EDLCs. In this paper, a strategy to control the energy flow to and from the EDLCs is explained and its effectiveness is confirmed by simulation and experimental results. Furthermore, the efficiencies of the voltage booster, inverter, PM motor, and whole system are measured for the system with the basic configuration, i.e., which consists of only one bi-directional voltage booster and PWM inverter. Then, the steady-state characteristics are determined. Finally, the efficiency of the voltage boosters in the proposed system is determined, and the advantage of the proposed PM motor drive system is discussed.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Enhance wound healing monitoring through a thermal imaging based smartphone app
NASA Astrophysics Data System (ADS)
Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh
2018-03-01
In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.
Control Augmented Structural Synthesis
NASA Technical Reports Server (NTRS)
Lust, Robert V.; Schmit, Lucien A.
1988-01-01
A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.
Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E
2017-05-18
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.
Kartamyshev, Sergey P; Balashov, Sergey A; Melkumyants, Arthur M
2007-01-01
The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress. Copyright (c) 2007 S. Karger AG, Basel.
IL-33 Drives Augmented Responses to Ozone in Obese Mice
Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce D.; Shore, Stephanie Ann
2016-01-01
Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272 PMID:27472835
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.
2014-01-01
In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. PMID:25541566
Curtis, Jennifer A.
2015-01-01
Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.
Intra-Aortic Balloon Pump Malposition Reduces Visceral Artery Perfusion in an Acute Animal Model.
Vondran, Maximilian; Rastan, Ardawan J; Tillmann, Eugen; Seeburger, Jörg; Schröter, Thomas; Dhein, Stefan; Bakhtiary, Farhad; Mohr, Friedrich-Wilhelm
2016-04-01
Visceral artery perfusion can be potentially affected by intra-aortic balloon pump (IABP) catheters. We utilized an animal model to quantify the acute impact of a low balloon position on mesenteric artery perfusion. In six pigs (78 ± 7 kg), a 30-cc IABP was placed in the descending aorta in a transfemoral procedure. The celiac artery (CA) and the cranial mesenteric artery (CMA) were surgically dissected. Transit time blood flow was measured for (i) baseline, (ii) 1:1 augmentation with the balloon proximal to the visceral arteries, and (iii) 1:1 augmentation with the balloon covering the visceral arteries. Blood flow in the CMA and CA was reduced by 17 and 24%, respectively, when the balloon compromised visceral arteries compared with a position above the visceral arteries (flow in mL/min: CMA: (i) 1281 ± 512, (ii) 1389 ± 287, (iii) 1064 ± 276, P < 0.05 for 3 vs. 1 and 3 vs. 2; CA: (i) 885 ± 370, (ii) 819 ± 297, (iii) 673 ± 315; P < 0.05 for 3 vs. 1). The covering of visceral arteries by an IABP balloon causes a significant reduction of visceral artery perfusion; thus, the positioning of this device during implantation is critical for obtaining a satisfactory outcome. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar
2018-08-01
River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.
Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet
NASA Astrophysics Data System (ADS)
Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang
2018-02-01
Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.
Limberg, Jacqueline K.; Malterer, Katherine R.; Kellawan, J. Mikhail; Schrage, William G.; Wilkins, Brad W.; Nicholson, Wayne T.; Eisenach, John H.; Joyner, Michael J.; Curry, Timothy B.
2017-01-01
Purpose Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). Methods FBF (Doppler ultrasound) was assessed at rest and during 5 minutes of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: 1) oral SDF (n=10), 2) intra-arterial L-NMMA (n=20), 3) SDF and L-NMMA (n=10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. Results FBF increased with exercise (p<0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17±1 to 15±1 mL/dL/min, p<0.01). Although the hyperemic response to NTP was augmented by SDF (Area under the curve: 41±7 vs 61±11 AU, p<0.01), there was no effect of SDF on exercise hyperemia (p=0.33). Conclusions Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans. PMID:28013386
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections
Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan
2017-01-01
PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598
Nanostructures: a platform for brain repair and augmentation
Vidu, Ruxandra; Rahman, Masoud; Mahmoudi, Morteza; Enachescu, Marius; Poteca, Teodor D.; Opris, Ioan
2014-01-01
Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions. PMID:24999319
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.
Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
2017-01-01
The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
Muela, Henrique Cotchi Simbo; Costa-Hong, Valeria A.; Yassuda, Monica Sanches; Machado, Michel Ferreira; Nogueira, Ricardo de Carvalho; Moraes, Natalia C.; Memória, Claudia Maia; Macedo, Thiago A.; Bor-Seng-Shu, Edson; Massaro, Ayrton Roberto; Nitrini, Ricardo; Bortolotto, Luiz A.
2017-01-01
ABSTRACT. Aging, hypertension (HTN), and other cardiovascular risk factors contribute to structural and functional changes of the arterial wall. Objective: To evaluate whether arterial stiffness (AS) is related to cerebral blood flow changes and its association with cognitive function in patients with hypertension. Methods: 211 patients (69 normotensive and 142 hypertensive) were included. Patients with hypertension were divided into 2 stages: HTN stage-1 and HTN stage-2. The mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA) and a battery of neuropsychological (NPE) tests were used to determine cognitive function. Pulse wave velocity was measured using the Complior®. Carotid properties were assessed by radiofrequency ultrasound. Central arterial pressure and augmentation index were obtained using applanation tonometry. Middle cerebral artery flow velocity was measured by transcranial Doppler ultrasonography. Results: Both arterial stiffness parameters and cerebral vasoreactivity worsened in line with HTN severity. There was a negative correlation between breath holding index (BHI) and arterial stiffness parameters. Cognitive performance worsened in line with HTN severity, with statistical difference occurring mainly between the HTN-2 and normotension groups on both the MMSE and MoCA. The same tendency was observed on the NPE tests. Conclusion: Hypertension severity was associated with higher AS, worse BHI, and lower cognitive performance. PMID:29354219
Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish
2016-01-01
Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559
de Barros, F P J; Fiori, A; Boso, F; Bellin, A
2015-01-01
Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Efficient Engine exhaust mixer model technology report addendum; phase 3 test program
NASA Technical Reports Server (NTRS)
Larkin, M. J.; Blatt, J. R.
1984-01-01
The Phase 3 exhaust mixer test program was conducted to explore the trends established during previous Phases 1 and 2. Combinations of mixer design parameters were tested. Phase 3 testing showed that the best performance achievable within tailpipe length and diameter constraints is 2.55 percent better than an optimized separate flow base line. A reduced penetration design achieved about the same overall performance level at a substantially lower level of excess pressure loss but with a small reduction in mixing. To improve reliability of the data, the hot and cold flow thrust coefficient analysis used in Phases 1 and 2 was augmented by calculating percent mixing from traverse data. Relative change in percent mixing between configurations was determined from thrust and flow coefficient increments. The calculation procedure developed was found to be a useful tool in assessing mixer performance. Detailed flow field data were obtained to facilitate calibration of computer codes.
An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.
Stochastic modeling of mode interactions via linear parabolized stability equations
NASA Astrophysics Data System (ADS)
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Human-in-the-loop evaluation of RMS Active Damping Augmentation
NASA Technical Reports Server (NTRS)
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Wu, Wan-Ru; Chung, Ue-Lin; Chang, Sophia C N
2007-06-01
The purpose of this qualitative research study was to explore the preoperative through postoperative phase experience of women who had undergone augmentation mammaplasty. Nine women undergoing augmentation mammaplasty were selected by purposive sampling and interviewed using semi- structured, open-ended interview guidelines. Researchers used Symbolic interactionism to frame their overall perspective and analyzed data with the content analysis method. Rigors of data analysis were adopted credibility, transferability, dependability and confirmability proposed by Guba and Lincoln. The main theme of living experience of women who received augmentation mammaplasty could be summarized as "a journey to restore self-confidence". The categories identified within this journey included: (1) the invisible standards of breast beauty; (2) Taking courageous action to make changes; (3) conflicts between the natural and artificial. The above findings provided initial qualitative data from Taiwanese women's perspective. By better understanding their experience, nurses can become increasingly sensitive to patients' psychosocial adjustment and provide prudential nursing care.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis
2016-11-01
A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates the potential of the method to simulate turbulent flows past geometrically complex bodies on locally refined meshes. In all the cases, the results are found to be in very good agreement with published data and savings in computational resources are achieved.
Moberly, Steven P; Berwick, Zachary C; Kohr, Meredith; Svendsen, Mark; Mather, Kieren J; Tune, Johnathan D
2012-03-01
We examined the acute dose-dependent effects of intracoronary glucagon-like peptide (GLP)-1 (7-36) on coronary vascular tone, cardiac contractile function and metabolism in normal and ischemic myocardium. Experiments were conducted in open chest, anesthetized dogs at coronary perfusion pressures (CPP) of 100 and 40 mmHg before and during intracoronary GLP-1 (7-36) infusion (10 pmol/L to 1 nmol/L). Isometric tension studies were also conducted in isolated coronary arteries. Cardiac and coronary expression of GLP-1 receptors (GLP-1R) was assessed by Western blot and immunohistochemical analysis. GLP-1R was present in the myocardium and the coronary vasculature. The tension of intact and endothelium-denuded coronary artery rings was unaffected by GLP-1. At normal perfusion pressure (100 mmHg), intracoronary GLP-1 (7-36) (targeting plasma concentration 10 pmol/L to 1 nmol/L) did not affect blood pressure, coronary blood flow or myocardial oxygen consumption (MVO(2)); however, there were modest reductions in cardiac output and stroke volume. In untreated control hearts, reducing CPP to 40 mmHg produced marked reductions in coronary blood flow (0.50 ± 0.10 to 0.17 ± 0.03 mL/min/g; P < 0.001) and MVO(2) (27 ± 2.3 to 15 ± 2.7 μL O(2)/min/g; P < 0.001). At CPP = 40 mmHg, GLP-1 had no effect on coronary blood flow, MVO(2) or regional shortening, but dose-dependently increased myocardial glucose uptake from 0.11 ± 0.02 μmol/min/g at baseline to 0.17 ± 0.04 μmol/min/g at 1 nmol/L GLP-1 (P < 0.001). These data indicate that acute, intracoronary administration of GLP-1 (7-36) preferentially augments glucose metabolism in ischemic myocardium, independent of effects on cardiac contractile function or coronary blood flow.
Chen, Li-Jing; Chuang, Li; Huang, Yi-Hsuan; Zhou, Jing; Lim, Seh Hong; Lee, Chih-I; Lin, Wei-Wen; Lin, Ting-Er; Wang, Wei-Li; Chen, Linyi; Chien, Shu; Chiu, Jeng-Jiann
2015-01-01
Rationale In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. Objective To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Methods and Results Co-culturing ECs with sSMCs under static condition causes initial increases of four anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miR expressions. In vivo, these four miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase, inhibitor of nuclear factor-κB (NF-κB) kinase subunit-γ, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries. PMID:25623956
Thrust Augmentation Study of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft
2012-09-01
configuration by varying the gap between the CFFs. Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the...Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the thrust generated as well as the optimal operating point...RECOMMENDATIONS ...............................................................................43 APPENDIX A. ANSYS CFX SETTINGS FOR DUAL CFF (8,000
Keith Jennings; Julia A. Jones
2015-01-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992â2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly...
Oxygen Flow Rate Requirements of Critically Injured Patients
2015-04-08
2.0 BACKGROUND Supplemental oxygen is required to correct hypoxemia and is often used to augment tissue oxygen delivery following hemorrhagic ...least 6 months after enrollment to determine mortality status. 3.4 Outcome Measurements The primary outcomes were the proportion of subjects...and 53/204 (26%) with hemorrhagic shock (systolic blood pressure (SBP) ៊ or blood transfusion). There were 33/142 (23%) patients with an indication
Fluidically Augmented Nozzles for Pulse Detonation Engine Applications
2011-12-01
25 captured the flow soon after the leading shock wave passed through the diverging section of the nozzle. As can be seen, the “pillow” has begun to...35 Figure 25. Initial Detonation Wave Enters the Diverging Section of the Nozzle...charging the combustor with an appropriate fuel/air mixture. This mixture is then ignited, producing a flame that is initially a deflagration wave . A
Neural network based adaptive output feedback control: Applications and improvements
NASA Astrophysics Data System (ADS)
Kutay, Ali Turker
Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in simulation, a fictitious actuator model is developed that fits experimentally observed characteristics of flow control actuators in static flight conditions as well as possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the vehicle.
Active structural control for damping augmentation and compensation of thermal distortion
NASA Technical Reports Server (NTRS)
Sirlin, S. W.
1992-01-01
A large space-based Focus Mission Interferometer is used as a testbed for the NASA Controls and Structures Interaction Program. Impedance-based adaptive structural control and control of thermal disturbances are demonstrated using an end-to-end simulation of the system's optical performance. Attention is also given to integrated optical/structural modeling and a hierarchical, layered control strategy.
Variability of the pullout strength of cancellous bone screws with cement augmentation.
Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S
2015-06-01
Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
J-2X Turbopump Cavitation Diagnostics
NASA Technical Reports Server (NTRS)
Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane
2010-01-01
The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.
Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels
NASA Technical Reports Server (NTRS)
Groen, Joseph M.; Johnson, Aldie E., Jr.
1959-01-01
Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.
Fullerene data mining using bibliometrics and database tomography
Kostoff; Braun; Schubert; Toothman; Humenik
2000-01-01
Database tomography (DT) is a textual database analysis system consisting of two major components: (1) algorithms for extracting multiword phrase frequencies and phrase proximities (physical closeness of the multiword technical phrases) from any type of large textual database, to augment (2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a fullerenes database derived from the Science Citation Index and the Engineering Compendex. Phrase frequency analysis by the technical domain experts provided the pervasive technical themes of the fullerenes database, and phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the fullerenes literature supplemented the DT results with author/journal/institution publication and citation data. Comparisons of fullerenes results with past analyses of similarly structured near-earth space, chemistry, hypersonic/supersonic flow, aircraft, and ship hydrodynamics databases are made. One important finding is that many of the normalized bibliometric distribution functions are extremely consistent across these diverse technical domains and could reasonably be expected to apply to broader chemical topics than fullerenes that span multiple structural classes. Finally, lessons learned about integrating the technical domain experts with the data mining tools are presented.
System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle
Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is beingmore » developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.« less
An oral exam model for teaching advanced "Batchelor-level" fluid mechanics in the US
NASA Astrophysics Data System (ADS)
Freund, Jonathan
2016-11-01
A teaching model is developed to meet the challenge of teaching fluid mechanics at what might be considered a high level, at least by the current norms in the US. The initial goal was to avoid loss of concepts amidst the challenge of particular mathematical manipulations on particular assignments. However, it evolved toward fostering facile working knowledge of challenging material, such as in the books by Batchelor (e.g. streaming flow), Whitham (e.g. ship waves), and van Dyke (e.g. second-order boundary layer). To this end, the course model forgoes traditional assigned problems to focus on completion, augmentation, and in-depth understanding of the lecture material. The lectures are relatively traditional in structure, albeit with somewhat more interactive examples. The main unusual feature-again, by modern US standards-was assessment via multiple half-hour oral exams. This model has now been successful over 8 semesters for 3 different graduate courses in 2 departments. For all, students were assume to have already completed a full course at a "Navier-Stokes level". The presentation will include specifics of the course and exam structure, impressions of positive outcomes from the instructor, and a summary of the overwhelmingly positive student feedback.
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
Generating and controlling homogeneous air turbulence using random jet arrays
NASA Astrophysics Data System (ADS)
Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo
2016-12-01
The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.
Effects of Deadly California Debris Flows Seen in Before/After Images from NASA's UAVSAR
2018-02-12
Extreme winter rains in January 2018 following the Thomas Fire in Ventura and Santa Barbara Counties caused severe debris flows, resulting in significant loss of life and considerable property damage in the town on Montecito, just east of Santa Barbara. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne radar platform detected changes caused by the debris flows between two images acquired on Nov. 2, 2017, and Feb. 5, 2018. An enhanced image pair (top left) shows disturbed areas in orange. In areas of severe surface disruption from the fire scar and debris flows the two image pairs can't be matched and decorrelate (top right). In the middle panels, the radar images are overlaid on the structure damage map produced by the County of Santa Barbara. The fire scars and damage correspond well with the risk map (lower left) and damage map (lower right). With an operational system, products such as these have the potential to augment information available for search and rescue, and for damage assessment for government agencies or the insurance industry. Radar has the advantage of being available in all weather conditions, as it can image through clouds. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), developed and managed by the Jet Propulsion Laboratory, Pasadena, California, can record changes on the ground beneath the aircraft that occur between multiple flights, which take exactly the same flight path. The instrument is used to monitor how volcanoes, earthquakes, and other natural hazards are changing Earth. The JPL UAVSAR team collected and processed the imagery for Principal Investigator Andrea Donnellan who performed the analysis. She has been conducting ground change research using UAVSAR in this and other regions of California since 2009. https://photojournal.jpl.nasa.gov/catalog/PIA22243
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Fluid mechanics and heat transfer spirally fluted tubing
NASA Astrophysics Data System (ADS)
Yampolsky, J. S.; Libby, P. A.; Launder, B. E.; Larue, J. C.
1984-12-01
The objective of this program is to develop an understanding of the fluid mechanics and heat transfer mechanisms that result in the demonstrated performance of the spiral fluted tubing under development at GA Technologies Inc. Particularly emphasized are the processes that result in the augmentation of the heat transfer coefficient without an increase in friction coefficient in the single-phase flow. Quantitative delineation of these processes would allow for their application to the optimal solution of heat transfer problems in general was well as to tubular heat exchanges using spiral fluted tubes. The experimental phase of the program consisted of the following: (1) Flow visualization studies using high-speed photography of dye injected into water flowing in a cast acrylic spiral fluted tube. (2) Time-resolved axial velocity measurements as a function of radius at the exit plane of a spiral fluted tube with water flowing through the tube. (3) Simultaneous time-resolved measurements of the axial and radial velocity components and temperature with heated air flowing through the tube cooled by a water jacket.
1986-08-01
each subsystem wist include more than a set of rigid body and normal modes to properly represent the dynamics of the entire system. Various types of...MCM 1 AUGMENTATION HETNO-MrifaOII FIELD TflACKER »f Tl BASIC EXPERIMENT Figure 3. Dynamics augmentation experiment. i i mnc...Villeurbanne - France Today the dynamic behavior of rotors must be predicted with the greatest care. This work deals with the influence of disc flexi
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T. Tazwell; Keller, Jay O.
1989-01-01
A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.
NASA Technical Reports Server (NTRS)
Bilbro, J. W.; Vaughan, W. W.
1980-01-01
Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.
1988-06-01
Turbulence Augmentation 04 19 ABS. T (Continue on reverse di necessary and identify by block number) A n’-feriCal stud~y of the flow field and heat...urderpredicts the heat t ransfer re,,c as given I3- z. direct calculation Lusing Fcurier’s lawl. DD Form 1473, JUN 86 P~*’viowJ rdirionsa,e obsolete...SEWiPI’e CLASSIFiCV’i0N CIH, A UNCLASSIF D N -~ -~ ’ 4\\./~~ f. .% S ’ ’p ’ ’,S V % %~ TABLE OF CONTENTS SECTION PAGE T Introduction
Effect of simulated forward airspeed on small-scale-model externally blown flap noise
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.; Dorsch, R. G.; Olsen, W. A.
1976-01-01
Noise tests were conducted on a small-scale model of an externally blown flap lift augmentation system. The nozzle/wing model was subjected to external flow that simulated takeoff and landing flight velocities by placing it in a 33-centimeter-diameter free jet. The results showed that external flow attenuated the noise associated with the various configurations tested. The amount of attenuation depended on flap setting. More attenuation occurred with a trailing-flap setting of 20 deg than with one of 60 deg. Noise varied with relative velocity as a function of the trailing-flap setting and the angle from the nozzle inlet.
Low-speed aerodynamic characteristics of a generic forward-swept-wing aircraft
NASA Technical Reports Server (NTRS)
Ross, J. C.; Matarazzo, A. D.
1982-01-01
Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce a direct side-force control.
The variable magnetic baffle as a control device for Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1972-01-01
The variable magnetic baffle described in this paper aids in control of electron flow from the hollow cathode plasma into the main discharge region by augmenting the fringe magnetic field which impedes this electron flow in conventionally baffled Kaufman thrusters. A passive, low loss, and automatic control device is obtained by using the discharge current to excite the control winding. Used in conjunction with typical thruster control loops, stable operation has been obtained over a 10:1 throttling range with a 30 cm thruster. Discharge ignition and overcurrent recycling is also facilitated through use of this device in a permanent magnet thruster.
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.; Tso, Jin
1993-01-01
Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
An 'unconditional-like' structure for the conditional estimator of odds ratio from 2 x 2 tables.
Hanley, James A; Miettinen, Olli S
2006-02-01
In the estimation of the odds ratio (OR), the conditional maximum-likelihood estimate (cMLE) is preferred to the more readily computed unconditional one (uMLE). However, the exact cMLE does not have a closed form to help divine it from the uMLE or to understand in what circumstances the difference between the two is appreciable. Here, the cMLE is shown to have the same 'ratio of cross-products' structure as its unconditional counterpart, but with two of the cell frequencies augmented, so as to shrink the unconditional estimator towards unity. The augmentation involves a factor, similar to the finite population correction, derived from the minimum of the marginal totals.
NASA Technical Reports Server (NTRS)
Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb
2015-01-01
Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.
Augmented reality visualization of deformable tubular structures for surgical simulation.
Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro
2016-06-01
Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
A Protein in the palm of your hand through augmented reality.
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Xu, Xiao; Holzwarth, N. A. W.
2011-10-01
This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-dependent exchange-correlation functionals within the projector-augmented-wave method of Blöchl [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.50.17953 50, 17953 (1994)] for electronic structure calculations. The methodology is illustrated with binding energy curves for C in the diamond structure and LiF in the rock salt structure, by comparing results from the Hartree-Fock (HF) formalism and the optimized effective potential formalism in the so-called KLI approximation [Krieger, Li, and Iafrate, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.45.101 45, 101 (1992)] with those of the local density approximation. While the work here uses pure Fock exchange only, the formalism can be extended to treat orbital-dependent functionals more generally.
NASA Astrophysics Data System (ADS)
Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.
2018-05-01
In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.
NASA Astrophysics Data System (ADS)
Viparelli, Enrica; Gaeuman, David; Wilcock, Peter; Parker, Gary
2011-02-01
Major changes in the morphology of the Trinity River in California, such as narrowing of the cross section and sedimentation of fine sediment in pools, occurred after the closure of a system of dams. These changes caused a dramatic reduction in the salmonid population and a resulting decline of the fishery. Gravel augmentation, regulated flood releases, and mechanical channel rehabilitation are currently being implemented to help restore the aquatic habitat of the river. The present paper describes a tool, named the Spawning Gravel Refresher, for designing and predicting the effects of gravel augmentation in gravel bed rivers. The tool assumes an imposed, cycled hydrograph. The model is calibrated and applied to the regulated reach of the Trinity River in four steps: (1) zeroing runs to reproduce conditions of mobile bed equilibrium as best can be estimated for the predam Trinity River, (2) runs to compare the predictions with the results of previous studies, (3) runs at an engineering time scale to reproduce the effects of the dams, and (4) runs to design gravel augmentation schemes. In the fourth group of runs, the combined effects of engineered flood flow releases and gravel augmentation are predicted. At an engineering time scale, the model indicates that the fraction of fine sediment in the surface layer and in the topmost part of the substrate should decrease when subjected to these two restoration measures, with a consequent improvement of the quality of the spawning gravel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans
This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s majormore » emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.« less
The Prominent Role of the Upstream Conditions on the Large-scale Motions of a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Castillo, Luciano; Dharmarathne, Suranga; Tutkun, Murat; Hutchins, Nicholas
2017-11-01
In this study we investigate how upstream perturbations in a turbulent channel flow impact the downstream flow evolution, especially the large-scale motions. Direct numerical simulations were carried out at a friction Reynolds number, Reτ = 394 . Spanwise varying inlet blowing perturbations were imposed at 1 πh from the inlet. The flow field is decomposed into its constituent scales using proper orthogonal decomposition. The large-scale motions and the small-scale motions of the flow field are separated at a cut-off mode number, Mc. The cut-off mode number is defined as the number of the mode at which the fraction of energy recovered is 55 % . It is found that Reynolds stresses are increased due to blowing perturbations and large-scale motions are responsible for more than 70 % of the increase of the streamwise component of Reynolds normal stress. Surprisingly, 90 % of Reynolds shear stress is due to the energy augmentation of large-scale motions. It is shown that inlet perturbations impact the downstream flow by means of the LSM.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
NASA Astrophysics Data System (ADS)
Hilliard, Antony
Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.
Augmented Topological Descriptors of Pore Networks for Material Science.
Ushizima, D; Morozov, D; Weber, G H; Bianchi, A G C; Sethian, J A; Bethel, E W
2012-12-01
One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
NASA Astrophysics Data System (ADS)
Koptev, V. Yu
2017-02-01
The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.
Disruption of intracardiac flow patterns in the newborn infant.
Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David
2012-04-01
Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.
Feature-Based Statistical Analysis of Combustion Simulation Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J; Krishnamoorthy, V; Liu, S
2011-11-18
We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing andmore » reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.« less
DeGeorge, Brent R; Olenczak, J Bryce; Cottler, Patrick S; Drake, David B; Lin, Kant Y; Morgan, Raymond F; Campbell, Christopher A
2016-06-01
Acellular dermal matrices (ADMs) serve as a regenerative framework for host cell integration and collagen deposition to augment the soft tissue envelope in ADM-assisted breast reconstruction-a process dependent on vascular ingrowth. To date noninvasive intra-operative imaging techniques have been inadequate to evaluate the revascularization of ADM. We investigated the safety, feasibility, and efficacy of sidestream darkfield (SDF) microscopy to assess the status of ADM microvascular architecture in 8 patients at the time of tissue expander to permanent implant exchange during 2-stage ADM-assisted breast reconstruction. The SDF microscopy is a handheld device, which can be used intraoperatively for the real-time assessment of ADM blood flow, vessel density, vessel size, and branching pattern. The SDF microscopy was used to assess the microvascular architecture in the center and border zone of the ADM and to compare the native, non-ADM-associated capsule in each patient as a within-subject control. No incidences of periprosthetic infection, explantation, or adverse events were reported after SDF image acquisition. Native capsules demonstrate a complex, layered architecture with an average vessel area density of 14.9 mm/mm and total vessel length density of 12.3 mm/mm. In contrast to native periprosthetic capsules, ADM-associated capsules are not uniformly vascularized structures and demonstrate 2 zones of microvascular architecture. The ADM and native capsule border zone demonstrates palisading peripheral vascular arcades with continuous antegrade flow. The central zone of the ADM demonstrates punctate perforating vascular plexi with intermittent, sluggish flow, and intervening 2- to 3-cm watershed zones. Sidestream darkfield microscopy allows for real-time intraoperative assessment of ADM revascularization and serves as a potential methodology to compare revascularization parameters among commercially available ADMs. Thr SDF microscopy demonstrates that the periprosthetic capsule in ADM-assisted implant-based breast reconstruction is not a uniformly vascularized structure.
Feasibility and safety of augmented reality-assisted urological surgery using smartglass.
Borgmann, H; Rodríguez Socarrás, M; Salem, J; Tsaur, I; Gomez Rivas, J; Barret, E; Tortolero, L
2017-06-01
To assess the feasibility, safety and usefulness of augmented reality-assisted urological surgery using smartglass (SG). Seven urological surgeons (3 board urologists and 4 urology residents) performed augmented reality-assisted urological surgery using SG for 10 different types of operations and a total of 31 urological operations. Feasibility was assessed using technical metadata (number of photographs taken/number of videos recorded/video time recorded) and structured interviews with the urologists on their use of SG. Safety was evaluated by recording complications and grading according to the Clavien-Dindo classification. Usefulness of SG for urological surgery was queried in structured interviews and in a survey. The implementation of SG use during urological surgery was feasible with no intrinsic (technical defect) or extrinsic (inability to control the SG function) obstacles being observed. SG use was safe as no grade 3-5 complications occurred for the series of 31 urological surgeries of different complexities. Technical applications of SG included taking photographs/recording videos for teaching and documentation, hands-free teleconsultation, reviewing patients' medical records and images and searching the internet for health information. Overall usefulness of SG for urological surgery was rated as very high by 43 % and high by 29 % of surgeons. Augmented reality-assisted urological surgery using SG is both feasible and safe and also provides several useful functions for urological surgeons. Further developments and investigations are required in the near future to harvest the great potential of this exciting technology for urological surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
In-situ shear stress indicator using heated strain gages at the flow boundary
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Yang, Fuling
2011-11-01
This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.
Thermoelectric Properties of Selenides Spinels
NASA Technical Reports Server (NTRS)
Snyder, G.; Caillat, T.; Fleurial, J-P.
2000-01-01
Many compounds with the spinel structure type have been analyzed for their thermoelectric properties. Published data was used to augment experimental results presented here to select promising thermoelectric spinels.
2014-09-30
good test 3 case to study the multiscale data assimilation capabilities of our GMM-DO filter. We also performed stochastic simulations with our DO...Morakot and internal tides. The ignorance score and Kullback - Leibler divergence were employed to measure the skill of the multiscale pdf forecasts...read off from the posterior of the augmented state vector. We implemented this new smoother and tested it using a 2D-in-space stochastic flow exiting
Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.
Energetics of Vortex Ring Formation.
1983-11-01
Sorohia, V., "An Experimental Investigation of Thrust Augmenting Ejector Flows", Proceedings of the Ejector Workshop for Aerospace Applications, AFWAL-TR...induction thrust augmentrs, su’h comparing thr mass and energy content of fully formed as the ejector , the migration of finite sized eddie, laminar vortex...Intermittent Jet to a Secondary Fluid in an Ejector Type Thrust Augmentor", Hiller Aircraft Company, Interim Report ARD-305, June 1962. 3. Bernal, L. and
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Preliminary dynamic tests of a flight-type ejector
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1992-01-01
A thrust augmenting ejector was tested to provide experimental data to assist in the assessment of theoretical models to predict duct and ejector fluid-dynamic characteristics. Eleven full-scale thrust augmenting ejector tests were conducted in which a rapid increase in the ejector nozzle pressure ratio was effected through a unique facility, bypass/burst-disk subsystem. The present work examines two cases representative of the test performance window. In the first case, the primary nozzle pressure ration (NPR) increased 36 percent from one unchoked (NPR = 1.29) primary flow condition to another (NPR = 1.75) over a 0.15 second interval. The second case involves choked primary flow conditions, where a 17 percent increase in primary nozzle flowrate (from NPR = 2.35 to NPR = 2.77) occurred over approximately 0.1 seconds. Although the real-time signal measurements support qualitative remarks on ejector performance, extracting quantitative ejector dynamic response was impeded by excessive aerodynamic noise and thrust stand dynamic (resonance) characteristics. It does appear, however, that a quasi-steady performance assumption is valid for this model with primary nozzle pressure increased on the order of 50 lb(sub f)/s. Transient signal treatment of the present dataset is discussed and initial interpretations of the results are compared with theoretical predictions for a similar Short Takeoff and Vertical Landing (STOVL) ejector model.
NASA Astrophysics Data System (ADS)
Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.
2008-05-01
Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.
Augmentative and alternative communication supports for adults with autism spectrum disorders.
Trembath, David; Iacono, Teresa; Lyon, Katie; West, Denise; Johnson, Hilary
2014-11-01
Many adults with autism spectrum disorders have complex communication needs and may benefit from the use of augmentative and alternative communication. However, there is a lack of research examining the specific communication needs of these adults, let alone the outcomes of interventions aimed at addressing them. The aim of this study was to explore the views and experiences of support workers and family members regarding the outcomes of providing low-technology communication aids to adults with autism spectrum disorders. The participants were six support workers and two family members of six men and women with autism spectrum disorders, who had received low-technology communication aids. Using semi-structured, in-depth interviews and following thematic analysis, the results revealed strong support for, and the potential benefits of, augmentative and alternative communication for both adults with autism spectrum disorders and their communication partners. The results also revealed inconsistencies in the actions taken to support the use of the prescribed augmentative and alternative communication systems, pointing to the clinical need to address common barriers to the provision of augmentative and alternative communication support. These barriers include organisational practices and limitations in the knowledge and skills of key stakeholders, as well as problematic attitudes. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Rinderknecht, Derek
Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.
Di Stefano, Danilo Alessio; Gastaldi, Giorgio; Vinci, Raffaele; Polizzi, Elisabetta Maria; Cinci, Lorenzo; Pieri, Laura; Gherlone, Enrico
2016-01-01
The aim of this study was to investigate bone formation over time following maxillary sinus augmentation with an enzyme-deantigenic, bone collagen-preserving equine bone graft by retrospective assessment of histomorphometric data. Records of patients with atrophic ridges who underwent maxillary sinus augmentation with the enzyme-deantigenic equine bone graft and two-step implant placement between 3 and 12 months after the sinus-augmentation surgery were assessed retrospectively. The histomorphometric data were clustered in three classes according to time of collection from the augmentation surgery and analyzed to assess newly formed bone deposition and residual biomaterial degradation rates. Data concerning the 36-month clinical follow-up were also assessed. Records of 77 patients and 115 biopsy specimens were retrieved, and histomorphometric data were clustered (3 to 5 months, n = 33; 6 to 8 months, n = 57; 9 to 12 months, n = 25). Mean minimum atrophic ridge thickness was 4.9 ± 0.5 mm (range, 4.0 to 7.1 mm). The amount of newly formed bone and residual biomaterial did not significantly differ among the three clusters. Qualitative analysis showed a denser trabecular structure in late (> 8 months) samples. At the 36-month clinical follow-up, no differences were found among the implant success rates in the three groups, according to the Albrektsson and Zarb criteria for success. The overall implant success rate was 98.3%. Based upon this retrospective human study of 77 patients with 4 to 7 mm of residual bone, when enzyme-deantigenic equine bone is used for sinus augmentation, new bone formation occurs at an early time (< 3 months) after the grafting, and implant placement can be safely carried out as soon as 3 to 5 months after the augmentation surgery.
Augmentation-related brain plasticity
Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo
2014-01-01
Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self. PMID:24966816
Möller, Björn; Acil, Yahya; Birkenfeld, Falk; Behrens, Eleonore; Terheyden, Hendrik; Wiltfang, Jörg
2014-07-01
Sinus floor augmentation with autologous bone is an accepted treatment option in dental implantology. In this study, an entirely synthetic, nano-structured, hydroxyapatite-based bone substitute material (SBSM, NanoBone(®); Artoss, Rostock, Germany) was supplemented with a mixture of locally harvested bone to enhance osteogenesis. Bilateral sinus augmentation procedures were performed in eight domestic pigs using the lateral window technique. On the right side (control), 2.6 ml of SBSM was used, and on the left side (test), 2.6 ml of SBSM with additional 15% (390 μl) autologous bone was used. At the time of augmentation, a titanium implant (ITI(®)) was inserted from a laterocaudal direction. After 3 months, the sites of augmentation were removed and examined in non-decalcified sections by microradiography and fluorescence microscopy of sequentially labelled specimens and histometry. On both sides, a significant amount of newly formed bone was observed. However, a statistically significant difference in the bone-implant contact was observed in the control group (median, 28.9%) compared with the test side with the additional autologous bone (median, 40.6%) (P = 0.01). Different bone density was achieved from the coronal to apical surfaces (medians, 54.6%, 9.6%, and 27.5%) compared with the test side (medians, 55.2%, 40.6%, and 44.2%). The median of augmentation height was 8.6 mm on the control side and 11.5 mm on the test side (P = 0.01). Bone apposition was observed in both groups after 15 days. The SBSM shows acceptable results in sinus floor augmentation. The additional use of locally harvested autologous bone enhances bone density and osseointegration of the implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality
NASA Astrophysics Data System (ADS)
Zhang, Huijuan
2005-02-01
An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.
Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G
2013-10-01
A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals. Copyright © 2013 Elsevier B.V. All rights reserved.
Delorme, Yann T.; Rodefeld, Mark D.; Frankel, Steven H.
2016-01-01
Children born with only one functional ventricle must typically undergo a series of three surgeries to obtain the so-called Fontan circulation in which the blood coming from the body passively flows from the Vena Cavae (VCs) to the Pulmonary Arteries (PAs) through the Total Cavopulmonary Connection (TCPC). The circulation is inherently inefficient due to the lack of a subpulmonary ventricle. Survivors face the risk of circulatory sequelae and eventual failure for the duration of their lives. Current efforts are focused on improving the outcomes of Fontan palliation, either passively by optimizing the TCPC, or actively by using mechanical support. We are working on a chronic implant that would be placed at the junction of the TCPC, and would provide the necessary pressure augmentation to re-establish a circulation that recapitulates a normal two-ventricle circulation. This implant is based on the Von Karman viscous pump and consists of a vaned impeller that rotates inside the TCPC. To evaluate the performance of such a device, and to study the flow features induced by the presence of the pump, Computational Fluid Dynamics (CFD) is used. CFD has become an important tool to understand hemodynamics owing to the possibility of simulating quickly a large number of designs and flow conditions without any harm for patients. The transitional and unsteady nature of the flow can make accurate simulations challenging. We developed and in-house high order Large Eddy Simulation (LES) solver coupled to a recent Immersed Boundary Method (IBM) to handle complex geometries. Multiblock capability is added to the solver to allow for efficient simulations of complex patient specific geometries. Blood simulations are performed in a complex patient specific TCPC geometry. In this study, simulations without mechanical assist are performed, as well as after virtual implantation of the temporary and chronic implants being developed. Instantaneous flow structures, hepatic factor distribution, and statistical data are presented for all three cases. PMID:28649147
NASA Technical Reports Server (NTRS)
Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.
1998-01-01
The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo
2016-12-01
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.
Katz, Paige S.; Kelly, Amy P.; Galantowicz, Maarten L.; Cismowski, Mary J.; West, T. Aaron; Neeb, Zachary P.; Berwick, Zachary C.; Goodwill, Adam G.; Alloosh, Mouhamad; Tune, Johnathan D.; Sturek, Michael; Lucchesi, Pamela A.
2012-01-01
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 106 ± 0.7 × 106 and 1.1 × 106 ± 0.2 × 106 dyn/cm2 in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS. PMID:22837170
Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff
NASA Astrophysics Data System (ADS)
Herkes, D. M. G.; Gori, A.; Juan, A.
2017-12-01
Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared: 1) infiltration capacity from soil only and 2) the augmented infiltration capacity of soil due to vegetation. Modeled results show a notable decrease in both total runoff volume and peak flows under the augmented infiltration scenario. This decrease demonstrates the benefit of native Texas prairie land in reducing flood risks.
USDA-ARS?s Scientific Manuscript database
Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Hall, F. Scott; Uhl, George R.; Asano, Hiromi; Chatani, Ryuki; Hayata, Sachiko; Yokoyama, Hiroko; Tanaka, Koh-ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko
2014-01-01
Nomifensine is a dopamine/norepinephrine reuptake inhibitor. Nomifensine and some of its structural analogues produce behavioral effects indicative of indirect dopaminergic agonist properties, such as hyperlocomotion. By contrast, the deaminated and demethylated nomifensine analogue 4-phenyl-1,2,3,4-tetrahydroisoquinoline (PTIQ) is reported to have amphetamine-antagonistic properties, as demonstrated by inhibition of methamphetamine (METH)-induced dopamine release in the nucleus accumbens and METH-induced hyperlocomotion in rats. In the present study, we examined the effect of PTIQ (10 mg/kg, i.p.) and nomifensine (3 mg/kg, i.p.) on METH (5 or 10 mg/kg ,i.p.)-induced stereotypical behavior in mice in order to determine whether PTIQ and nomifensine inhibit and augment, respectively, METH-induced stereotypical behavior. Unexpectedly, our observations demonstrated that both PTIQ and nomifensine significantly augmented METH-induced stereotypical behavior and locomotion in mice. This augmentation is likely the result of additive effects on dopaminergic function by METH in combination with PTIQ or nomifensine. These results suggest that, contrary to some reports, PTIQ may display dopaminergic agonist properties in mice. PMID:22265332
Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor
NASA Astrophysics Data System (ADS)
Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.
2017-03-01
In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.
Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery
NASA Astrophysics Data System (ADS)
Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng
2012-10-01
In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.
B-52 stability augmentation system reliability
NASA Technical Reports Server (NTRS)
Bowling, T. C.; Key, L. W.
1976-01-01
The B-52 SAS (Stability Augmentation System) was developed and retrofitted to nearly 300 aircraft. It actively controls B-52 structural bending, provides improved yaw and pitch damping through sensors and electronic control channels, and puts complete reliance on hydraulic control power for rudder and elevators. The system has experienced over 300,000 flight hours and has exhibited service reliability comparable to the results of the reliability test program. Development experience points out numerous lessons with potential application in the mechanization and development of advanced technology control systems of high reliability.
1994-03-01
reality the structure of even one individual aircraft consists of many bat- ches and the tens of thousand of cars of one type manufactured in even...generated neural network power spectral densities of surface pressures are used to augment existing data and then load an elastic finite clement...investigated for possible use in augmenting this information which is required for fatigue life calculations. Since empennage environments on fighter
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.
1992-01-01
Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Penile enlargement with methacrylate injection: is it safe?
Torricelli, Fabio Cesar Miranda; Andrade, Enrico Martins de; Marchini, Giovanni Scala; Lopes, Roberto Iglesias; Claro, Joaquim Francisco Almeida; Cury, Jose; Srougi, Miguel
2013-01-01
CONTEXT Penis size is a great concern for men in many cultures. Despite the great variety of methods for penile augmentation, none has gained unanimous acceptance among experts in the field. However, in this era of minimally invasive procedure, injection therapy for penile augmentation has become more popular. Here we report a case of methacrylate injection in the penis that evolved with penile deformity and sexual dysfunction. This work also reviews the investigation and management of this pathological condition. CASE REPORT A 36-year-old male sought medical care with a complaint of penile deformity and sexual dysfunction after methacrylate injection. The treatment administered was surgical removal. Satisfactory cosmetic and functional results were reached after two months. CONCLUSIONS There is a need for better structured scientific research to evaluate the outcomes and complication rates from all penile augmentation procedures.
Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste
2009-12-21
The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.
Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.
2010-01-01
As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Kadman, Y.; Chanaud, R. C.
1972-01-01
The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.
Lagrangian numerical methods for ocean biogeochemical simulations
NASA Astrophysics Data System (ADS)
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
Design Rules and Issues with Respect to Rocket Based Combined Cycles
2010-09-01
cause thrust augmentation due to the ejector effects, which in turn, can reduce the requirement for the rocket engine output. In the speed regime with...should produce sufficient thrust to takeoff and to overcome the drag at transonic regime. When embedded into a flow pass, the rocket exhaust can...between the ejector -jet operation and ramjet operation, between the ramjet operations at various flight conditions, and between the ramjet operation and
Cherney, David Z I; Scholey, James W; Jiang, Shan; Har, Ronnie; Lai, Vesta; Sochett, Etienne B; Reich, Heather N
2012-11-01
Diabetes is associated with renin-angiotensin system (RAS) activation, leading to renal and systemic vascular dysfunction that contribute to end-organ injury and significant morbidity. RAS blockade with ACE inhibitors reduces, but does not abolish, RAS effects. Accordingly, our aim was to determine if direct renin inhibition alone, and in combination with an ACE inhibitor, corrects early hemodynamic abnormalities associated with type 1 diabetes. Arterial stiffness (augmentation index), flow-mediated vasodilatation (FMD), and renal hemodynamic function (inulin and paraaminohippurate clearance) were measured at baseline under clamped euglycemic and hyperglycemic conditions (n = 21). Measures were repeated after 4 weeks of aliskiren therapy and again after aliskiren plus ramipril. Blood pressure-lowering effects of aliskiren were similar during clamped euglycemia and hyperglycemia. Combination therapy augmented this effect under both glycemic conditions (P = 0.0005). Aliskiren reduced arterial stiffness under clamped euglycemic and hyperglycemic conditions, and the effects were augmented by dual RAS blockade (-3.4 ± 11.2 to -8.0 ± 11.5 to -14.3 ± 8.4%, respectively, during euglycemia, P = 0.0001). During clamped euglycemia, aliskiren increased FMD; dual therapy exaggerated this effect (5.1 ± 3.3 to 7.5 ± 3.0 to 10.8 ± 3.5%, repeated-measures ANOVA, P = 0.0001). Aliskiren monotherapy caused renal vasodilatation during clamped hyperglycemia only. In contrast, dual therapy augmented renal vasodilatory effects during clamped euglycemia and hyperglycemia. In patients with uncomplicated type 1 diabetes, aliskiren-based dual RAS blockade is associated with greater arterial compliance, FMD, and renal vasodilatation.
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, Raymond
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis.
Hawkins, Troy; Hendrickson, Chris; Higgins, Cortney; Matthews, H Scott; Suh, Sangwon
2007-02-01
Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in an economy. We combine these two types of models to create a mixed-unit input-output model that is able to bettertrack economic transactions and material flows throughout the economy associated with changes in production. A 13 by 13 economic input-output direct requirements matrix developed by the U.S. Bureau of Economic Analysis is augmented with material flow data derived from those published by the U.S. Geological Survey in the formulation of illustrative mixed-unit input-output models for lead and cadmium. The resulting model provides the capabilities of both material flow and input-output models, with detailed material tracking through entire supply chains in response to any monetary or material demand. Examples of these models are provided along with a discussion of uncertainty and extensions to these models.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.