Sample records for augmented nerve-mediated relaxation

  1. Reflex regulation of airway sympathetic nerves in guinea-pigs

    PubMed Central

    Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel

    2006-01-01

    Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway

  2. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  3. Phosphodiesterase type 4 inhibition enhances nitric oxide- and hydrogen sulfide-mediated bladder neck inhibitory neurotransmission.

    PubMed

    Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo

    2018-03-16

    Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.

  4. Combined usage of intercostal nerve block and tumescent anaesthesia: an effective anaesthesia technique for breast augmentation.

    PubMed

    Shimizu, Yusuke; Nagasao, Tomohisa; Taneda, Hiroko; Sakamoto, Yoshiaki; Asou, Toru; Imanishi, Nobuyuki; Kishi, Kazuo

    2014-02-01

    Patients are occasionally unhappy with the size, shape, and positioning of breast implants. An option to improve their satisfaction with breast augmentation includes directly involving them in the process with awake surgery done under nerve block and tumescence. This study describes the resultsof using such an awake anaesthesia technique in 35 patients. After the intercostal nerves dominating the Th3 to Th6 regions were anaesthetized using 0.5% bupivacaine, a tumescent solution consisting of lidocaine, epinephrine, and saline was injected around the mammary gland, and breast augmentation was conducted using silicon implants. The majority of patients (31/35) reported no pain during the procedure and all patients were able to choose and confirm their final implant size and positioning. In all cases, blood loss was less than 10 ml. No patient experienced pneumothorax or toxicity of local anaesthetics. Combined usage of the intercostal nerve block and tumescent anaesthesia effectively reduces pain during breast augmentation. Keeping patient conscious enables meeting their requests during operation, contributing to increased satisfaction. For these advantages, combined usage of the intercostal nerve block and tumescent anaesthesia is recommended as a useful anaesthetic technique for breast augmentation.

  5. Development of a low risk augmentation system for an energy efficient transport having relaxed static stability

    NASA Technical Reports Server (NTRS)

    Sizlo, T. R.; Berg, R. A.; Gilles, D. L.

    1979-01-01

    An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.

  6. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  7. Evidence that spinal segmental nitric oxide mediates tachyphylaxis to peripheral local anesthetic nerve block.

    PubMed

    Wang, C; Sholas, M G; Berde, C B; DiCanzio, J; Zurakowski, D; Wilder, R T

    2001-09-01

    Tachyphylaxis to sciatic nerve blockade in rats correlates with hyperalgesia. Spinal inhibition of nitric oxide synthase with N(G)nitro-L-arginine methyl ester (L-NAME) has been shown to prevent hyperalgesia. Given systemically, L-NAME also prevents tachyphylaxis. The action of L-NAME in preventing tachyphylaxis therefore may be mediated at spinal sites. We compared systemic versus intrathecal potency of L-NAME in modulating tachyphylaxis to sciatic nerve block. Rats were prepared with intrathecal catheters. Three sequential sciatic nerve blocks were placed. Duration of block of thermal nocifensive, proprioceptive and motor responses was recorded. We compared spinal versus systemic dose-response to L-NAME, and examined effects of intrathecal arginine on tachyphylaxis. An additional group of rats underwent testing after T10 spinal cord transection. In these rats duration of sciatic nerve block was assessed by determining the heat-induced flexion withdrawal reflex. L-NAME was 25-fold more potent in preventing tachyphylaxis given intrathecally than intraperitoneally. Intrathecal arginine augmented tachyphylaxis. Spinalized rats exhibited tachyphylaxis to sciatic block. The increased potency of intrathecal versus systemic L-NAME suggests a spinal site of action in inhibiting tachyphylaxis. Descending pathways are not necessary for the development of tachyphylaxis since it occurs even after T10 spinal cord transection. Thus tachyphylaxis, like hyperalgesia, is mediated at least in part by a spinal site of action.

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  9. Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note.

    PubMed

    Won, Yu-Jin; Kang, Sang-Hoon

    2017-06-01

    Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics.

  10. Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note

    PubMed Central

    2017-01-01

    Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics. PMID:28879340

  11. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion.

    PubMed

    Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J

    2016-07-08

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.

  12. Calcium dobesilate potentiates endothelium-derived hyperpolarizing factor-mediated relaxation of human penile resistance arteries

    PubMed Central

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Videla, Sebastián; Tejada, Iñigo Sáenz de

    2003-01-01

    We have evaluated the participation of endothelium-derived hyperpolarizing factor (EDHF) in the endothelium-dependent relaxation of isolated human penile resistance arteries (HPRA) and human corpus cavernosum (HCC) strips. In addition, the effect of the angioprotective agent, calcium dobesilate (DOBE), on the endothelium-dependent relaxation of these tissues was investigated. Combined inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) nearly abolished the endothelium-dependent relaxation to acetylcholine (ACh) in HCC, while 60% relaxation of HPRA was observed under these conditions. Endothelium-dependent relaxation of HPRA resistant to NOS and COX inhibition was prevented by raising the extracellular concentration of K+ (35 mM) or by blocking Ca2+-activated K+ channels, with apamin (APA; 100 nM) and charybdotoxin (CTX; 100 nM), suggesting the involvement of EDHF in these responses. Endothelium-dependent relaxation to ACh was markedly enhanced by DOBE (10 μM) in HPRA but not in HCC. The potentiating effects of DOBE on ACh-induced responses in HPRA, remained after NOS and COX inhibition, were reduced by inhibition of cytochrome P450 oxygenase with miconazole (0.3 mM) and were abolished by high K+ or a combination of APA and CTX. In vivo, DOBE (10 mg kg−1 i.v.) significantly potentiated the erectile responses to cavernosal nerve stimulation in male rats. EDHF plays an important role in the endothelium-dependent relaxation of HPRA but not in HCC. DOBE significantly improves endothelium-dependent relaxation of HPRA mediated by EDHF and potentiates erectile responses in vivo. Thus, EDHF becomes a new therapeutic target for the treatment of erectile dysfunction (ED) and DOBE could be considered a candidate for oral therapy for ED. PMID:12813009

  13. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    PubMed

    Kostereva, Nataliya V; Wang, Yong; Fletcher, Derek R; Unadkat, Jignesh V; Schnider, Jonas T; Komatsu, Chiaki; Yang, Yang; Stolz, Donna B; Davis, Michael R; Plock, Jan A; Gorantla, Vijay S

    2016-01-01

    Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA). Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1) and chondroitinase ABC (CH) have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH) on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus) therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections). Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius) histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC) immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  14. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  15. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  16. Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration.

    PubMed

    Pan, Hung-Chuan; Chin, Chun-Shih; Yang, Dar-Yu; Ho, Shu-Peng; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-07-01

    Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.

  17. Development and flight test evaluation of a pitch stability augmentation system for a relaxed stability L-1011

    NASA Technical Reports Server (NTRS)

    Rising, J. J.

    1982-01-01

    The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.

  18. Augmented reality guidance system for peripheral nerve blocks

    NASA Astrophysics Data System (ADS)

    Wedlake, Chris; Moore, John; Rachinsky, Maxim; Bainbridge, Daniel; Wiles, Andrew D.; Peters, Terry M.

    2010-02-01

    Peripheral nerve block treatments are ubiquitous in hospitals and pain clinics worldwide. State of the art techniques use ultrasound (US) guidance and/or electrical stimulation to verify needle tip location. However, problems such as needle-US beam alignment, poor echogenicity of block needles and US beam thickness can make it difficult for the anesthetist to know the exact needle tip location. Inaccurate therapy delivery raises obvious safety and efficacy issues. We have developed and evaluated a needle guidance system that makes use of a magnetic tracking system (MTS) to provide an augmented reality (AR) guidance platform to accurately localize the needle tip as well as its projected trajectory. Five anesthetists and five novices performed simulated nerve block deliveries in a polyvinyl alcohol phantom to compare needle guidance under US alone to US placed in our AR environment. Our phantom study demonstrated a decrease in targeting attempts, decrease in contacting of critical structures, and an increase in accuracy of 0.68 mm compared to 1.34mm RMS in US guidance alone. Currently, the MTS uses 18 and 21 gauge hypodermic needles with a 5 degree of freedom sensor located at the needle tip. These needles can only be sterilized using an ethylene oxide process. In the interest of providing clinicians with a simple and efficient guidance system, we also evaluated attaching the sensor at the needle hub as a simple clip-on device. To do this, we simultaneously performed a needle bending study to assess the reliability of a hub-based sensor.

  19. Augmented superior rectus transposition procedure in Duane retraction syndrome compared with sixth nerve palsy.

    PubMed

    Akbari, Mohammadreza; Shomali, Setareh; Mirmohammadsadeghi, Arash; Fard, Masoud Aghsaei

    2018-05-01

    Superior rectus transposition (SRT) with medial rectus recession has been used for the treatment of sixth nerve palsy and esotropic Duane retraction syndrome (DRS). The purpose of this study was to compare the results of augmented SRT (with scleral fixation) without medial rectus recession in DRS and sixth nerve palsy. Patients with unilateral esotropic DRS (DRS group) and sixth nerve palsy were included in this prospective, comparative study and underwent SRT. Preoperative forced duction testing was negative or slightly positive in both groups. Prospective measurements were compared between the two groups. There were 11 patients in the DRS group and 11 patients in the sixth nerve palsy group. The mean preoperative esotropia decreased from 20.9 ± 6.0 prism diopter (PD) at far to 13.2 ± 5.8 PD in the DRS group (P = 0.003). The same measurement improved from 28.0 ± 8.5 PD to 8.4 ± 7.3 PD in the sixth nerve palsy group (P = 0.003). In the sixth nerve palsy group, the improvement in primary gaze esotropia and abnormal head posture was more than the DRS group (Both P < 0.001).The average dose effect for SRT was 7.8 ± 2.2 PD in the DRS group and 19.2 ± 4.6 PD in the sixth nerve palsy group. Although objective intorsion was significantly induced after SRT, subjective torsion was not significant after surgery in both groups. SRT appears to be more effective in improving primary gaze deviation and head posture in sixth nerve palsy compared with DRS. Subjective torsional and vertical diplopia were rare in both groups.

  20. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  1. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented

  2. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri

    PubMed Central

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-01-01

    Background and Purpose Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Experimental Approach Organ bath studies were employed to assess the pharmacological effects of Na2S in uterine strips by exposing them to Na2S with or without Cl− channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K+ channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca2+ channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Key Results Na2S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2S compared with uteri in 15 mM KCl. Na2S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3−, suggesting the involvement of chloride ion channels. Na2S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. Conclusions and Implications The relaxant effects of Na2S in rat uteri are mediated mainly via a DIDS-sensitive Cl−-pathway. Components of the relaxation are redox- and Ca2+-dependent. PMID:25857480

  3. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri.

    PubMed

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-07-01

    Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2 S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Organ bath studies were employed to assess the pharmacological effects of Na2 S in uterine strips by exposing them to Na2 S with or without Cl(-) channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K(+) channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca(2+) channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Na2 S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2 S compared with uteri in 15 mM KCl. Na2 S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3 (-) , suggesting the involvement of chloride ion channels. Na2 S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. The relaxant effects of Na2 S in rat uteri are mediated mainly via a DIDS-sensitive Cl(-) -pathway. Components of the relaxation are redox- and Ca(2+) -dependent. © 2015 The British Pharmacological Society.

  4. Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity.

    PubMed

    Lee, Byeongjun; Cho, Hawon; Jung, Jooyoung; Yang, Young Duk; Yang, Dong-Jin; Oh, Uhtaek

    2014-01-23

    Various pathological conditions such as inflammation or injury can evoke pain hypersensitivity. That represents the response to innocuous stimuli or exaggerated response to noxious stimuli. The molecular mechanism based on the pain hypersensitivity is associated with changes in many of ion channels in dorsal-root ganglion (DRG) neurons. Anoctamin 1 (ANO1/TMEM16A), a Ca2+ activated chloride channel is highly visible in small DRG neurons and responds to heat. Mice with an abolished function of ANO1 in DRG neurons demonstrated attenuated pain-like behaviors when exposed to noxious heat, suggesting a role in acute thermal nociception. In this study, we further examined the function of ANO1 in mediating inflammation- or injury-induced hyperalgesia or allodynia. Using Advillin/Ano1fl/fl (Adv/Ano1fl/fl) mice that have a functional ablation of Ano1 mainly in DRG neurons, we were able to determine its role in mediating thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury. The thermal hyperalgesia and mechanical allodynia induced by carrageenan injection and spared-nerve injury were significantly reduced in Adv/Ano1fl/fl mice. In addition, flinching or licking behavior after bradykinin or formalin injection was also significantly reduced in Adv/Ano1fl/fl mice. Since pathological conditions augment nociceptive behaviors, we expected ANO1's contribution to the excitability of DRG neurons. Indeed, the application of inflammatory mediators reduced the threshold for action potential (rheobase) or time for induction of the first action potential in DRG neurons isolated from control (Ano1fl/fl) mice. These parameters for neuronal excitability induced by inflammatory mediators were not changed in Adv/Ano1fl/fl mice, suggesting an active contribution of ANO1 in augmenting the neuronal excitability. In addition to ANO1's role in mediating acute thermal pain as a heat sensor, ANO1 is also capable of augmenting the excitability of DRG neurons under

  5. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation

    PubMed Central

    Hughes, J.; Vane, J. R.

    1970-01-01

    caused contractions themselves. 6. Nicotine (10-6-10-5 g/ml) relaxed the portal vein; higher concentrations elicited mixed inhibitory and excitatory effects. All these effects were abolished by tetrodotoxin, cocaine, hexamethonium or storage. The contractor effects were abolished by drugs or procedures that blocked adrenergic mechanisms. 7. The relaxations produced by nicotine in untreated preparations and in veins from rabbits pretreated with reserpine were mediated mainly by a non-adrenergic non-cholinergic nervous mechanism. Relaxations induced by nicotine in the presence of antagonists of a-adrenoceptors were only partially antagonized by antagonists of f3-adrenoceptors. 8. It was concluded that all the effects of nicotine and transmural stimulation were mediated by nerves. Part of the inhibitory effects was mediated by non-adrenergic, non-cholinergic nerves. PMID:4394338

  6. β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent*

    PubMed Central

    Morgan, Sarah J.; Deshpande, Deepak A.; Tiegs, Brian C.; Misior, Anna M.; Yan, Huandong; Hershfeld, Alena V.; Rich, Thomas C.; Panettieri, Reynold A.; An, Steven S.; Penn, Raymond B.

    2014-01-01

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. PMID:24973219

  7. Propofol preferentially relaxes neurokinin receptor-2-induced airway smooth muscle contraction in guinea pig trachea.

    PubMed

    Gleason, Neil R; Gallos, George; Zhang, Yi; Emala, Charles W

    2010-06-01

    Propofol is the anesthetic of choice for patients with reactive airway disease and is thought to reduce intubation- or irritant-induced bronchoconstriction by decreasing the cholinergic component of vagal nerve activation. However, additional neurotransmitters, including neurokinins, play a role in irritant-induced bronchoconstriction. We questioned the mechanistic assumption that the clinically recognized protective effect of propofol against irritant-induced bronchoconstriction during intubation was due to attenuation of airway cholinergic reflexes. Muscle force was continuously recorded from isolated guinea pig tracheal rings in organ baths. Rings were subjected to exogenous contractile agonists (acetylcholine, histamine, endothelin-1, substance P, acetyl-substance P, and neurokinin A) or to electrical field stimulation (EFS) to differentiate cholinergic or nonadrenergic, noncholinergic nerve-mediated contraction with or without cumulatively increasing concentrations of propofol, thiopental, etomidate, or ketamine. Propofol did not attenuate the cholinergic component of EFS-induced contraction at clinically relevant concentrations. In contrast, propofol relaxed nonadrenergic, noncholinergic-mediated EFS contraction at concentrations within the clinical range (20-100 mum, n = 9; P < 0.05), and propofol was more potent against an exogenous selective neurokinin-2 receptor versus neurokinin-1 receptor agonist contraction (n = 6, P < 0.001). Propofol, at clinically relevant concentrations, relaxes airway smooth muscle contracted by nonadrenergic, noncholinergic-mediated EFS and exogenous neurokinins but not contractions elicited by the cholinergic component of EFS. These findings suggest that the mechanism of protective effects of propofol against irritant-induced bronchoconstriction involves attenuation of tachykinins released from nonadrenergic, noncholinergic nerves acting at neurokinin-2 receptors on airway smooth muscle.

  8. Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.

    PubMed

    Dombkowski, Ryan A; Doellman, Meredith M; Head, Sally K; Olson, Kenneth R

    2006-08-01

    Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinary bladder from steelhead and rainbow trout (Oncorhynchus mykiss) and evaluated the relationship between H2S and hypoxia. H2S was produced by trout bladders, and its production was sensitive to inhibitors of cystathionine beta-synthase and cystathionine gamma-lyase. H2S produced a dose-dependent relaxation in unstimulated and carbachol pre-contracted bladders and inhibited spontaneous contractions. Bladders pre-contracted with 80 mmol l(-1) KCl were less sensitive to H2S than bladders contracted with either 80 mmol l(-1) KC2H3O2 (KAc) or carbachol, suggesting that some of the H2S effects are mediated through an ion channel. However, H2S relaxation of bladders was not affected by the potassium channel inhibitors, apamin, charybdotoxin, 4-aminopyridine, and glybenclamide, or by chloride channel/exchange inhibitors 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt, tamoxifen and glybenclamide, or by the presence or absence of extracellular HCO3-. Inhibitors of neuronal mechanisms, tetrodotoxin, strychnine and N-vanillylnonanamide were likewise ineffective. Hypoxia (aeration with N2) also relaxed bladders, was competitive with H2S for relaxation, and it was equally sensitive to KCl, and unaffected by neuronal blockade or the presence of extracellular HCO3-. Inhibitors of H2S synthesis also inhibited hypoxic relaxation. These experiments suggest that H2S is a phylogenetically ancient gasotransmitter in non-mammalian non-vascular smooth muscle and that it serves as an oxygen sensor/transducer, mediating the effects of hypoxia.

  9. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    PubMed Central

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  10. β-Adrenoceptor-Mediated Relaxation of Carbachol-Pre-Contracted Mouse Detrusor.

    PubMed

    Propping, Stefan; Newe, Manja; Lorenz, Kristina; Wirth, Manfred P; Ravens, Ursula

    2015-01-01

    To study the β-adrenoceptor subtypes involved in the relaxation responses to (-)-isoprenaline in carbachol-pre-contracted (CCh) mouse detrusor muscle with intact and denuded mucosa. Isolated muscle strips from the urinary bladder of male C57BL6 mice or β2-adrenoceptor knockout mice were pre-contracted with CCh, 1 µM and relaxed with increasing concentrations of the β-adrenoceptor (β-AR) agonist (-)-isoprenaline and forskolin. For estimating the β-AR subtypes involved, subtype-selective receptor blockers were used, that is, CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Unlike in KCl-pre-contracted muscle, the mucosa did not affect the sensitivity of the relaxation response to (-)-isoprenaline in CCh-pre-contracted murine detrusor strips. Increasing concentrations of (-)-isoprenaline produced a biphasic concentration-relaxation response without any difference both during the presence and absence of mucosa. The relaxation fraction produced by low (-)-isoprenaline concentrations was mediated by β2-AR as evidenced by a shift of the concentration-response curve to higher concentrations with ICI 118,551, but not with CGP 20712A and L748,337, and by the absence of this fraction in β2-AR-KO mice. The relaxation response with low sensitivity to (-)-isoprenaline was not affected by any of the β-AR subtype-selective blockers and was the only response detected in detrusor strips from β2-AR-KO mice. In CCh-pre-contracted mouse detrusor, β2-ARs are responsible for the relaxation component with high sensitivity to (-)-isoprenaline as indicated by the conversion of a biphasic into a monophasic CRC with ICI 118,551 or by its absence in β2-AR KO mice. The mucosa does not impair relaxation under these conditions. © 2015 S. Karger AG, Basel.

  11. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent.

    PubMed

    Morgan, Sarah J; Deshpande, Deepak A; Tiegs, Brian C; Misior, Anna M; Yan, Huandong; Hershfeld, Alena V; Rich, Thomas C; Panettieri, Reynold A; An, Steven S; Penn, Raymond B

    2014-08-15

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Ionotropic and metabotropic receptor mediated airway sensory nerve activation.

    PubMed

    Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J

    2004-01-01

    There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.

  13. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    PubMed

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  14. β-adrenergic Receptor Blocker ICI 118,551 Selectively Increases Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa )-Mediated Relaxations in Rat Main Mesenteric Artery.

    PubMed

    Ozkan, Melike Hacer; Uma, Serdar

    2018-06-01

    Endothelial IK C a and/or SK C a channels play an important role in the control of vascular tone by participating in endothelium-dependent relaxation. Whether β-AR antagonists, mainly used in hypertension, affect endothelial K C a channel function is unknown. In this study, we examined the effect of the β2-AR antagonist and inverse agonist ICI 118,551 on the IK C a /SK C a channel activity by assessing functional relaxation responses to several agonists that stimulate these channels. Mesenteric arterial rings isolated from male Sprague Dawley mounted to organ baths. Acetylcholine elicited IK C a - and SK C a -mediated relaxations that were abolished by TRAM-34 and apamin, respectively. ICI 118,551, which did not dilate the arteries per se, increased the IK C a -mediated relaxations, whereas SK C a -mediated relaxations remained unaltered. Same potentiating effect was also detected on the IK C a -mediated relaxations to carbachol and A23187, but not to NS309. Neither acetylcholine-induced nitric oxide-mediated relaxations nor SNP relaxations changed with ICI 118,551. The PKA inhibitor KT-5720, the selective β2-AR agonist salbutamol, the selective β2-AR antagonist butoxamine, the non-selective β-AR antagonist propranolol, and the inverse agonists carvedilol or nadolol failed to affect the IK C a -mediated relaxations. ICI 118,551-induced increase was not reversed by salbutamol or propranolol as well. Besides, low potassium-induced relaxations in endothelium-removed arteries remained the same in the presence of ICI 118,551. These data demonstrate a previously unrecognized action of ICI 118,551, the ability to potentiate endothelial IK C a channel-mediated vasodilation, through a mechanism independent of β2-AR antagonistic or inverse agonistic action. Instead, the enhancement of acetylcholine relaxation seems likely to occur by a mechanism secondary to endothelial calcium increase. © 2017 Nordic Association for the Publication of BCPT (former Nordic

  15. The ovine fetal endocrine reflex responses to haemorrhage are not mediated by cardiac nerves

    PubMed Central

    Wood, Charles E

    2002-01-01

    This study was designed to test the hypothesis that cardiac receptors tonically inhibit the secretion of renin, arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) in late-gestation fetal sheep. Eight chronically catheterised fetal sheep between 122 and 134 days gestation were subjected to injection or infusion of saline or 4 % procaine into the pericardial space. Fetal blood pressure and heart rate were monitored and fetal blood samples were drawn to measure the response to these injections. Injection of procaine into the pericardial space effectively blocked cardiac nerves, as evidenced by a reduction in the variability of fetal heart rate and by the blockade of reflex reductions in fetal heart rate after intravenous injection of phenylephrine (an α-adrenergic agonist which raises blood pressure). Injection of saline had no discernable effects on any of the measured variables. A single injection of procaine, followed by a slow infusion, produced a transient blockade of cardiac nerves. Multiple injections of procaine produced a sustained blockade of cardiac nerves and a sustained rise in fetal plasma renin activity and ACTH. In none of the experiments did procaine significantly alter fetal plasma AVP concentrations. In 11 fetuses between 121 and 134 days gestation, we combined the cardiac nerve blockade with slow haemorrhage to test the cardiac nerves as mediators of the endocrine response to haemorrhage in utero. Cardiac nerve blockade exaggerated the fetal blood gas response to haemorrhage somewhat but did not significantly alter the magnitude of the ACTH, AVP, or plasma renin activity response to haemorrhage. We conclude that cardiac nerves in the late-gestation fetal sheep have minor influences on plasma renin activity and ACTH in normovolaemic fetuses, but that changes in cardiac nerve activity do not mediate the endocrine responsiveness to haemorrhage. PMID:12042365

  16. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  17. Partial lateralization of the nasopalatine nerve at the incisive foramen for ridge augmentation in the anterior maxilla prior to placement of dental implants: a retrospective case series evaluating self-reported data and neurosensory testing.

    PubMed

    Urban, Istvan; Jovanovic, Sascha A; Buser, Daniel; Bornstein, Michael M

    2015-01-01

    The objective of this study was to assess implant therapy after a staged guided bone regeneration procedure in the anterior maxilla by lateralization of the nasopalatine nerve and vessel bundle. Neurosensory function following augmentative procedures and implant placement, assessed using a standardized questionnaire and clinical examination, were the primary outcome variables measured. This retrospective study included patients with a bone defect in the anterior maxilla in need of horizontal and/or vertical ridge augmentation prior to dental implant placement. The surgical sites were allowed to heal for at least 6 months before placement of dental implants. All patients received fixed implant-supported restorations and entered into a tightly scheduled maintenance program. In addition to the maintenance program, patients were recalled for a clinical examination and to fill out a questionnaire to assess any changes in the neurosensory function of the nasopalatine nerve at least 6 months after function. Twenty patients were included in the study from February 2001 to December 2010. They received a total of 51 implants after augmentation of the alveolar crest and lateralization of the nasopalatine nerve. The follow-up examination for questionnaire and neurosensory assessment was scheduled after a mean period of 4.18 years of function. None of the patients examined reported any pain, they did not have less or an altered sensation, and they did not experience a "foreign body" feeling in the area of surgery. Overall, 6 patients out of 20 (30%) showed palatal sensibility alterations of the soft tissues in the region of the maxillary canines and incisors resulting in a risk for a neurosensory change of 0.45 mucosal teeth regions per patient after ridge augmentation with lateralization of the nasopalatine nerve. Regeneration of bone defects in the anterior maxilla by horizontal and/or vertical ridge augmentation and lateralization of the nasopalatine nerve prior to dental

  18. Mechanism for substance P-induced relaxation of precontracted airway smooth muscle during development.

    PubMed

    Mhanna, M J; Dreshaj, I A; Haxhiu, M A; Martin, R J

    1999-01-01

    Release of substance P (SP) from sensory nerve endings of the tracheobronchial system modulates airway smooth muscle contraction and may cause relaxation of precontracted airways. We sought to elucidate the effect of postnatal maturation on SP-induced relaxation of precontracted airways and determine the roles of endogenously generated nitric oxide (NO) and prostaglandins (PGs). Cylindrical airway segments were isolated from the midtrachea of rats at four different ages, 1, 2, and 4 wk and 3 mo, and contracted to 50-75% of the maximum response induced by bethanechol. SP was then administered in the absence and presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the PG inhibitor indomethacin, or both. Relaxation of airways with SP decreased significantly with advancing postnatal age. SP-induced tracheal relaxation was consistently attenuated by pretreatment with L-NAME, indomethacin, or both. In a different group of animals, L-NAME significantly attenuated the relaxant response of airways to PGE2 exposure, but indomethacin had no significant effect on the relaxant response to exogenous NO. We conclude that SP induces a relaxant effect on precontracted airway smooth muscle, which decreases with advancing age and is mediated via SP-induced release of NO and/or PG.

  19. Advances and Future Applications of Augmented Peripheral Nerve Regeneration

    PubMed Central

    Jones, Salazar; Eisenberg, Howard M.; Jia, Xiaofeng

    2016-01-01

    Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested. PMID:27618010

  20. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  1. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart

  2. Oxidative stress augments secretion of endothelium-derived relaxing peptides, C-type natriuretic peptide and adrenomedullin.

    PubMed

    Chun, T H; Itoh, H; Saito, T; Yamahara, K; Doi, K; Mori, Y; Ogawa, Y; Yamashita, J; Tanaka, T; Inoue, M; Masatsugu, K; Sawada, N; Fukunaga, Y; Nakao, K

    2000-05-01

    Excess oxidative stress is one of the major metabolic abnormalities on vascular walls in hypertension and atherosclerosis. In order to further elucidate the endothelial function under oxidative stress, the effect of hydrogen peroxide (H2O2) on expression of two novel endothelium-derived vasorelaxing peptides, C-type natriuretic peptide (CNP) and adrenomedullin (AM) from bovine carotid artery endothelial cells (BCAECs) was examined. BCAECs were treated with H2O2 (0.1-1.0 mmol/ l) and/or an antioxidant, N-acetylcysteine (NAC) (5-10 mmol/l), and incubated for 48 h. The concentrations of CNP and AM were measured with the specific radioimmuno assays that we originally developed. CNP and AM mRNA expressions were also examined by reverse transcription-polymerase chain reaction (RT-PCR). Treatment of BCAECs with 0.5 and 1 mmol/l H2O2 induced 9-and 10-fold increases of CNP concentration in the media. Addition of 10 mmol/l NAC significantly suppressed the effect of H2O2 by 52%. RT-PCR analysis showed that CNP mRNA expression in BCAECs was also rapidly augmented within 1 h with H2O2 (1 mmol/l) treatment, and reached a peak at 3 h to show a 10-fold increase. AM secretion from BCAECs also increased to two-fold with exposure to 0.5 mmol/l H2O2, accompanied with the augmented level of AM mRNA. NAC 10 mmol/l completely suppressed the effect of H2O2 on AM secretion. In this study, it has been demonstrated that H2O2 augments endothelial secretion of the two endothelium-derived relaxing peptides, CNP and AM. Our findings suggest the increased secretion of CNP and AM from endothelium under oxidative stress may function to compensate the impaired nitric oxide-dependent vasorelaxation in hypertension and atherosclerosis.

  3. Optimal duration of ultra low frequency-transcutaneous electrical nerve stimulation (ULF-TENS) therapy for muscular relaxation in neuromuscular occlusion: A preliminary clinical study.

    PubMed

    Esclassan, Rémi; Rumerio, Anaïs; Monsarrat, Paul; Combadazou, Jean Claude; Champion, Jean; Destruhaut, Florent; Ghrenassia, Christophe

    2017-05-01

    The primary aim of this work was to determine the duration of ultra-low-frequency transcutaneous electrical nerve stimulation (ULF-TENS) application necessary to achieve sufficient relaxation of the masticatory muscles. A secondary aim was to analyze the influence of stimulation on muscle relaxation in pathological subjects and determine whether ULF-TENS has a noteworthy impact on muscle relaxation. Sixteen adult subjects with temporomandibular disorders (TMD) and muscle pain and a group of four control subjects were included in this study. ULF-TENS was applied, and muscular activities of the masseter, temporal, and sternocleidomastoid muscles (SCM) were recorded for 60 min. Significant relaxation was achieved in the TMD group from 20, 40, and 60 min for the temporal, masseter, and SCM muscles (p < 0.05), respectively. Maximum relaxation was achieved in 12.5% of the subjects after 20 min, in a further 12.5% after 40 min, and in the remaining 75% after 60 min. Significant relaxation was achieved in the control group from 20 to 40 min for the masseter and temporal muscles, respectively (p < 0.05). Taken together, the results suggest that an ideal ULF-TENS application would last 40 min to obtain sufficient muscle relaxation both in patients with masticatory system disorders and healthy subjects, a time constraint that is consistent with everyday clinical practice.

  4. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits.

    PubMed

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium.

  5. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits

    PubMed Central

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium. PMID:25973033

  6. RGC Neuroprotection Following Optic Nerve Trauma Mediated By Intranasal Delivery of Amnion Cell Secretome

    PubMed Central

    Grinblat, Gabriela A.; Khan, Reas S.; Dine, Kimberly; Wessel, Howard; Brown, Larry; Shindler, Kenneth S.

    2018-01-01

    Purpose Intranasally delivered ST266, the biological, proteinaceous secretome of amnion-derived multipotent progenitor cells, reduces retinal ganglion cell (RGC) loss, optic nerve inflammation, and demyelination in experimental optic neuritis. This unique therapy and novel administration route delivers numerous cytokines and growth factors to the eye and optic nerve, suggesting a potential to also treat other optic neuropathies. Thus, ST266-mediated neuroprotection was examined following traumatic optic nerve injury. Methods Optic nerve crush injury was surgically induced in C57BL/6J mice. Mice were treated daily with intranasal PBS or ST266. RGC function was assessed by optokinetic responses (OKRs), RGCs were counted, and optic nerve sections were stained with luxol fast blue and anti-neurofilament antibodies to assess myelin and RGC axon damage. Results Intranasal ST266 administered daily for 5 days, beginning at the time that a 1-second optic nerve crush was performed, significantly attenuated OKR decreases. Furthermore, ST266 treatment reduced damage to RGC axons and myelin within optic nerves, and blocked RGC loss. Following a 4-second optic nerve crush, intranasal ST266 increased RGC survival and showed a trend toward reduced RGC axon and myelin damage. Ten days following optic nerve crush, ST266 prevented myelin damage, while also inducing a trend toward increased RGC survival and visual function. Conclusions ST266 significantly attenuates traumatic optic neuropathy. Neuroprotective effects of this unique combination of biologic molecules observed here and previously in optic neuritis suggest potential broad application for preventing neuronal damage in multiple optic nerve disorders. Furthermore, results support intranasal delivery as a novel, noninvasive therapeutic modality for eyes and optic nerves. PMID:29847652

  7. Evaluation of the treatment modalities for neurosensory disturbances of the inferior alveolar nerve following retromolar bone harvesting for bone augmentation.

    PubMed

    Nogami, Shinnosuke; Yamauchi, Kensuke; Shiiba, Shunji; Kataoka, Yoshihiro; Hirayama, Bunichi; Takahashi, Tetsu

    2015-03-01

    The purpose of this study was to evaluate the treatment modalities for neurosensory disturbances (NSDs) of the inferior alveolar nerve occurring after retromolar bone harvesting for bone augmentation procedures before implant placement. One hundred four patients, of which 49 and 55 exhibited vertical or horizontal alveolar ridge defects in the mandible and maxilla, respectively, were enrolled. Nineteen patients underwent block bone grafting, 38 underwent guided bone generation or autogenous bone grafting combined with titanium mesh reconstruction, and 47 underwent sinus floor augmentation. Using a visual analog scale, we examined subjective symptoms and discomfort related to sensory alteration within the area of the NSDs in these patients. NSDs were clinically investigated using a two-point discrimination test with blunt-tipped calipers. In addition, neurometry was used for evaluation of trigeminal nerve injury. We tested three treatment modalities for NSDs: follow-up observation (no treatment), medication, and stellate ganglion block (SGB). A week after surgery, 26 patients (25.0%) experienced NSDs. Five patients received no treatment, 10 patients received medication, and 11 patients received SGB. Three months after surgery, patients in the medication and SGB group achieved complete recovery. Current perception threshold values recovered to near-baseline values at 3 months: recovery was much earlier in this group than in the other two groups. SGB can accelerate recovery from NSDs. Our results justify SGB as a reasonable treatment modality for NSDs occurring after the harvesting of retromolar bone grafts. Wiley Periodicals, Inc.

  8. Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons.

    PubMed

    Gagliardo, A; Ioalè, P; Savini, M; Wild, J M

    2006-08-01

    The ability of pigeons to find their way home from unfamiliar sites located up to hundreds of kilometers away is well known, but the mechanisms underlying this ability remain controversial. One proposed mechanism is based on the suggestion that pigeons are equipped with magnetoreceptors that can enable the detection of either the earth's magnetic field and/or magnetic field anomalies in the local terrain over which the pigeons fly. Recent reports have suggested that these magnetoreceptors are located in the upper beak where they are innervated by the ophthalmic branch of the trigeminal nerve. Moreover, this nerve has been shown to mediate pigeons' ability to discriminate the presence versus the absence of a magnetic field anomaly in a conditioning situation. In the present study, however, we show that an intact ophthalmic branch of the trigeminal nerve is neither necessary nor sufficient for good homing performance from unfamiliar locations, but that an intact olfactory nerve is necessary.

  9. The beta2- and beta3-adrenoceptor-mediated relaxation induced by fenoterol in guinea pig taenia caecum.

    PubMed

    Akimoto, Yurie; Horinouchi, Takahiro; Tanaka, Yoshio; Koike, Katsuo

    2002-10-01

    Fenoterol, a beta2-adrenoceptor selective agonist, belongs to the arylethanolamine class. To understand the receptor subtypes responsible for beta-adrenoceptor-mediated relaxation of guinea pig taenia caecum, we investigated the effect of fenoterol. Fenoterol caused concentration-dependent relaxation of the guinea pig taenia caecum. Propranolol, bupranolol and butoxamine produced shifts of the concentration-response curve for fenoterol. Schild regression analyses carried out for propranolol, butoxamine and bupranolol against fenoterol gave pA2 values of 8.41, 6.33 and 8.44, respectively. However, in the presence of 3 x 10(-4) M atenolol, 10(-4) M butoxamine and 10(-6) M phentolamine to block the beta1-, beta2- and a-adrenoceptor effects, respectively, Schild regression analysis carried out for bupranolol against fenoterol gave pA2 values of 5.80. These results suggest that the relaxant response to fenoterol in the guinea pig taenia caecum is mediated by both the beta2- and the beta3-adrenoceptors.

  10. Biosignal-based relaxation evaluation of head-care robot.

    PubMed

    Ando, Takeshi; Takeda, Maki; Maruyama, Tomomi; Susuki, Yuto; Hirose, Toshinori; Fujioka, Soichiro; Mizuno, Osamu; Yamada, Kenji; Ohno, Yuko; Yukio, Honda

    2013-01-01

    Such popular head care procedures as shampooing and scalp massages provide physical and mental relaxation. However, they place a big burden such as chapped hands on beauticians and other practitioners. Based on our robot hand technology, we have been developing a head care robot. In this paper, we quantitatively evaluated its relaxation effect using the following biosignals: accelerated plethymography (SDNN, HF/TP, LF/HF), heart rate (HR), blood pressure, salivary amylase (sAA) and peripheral skin temperature (PST). We compared the relaxation of our developed head care robot with the head care provided by nurses. In our experimental result with 54 subjects, the activity of the autonomic nerve system changed before and after head care procedures performed by both a human nurse and our proposed robot. Especially, in the proposed robot, we confirmed significant differences with the procedure performed by our proposed head care robot in five indexes: HF/TP, LF/HF, HR, sAA, and PST. The activity of the sympathetic nerve system decreased, because the values of its indexes significantly decreased: LF/HF, HR, and sAA. On the other hand, the activity of the parasympathetic nerve system increased, because of the increase of its indexes value: HF/TP and PST. Our developed head care robot provided satisfactory relaxation in just five minutes of use.

  11. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation

    PubMed Central

    Lam, Maggie; Royce, Simon G.; Donovan, Chantal; Jelinic, Maria; Parry, Laura J.; Samuel, Chrishan S.; Bourke, Jane E.

    2016-01-01

    Treatment with β-adrenoceptor agonists does not fully overcome the symptoms associated with severe asthma. Serelaxin elicits potent uterine and vascular relaxation via its cognate receptor, RXFP1, and nitric oxide (NO) signaling, and is being clinically evaluated for the treatment of acute heart failure. However, its direct bronchodilator efficacy has yet to be explored. Tracheal rings were prepared from male Sprague-Dawley rats (250–350 g) and tricolor guinea pigs, and precision cut lung slices (PCLSs) containing intrapulmonary airways were prepared from rats only. Recombinant human serelaxin (rhRLX) alone and in combination with rosiglitazone (PPARγ agonist; recently described as a novel dilator) or β-adrenoceptor agonists (isoprenaline, salbutamol) were added either to pre-contracted airways, or before contraction with methacholine or endothelin-1. Regulation of rhRLX responses by epithelial removal, indomethacin (cyclooxygenase inhibitor), L-NAME (nitric oxide synthase inhibitor), SQ22536 (adenylate cyclase inhibitor) and ODQ (guanylate cyclase inhibitor) were also evaluated. Immunohistochemistry was used to localize RXFP1 to airway epithelium and smooth muscle. rhRLX elicited relaxation in rat trachea and PCLS, more slowly than rosiglitazone or isoprenaline, but potentiated relaxation to both these dilators. It markedly increased β-adrenoceptor agonist potency in guinea pig trachea. rhRLX, rosiglitazone, and isoprenaline pretreatment also inhibited the development of rat tracheal contraction. Bronchoprotection by rhRLX increased with longer pre-incubation time, and was partially reduced by epithelial removal, indomethacin and/or L-NAME. SQ22536 and ODQ also partially inhibited rhRLX-mediated relaxation in both intact and epithelial-denuded trachea. RXFP1 expression in the airways was at higher levels in epithelium than smooth muscle. In summary, rhRLX elicits large and small airway relaxation via epithelial-dependent and -independent mechanisms, likely

  12. Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies.

    PubMed

    Kanda, Takashi

    2013-02-01

    The blood-nerve barrier (BNB) is a dynamic and competent interface between the endoneurial microenvironment and the surrounding extracellular space or blood. It is localised at the innermost layer of the multilayered ensheathing perineurium and endoneurial microvessels, and is the key structure that controls the internal milieu of the peripheral nerve parenchyma. Since the endoneurial BNB is the point of entry for pathogenic T cells and various soluble factors, including cytokines, chemokines and immunoglobulins, understanding this structure is important to prevent and treat human immune mediated neuropathies such as Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein and skin changes) syndrome and a subset of diabetic neuropathy. However, compared with the blood-brain barrier, only limited knowledge has been accumulated regarding the function, cell biology and clinical significance of the BNB. This review describes the basic structure and functions of the endoneurial BNB, provides an update of the biology of the cells comprising the BNB, and highlights the pathology and pathomechanisms of BNB breakdown in immune mediated neuropathies. The human immortalised cell lines of BNB origin established in our laboratory will facilitate the future development of BNB research. Potential therapeutic strategies for immune mediated neuropathies manipulating the BNB are also discussed.

  13. Augmentation of partially regenerated nerves by end-to-side side-to-side grafting neurotization: experience based on eight late obstetric brachial plexus cases

    PubMed Central

    2006-01-01

    Objective The effect of end-to-side neurotization of partially regenerated recipient nerves on improving motor power in late obstetric brachial plexus lesions, so-called nerve augmentation, was investigated. Methods Eight cases aged 3 – 7 years were operated upon and followed up for 4 years (C5,6 rupture C7,8T1 avulsion: 5; C5,6,7,8 rupture T1 avulsion:1; C5,6,8T1 rupture C7 avulsion:1; C5,6,7 ruptureC8 T1 compression: one 3 year presentation after former neurotization at 3 months). Grade 1–3 muscles were neurotized. Grade0 muscles were neurotized, if the electromyogram showed scattered motor unit action potentials on voluntary contraction without interference pattern. Donor nerves included: the phrenic, accessory, descending and ascending loops of the ansa cervicalis, 3rd and 4th intercostals and contralateral C7. Results Superior proximal to distal regeneration was observed firstly. Differential regeneration of muscles supplied by the same nerve was observed secondly (superior supraspinatus to infraspinatus regeneration). Differential regeneration of antagonistic muscles was observed thirdly (superior biceps to triceps and pronator teres to supinator recovery). Differential regeneration of fibres within the same muscle was observed fourthly (superior anterior and middle to posterior deltoid regeneration). Differential regeneration of muscles having different preoperative motor powers was noted fifthly; improvement to Grade 3 or more occurred more in Grade2 than in Grade0 or Grade1 muscles. Improvements of cocontractions and of shoulder, forearm and wrist deformities were noted sixthly. The shoulder, elbow and hand scores improved in 4 cases. Limitations The sample size is small. Controls are necessary to rule out any natural improvement of the lesion. There is intra- and interobserver variability in testing muscle power and cocontractions. Conclusion Nerve augmentation improves cocontractions and muscle power in the biceps, pectoral muscles, supraspinatus

  14. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by naturalmore » killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.« less

  15. Vasoactive intestinal polypeptide mediates cholecystokinin-induced relaxation of the sphincter of Oddi.

    PubMed Central

    Wiley, J W; O'Dorisio, T M; Owyang, C

    1988-01-01

    This study evaluates the hypothesis that cholecystokinin (CCK) relaxes the sphincter of Oddi via vasoactive intestinal polypeptide (VIP). Isolated canine sphincter of Oddi were suspended in organ baths under standard conditions. Responses to cholecystokinin octapeptide (CCK-8) and VIP were recorded on a pen recorder via an isometric transducer. 10(-11)-10(-7) M CCK-8 and 4 X 10(-11)-5 X 10(-7) M VIP generated dose-related sphincter of Oddi relaxation, which was unaffected by atropine, propranolol, and phentolamine. The effect of CCK-8 was antagonized by dibutyryl cGMP (Bt2 cGMP) (10(-3) M), the VIP-antagonist (N-Ac-Tyr1, D-Phe2)-growth hormone-releasing factor-(1-29)-NH2, and abolished by tetrodotoxin. In contrast, VIP's relaxing action was tetrodotoxin insensitive. 10(-11)-10(-7) M CCK-8 stimulated dose-dependent release of VIP (0.5-2.2 fm/ml.mg tissue), which was not inhibited by atropine, propranolol, and phentolamine, but was antagonized by 10(-3) M Bt2 cGMP and tetrodotoxin. In addition CCK-8 and VIP generated dose-related (10(-10)-10(-7) M) increases in sphincter of Oddi cAMP levels that were not affected by atropine, propranolol, and phentolamine. Furthermore, 10(-5)-10(-2) M 8-bromo-cAMP caused dose-dependent relaxation of the sphincter of Oddi. In separate studies, a 2-h incubation in physiological solution containing 12 parts/1,000 of rabbit VIP antiserum antagonized sphincter relaxation caused by 4 nM CCK-8 and 6 nM VIP. The antiserum also significantly decreased the sphincter of Oddi cAMP level stimulated by 4 nM CCK-8 by 48 +/- 15%. These studies demonstrate that CCK-8 relaxes the canine sphincter of Oddi via a noncholinergic, nonadrenergic neural pathway involving VIP. The intracellular mechanism mediating CCK/VIP relaxation involves generation of cAMP. Images PMID:3384954

  16. Increased Endothelin Activity Mediates Augmented Distal Nephron Acidification Induced by Dietary Protein

    PubMed Central

    Khanna, Apurv; Simoni, Jan; Hacker, Callenda; Duran, Marie-Josée; Wesson, Donald E

    2005-01-01

    We tested the hypothesis that increased dietary protein augments distal nephron acidification through an endothelin-dependent mechanism. Munich-Wistar rats ate minimum electrolyte diets of 50% (HiPro) and 20% (CON) casein-provided protein, the latter comparable to standard chow. HiPro vs. CON had higher distal nephron H+ secretion (41.3 ± 4.0 vs. 23.0 ± 2.1 pmol/mm.min, p < 0.002) mediated by augmented Na+/H+ exchange and H+-ATPase activity. Renal cortex of HiPro vs. CON had higher ET-1 addition to microdialysate and higher ET-1 mRNA, consistent with increased renal ET-1 production. Bosentan, an endothelin A/B receptor antagonist, decreased HiPro distal nephron H+ secretion (28.4 ± 2.4 vs. 41.3 ± 4.0 pmol/mm.min, p < 0.016) through decreased Na+/H+ exchange and decreased H+-ATPase activity. Increased dietary protein augments distal nephron acidification through an endothelin-sensitive increase in Na+/H+ exchange and H+-ATPase activity, supporting an endothelin role in the distal nephron response to this common challenge to acid-base status. PMID:16555618

  17. Repeated allergen exposure enhances excitatory nonadrenergic noncholinergic nerve-mediated bronchoconstriction in sensitized guinea-pigs.

    PubMed

    Kageyama, N; Ichinose, M; Igarashi, A; Miura, M; Yamauchi, H; Sasaki, Y; Ishikawa, J; Tomaki, M; Shirato, K

    1996-07-01

    The effect of repeated allergen inhalation challenge on the airway excitatory nonadrenergic noncholinergic (e-NANC) nerve-mediated bronchoconstrictor response was studied in ovalbumin (OA) sensitized guinea-pigs. Three weeks after sensitization, OA inhalation, 0.03% for 3 min (challenged group), or saline inhalation (control group) was repeated every day for 4 weeks. The e-NANC nerve function was examined in vitro by means of isometric tension measurement of main bronchi. After pretreatment with atropine (10(-6) M) and propranolol (10(-6) M), we performed electrical field stimulation (EFS) or exogenous neurokinin A (NKA) administration. In the challenged group, EFS-induced main bronchial contraction was significantly greater than that of the control group (p < 0.05 or p < 0.01), but exogenous NKA-mediated responses were almost the same in both groups. The e-NANC-induced main bronchial contractions after EFS were enhanced by pretreatment with the neutral endopeptidase inhibitor, phosphoramidon, to the same degree in the control and challenged groups, indicating that the peptide degradation mechanisms were not impaired even in the challenged group. Substance P immunoreactivities in the lung of the challenged group were significantly higher than those of the control group. These results suggest that chronic airway inflammation after repeated allergen challenge increases excitatory nonadrenergic noncholinergic nerve function, possibly by enhancing sensory neuropeptide production and/or release.

  18. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  19. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    NASA Astrophysics Data System (ADS)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  20. Expression of Nrf2 Promotes Schwann Cell-Mediated Sciatic Nerve Recovery in Diabetic Peripheral Neuropathy.

    PubMed

    Tang, Wei; Chen, Xiangfang; Liu, Haoqi; Lv, Qian; Zou, Junjie; Shi, Yongquan; Liu, Zhimin

    2018-04-26

    High glucose-induced oxidative stress and inflammatory responses play an important role in painful diabetic neuropathy by activating the TLR4/NFκB signal pathway. Schwann cells (SCs) are integral to peripheral nerve biology, contributing to saltatory conduction along axons, nerve and axon development, and axonal regeneration. SCs provide a microenvironment favoring vascular regeneration but their low survival ratio in hyperglycemic conditions suppress the function to promote nerve growth. Nuclear factor erythroid 2-related factor 2 (Nrf2) promotes remyelination after peripheral nerve injury. The aim of this study was to identify the role of Nrf2 in SC-mediated functional recovery after sciatic nerve injury. We compared plasma inflammatory factors in diabetic patients (DN) with/without diabetic peripheral neuropathy (DPN) and assessed whether Nrf2 expression in SCs could repair peripheral nerve injury in a rat model. Nrf2, TLR4/NFκB signal pathway and apoptosis relative protein expression were detected by western blot. Apoptosis and angiogenesis were determined by immunofluorescence and tubule formation assay, respectively. Regenerated nerves were determined by transmission electron microscope. Higher levels of inflammatory factors and VEGF expression were found in DPN patients. Cellular experiments indicate that Nrf2 expression inhibits hyperglycemia-induced apoptosis and promotes angiogenesis by regulating the TLR4/NFκB signal pathway. Animal experiments show that nerve conduction velocity, myelin sheath thickness, and sciatic vasa nervorum are restored with transplantation of SCs overexpressing Nrf2. Taken together, the high survival ratio of SCs in a DPN rat model indicates that overexpression of Nrf2 restores nerve injury. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    PubMed

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  2. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder.

    PubMed

    Park, Jeanie; Marvar, Paul J; Liao, Peizhou; Kankam, Melanie L; Norrholm, Seth D; Downey, Ryan M; McCullough, S Ashley; Le, Ngoc-Anh; Rothbaum, Barbara O

    2017-07-15

    Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD.  Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress:  combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between

  3. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4

    PubMed Central

    Emala, Charles W.

    2013-01-01

    Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842

  4. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal

  5. The Augmented Cognitive Mediation Model: Examining Antecedents of Factual and Structural Breast Cancer Knowledge Among Singaporean Women.

    PubMed

    Lee, Edmund W J; Shin, Mincheol; Kawaja, Ariffin; Ho, Shirley S

    2016-05-01

    As knowledge acquisition is an important component of health communication research, this study examines factors associated with Singaporean women's breast cancer knowledge using an augmented cognitive mediation model. We conducted a nationally representative study that surveyed 802 women between the ages of 30 and 70 using random-digit dialing. The results supported the augmented cognitive mediation model, which proposes the inclusion of risk perception as a motivator of health information seeking and structural knowledge as an additional knowledge dimension. There was adequate support for the hypothesized paths in the model. Risk perception was positively associated with attention to newspaper, television, Internet, and interpersonal communication. Attention to the three media channels was associated with interpersonal communication, but only newspaper and television attention were associated with elaboration. Interpersonal communication was positively associated with structural knowledge, whereas elaboration was associated with both factual and structural knowledge. Differential indirect effects between media attention and knowledge dimensions via interpersonal communication and elaboration were found. Theoretical and practical implications are discussed.

  6. Inhaled ammonium persulphate inhibits non-adrenergic, non-cholinergic relaxations in the guinea pig isolated trachea.

    PubMed

    Dellabianca, A; Faniglione, M; De Angelis, S; Colucci, M; Cervio, M; Balestra, B; Tonini, S; Candura, S M

    2010-01-01

    Persulphates can act both as irritants and sensitizers in inducing occupational asthma. A dysfunction of nervous control regulating the airway tone has been hypothesized as a mechanism underlying bronchoconstriction in asthma. It was the aim of this study to investigate whether inhaled ammonium persulphate affects the non-adrenergic, non-cholinergic (NANC) inhibitory innervation, the cholinergic nerve-mediated contraction or the muscular response to the spasmogens, carbachol or histamine, in the guinea pig epithelium-free, isolated trachea. Male guinea pigs inhaled aerosols containing ammonium persulphate (10 mg/m(3) for 30 min for 5 days during 3 weeks). Control animals inhaled saline aerosol. NANC relaxations to electrical field stimulation at 3 Hz were evaluated in whole tracheal segments as intraluminal pressure changes. Drugs inactivating peptide transmission, nitric oxide synthase, carbon monoxide production by haem oxygenase-2 and soluble guanylyl cyclase were used to assess the involvement of various inhibitory neurotransmitters. Carbachol and histamine cumulative concentration-response curves were obtained. In both groups, nitric oxide and carbon monoxide participated to the same extent as inhibitory neurotransmitters. In exposed animals, the tracheal NANC relaxations were reduced to 45.9 +/- 12.1% (p < 0.01). The cholinergic nerve-mediated contractions to electrical field stimulation and the muscular response to histamine were not modified by ammonium persulphate exposure. The muscular response to carbachol was unaffected up to 1 microM. Conversely, the response to the maximal concentration of carbachol (3 microM) was increased (p < 0.01). Ammonium persulphate inhalation at high concentrations impairs the nervous NANC inhibitory control in the guinea pig airways. This may represent a novel mechanism contributing to persulphate-induced asthma. Copyright 2009 S. Karger AG, Basel.

  7. Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle.

    PubMed Central

    Gibson, A.; Yu, O.

    1983-01-01

    Trains of field stimulation of 60 s duration caused a biphasic relaxation of carbachol (50 microM)-induced tone in the mouse anococcygeus. The optimal pulse frequency and width were 10 Hz and 1 ms respectively. Tetrodotoxin (31, 124, and 310 nM) caused a dose-dependent reduction in the magnitude of both phases. Neither phase was affected by (+/-)-propranolol (1 microM), neostigmine (1 microM), (+)-tubocurarine (100 microM), or apamin (500 nM). Biphasic relaxations were observed in muscles from 6-hydroxydopamine pretreated mice. Haemolysed blood (10, 40, and 100 microliter/ml) reduced the magnitude of the first phase of nerve-induced relaxation to a greater extent than the second. This effect was reversible. Following a prolonged train of inhibitory nerve stimulation (10 Hz; 10 min) the magnitude of the first phase was reduced only slightly, but the second markedly. The possible relationships between the biphasic relaxation to field stimulation and putative non-adrenergic, non-cholinergic transmitters in the mouse anococcygeus are discussed. PMID:6652345

  8. Interface roughness mediated phonon relaxation rates in Si quantum dots.

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib

    2015-03-01

    Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.

  9. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.

    PubMed

    Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-07-16

    The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    PubMed

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging.

    PubMed

    Loos, Ben; Klionsky, Daniel J; Wong, Esther

    2017-09-01

    Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Facial nerve activity disrupts psychomotor rhythms in the forehead microvasculature.

    PubMed

    Drummond, Peter D; O'Brien, Geraldine

    2011-10-28

    Forehead blood flow was monitored in seven participants with a unilateral facial nerve lesion during relaxation, respiratory biofeedback and a sad documentary. Vascular waves at 0.1Hz strengthened during respiratory biofeedback, in tune with breathing cycles that also averaged 0.1Hz. In addition, a psychomotor rhythm at 0.15Hz was more prominent in vascular waveforms on the denervated than intact side of the forehead, both before and during relaxation and the sad documentary. These findings suggest that parasympathetic activity in the facial nerve interferes with the psychomotor rhythm in the forehead microvasculature. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Surgical management of third nerve palsy

    PubMed Central

    Singh, Anupam; Bahuguna, Chirag; Nagpal, Ritu; Kumar, Barun

    2016-01-01

    Third nerve paralysis has been known to be associated with a wide spectrum of presentation and other associated factors such as the presence of ptosis, pupillary involvement, amblyopia, aberrant regeneration, poor bell's phenomenon, superior oblique (SO) overaction, and lateral rectus (LR) contracture. Correction of strabismus due to third nerve palsy can be complex as four out of the six extraocular muscles are involved and therefore should be approached differently. Third nerve palsy can be congenital or acquired. The common causes of isolated third nerve palsy in children are congenital (43%), trauma (20%), inflammation (13%), aneurysm (7%), and ophthalmoplegic migraine. Whereas, in adult population, common etiologies are vasculopathic disorders (diabetes mellitus, hypertension), aneurysm, and trauma. Treatment can be both nonsurgical and surgical. As nonsurgical modalities are not of much help, surgery remains the main-stay of treatment. Surgical strategies are different for complete and partial third nerve palsy. Surgery for complete third nerve palsy may involve supra-maximal recession - resection of the recti. This may be combined with SO transposition and augmented by surgery on the other eye. For partial third nerve, palsy surgery is determined according to nature and extent of involvement of extraocular muscles. PMID:27433033

  14. [Blood-nerve barrier and peripheral nerve regeneration].

    PubMed

    Kanda, Takashi

    2013-01-01

    Blood-nerve barrier (BNB) restricts the movement of soluble mediators and leukocytes from the blood contents to the peripheral nervous system (PNS) parenchyma and thus maintains the endoneurial homeostasis. However, it interferes the supply of various neurotrophic factors from the blood constituents and stops the drainage of toxic substances out of the PNS parenchyma, resulting in the inhibition of peripheral nerve regeneration. If the manipulation of BNB function is possible, regeneration of peripheral nerve may be facilitated via the alteration of peripheral nerve microenvironment and ample supply of neurotrophic substances. A possible method to manipulate the BNB for therapeutic purposes is to modify the endothelial function using siRNAs, oligonucleotides and virus vectors. Another possible method is to modify BNB pericytes: small hydrophobic substances that can reach the pericyte membrane through the endothelial monolayer and strengthen the pericytic activity, including the release of various cytokines/chemokines that influence endothelial function, may also be useful as drug candidates to control the BNB function.

  15. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  16. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity.

    PubMed

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2011-03-01

    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  17. Chicken adenovirus (CELO virus) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants.

    PubMed Central

    Cotten, M; Wagner, E; Zatloukal, K; Birnstiel, M L

    1993-01-01

    Delivery of genes via receptor-mediated endocytosis is severely limited by the poor exit of endocytosed DNA from the endosome. A large enhancement in delivery efficiency has been obtained by including human adenovirus particles in the delivery system. This enhancement is probably a function of the natural adenovirus entry mechanism, which must include passage through or disruption of the endosomal membrane. In an effort to identify safer virus particles useful in this application, we have tested the chicken adenovirus CELO virus for its ability to augment receptor-mediated gene delivery. We report here that CELO virus possesses pH-dependent, liposome disruption activity similar to that of human adenovirus type 5. Furthermore, the chicken adenovirus can be used to augment receptor-mediated gene delivery to levels comparable to those found for the human adenovirus when it is physically linked to polylysine ligand-condensed DNA particles. The chicken adenovirus has the advantage of being produced inexpensively in embryonated eggs, and the virus is naturally replication defective in mammalian cells, even in the presence of wild-type human adenovirus. Images PMID:8099627

  18. Anesthetic efficacy of the intraosseous injection of 0.9 mL of 2% lidocaine (1:100,000 epinephrine) to augment an inferior alveolar nerve block.

    PubMed

    Reitz, J; Reader, A; Nist, R; Beck, M; Meyers, W J

    1998-11-01

    The purpose of this study was to determine the anesthetic efficacy of an intraosseous injection of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine to augment an inferior alveolar nerve block in mandibular posterior teeth. With the use of a repeated-measures design, each of 38 subjects randomly received one or the other of 2 combinations of injections at 2 separate appointments. The combinations were inferior alveolar nerve block + intraosseous injection (on the distal of the second premolar) through use of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine and inferior alveolar nerve block + mock intraosseous injection. The first molar, second premolar, and second molar were blindly tested with an Analytic Technology pulp tester at 2-minute cycles for 120 minutes postinjection. Anesthesia was considered successful when 2 consecutive 80 readings were obtained. One hundred percent of the subjects had lip numbness with the inferior alveolar nerve block + intraosseous injection combination technique. The respective anesthetic success rates for the inferior alveolar nerve block + mock intraosseous injection combination and the inferior alveolar nerve block + intraosseous injection combination were 60% and 100% for the second premolar, 71% and 95% for the first molar, and 74% and 87% for the second molar. The differences were significant (P < .05) for the second premolar through 50 minutes and for the first molar through 20 minutes. There were no significant (P > .05) differences for the second molar. Sixty-eight percent of the subjects had a subjective increase in heart rate with the intraosseous injection. The results of this study indicate that the supplemental intraosseous injection of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine, given distal to the second premolar, significantly increased the success of pulpal anesthesia in the second premolar (for 50 minutes) and first molar (for 20 minutes) in comparison with the inferior alveolar nerve block alone. The

  19. Dietary supplement with fermented soybeans, natto, improved the neurobehavioral deficits after sciatic nerve injury in rats.

    PubMed

    Pan, Hung-Chuan; Cheng, Fu-Chou; Chen, Chun-Jung; Lai, Shu-Zhen; Liu, Mu-Jung; Chang, Ming-Hong; Wang, Yeou-Chih; Yang, Dar-Yu; Ho, Shu-Peng

    2009-06-01

    Clearance of fibrin and associated inflammatory cytokines by tissue-type plasminogen activator (t-PA) is related to improved regeneration in neurological disorder. The biological activity of fermented soybean (natto) is very similar to that of t-PA. We investigated the effect of the dietary supplement of natto on peripheral nerve regeneration. The peripheral nerve injury was produced by crushing the left sciatic nerve with a vessel clamp in Sprague-Dawley rats. The injured animals were fed orally either with saline or natto (16 mg/day) for seven consecutive days after injury. Increased functional outcome such as sciatic nerve functional index, angle of ankle, compound muscle action potential and conduction latency were observed in natto-treated group. Histological examination demonstrated that natto treatment improved injury-induced vacuole formation, S-100 and vessel immunoreactivities and axon loss. Oral intake of natto prolonged prothrombin time and reduced fibrinogen but did not change activated partial thromboplastin time and bleeding time. Furthermore, natto decreased injury-induced fibrin deposition, indicating a tolerant fibrinolytic activity. The treatment of natto significantly improved injury-induced disruption of blood-nerve barrier and loss of matrix component such as laminin and fibronectin. Sciatic nerve crush injury induced elevation of tumor necrosis factor alpha (TNF-alpha) production and caused apoptosis. The increased production of TNF-alpha and apoptosis were attenuated by natto treatment. These findings indicate that oral intake of natto has the potential to augment regeneration in peripheral nerve injury, possibly mediated by the clearance of fibrin and decreased production of TNF-alpha.

  20. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury.

    PubMed

    Uchida, Hitoshi; Matsumura, Shinji; Okada, Shunpei; Suzuki, Tsutomu; Minami, Toshiaki; Ito, Seiji

    2017-05-01

    Transcriptional and post-translational regulations are important in peripheral nerve injury-induced neuropathic pain, but little is known about the role of post-transcriptional modification. Our objective was to determine the possible effect of adenosine deaminase acting on RNA (ADAR) enzymes, which catalyze post-transcriptional RNA editing, in tactile allodynia, a hallmark of neuropathic pain. Seven days after L5 spinal nerve transection (SNT) in adult mice, we found an increase in ADAR2 expression and a decrease in ADAR3 expression in the injured, but not in the uninjured, dorsal root ganglions (DRGs). These changes were accompanied by elevated levels of editing at the D site of the serotonin (5-hydroxytryptamine) 2C receptor (5-HT 2C R), at the I/V site of coatomer protein complex subunit α (COPA), and at the R/G site of AMPA receptor subunit GluA2 in the injured DRG. Compared to Adar2 +/+ /Gria2 R/R littermate controls, Adar2 -/- /Gria2 R/R mice completely lacked the increased editing of 5-HT 2C R, COPA, and GluA2 transcripts in the injured DRG and showed attenuated tactile allodynia after SNT. Furthermore, the antidepressant fluoxetine inhibited neuropathic allodynia after injury and reduced the COPA I/V site editing in the injured DRG. These findings suggest that ADAR2 is a mediator of injury-induced tactile allodynia and thus a potential therapeutic target for the treatment of neuropathic pain.-Uchida, H., Matsumura, S., Okada, S., Suzuki, T., Minami, T., Ito, S. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury. © FASEB.

  1. Supercharged end-to-side anterior interosseous to ulnar motor nerve transfer for intrinsic musculature reinnervation.

    PubMed

    Barbour, John; Yee, Andrew; Kahn, Lorna C; Mackinnon, Susan E

    2012-10-01

    Functional motor recovery after peripheral nerve injury is predominantly determined by the time to motor end plate reinnervation and the absolute number of regenerated motor axons that reach target. Experimental models have shown that axonal regeneration occurs across a supercharged end-to-side (SETS) nerve coaptation. In patients with a recovering proximal ulnar nerve injury, a SETS nerve transfer conceptually is useful to protect and preserve distal motor end plates until the native axons fully regenerate. In addition, for nerve injuries in which incomplete regeneration is anticipated, a SETS nerve transfer may be useful to augment the regenerating nerve with additional axons and to more quickly reinnervate target muscle. We describe our technique for a SETS nerve transfer of the terminal anterior interosseous nerve (AIN) to the pronator quadratus muscle (PQ) end-to-side to the deep motor fascicle of the ulnar nerve in the distal forearm. In addition, we describe our postoperative therapy regimen for these transfers and an evaluation tool for monitoring progressive muscle reinnervation. Although the AIN-to-ulnar motor group SETS nerve transfer was specifically designed for ulnar nerve injuries, we believe that the SETS procedure might have broad clinical utility for second- and third-degree axonotmetic nerve injuries, to augment partial recovery and/or "babysit" motor end plates until the native parent axons regenerate to target. We would consider all donor nerves currently utilized in end-to-end nerve transfers for neurotmetic injuries as candidates for this SETS technique. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. AUGMENTATION OF MUSCLE BLOOD FLOW BY ULTRASOUND CAVITATION IS MEDIATED BY ATP AND PURINERGIC SIGNALING

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Xie, Aris; Wu, Melinda D.; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y.; Field, Joshua; Harmann, Leanne; Chilian, William M.; Linden, Joel; Lindner, Jonathan R.

    2017-01-01

    Background Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signalling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Methods Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for ten minutes after intravenous injection of 2×108 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signalling pathways were assessed by studying interventions that either (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or KATP channels; or (3) inhibited downstream signalling pathways involving endothelial nitric oxide synthase (eNOS) or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease (SCD). Results Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hrs in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with SCD. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced a nearly 40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or through adenosine produced by ectonucleotidase activity. Combined

  3. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    PubMed

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  4. Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque

    PubMed Central

    Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.; Cullen, Kathleen E.

    2009-01-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition. PMID:19091917

  5. Efferent-mediated responses in vestibular nerve afferents of the alert macaque.

    PubMed

    Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E

    2009-02-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.

  6. Calcitonin gene-related peptide (CGRP) in the circular muscle of guinea-pig colon: role as inhibitory transmitter and mechanisms of relaxation.

    PubMed

    Maggi, C A; Giuliani, S; Zagorodnyuk, V

    1996-01-16

    relaxation: the hyperpolarization produced by CGRP was inhibited by about 50% by either TEA (10 mM) or CPA (10 microM), while being unaffected by glibenclamide (3 microM). The combined application of TEA and CPA was not more effective (65% inhibition) in inhibiting the CGRP-induced hyperpolarization than each drug alone. We conclude that CGRP produces a direct relaxation of the circular muscle of the guinea-pig proximal colon by activating receptors sensitive to blockade by CGRP(8-37). Activation of Ca-dependent potassium channels and Ca release/reuptake from internal store(s) appear both to be involved in the action of CGRP. Endogenous CGRP mediates part of the relaxant response evoked by stimulation of capsaicin-sensitive primary afferent nerves in the circular muscle of guinea-pig colon, while it is not involved in the apamin and L-NOARG-resistant nonadrenergic noncholinergic (NANC) relaxation produced by electrical field stimulation of intrinsic inhibitory nerves.

  7. Nitrergic Pathway Is the Major Mechanism for the Effect of DA-9701 on the Rat Gastric Fundus Relaxation.

    PubMed

    Min, Yang Won; Ko, Eun-Ju; Lee, Ji Yeon; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Jae J; Rhee, Poong-Lyul

    2014-07-31

    DA-9701 significantly improved gastric accommodation by increasing the postprandial gastric volume. In this study, we investigated how DA-9701 affects the rat gastric fundus relaxation. Gastric fundus muscle strips (9 longitudinal and 7 circular muscles) were obtained from rats. Electrical field stimulation (EFS) was performed at various frequencies (1, 5, 10 and 20 Hz) and train durations (1, 5, 10 and 20 seconds) to select optimal condition for experiments. Isometric force measurements were performed in response to EFS. Peak and nadir were observed during the first 1 minute after initiation of EFS in control state and after sequential addition of atropine (1 μM), DA-9701 (0.5, 5, 25 and 50 μg), N-nitro-L-arginine (L-NNA, 100 μM), MRS2500 (1 μM) and tetrodotoxin (TTX, 1 μM) to the organ bath. The optimal frequency and duration of EFS to evoke nerve-mediated relaxation was determined as 5 Hz for 10 seconds. Addition of L-NNA in the presence of atropine and DA-9701 (50 μg) decreased nadir by inhibiting relaxation from -0.054 ± 0.021 g to -0.022 ± 0.015 g (P = 0.026) in longitudinal muscles. However, subsequent application of MRS2500 in the presence of atropine, DA-9701 (50 μg) and L-NNA did not affect nadir. In circular muscles, subsequent addition of L-NNA and MRS2500 in the presence of atropine and DA-9701 (50 μg) did not show significant change of nadir. Our data suggest that the effect of DA-9701 on the rat gastric fundus relaxation is mainly mediated by nitrergic rather than purinergic pathway.

  8. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Liu, Yi; Zhao, Hua

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediatedmore » transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which

  9. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  10. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  11. Distension of the esophagogastric junction augments triggering of transient lower esophageal sphincter relaxation.

    PubMed

    van Wijk, Michiel P; Blackshaw, L Ashley; Dent, John; Benninga, Marc A; Davidson, Geoffrey P; Omari, Taher I

    2011-10-01

    Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR.

  12. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  13. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.

    PubMed

    Andrews, Russell J

    2003-05-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  14. Magnetic Resonance Neurography Visualizes Abnormalities in Sciatic and Tibial Nerves in Patients With Type 1 Diabetes and Neuropathy.

    PubMed

    Vaeggemose, Michael; Pham, Mirko; Ringgaard, Steffen; Tankisi, Hatice; Ejskjaer, Niels; Heiland, Sabine; Poulsen, Per L; Andersen, Henning

    2017-07-01

    This study evaluates whether diffusion tensor imaging magnetic resonance neurography (DTI-MRN), T2 relaxation time, and proton spin density can detect and grade neuropathic abnormalities in patients with type 1 diabetes. Patients with type 1 diabetes ( n = 49) were included-11 with severe polyneuropathy (sDPN), 13 with mild polyneuropathy (mDPN), and 25 without polyneuropathy (nDPN)-along with 30 healthy control subjects (HCs). Clinical examinations, nerve conduction studies, and vibratory perception thresholds determined the presence and severity of DPN. DTI-MRN covered proximal (sciatic nerve) and distal (tibial nerve) nerve segments of the lower extremity. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were calculated, as were T2 relaxation time and proton spin density obtained from DTI-MRN. All magnetic resonance findings were related to the presence and severity of neuropathy. FA of the sciatic and tibial nerves was lowest in the sDPN group. Corresponding with this, proximal and distal ADCs were highest in patients with sDPN compared with patients with mDPN and nDPN, as well as the HCs. DTI-MRN correlated closely with the severity of neuropathy, demonstrating strong associations with sciatic and tibial nerve findings. Quantitative group differences in proton spin density were also significant, but less pronounced than those for DTI-MRN. In conclusion, DTI-MRN enables detection in peripheral nerves of abnormalities related to DPN, more so than proton spin density or T2 relaxation time. These abnormalities are likely to reflect pathology in sciatic and tibial nerve fibers. © 2017 by the American Diabetes Association.

  15. Reconstruction of facial nerve after radical parotidectomy.

    PubMed

    Renkonen, Suvi; Sayed, Farid; Keski-Säntti, Harri; Ylä-Kotola, Tuija; Bäck, Leif; Suominen, Sinikka; Kanerva, Mervi; Mäkitie, Antti A

    2015-01-01

    Most patients benefitted from immediate facial nerve grafting after radical parotidectomy. Even weak movement is valuable and can be augmented with secondary static operations. Post-operative radiotherapy does not seem to affect the final outcome of facial function. During radical parotidectomy, the sacrifice of the facial nerve results in severe disfigurement of the face. Data on the principles and outcome of facial nerve reconstruction and reanimation after radical parotidectomy are limited and no consensus exists on the best practice. This study retrospectively reviewed all patients having undergone radical parotidectomy and immediate facial nerve reconstruction with a free, non-vascularized nerve graft at the Helsinki University Hospital, Helsinki, Finland during the years 1990-2010. There were 31 patients (18 male; mean age = 54.7 years; range = 30-82) and 23 of them had a sufficient follow-up time. Facial nerve function recovery was seen in 18 (78%) of the 23 patients with a minimum of 2-year follow-up and adequate reporting available. Only slight facial movement was observed in five (22%), moderate or good movement in nine (39%), and excellent movement in four (17%) patients. Twenty-two (74%) patients received post-operative radiotherapy and 16 (70%) of them had some recovery of facial nerve function. Nineteen (61%) patients needed secondary static reanimation of the face.

  16. Evoked electromyography to rocuronium in orbicularis oris and gastrocnemius in facial nerve injury in rabbits.

    PubMed

    Xing, Yian; Chen, Lianhua; Li, Shitong

    2013-11-01

    Muscles innervated by the facial nerve show different sensitivities to muscle relaxants than muscles innervated by somatic nerves, especially in the presence of facial nerve injury. We compared the evoked electromyography (EEMG) response of orbicularis oris and gastrocnemius in with and without a non-depolarizing muscle relaxant in a rabbit model of graded facial nerve injury. Differences in EEMG response and inhibition by rocuronium were measured in the orbicularis oris and gastrocnemius muscles 7 to 42 d after different levels of facial nerve crush injuries in adult rabbits. Baseline EEMG of orbicularis oris was significantly smaller than those of the gastrocnemius. Gastrocnemius was more sensitive to rocuronium than the facial muscles (P < 0.05). Baseline EEMG and EEMG amplitude of orbicularis oris in the presence of rocuronium was negatively correlated with the magnitude of facial nerve injury but the sensitivity to rocuronium was not. No significant difference was found in the onset time and the recovery time of rocuronium among gastrocnemius and normal or damaged facial muscles. Muscles innervated by somatic nerves are more sensitive to rocuronium than those innervated by the facial nerve, but while facial nerve injury reduced EEMG responses, the sensitivity to rocuronium is not altered. Partial neuromuscular blockade may be a suitable technique for conducting anesthesia and surgery safely when EEMG monitoring is needed to preserve and protect the facial nerve. Additional caution should be used if there is a risk of preexisting facial nerve injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  18. SaFaRI: sacral nerve stimulation versus the FENIX magnetic sphincter augmentation for adult faecal incontinence: a randomised investigation.

    PubMed

    Williams, Annabelle E; Croft, Julie; Napp, Vicky; Corrigan, Neil; Brown, Julia M; Hulme, Claire; Brown, Steven R; Lodge, Jen; Protheroe, David; Jayne, David G

    2016-02-01

    Faecal incontinence is a physically, psychologically and socially disabling condition. NICE guidance (2007) recommends surgical intervention, including sacral nerve stimulation (SNS), after failed conservative therapies. The FENIX magnetic sphincter augmentation (MSA) device is a novel continence device consisting of a flexible band of interlinked titanium beads with magnetic cores that is placed around the anal canal to augment anal sphincter tone through passive attraction of the beads. Preliminary studies suggest the FENIX MSA is safe, but efficacy data is limited. Rigorous evaluation is required prior to widespread adoption. The SaFaRI trial is a National Institute of Health Research (NIHR) Health Technology Assessment (HTA)-funded UK multi-site, parallel group, randomised controlled, unblinded trial that will investigate the use of the FENIX MSA, as compared to SNS, for adult faecal incontinence resistant to conservative management. Twenty sites across the UK, experienced in the treatment of faecal incontinence, will recruit 350 patients randomised equally to receive either SNS or FENIX MSA. Participants will be followed-up at 2 weeks post-surgery and at 6, 12 and 18 months post-randomisation. The primary endpoint is success, as defined by device in use and ≥50 % improvement in the Cleveland Clinic Incontinence Score (CCIS) at 18 months post-randomisation. Secondary endpoints include complications, quality of life and cost effectiveness. SaFaRI will rigorously evaluate a new technology for faecal incontinence, the FENIX™ MSA, allowing its safe and controlled introduction into current clinical practice. These results will inform the future surgical management of adult faecal incontinence.

  19. Analysis of Aeroheating Augmentation due to Reaction Control System Jets on Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Buck, Gregory M.; Decaro, Anthony D.

    2009-01-01

    The analysis of effects of the reaction control system jet plumes on aftbody heating of Orion entry capsule is presented. The analysis covered hypersonic continuum part of the entry trajectory. Aerothermal environments at flight conditions were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code and Data Parallel Line Relaxation (DPLR) algorithm code. Results show a marked augmentation of aftbody heating due to roll, yaw and aft pitch thrusters. No significant augmentation is expected due to forward pitch thrusters. Of the conditions surveyed the maximum heat rate on the aftshell is expected when firing a pair of roll thrusters at a maximum deceleration condition.

  20. Functional significance of the pattern of renal sympathetic nerve activation.

    PubMed

    Dibona, G F; Sawin, L L

    1999-08-01

    To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.

  1. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    PubMed

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    PubMed

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long

  3. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat

    PubMed Central

    Zhou, Shi-Yi; Lu, Yuan-Xu; Owyang, Chung

    2011-01-01

    Hyperglycemia has a profound effect on gastric motility. However, little is known about site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of glucose, intracisternal injection of glucose at 250 and 500 mg dL−1 had little effect on intragastric pressure. Pretreatment with hexamethonium, as well as truncal vagotomy, abolished the gastric motor responses to hyperglycemia (250 mg dL−1), and perivagal and gastroduodenal applications of capsaicin significantly reduced the gastric responses to hyperglycemia. In contrast, hyperglycemia had no effect on the gastric contraction induced by electrical field stimulation or carbachol (10−5 M). To rule out involvement of serotonergic pathways, we showed that neither granisetron (5-HT3 antagonist, 0.5 g kg−1) nor pharmacological depletion of 5-HT using p-chlorophenylalanine (5-HT synthesis inhibitor) affected gastric relaxation induced by hyperglycemia. Lastly, NG-nitro-L-arginine methyl ester (l-NAME) and a VIP antagonist each partially reduced gastric relaxation induced by hyperglycemia, and in combination, completely abolished gastric responses. In conclusion, hyperglycemia inhibits gastric motility through a capsaicin-sensitive vagal afferent pathway originating from the gastroduodenal mucosa. Hyperglycemia stimulates vagal afferents, which, in turn, activate vagal efferent cholinergic pathways synapsing with intragastric nitric oxide- and VIP-containing neurons to mediate gastric relaxation. PMID:18356537

  4. Diabetes impairs endothelium-dependent relaxation of human penile vascular tissues mediated by NO and EDHF.

    PubMed

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Allona, Antonio; Martín-Morales, Antonio; Moncada, Ignacio; Videla, Sebastián; Sáenz de Tejada, Iñigo

    2003-12-26

    Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.

  5. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  6. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  7. Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals.

    PubMed

    Tian, L; Prior, C; Dempster, J; Marshall, I G

    1997-11-01

    1. The neuronal nicotinic receptor antagonists hexamethonium and methyllycaconitine (MLA) have been used to study the putative prejunctional nicotinic ACh receptors (AChRs) mediating a negative-feedback control of ACh release from motor nerve terminals in voltage-clamped rat phrenic nerve/ hemidiaphragm preparations. 2. Hexamethonium (200 microM), but not MLA (0.4-2.0 microM), decreased the time constant of decay of both endplate currents (e.p.cs) and miniature endplate currents (m.e.p.cs), indicating endplate ion channel block with hexamethonium. However, driving function analysis and reconvolution of e.p.cs and m.e.p.cs indicated that this ion channel block did not compromise the analysis of e.p.c. quantal content. 3. At low frequencies of stimulation (0.5-2 Hz), hexamethonium (200 microM) and MLA (2.0 microM) increased e.p.c. quantal content by 30-40%. At high frequencies (50-150 Hz) neither compound affected e.p.c. quantal content. All effects on quantal content were paralleled by changes in the size of the pool of quanta available for release. 4. The low frequency augmentation of e.p.c. quantal content by hexamethonium was absent when extracellular [Ca2+] was lowered from 2.0 to 0.5 mM. 5. At the concentrations studied, MLA and hexamethonium produced a small (10-20%) decrease in the peak amplitude of m.e.p.cs. 6. Neither apamin (100 nM) nor charybdotoxin (80 nM) had effects on spontaneous or nerve evoked current amplitudes at any frequency of stimulation. Thus the ability of nicotinic antagonists to augment e.p.c. quantal content is not due to inhibition of Ca(2+)-activated K(+)-channels. 7. We suggest that hexamethonium and MLA increase evoked ACh release by blocking prejunctional nicotinic AChRs. These receptors exert a negative feedback control over evoked ACh release and are probably of the alpha-bungarotoxin-insensitive neuronal type.

  8. Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals

    PubMed Central

    Tian, >Lijun; Prior, Chris; Dempster, John; Marshall, Ian G

    1997-01-01

    The neuronal nicotinic receptor antagonists hexamethonium and methyllycaconitine (MLA) have been used to study the putative prejunctional nicotinic ACh receptors (AChRs) mediating a negative-feedback control of ACh release from motor nerve terminals in voltage-clamped rat phrenic nerve/hemidiaphragm preparations. Hexamethonium (200 μM), but not MLA (0.4–2.0 μM), decreased the time constant of decay of both endplate currents (e.p.cs) and miniature endplate currents (m.e.p.cs), indicating endplate ion channel block with hexamethonium. However, driving function analysis and reconvolution of e.p.cs and m.e.p.cs indicated that this ion channel block did not compromise the analysis of e.p.c. quantal content. At low frequencies of stimulation (0.5–2 Hz), hexamethonium (200 μM) and MLA (2.0 μM) increased e.p.c. quantal content by 30–40%. At high frequencies (50–150 Hz) neither compound affected e.p.c. quantal content. All effects on quantal content were paralleled by changes in the size of the pool of quanta available for release. The low frequency augmentation of e.p.c. quantal content by hexamethonium was absent when extracellular [Ca2+] was lowered from 2.0 to 0.5 mM. At the concentrations studied, MLA and hexamethonium produced a small (10–20%) decrease in the peak amplitude of m.e.p.cs. Neither apamin (100 nM) nor charybdotoxin (80 nM) had effects on spontaneous or nerve evoked current amplitudes at any frequency of stimulation. Thus the ability of nicotinic antagonists to augment e.p.c. quantal content is not due to inhibition of Ca2+-activated K+-channels. We suggest that hexamethonium and MLA increase evoked ACh release by blocking prejunctional nicotinic AChRs. These receptors exert a negative feedback control over evoked ACh release and are probably of the α-bungarotoxin-insensitive neuronal type. PMID:9401765

  9. Differentiation of vasoactive renal sympathetic nerve fibres.

    PubMed

    Dibona, G F

    2000-01-01

    Activation of renal sympathetic nerves produces marked changes in renal haemodynamics, tubular ion and water transport and renin secretion. This review examines information indicating that these effects are mediated by functionally specific groups of renal sympathetic nerve fibres separately innervating the renal vessels, tubules and juxtaglomerular granular cells.

  10. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery

    PubMed Central

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-01-01

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442

  11. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery.

    PubMed

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-02-15

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.

  12. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons

    PubMed Central

    Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin

    2017-01-01

    Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180

  13. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    PubMed

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  14. Normothermic and hypothermic models for studying the deleterious effects of hypoxia-reoxygenation on EDHF-mediated relaxation in isolated porcine coronary arteries.

    PubMed

    Ziberna, Lovro; Lunder, Mojca; Kuzner, Jernej; Drevensek, Gorazd

    2009-01-01

    The vasomotor response of the coronary artery is altered by hypoxia-reoxygenation (H-R) induced damage. The aim of our study was to compare and evaluate normothermic and hypothermic models which are suitable for future drug studies of vasoprotective action against H-R injury. Porcine coronary arterial rings were isolated and placed in Krebs-Henseleit (K-H) solution. Rings were exposed to normoxic conditions (control group) and two different H-R conditions: the first induced by a 95% N(2)-5% CO(2) gas mixture (40- and 60-min hypoxia) in a normothermic protocol, and the second induced by hypothermic (4 degrees C) hypoxia-reoxygenation in an air-tight beaker filled with K-H solution (24- and 48-hours hypoxia). Reoxygenation was applied by introducing K-H solution aerated with a 95% O(2)-5% CO(2) mixture under normothermic (37 degrees C) conditions. To test the EDHF-mediated relaxation by substance P, rings were first incubated in L-NNA, nitric oxide synthase inhibitor, and indomethacin, cyclooxygenase inhibitor, and then pre-contracted with thromboxane analogue U-46619. Analysis of the maximum relaxation of the arterial rings was performed by one-way ANOVA, followed by Bonferroni's post-test. Distal segments of the coronary artery responded faster to contraction induced by U-46619 and were relaxed by substance P to a greater extent than proximal segments. Maximal relaxations of arterial rings induced by a 10 nM solution of substance P were significantly reduced (p<0.001) from the values for normoxic rings (81.0+/-1.0%, n=30) after 40-min H-R (50.5+/-5.3%, n=30), 60-min H-R (32.1+/-3.5%, n=30), 24-hours hypothermic H-R (56.0+/-2.3%, n=30) and after 48-hours hypothermic H-R (38.5+/-5.1%, n=30). The model employing 40-min normothermic H-R is as effective as 24-hours hypothermic H-R, and 60-min normothermic H-R as 48-hours hypothermic H-R for studying the deleterious effects of H-R on EDHF-mediated relaxation.

  15. Reinnervation of the lateral gastrocnemius and soleus muscles in the rat by their common nerve.

    PubMed Central

    Gillespie, M J; Gordon, T; Murphy, P R

    1986-01-01

    To determine whether there is any specificity of regenerating nerves for their original muscles, the common lateral gastrocnemius soleus nerve (l.g.s.) innervating the fast-twitch lateral gastrocnemius (l.g.) and slow-twitch soleus muscles was sectioned in the hind limb of twenty adult rats. The proximal nerve stump was sutured to the dorsal surface of the l.g. muscle and 4-14 months later, the contractile properties of the reinnervated l.g. and soleus muscles and their single motor units were studied by dissection and stimulation of the ventral root filaments. Contractile properties of normal contralateral muscles were examined for comparison and motor units were isolated in l.g. and soleus muscles for study in a group of untreated animals. Measurement of time and rate parameters of maximal twitch and tetanic contractions showed that the rate of development of force increased significantly in reinnervated soleus muscles and approached the speed of l.g. muscles but rate of relaxation did not change appreciably. In reinnervated l.g. muscles, contraction speed was similar to normal l.g. muscles but relaxation rate declined toward the rates of relaxation in control soleus muscles. After reinnervation by the common l.g.s. nerve, the proportion of slow motor units in l.g. increased from 10 to 31% and decreased in soleus from 80 to 31%. The relative proportions of fast and slow motor units in each muscle were the same as the proportions of fast and slow units in the normal l.g. and soleus muscles combined. It was concluded that fast and slow muscles do not show any preference for their former nerves and that the change in the force profile of the reinnervated muscles is indicative of the relative proportions of fast and slow motor units: fast units dominate the contraction phase and slow units the relaxation phase of twitch and tetanic contractions of the muscle. PMID:3723414

  16. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    PubMed

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  17. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    PubMed

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  18. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    PubMed

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  19. Relaxation of Actinide Surfaces: An All Electron Study

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.

  20. Acute Ethanol Exposure Prevents PMA-mediated Augmentation of N-methyl-d-aspartate Receptor Function in Primary Cultured Cerebellar Granule Cells

    PubMed Central

    Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa

    2011-01-01

    Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785

  1. Control of muscle relaxation during anesthesia: a novel approach for clinical routine.

    PubMed

    Stadler, Konrad S; Schumacher, Peter M; Hirter, Sibylle; Leibundgut, Daniel; Bouillon, Thomas W; Glattfelder, Adolf H; Zbinden, Alex M

    2006-03-01

    During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

  2. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.

    PubMed

    Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook

    2016-07-01

    Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  4. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury.

    PubMed

    Brosius Lutz, Amanda; Chung, Won-Suk; Sloan, Steven A; Carson, Glenn A; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J Bradley; Barres, Ben A

    2017-09-19

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.

  5. Combinatorial treatments enhance recovery following facial nerve crush.

    PubMed

    Sharma, Nijee; Moeller, Carl W; Marzo, Sam J; Jones, Kathryn J; Foecking, Eileen M

    2010-08-01

    To investigate the effects of various combinatorial treatments, consisting of a tapering dose of prednisone (P), a brief period of nerve electrical stimulation (ES), and systemic testosterone propionate (TP) on improving functional recovery following an intratemporal facial nerve crush injury. Prospective, controlled animal study. After a right intratemporal facial nerve crush, adult male Sprague-Dawley rats were divided into the following eight treatment groups: 1) no treatment, 2) P only, 3) ES only, 4) ES + P, 5) TP only, 6) TP + P, 7) ES + TP, and 8) ES + TP + P. For each group n = 4-8. Recovery of the eyeblink reflex and vibrissae orientation and movement were assessed. Changes in peak amplitude and latency of evoked response, in response to facial nerve stimulation, was also recorded weekly. : Brief ES of the proximal nerve stump most effectively accelerated the initiation of functional recovery. Also, ES or TP treatments enhanced recovery of some functional parameters more than P treatment. When administered alone, none of the three treatments improved recovery of complete facial function. Only the combinatorial treatment of ES + TP, regardless of the presence of P, accelerated complete functional recovery and return of normal motor nerve conduction. Our findings suggest that a combinatorial treatment strategy of using brief ES and TP together promises to be an effective therapeutic intervention for promoting regeneration following facial nerve injury. Administration of P neither augments nor hinders recovery.

  6. Paeoniae alba Radix Promotes Peripheral Nerve Regeneration

    PubMed Central

    Huang, Kun-Shan; Lin, Jaung-Geng; Lee, Han-Chung; Tsai, Fuu-Jen; Bau, Da-Tian; Huang, Chih-Yang; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2011-01-01

    The present study provides in vitro and in vivo evaluation of Paeoniae alba Radix (PR) on peripheral nerve regeneration. In the in vitro study, we found the PR caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as their expression of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with the PR water extract were used to bridge a 10-mm sciatic nerve defect in rats. At the conclusion of 8 weeks, regenerated nerves in the PR groups, especially at 1.25 mg ml−1 had a higher rate of successful regeneration across the wide gap, relatively larger mean values of total nerve area, myelinated axon count and blood vessel number, and a significantly larger nerve conductive velocity compared to the control group (P  <  .05). These results suggest that the PR extract can be a potential nerve growth-promoting factor, being salutary in aiding the growth of injured peripheral nerve. PMID:19687191

  7. Heterogeneity of the neuropeptide Y (NPY) contractile and relaxing receptors in horse penile small arteries.

    PubMed

    Prieto, Dolores; Arcos, Luis Rivera de Los; Martínez, Pilar; Benedito, Sara; García-Sacristán, Albino; Hernández, Medardo

    2004-12-01

    The distribution of neuropeptide Y (NPY)-immunorective nerves and the receptors involved in the effects of NPY upon electrical field stimulation (EFS)- and noradrenaline (NA)-elicited contractions were investigated in horse penile small arteries. NPY-immunoreactive nerves were widely distributed in the erectile tissues with a particularly high density around penile intracavernous small arteries. In small arteries isolated from the proximal part of the corpora cavernosa, NPY (30 nM) produced a variable modest enhancement of the contractions elicited by both EFS and NA. At the same concentration, the NPY Y(1) receptor agonist, [Leu(31), Pro(34)]NPY, markedly potentiated responses to EFS and NA, whereas the NPY Y(2) receptor agonist, NPY(13-36), enhanced exogenous NA-induced contractions. In arteries precontracted with NA, NPY, peptide YY (PYY), [Leu(31), Pro(34)]NPY and the NPY Y(2) receptor agonists, N-acetyl[Leu(28,31)]NPY (24-36) and NPY(13-36), elicited concentration-dependent contractile responses. Human pancreatic polypeptide (hPP) evoked a biphasic response consisting of a relaxation followed by contraction. NPY(3-36), the compound 1229U91 (Ile-Glu-Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide) and eventually NPY(13-36) relaxed penile small arteries. The selective NPY Y(1) receptor antagonist BIBP3226 ((R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide) (0.3 microM) shifted to the right the concentration-response curves to both NPY and [Leu(31), Pro(34)]NPY and inhibited the contractions induced by the highest concentrations of hPP but not the relaxations observed at lower doses. In the presence of the selective NPY Y(2) receptor antagonist BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]-argininamide) (0.3 microM), the Y(2) receptor agonists NPY(13-36) and N-acetyl[Leu(28,31)]NPY (24

  8. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    PubMed Central

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  9. Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists

    PubMed Central

    Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.

    2014-01-01

    Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056

  10. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Sialorphin (the mature peptide product of Vcsa1) relaxes corporal smooth muscle tissue and increases erectile function in the ageing rat.

    PubMed

    Davies, Kelvin P; Tar, Moses; Rougeot, Catherine; Melman, Arnold

    2007-02-01

    To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 microg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 microm phenylephrine. Intracorporal injection of 100 microg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55-65 min the ICP/BP ratio increased to approximately 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 microm phenylephrine, 1 microm CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 microg/mL) compared with carrier alone. These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue.

  12. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  13. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    PubMed

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  14. Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries.

    PubMed

    Stott, Jennifer B; Barrese, Vincenzo; Greenwood, Iain A

    2016-12-01

    To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to β-adrenoceptor-mediated vasorelaxations. Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the β-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries. © 2016 American Heart Association, Inc.

  15. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.

    PubMed

    Meeks, M K; Han, S; Tucker, A L; Rembold, C M

    2008-01-01

    Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.

  16. Nitrergic nerves derived from the pterygopalatine ganglion innervate arteries irrigating the cerebrum but not the cerebellum and brain stem in monkeys.

    PubMed

    Ayajiki, Kazuhide; Kobuchi, Shuhei; Tawa, Masashi; Okamura, Tomio

    2012-01-01

    The functional roles of the nitrergic nerves innervating the monkey cerebral artery were evaluated in a tension-response study examining isolated arteries in vitro and cerebral angiography in vivo. Nicotine produced relaxation of arteries by stimulation of nerve terminals innervating isolated monkey arteries irrigating the cerebrum, cerebellum and brain stem. Relaxation of arteries induced by nicotine was abolished by treatment with N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor, and was restored by addition of L-arginine. Cerebral angiography showed that electrical stimulation of the unilateral greater petrosal nerve, which connects to the pterygopalatine ganglion via the parasympathetic ganglion synapse, produced vasodilatation of the anterior, middle and posterior cerebral arteries in the stimulated side. However, stimulation failed to produce vasodilatation of the superior and anterior-inferior cerebellar arteries and the basilar artery in anesthetized monkeys. Therefore, nitrergic nerves derived from the pterygopalatine ganglion appear to regulate cerebral vasomotor function. In contrast, circulation in the cerebellum and brain stem might be regulated by nitrergic nerves originating not from the pterygopalatine ganglion, but rather from an unknown ganglion (or ganglia).

  17. [Foster Modification of Full Tendon Transposition of Vertical Rectus Muscles for Sixth Nerve Palsy].

    PubMed

    Heede, Santa

    2018-04-11

    Since 1907 a variety of muscle transposition procedures for the treatment of abducens nerve palsy has been established internationally. Full tendon transposition of the vertical rectus muscle was initially described by O'Connor 1935 and then augmented by Foster 1997 with addition of posterior fixation sutures on the vertical rectus muscle. Full tendon transposition augmented by Foster belongs to the group of the most powerful surgical techniques to improve the abduction. Purpose of this study was to evaluate the results of full tendon vertical rectus transposition augmented with lateral fixation suture for patients with abducens nerve palsy. Full tendon transpositions of vertical rectus muscles augmented with posterior fixation suture was performed in 2014 on five patients with abducens nerve palsy. Two of the patients received Botox injections in the medial rectus muscle: one of them three months after the surgery and another during the surgery. One of the patients had a combined surgery of the horizontal muscles one year before. On three of the patients, who received a pure transposition surgery, the preoperative deviation at the distance (mean: + 56.6 pd; range: + 40 to + 80 pd) was reduced by a mean of 39.6 pd (range 34 to 50 pd), the abduction was improved by a mean of 3 mm (range 2 to 4 mm). The other two patients, who received besides the transposition procedure additional surgeries of the horizontal muscles, the preoperative deviation at the distance (+ 25 and + 126 pd respectively) was reduced by 20 and 81 pd respectively. The abduction was improved by 4 and 8 mm respectively. After surgery two patients developed a vertical deviation with a maximum of 4 pd. None of the patients had complications or signs of anterior segment ischemia. The elevation and/or depression was only marginally affected. There was no diplopia in up- or downgaze. Full tendon transposition of vertical rectus muscles, augmented with lateral posterior fixation suture is

  18. A Novel Collaborative Protocol for Successful Management of Penile Pain Mediated by Radiculitis of Sacral Spinal Nerve Roots From Tarlov Cysts.

    PubMed

    Goldstein, Irwin; Komisaruk, Barry R; Rubin, Rachel S; Goldstein, Sue W; Elliott, Stacy; Kissee, Jennifer; Kim, Choll W

    2017-09-01

    Since 14 years of age, the patient had experienced extreme penile pain within seconds of initial sexual arousal through masturbation. Penile pain was so severe that he rarely proceeded to orgasm or ejaculation. After 7 years of undergoing multiple unsuccessful treatments, he was concerned for his long-term mental health and for his future ability to have relationships. To describe a novel collaboration among specialists in sexual medicine, neurophysiology, and spine surgery that led to successful management. Collaborating health care providers conferred with the referring physician, patient, and parents and included a review of all medical records. Elimination of postpubertal intense penile pain during sexual arousal. The patient presented to our sexual medicine facility at 21 years of age. The sexual medicine physician identifying the sexual health complaint noted a pelvic magnetic resonance imaging report of an incidental sacral Tarlov cyst. A subsequent sacral magnetic resonance image showed four sacral Tarlov cysts, with the largest measuring 18 mm. Neuro-genital testing result were abnormal. The neurophysiologist hypothesized the patient's pain at erection was produced by Tarlov cyst-induced neuropathic irritation of sensory fibers that course within the pelvic nerve. The spine surgeon directed a diagnostic injection of bupivacaine to the sacral nerve roots and subsequently morphine to the conus medullaris of the spinal cord. The bupivacaine produced general penile numbness; the morphine selectively decreased penile pain symptoms during sexual arousal without blocking penile skin sensation. The collaboration among specialties led to the conclusion that the Tarlov cysts were pathophysiologically mediating the penile pain symptoms during arousal. Long-term follow-up after surgical repair showed complete symptom elimination at 18 months after treatment. This case provides evidence that (i) Tarlov cysts can cause sacral spinal nerve root radiculitis through

  19. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

    PubMed

    Matsukawa, Kanji

    2012-01-01

    Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.

  20. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  1. Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    NASA Astrophysics Data System (ADS)

    Voormolen, Eduard H. J.; van Stralen, Marijn; Woerdeman, Peter A.; Pluim, Josien P. W.; Noordmans, Herke J.; Regli, Luca; Berkelbach van der Sprenkel, Jan W.; Viergever, Max A.

    2011-03-01

    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40+/-0.20 mm (mean+/-standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy.

  2. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    NASA Astrophysics Data System (ADS)

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  3. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  4. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  5. The rostral parvicellular reticular formation neurons mediate lingual nerve input to the rostral ventrolateral medulla.

    PubMed

    Ishizuka, Ken'Ichi; Satoh, Yoshihide

    2012-08-16

    In rats that had been anesthetized by urethane-chloralose, we investigated whether neurons in the rostral part of the parvicellular reticular formation (rRFp) mediate lingual nerve input to the rostral ventrolateral medulla (RVLM), which is involved in somato-visceral sensory integration and in controlling the cardiovascular system. We determined the effect of the lingual nerve stimulation on activity of the rRFp neurons that were activated antidromically by stimulation of the RVLM. Stimulation of the lingual trigeminal afferent gave rise to excitatory effects (10/26, 39%), inhibitory effects (6/26, 22%) and no effect (10/26, 39%) on the RVLM-projecting rRFp neurons. About two-thirds of RVLM-projecting rRFp neurons exhibited spontaneous activity; the remaining one-third did not. A half (13/26) of RVLM-projecting rRFp neurons exhibited a pulse-related activity, suggesting that they receive a variety of peripheral and CNS inputs involved in cardiovascular function. We conclude that the lingual trigeminal input exerts excitatory and/or inhibitory effects on a majority (61%) of the RVLM-projecting rRFp neurons, and their neuronal activity may be involved in the cardiovascular responses accompanied by the defense reaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ.

    PubMed

    Zarei, Kasra; Scheetz, Todd E; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G; Fingert, John H; Abràmoff, Michael David

    2016-05-26

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ's performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  7. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    NASA Astrophysics Data System (ADS)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-05-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  8. X-ray reciprocal space mapping of dislocation-mediated strain relaxation during InGaAs/GaAs(001) epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru

    2011-12-01

    Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into fourmore » thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.« less

  9. The augmenting action of banana tree juice on skeletal muscle contraction.

    PubMed

    Singh, Y N; Dryden, W F

    1990-01-01

    An extract obtained from juice expressed from the stem of the plantain banana tree (Musa sapientum L., var. paradisiaca) induces twitch augmentation in skeletal muscles. The mechanism of this action was investigated in the mouse hemi-diaphragm preparation. Directly evoked twitches and potassium induced (K+) contractures were both augmented by the extract. Twitch augmentation was partly dependent on extracellular Ca2+. The action on K(+)-contractures was unaffected by tetrodotoxin, but the rate of relaxation was enhanced in the absence of extracellular calcium (0[Ca2+]o). Muscle contracture induced by high concentrations of extract was also augmented in 0[Ca2+]o and in the presence of the Ca2(+)-channel blocking agent, nifedipine. The time course of the contracture was shortened in 0[Ca2+]o, but not by nifedipine. Nifedipine enhanced the augmenting effect of the extract on twitches but shortened the time-course of this action. In addition, a muscle contracture was superimposed on the twitching muscle at higher concentrations of nifedipine. Manganese, on the other hand, reduced or abolished the augmenting action of the extract. The results are consistent with an action of banana tree juice on the molecule responsible for excitation-contraction coupling in skeletal muscle, resulting in a labilization of intracellular Ca2+.

  10. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    PubMed Central

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  11. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.

    PubMed

    Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego

    2014-03-01

    To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the

  12. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    PubMed

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  13. Sialorphin (the mature peptide product of Vcsa1) relaxes corporal smooth muscle tissue and increases erectile function in the ageing rat

    PubMed Central

    Davies, Kelvin P.; Tar, Moses; Rougeot, Catherine; Melman, Arnold

    2007-01-01

    OBJECTIVE To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. MATERIALS AND METHODS Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 μg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 μM phenylephrine. RESULTS Intracorporal injection of 100 μg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55–65 min the ICP/BP ratio increased to ≈ 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 μM phenylephrine, 1 μM CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 μg/mL) compared with carrier alone. CONCLUSION These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue. PMID:17026587

  14. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    PubMed Central

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  15. Protein kinase G regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins.

    PubMed

    Qi, H; Zheng, X; Qin, X; Dou, D; Xu, H; Raj, J U; Gao, Y

    2007-12-01

    Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins. Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from gamma-32P-ATP into the specific substrate BPDEtide. Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51-66%. These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow.

  16. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

    PubMed Central

    Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P

    2007-01-01

    Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122

  17. Sustained release of nerve growth factor from biodegradable polymer microspheres.

    PubMed

    Camarata, P J; Suryanarayanan, R; Turner, D A; Parker, R G; Ebner, T J

    1992-03-01

    Although grafted adrenal medullary tissue to the striatum has been used both experimentally and clinically in parkinsonism, there is a definite need to augment long-term survival. Infusion of nerve growth factor (NGF) or implantation of NGF-rich tissue into the area of the graft prolongs survival and induces differentiation into neural-like cells. To provide for prolonged, site-specific delivery of this growth factor to the grafted tissue in a convenient manner, we fabricated biodegradable polymer microspheres of poly(L-lactide)co-glycolide (70:30) containing NGF. Biologically active NGF was released from the microspheres, as assayed by neurite outgrowth in a dorsal root ganglion tissue culture system. Anti-NGF could block this outgrowth. An enzyme-linked immunosorbent assay detected NGF still being released in vitro for longer than 5 weeks. In vivo immunohistochemical studies showed release over a 4.5-week period. This technique should prove useful for incorporating NGF and other growth factors into polymers and delivering proteins and other macromolecules intracerebrally over a prolonged time period. These growth factor-containing polymer microspheres can be used in work aimed at prolonging graft survival, treating experimental Alzheimer's disease, and augmenting peripheral nerve regeneration.

  18. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  19. Effects of pyrogallol, hydroquinone and duroquinone on responses to nitrergic nerve stimulation and NO in the rat anococcygeus muscle

    PubMed Central

    La, Mylinh; Rand, Michael J

    1999-01-01

    The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle.Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA).Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 μM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 μM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator.Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 μM and this effect was reversed by SOD (100–1000 u ml−1). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol.Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 μM and 100 μM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 μM for NO and 40 μM for nitrergic nerve stimulation: these reductions were reversed by SOD.The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone. PMID:10051154

  20. Augmented reality social story for autism spectrum disorder

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Arisandi, D.; Lumbanbatu, A. F.; Kemit, L. F.; Nababan, E. B.; Sheta, O.

    2018-03-01

    Augmented Reality is a technique that can bring social story therapy into virtual world to increase intrinsic motivation of children with Autism Spectrum Disorder(ASD). By looking at the behaviour of ASD who will be difficult to get the focus, the lack of sensory and motor nerves in the use of loads on the hands or other organs will be very distressing children with ASD in doing the right activities, and interpret and understand the social situation in determining a response appropriately. Required method to be able to apply social story on therapy of children with ASD that is implemented with Augmented Reality. The output resulting from this method is 3D animation (three-dimensional animation) of social story by detecting marker located in special book and some simple game which done by using leap motion controller which is useful in reading hand movement in real-time.

  1. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  2. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    PubMed

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  3. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function

    PubMed Central

    Rajendran, Pradeep S.; Nier, Heath A.; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. PMID:26371171

  4. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  5. Hyperinsulinemia fails to augment ET-1 action in the skeletal muscle vascular bed in vivo in humans

    PubMed Central

    Lteif, Amale A.; Fulford, Angie D.; Considine, Robert V.; Gelfand, Inessa; Baron, Alain D.; Mather, Kieren J.

    2008-01-01

    Endogenous endothelin action is augmented in human obesity and type 2 diabetes and contributes to endothelial dysfunction and impairs insulin-mediated vasodilation in humans. We hypothesized that insulin resistance-associated hyperinsulinemia could preferentially drive endothelin-mediated vasoconstriction. We applied hyperinsulinemic-euglycemic clamps with higher insulin dosing in obese subjects than lean subjects (30 vs. 10 mU·m−2·min−1, respectively), with the goal of matching insulin's nitric oxide (NO)-mediated vascular effects. We predicted that, under these circumstances, insulin-stimulated endothelin-1 (ET-1) action (assessed with the type A endothelin receptor antagonist BQ-123) would be augmented in proportion to hyperinsulinemia. NO bioactivity was assessed using the nitric oxide synthase inhibitor NG-monomethyl-l-arginine. Insulin-mediated vasodilation and insulin-stimulated NO bioavailability were well matched across groups by this approach. As expected, steady-state insulin levels were approximately threefold higher in obese than lean subjects (109.2 ± 10.2 pmol/l vs. 518.4 ± 84.0, P = 0.03). Despite this, the augmentation of insulin-mediated vasodilation by BQ-123 was not different between groups. ET-1 flux across the leg was not augmented by insulin alone but was increased with the addition of BQ-123 to insulin (P = 0.01 BQ-123 effect, P = not significant comparing groups). Endothelin antagonism augmented insulin-stimulated NO bioavailability and NOx flux, but not differently between groups and not proportional to hyperinsulinemia. These findings do not support the hypothesis that insulin resistance-associated hyperinsulinemia preferentially drives endothelin-mediated vasoconstriction. PMID:18957616

  6. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  7. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    PubMed Central

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211

  8. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  9. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?

    PubMed Central

    Batenburg, Wendy W; Popp, Rüdiger; Fleming, Ingrid; Vries, René de; Garrelds, Ingrid M; Saxena, Pramod R; Danser, A H Jan

    2004-01-01

    To investigate whether S-nitrosothiols, in addition to NO, mediate bradykinin-induced vasorelaxation, porcine coronary microarteries (PCMAs) were mounted in myographs. Following preconstriction, concentration–response curves (CRCs) were constructed to bradykinin, the NO donors S-nitroso-N-penicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) and the S-nitrosothiols L-S-nitrosocysteine (L-SNC) and D-SNC. All agonists relaxed PCMAs. L-SNC was ≈5-fold more potent than D-SNC. The guanylyl cyclase inhibitor ODQ and the NO scavenger hydroxocobalamin induced a larger shift of the bradykinin CRC than the NO synthase inhibitor L-NAME, although all three inhibitors equally suppressed bradykinin-induced cGMP responses. Complete blockade of bradykinin-induced relaxation was obtained with L-NAME in the presence of the large- and intermediate-conductance Ca2+-activated K+-channel (BKCa, IKCa) blocker charybdotoxin and the small-conductance Ca2+-activated K+-channel (SKCa) channel blocker apamin, but not in the presence of L-NAME, apamin and the BKCa channel blocker iberiotoxin. Inhibitors of cytochrome P450 epoxygenase, cyclooxygenase, voltage-dependent K+ channels and ATP-sensitive K+ channels did not affect bradykinin-induced relaxation. SNAP-, DEA-NONOate- and D-SNC-induced relaxations were mediated entirely by the NO-guanylyl cyclase pathway. L-SNC-induced relaxations were partially blocked by charybdotoxin+apamin, but not by iberiotoxin+apamin, and this blockade was abolished following endothelium removal. ODQ, but not hydroxocobalamin, prevented L-SNC-induced increases in cGMP, and both drugs shifted the L-SNC CRC 5–10-fold to the right. L-SNC hyperpolarized intact and endothelium-denuded coronary arteries. Our results support the concept that bradykinin-induced relaxation is mediated via de novo synthesized NO and a non-NO, endothelium-derived hyperpolarizing factor (EDHF). S-nitrosothiols, via stereoselective activation of endothelial IKCa and SKCa channels

  10. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  11. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.

    PubMed

    Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A

    2014-04-18

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  12. Peripheral nerve ultrasound scoring systems: benchmarking and comparative analysis.

    PubMed

    Grimm, Alexander; Rattay, Tim W; Winter, Natalie; Axer, Hubertus

    2017-02-01

    Ultrasound of the nerves is an additive diagnostic tool to evaluate polyneuropathy. Recently, the need for standardized scoring systems has widely been discussed; different scores are described so far. Therefore, 327 patients with polyneuropathy were analyzed by ultrasound in our laboratory. Consequently, several ultrasound scoring tools were applied, i.e., the nerve pattern classification according to Padua et al. in all patients with CIDP and variants, the Bochum ultrasound score (BUS) and the neuritis ultrasound protocol in immune-mediated neuritis, the ultrasound pattern sum score, the homogeneity score, and the nerve enlargement distribution score in all neuropathies if possible. For all scores good accuracy was found. Most patients with CIDP revealed hypoechoic enlarged nerves (Class 1), the BUS/NUP was useful to identify GBS (sensitivity >85%), MMN (100%) and CIDP (>70%), while the UPSS showed high sensitivity and positive/negative predictive values (N/PPV) in the diagnosis of GBS (>70%), CIDP (>85%) and axonal non-inflammatory neuropathies (>90%). Homogeneous nerves were found in most CMT1 patients (66.7%), while immune-mediated neuropathies mostly show regional nerve enlargement. The HS was suitable to identify CMT patients with an HS ≥5 points. All scores were easily applicable with high accuracy. The former-reported results could be similarly confirmed. However, all sores have some incompleteness concerning unselected polyneuropathy population, particularly rare and focal types. Scoring systems are useful and easily applicable. They show high accuracy in certain neuropathies, but also offer some gaps and can, therefore, only be used in addition to standard diagnostic routines such as electrophysiology.

  13. Electron spin dynamics and spin–lattice relaxation of trityl radicals in frozen solutions†

    PubMed Central

    Chen, Hanjiao; Maryasov, Alexander G.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Tormyshev, Victor M.

    2017-01-01

    Electron spin–lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach–Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644

  14. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1.

    PubMed

    Raffai, Gábor; Khang, Gilson; Vanhoutte, Paul M

    2014-05-01

    Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II to angiotensin-(1-7) that activates Mas receptors, inhibits ACE1, and modulates bradykinin receptor sensitivity. This in vitro study compared the direct and indirect effects of angiotensin-(1-7), the ACE1 inhibitor captopril, and diminazene aceturate (DIZE) an alleged ACE2 activator in rings of porcine coronary arteries, by measuring changes of isometric tension. Angiotensin-(1-7), captopril, and DIZE did not cause significant changes in tension before or after desensitization of bradykinin receptors in preparations contracted with U46619. Bradykinin caused concentration-dependent and endothelium-dependent relaxations that were not affected by DIZE but were potentiated to a similar extent by angiotensin-(1-7) and captopril, given alone or in combination. Bradykinin responses potentiated by angiotensin-(1-7) and captopril were not affected by the BK1 antagonist SSR240612 and remained augmented in the presence of either N-nitro-L-arginine methyl ester hydrochloride plus indomethacin or TRAM-34 plus UCL-1684. ACE2 was identified in the coronary endothelium by immunofluorescence, but its basal activity was not influenced by DIZE. These results suggest that in coronary arteries, angiotensin-(1-7) and captopril both improves NO bioavailability and enhances endothelium-dependent hyperpolarization to bradykinin solely by ACE1 inhibition. Endothelial ACE2 activity cannot be increased by DIZE to produce local adequate amounts of angiotensin-(1-7) to influence vascular tone.

  15. Protein kinase G regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins

    PubMed Central

    Qi, H; Zheng, X; Qin, X; Dou, D; Xu, H; Raj, J U; Gao, Y

    2007-01-01

    Background and purpose: Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins. Experimental approach: Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from γ-32P-ATP into the specific substrate BPDEtide. Key results: Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51–66%. Conclusions and implications: These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow. PMID:17891157

  16. Nerve stripper-assisted sural nerve harvest.

    PubMed

    Hassanpour, Esmail; Yavari, Masoud; Karbalaeikhani, Ali; Saremi, Hossein

    2014-03-01

    Sural nerve has the favorite length and size for nerve graft interposition. Here two techniques, that is, "stocking seam" and "stair-step" or "stepladder," have been used for harvesting sural nerve. The first technique results in an unsightly scar at the posterior calf, and the latter one takes a long time to perform and exert undue traction to the graft during harvesting. The purpose of this article is to describe our experience in harvesting the sural nerve by a nerve stripper. A nerve stripper was used for harvesting sural nerve in 35 adult patients (in 6 patients, sural harvesting was done bilaterally), 27 men and 8 women. Thirty-one sural nerve harvests were done by closed technique (i.e., harvesting of sural nerve only by two incisions, one in the posterior of the lateral malleolus and the other in popliteal fossa), in 8 others by limited open technique, and in 2 cases, there was early laceration of the sural nerve at the beginning of the study. The contralateral sural nerve was harvested in one patient and medial antebrachial nerve in another by open technique. The mean length of the retrieved sural nerve was 34.5 cm in the closed technique group and 35 cm in the limited open technique group. We detected advancing Tinel's sign in all nerve stripper-assisted sural nerve harvested group members in both the closed and limited open groups. Sural nerve harvesting by the nerve stripper is a reliable and simple technique, and it is applicable as a routine technique. Applying controlled rotatory movements of the nerve stripper instead of pushing can result in satisfactory harvesting of the sural nerve without early laceration. Georg Thieme Verlag KG Stuttgart · New York.

  17. Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release.

    PubMed

    Almabrouk, Tarek A M; Ugusman, Azizah B; Katwan, Omar J; Salt, Ian P; Kennedy, Simon

    2017-10-01

    Perivascular adipose tissue (PVAT) surrounds most blood vessels and secretes numerous active substances, including adiponectin, which produce a net anticontractile effect in healthy individuals. AMPK is a key mediator of cellular energy balance and may mediate the vascular effects of adiponectin. In this study, we investigated the role of AMPK within PVAT in mediating the anticontractile effect of PVAT. Endothelium-denuded aortic rings from wild-type (WT; Sv129) and α 1 AMPK knockout (KO) mice were mounted on a wire myograph. Dose-response curves to the AMPK-independent vasodilator cromakalim were studied in vessels with and without PVAT, and effect of pre-incubation with conditioned media and adiponectin on relaxation was also studied. The effect of AMPKα1 KO on the secretory profile of PVAT was assessed by elisa. Thoracic aortic PVAT from KO mice was morphologically indistinct from that of WT and primarily composed of brown adipose tissue. PVAT augmented relaxation to cromakalim in WT but not KO aortic rings. Addition of WT PVAT augmented relaxation in KO aortic rings but KO PVAT had no effect in WT rings. PVAT from KO mice secreted significantly less adiponectin and addition of adiponectin to either KO or WT aortic rings without PVAT augmented relaxation to cromakalim. An adiponectin blocking peptide significantly attenuated relaxation in WT rings with PVAT but not in KO rings. AMPKα1 has a critical role in maintaining the anticontractile actions of PVAT; an effect independent of the endothelium but likely mediated through altered adiponectin secretion or sensitivity. This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc. © 2016 The British Pharmacological Society.

  18. Activatory and Inhibitory Fcγ Receptors Augment Rituximab-mediated Internalization of CD20 Independent of Signaling via the Cytoplasmic Domain*

    PubMed Central

    Vaughan, Andrew T.; Chan, Claude H. T.; Klein, Christian; Glennie, Martin J.; Beers, Stephen A.; Cragg, Mark S.

    2015-01-01

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes. PMID:25568316

  19. Effect of hypothyroidism on the nitrergic relaxant responses of corpus cavernosal smooth muscle in rabbits.

    PubMed

    Sarac, Bulent; Yildirim, Mustafa K; Bagcivan, Ihsan; Kaya, Kemal; Kilicarslan, Hakan; Yildirim, Sahin

    2006-01-01

    The incidence of hormonal dysfunction as a cause of impotence remains controversial. However, several recent studies have reported evidence of hormonal abnormalities in 25-35% of impotent men. Hypothyroidism has been reported to occur in 6% of impotent men. In the present study, we examined nitrergic responses in hypothyroidism in rabbit corpus cavernosum and compared them with controls. Carbachol-induced relaxation responses and electrical field stimulation (EFS)-induced frequency-dependent relaxations decreased significantly in hypothyroid rabbits. Papaverine and sodium nitroprusside (SNP)-induced relaxation responses did not change significantly in hypothyroid rabbits. The contraction responses of phenylephrine and EFS-induced frequency-dependent contractions were significantly decreased in the hypothyroid group. We can speculate that the reduction of relaxant responses to EFS and carbachol in hypothyroid rabbits can depend on a decreased release of nitric oxide (NO) from nitrergic nerves and endothelium or a reduction of muscarinic receptor density. Also, decreases in contraction responses may depend on diminished adrenoceptor density.

  20. The role of the superior laryngeal nerve in esophageal reflexes

    PubMed Central

    Medda, B. K.; Jadcherla, S.; Shaker, R.

    2012-01-01

    The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not

  1. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms.

    PubMed

    Shin, Hwa Kyoung; Salomone, Salvatore; Potts, E Michelle; Lee, Sae-Won; Millican, Eric; Noma, Kensuke; Huang, Paul L; Boas, David A; Liao, James K; Moskowitz, Michael A; Ayata, Cenk

    2007-05-01

    Rho-kinase is a serine threonine kinase that increases vasomotor tone via its effects on both endothelium and smooth muscle. Rho-kinase inhibition reduces cerebral infarct size in wild type, but not endothelial nitric oxide synthase deficient (eNOS-/-) mice. The mechanism may be related to Rho-kinase activation under hypoxic/ischemic conditions and impaired vasodilation because of downregulation of eNOS activity. To further implicate Rho-kinase in impaired vascular relaxation during hypoxia/ischemia, we exposed isolated vessels from rat and mouse to 60 mins of hypoxia, and showed that hypoxia reversibly abolished acetylcholine-induced eNOS-dependent relaxation, and that Rho-kinase inhibitor hydroxyfasudil partially preserved this relaxation during hypoxia. We, therefore, hypothesized that if hypoxia-induced Rho-kinase activation acutely impairs vasodilation in ischemic cortex, in vivo, then Rho-kinase inhibitors would acutely augment cerebral blood flow (CBF) as a mechanism by which they reduce infarct size. To test this, we studied the acute cerebral hemodynamic effects of Rho-kinase inhibitors in ischemic core and penumbra during distal middle cerebral artery occlusion (dMCAO) in wild-type and eNOS-/- mice using laser speckle flowmetry. When administered 60 mins before or immediately after dMCAO, Rho-kinase inhibitors hydroxyfasudil and Y-27632 reduced the area of severely ischemic cortex. However, hydroxyfasudil did not reduce the area of CBF deficit in eNOS-/- mice, suggesting that its effect on CBF within the ischemic cortex is primarily endothelium-dependent, and not mediated by its direct vasodilator effect on vascular smooth muscle. Our results suggest that Rho-kinase negatively regulates eNOS activity in acutely ischemic brain, thereby worsening the CBF deficit. Therefore, rapid nontranscriptional upregulation of eNOS activity by small molecule inhibitors of Rho-kinase may be a viable therapeutic approach in acute stroke.

  2. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music.

    PubMed

    Ooishi, Yuuki; Mukai, Hideo; Watanabe, Ken; Kawato, Suguru; Kashino, Makio

    2017-01-01

    Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR) and calculated the heart rate variability (HRV) to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF) increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF) to HF ratio (LF/HF) increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in physiological

  3. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music

    PubMed Central

    Watanabe, Ken; Kawato, Suguru; Kashino, Makio

    2017-01-01

    Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR) and calculated the heart rate variability (HRV) to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF) increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF) to HF ratio (LF/HF) increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in physiological

  4. Neurophysiological changes associated with implant-associated augmentation procedures in the lower jaw.

    PubMed

    Hartmann, Amely; Welte-Jzyk, Claudia; Seiler, Marcus; Daubländer, Monika

    2017-08-01

    Neurophysiological changes after oral and maxillofacial surgery remain one of the topics of current research. This study evaluated if implant placement associated with augmentation procedures increases the possibility of sensory disturbances or result in impaired quality of life during the healing period. Patients who had obtained an implant placement in the lower jaw in combination with augmentation procedures were examined by implementing a comprehensive Quantitative Sensory Testing (QST) protocol for extra- and intraoral use. As augmentation procedures, we used Guided Bone Regeneration (Group A) and Customized Bone Regeneration (Group B) techniques. Patients were tested bilaterally at the chin and mucosal lower lip. Results were compared to a group without augmentation procedures (Group C). Patients' quality of life and psychological comorbidity after the surgical procedures was assessed with the Oral Health Impact Profile and the Hospital Anxiety and Depression Scale. For groups A (n = 20) and B (n = 8), mechanical QST parameters showed no significant differences in all qualities of the inferior alveolar nerve compared to the contralateral side and compared to the nonaugmentation control group (n = 32) as well. Evaluation of quality of life and psychological factors showed no statistical differences. Augmentation procedures did not increase sensory disturbances, indicating no changes in the neurophysiological pathways. Extended augmentation procedures did not lead to sensory changes either or result in an impaired quality of life or modified anxiety and depression scores. © 2017 Wiley Periodicals, Inc.

  5. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce

  6. Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.

    PubMed

    Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali

    2017-01-01

    This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.

  7. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    PubMed

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  8. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  9. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  10. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  11. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  12. Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation.

    PubMed

    Thomas, A; Bunyan, K; Tiidus, P M

    2010-01-01

    Our laboratory has shown that oestrogen acts to augment myoblast (satellite cell) activation, proliferation and total number and that this may occur through an oestrogen receptor (OR)-mediated mechanism. The purpose of this study was to further investigate the mechanism of oestrogen influence on augmentation of post-exercise myoblast numbers through use of a specific OR-alpha agonist, propyl pyrazole triol (PPT). Ovariectomized rats were used (n = 64) and separated into four groups: sham, oestrogen supplemented, agonist supplemented, and a combined oestrogen and agonist supplemented group. These groups were further subdivided into control (unexercised) and exercise groups. Surgical removal of white vastus and soleus muscles was performed 72 h post-exercise. Muscle samples were immunostained for the myoblast markers Pax7 and MyoD. A significant increase in total (Pax7-positive) and activated (MyoD-positive) myoblasts was found in all groups post-exercise. A further significant augmentation of total and activated myoblasts occurred in oestrogen supplemented, agonist supplemented and the combined oestrogen and agonist supplemented groups post-exercise in white vastus and soleus muscles relative to unsupplemented animals. These results demonstrate that both oestrogen and the specific OR-alpha receptor agonist, PPT, can significantly and to similar degrees augment myoblast number and activation following exercise-induced muscle damage. This suggests that oestrogen acts through an OR-mediated mechanism to stimulate myoblast proliferation following exercise, with OR-alpha playing a primary role.

  13. Development of a Rabbit Model of Radiation-Induced Sciatic Nerve Injury: In Vivo Evaluation Using T2 Relaxation Time Measurements.

    PubMed

    Wan, Qi; Zeng, Qian; Li, Xinchun; Sun, Chongpeng; Zhou, Jiaxuan; Zou, Qiao; Deng, Yingshi; Niu, Daoli

    2015-01-01

    To develop a rabbit model of radiation-induced sciatic nerve injury (RISNI), using computed tomography (CT)-guided stereotactic radiosurgery, and assess the value of T2 measurements of injured nerves. Twenty New Zealand rabbits were randomly divided into A (n = 5) and B (n = 15) groups. Group A rabbits underwent CT and magnetic resonance scan and were then killed for comparison of images and anatomy of sciatic nerves. One side of the sciatic nerve of group B rabbits received irradiation doses of 35, 50, or 70 Gy (n = 5 per group). Magnetic resonance imaging and functional assessments were performed before irradiation and 1, 2, 3, and 4 months thereafter. The thigh section of the sciatic nerve outside the pelvis could be observed by CT and magnetic resonance imaging. T2 values of the irradiated nerve of the 35-Gy group increased gradually, peaking at 4 months; T2 values of the 50-Gy group increased faster, peaking at 3 months. Significant differences between the 35-Gy and control groups were found at 3 and 4 months, and between the 50-Gy and control groups at 2, 3, and 4 months. Functional scores of the 50-Gy group declined progressively, whereas the 35-Gy group scores reached a low point at 3 months posttreatment and then recovered. Functional scores of the irradiated limbs demonstrated a negative correlation with T2 values (r = -0.591 and -0.595, P < 0.05). Electron microscopy revealed progressive deformation and degeneration of the irradiated nerve in the 35- and 50-Gy groups, which were more severe in the 50-Gy group. A rabbit RISNI model can be produced using the midthigh segment of the sciatic nerve and single-fraction doses of 35 and 50 Gy. Although T2 values are useful for monitoring RISNI, they may not be sensitive enough to evaluate its severity.

  14. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  15. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2015-01-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel’s initial elastic modulus, cell-adhesion-ligand density and degradation. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture. PMID:26618884

  16. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  17. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

    PubMed

    Zanos, Theodoros P; Silverman, Harold A; Levy, Todd; Tsaava, Tea; Battinelli, Emily; Lorraine, Peter W; Ashe, Jeffrey M; Chavan, Sangeeta S; Tracey, Kevin J; Bouton, Chad E

    2018-05-22

    The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve. Copyright © 2018 the Author(s). Published by PNAS.

  18. [Sural nerve removal using a nerve stripper].

    PubMed

    Assmus, H

    1983-03-01

    In 19 patients the sural nerve was removed for nerve grafting by a specially designed nerve stripper. This technique provides a safe and time-saving removal of the nerve in length up to 34 cm (depending on the length of the stripper used). From a single short incision at the level of the lateral malleolus the nerve is stripped proximally tearing some small branches of the distal nerve. The relatively blunt tip avoids inadvertent transection of the nerve at a lower level or dissection of the nerve at a point where branching occurs. Finally the nerve is cut by the divided cylinder at the tip of the stripper.

  19. Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Zavada, John; Kim, Ki Wook

    2010-03-01

    The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.

  20. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  1. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    PubMed

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  2. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration

    PubMed Central

    Yu, Qing; Zhang, She-hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-dong

    2017-01-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. PMID:29171436

  3. An augmented CO2 chemoreflex and overactive orexin system are linked with hypertension in young and adult spontaneously hypertensive rats.

    PubMed

    Li, Aihua; Roy, Sarah H; Nattie, Eugene E

    2016-09-01

    Activation of central chemoreceptors by CO2 increases sympathetic nerve activity (SNA), arterial blood pressure (ABP) and breathing. These effects are exaggerated in spontaneously hypertensive rats (SHRs), resulting in an augmented CO2 chemoreflex that affects both breathing and ABP. The augmented CO2 chemoreflex and the high ABP are measureable in young SHRs (postnatal day 30-58) and become greater in adult SHRs. Blockade of orexin receptors can normalize the augmented CO2 chemoreflex and the high ABP in young SHRs and normalize the augmented CO2 chemoreflex and significantly lower the high ABP in adult SHRs. In the hypothalamus, SHRs have more orexin neurons, and a greater proportion of them increase their activity with CO2 . The orexin system is overactive in SHRs and contributes to the augmented CO2 chemoreflex and hypertension. Modulation of the orexin system may be beneficial in the treatment of neurogenic hypertension. Activation of central chemoreceptors by CO2 increases arterial blood pressure (ABP), sympathetic nerve activity and breathing. In spontaneously hypertensive rats (SHRs), high ABP is associated with enhanced sympathetic nerve activity and peripheral chemoreflexes. We hypothesized that an augmented CO2 chemoreflex and overactive orexin system are linked with high ABP in both young (postnatal day 30-58) and adult SHRs (4-6 months). Our main findings are as follows. (i) An augmented CO2 chemoreflex and higher ABP in SHRs are measureable at a young age and increase in adulthood. In wakefulness, the ventilatory response to normoxic hypercapnia is higher in young SHRs (mean ± SEM: 179 ± 11% increase) than in age-matched normotensive Wistar-Kyoto rats (114 ± 9% increase), but lower than in adult SHRs (226 ± 10% increase; P < 0.05). The resting ABP is higher in young SHRs (122 ± 5 mmHg) than in age-matched Wistar-Kyoto rats (99 ± 5 mmHg), but lower than in adult SHRs (152 ± 4 mmHg; P < 0.05). (ii

  4. Agmatine Induced NO Dependent Rat Mesenteric Artery Relaxation and its Impairment in Salt-Sensitive Hypertension

    PubMed Central

    Gadkari, Tushar V.; Cortes, Natalie; Madrasi, Kumpal; Tsoukias, Nikolaos M.; Joshi, Mahesh S.

    2013-01-01

    L-arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. L-arginine initiated relaxations (EC50, 5.8 ± 0.7 mM; n = 9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3 ± 1.3 mM; n = 5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7 ± 12.1 μM; n = 22), which was compromised by L-NAME (L-NG-Nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9 ± 23.4 μM; n = 5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension. PMID:23994446

  5. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension.

    PubMed

    Gadkari, Tushar V; Cortes, Natalie; Madrasi, Kumpal; Tsoukias, Nikolaos M; Joshi, Mahesh S

    2013-11-30

    l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Beta2-adrenoceptor-mediated tracheal relaxation induced by higenamine from Nandina domestica Thunberg.

    PubMed

    Tsukiyama, Muneo; Ueki, Takuro; Yasuda, Yoichi; Kikuchi, Hiroko; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2009-10-01

    The fruit of Nandina domestica Thunberg (ND, Berberidaceae) has been used to improve cough and breathing difficulties in Japan for many years, but very little is known about the constituent of ND responsible for this effect. We have recently reported that the crude extract from ND (NDE) inhibits histamine- and serotonin-induced contraction of isolated guinea pig trachea, and the inhibitory activity was not explained by nantenine, a well-known alkaloid isolated from ND. To explore other constituent(s) of NDE with tracheal smooth muscle relaxant activity, we fractionated NDE and assessed the pharmacological effects of the fractions using isolated guinea pig tracheal ring preparations. NDE was introduced into a polyaromatic absorbent resin column and stepwise eluted to yield five fractions, among which only the 40 % methanol fraction was active in relaxing tracheal smooth muscle precontracted with histamine. Further separation of the 40 % methanol fraction with high-performance liquid chromatography yielded multiple subfractions, one of which was remarkably active in relaxing histamine-precontracted trachea. Chemical analysis with a time-of-flight mass spectrometer and nuclear magnetic resonance spectrometer identified the constituent of the most active subfraction as higenamine, a benzyltetrahydroisoquinoline alkaloid. The potency and efficacy of the active constituent from NDE in relaxing trachea were almost equivalent to synthetic higenamine. In addition, the effect of the active constituent from NDE was competitively inhibited by the selective beta (2)-adrenoceptor antagonist ICI 118,551. These results indicate that the major constituent responsible for the effect of NDE is higenamine, which probably causes the tracheal relaxation through stimulation of beta (2) adrenoceptors. Georg Thieme Verlag KG Stuttgart-New York.

  7. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice.

    PubMed

    Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei

    2015-07-15

    The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.

  8. Changes in crossed spinal reflexes after peripheral nerve injury and repair.

    PubMed

    Valero-Cabré, Antoni; Navarro, Xavier

    2002-04-01

    , reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.

  9. Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2017-08-15

    The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked

  10. Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain.

    PubMed

    Vaughan, Andrew T; Chan, Claude H T; Klein, Christian; Glennie, Martin J; Beers, Stephen A; Cragg, Mark S

    2015-02-27

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  12. Role of inducible nitric oxide synthase in endothelium‐independent relaxation to raloxifene in rat aorta

    PubMed Central

    Au, Chak Leung; Tsang, Suk Ying; Lau, Chi Wai; Yao, Xiaoqiang; Cai, Zongwei

    2017-01-01

    Background and Purpose Raloxifene can induce both endothelium‐dependent and ‐independent relaxation in different arteries. However, the underlying mechanisms by which raloxifene triggers endothelium‐independent relaxation are still incompletely understood. The purpose of present study was to examine the roles of NOSs and Ca2+ channels in the relaxant response to raloxifene in the rat isolated, endothelium‐denuded aorta. Experimental Approach Changes in isometric tension, cGMP, nitrite, inducible NOS protein expression and distribution in response to raloxifene in endothelium‐denuded aortic rings were studied by organ baths, radioimmunoassay, Griess reaction, western blot and immunohistochemistry respectively. Key Results Raloxifene reduced the contraction to CaCl2 in a Ca2+‐free, high K+‐containing solution in intact aortic rings. Raloxifene also acutely relaxed the aorta primarily through an endothelium‐independent mechanism involving NO, mostly from inducible NOS (iNOS) in vascular smooth muscle layers. This effect of raloxifene involved the generation of cGMP and nitrite. Also, it was genomic in nature, as it was inhibited by a classical oestrogen receptor antagonist and inhibitors of RNA and protein synthesis. Raloxifene‐induced stimulation of iNOS gene expression was partly mediated through activation of the NF‐κB pathway. Raloxifene was more potent than 17β‐estradiol or tamoxifen at relaxing endothelium‐denuded aortic rings by stimulation of iNOS. Conclusions and Implications Raloxifene‐mediated vasorelaxation in rat aorta is independent of a functional endothelium and is mediated by oestrogen receptors and NF‐κB. This effect is mainly mediated through an enhanced production of NO, cGMP and nitrite, via the induction of iNOS and inhibition of calcium influx through Ca2+ channels in rat aortic smooth muscle. PMID:28138957

  13. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit

    PubMed Central

    Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.

    2016-01-01

    Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498

  14. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    PubMed Central

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  15. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  16. Attenuated sympathetic nerve responses after 24 hours of bed rest

    NASA Technical Reports Server (NTRS)

    Khan, Mazhar H.; Kunselman, Allen R.; Leuenberger, Urs A.; Davidson, William R Jr; Ray, Chester A.; Gray, Kristen S.; Hogeman, Cynthia S.; Sinoway, Lawrence I.

    2002-01-01

    Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR x stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of -60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects (P <.023), HR was greater (P <.002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts x min(-1) x mmHg(-1); after bed rest 0.035 bursts x min(-1) x mmHg(-1); P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.

  17. Effects of grip force on median nerve deformation at different wrist angles

    PubMed Central

    Nakashima, Hiroki; Muraki, Satoshi

    2016-01-01

    The present study investigated the effects of grip on changes in the median nerve cross-sectional area (MNCSA) and median nerve diameter in the radial-ulnar direction (D1) and dorsal-palmar direction (D2) at three wrist angles. Twenty-nine healthy participants (19 men [mean age, 24.2 ± 1.6 years]; 10 women [mean age, 24.0 ± 1.6 years]) were recruited. The median nerve was examined at the proximal carpal tunnel region in three grip conditions, namely finger relaxation, unclenched fist, and clenched fist. Ultrasound examinations were performed in the neutral wrist position (0°), at 30°wrist flexion, and at 30°wrist extension for both wrists. The grip condition and wrist angle showed significant main effects (p < 0.01) on the changes in the MNCSA, D1, and D2. Furthermore, significant interactions (p < 0.01) were found between the grip condition and wrist angle for the MNCSA, D1, and D2. In the neutral wrist position (0°), significant reductions in the MNCSA, D1, and D2 were observed when finger relaxation changed to unclenched fist and clenched fist conditions. Clenched fist condition caused the highest deformations in the median nerve measurements (MNCSA, approximately −25%; D1, −13%; D2, −12%). The MNCSA was significantly lower at 30°wrist flexion and 30°wrist extension than in the neutral wrist position (0°) at unclenched fist and clenched fist conditions. Notably, clenched fist condition at 30°wrist flexion showed the highest reduction of the MNCSA (−29%). In addition, 30°wrist flexion resulted in a lower D1 at clenched fist condition. In contrast, 30°wrist extension resulted in a lower D2 at both unclenched fist and clenched fist conditions. Our results suggest that unclenched fist and clenched fist conditions cause reductions in the MNCSA, D1, and D2. More importantly, unclenched fist and clenched fist conditions at 30°wrist flexion and 30°wrist extension can lead to further deformation of the median nerve. PMID:27688983

  18. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels

    PubMed Central

    Malysz, John; Afeli, Serge A. Y.; Provence, Aaron

    2013-01-01

    Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429

  19. Decay of postexercise augmentation in the Lambert-Eaton myasthenic syndrome: effect of cooling.

    PubMed

    Maddison, P; Newsom-Davis, J; Mills, K R

    1998-04-01

    The effect of local cooling on surface recorded compound muscle action potential (CMAP) amplitude was studied in five patients with the Lambert-Eaton myasthenic syndrome (LEMS). The time course of decay of postexercise augmentation of CMAP amplitude characteristically seen in patients with LEMS was determined. We recorded the CMAP from abductor digiti minimi (ADM) in response to supramaximal stimulation of the ulnar nerve. Thirty consecutive stimuli were delivered at 1 Hz immediately after a 10-second period of maximal voluntary contraction. Skin surface temperature was recorded throughout. Initial testing at approximately 30 degrees C was repeated after cooling the hand and forearm by 6 to 12 degrees C. The effects of blood flow on temperature were counteracted by the application of a sphygmomanometer cuff, inflated above systolic blood pressure. The CMAP amplitude following contraction decayed in an exponential manner both during warm and cold conditions. The mean time constant for decay (1/b) in all patients was increased by approximately 25% after cooling. This prolongation of the period of postexercise augmentation of CMAP amplitude in LEMS after cooling concurs with patient reports of symptomatic improvement in cold weather. The mechanism for this benefit is thought to be due to reduction in the rate of removal of calcium ions from the nerve terminal following stimulation, similar to that seen in animal models of short-term synaptic enhancement.

  20. An electromyographic study of muscle relaxants in man.

    PubMed

    Suzuki, H; Kanayama, T; Nakagawa, H; Yazaki, S; Shiratsuchi, T

    1975-05-01

    Supramaximal paired stimuli were applied to the ulnar nerve, and the amplitude of the muscle action potential evoked in the abductor digiti minimi by the second member of the stimulus pair (test response) was compared with that evoked by the first component (conditioning response). The interval between the two components of the stimulus pair (the pair interval) was increased stepwise from 7 to 100 msec and a curve (recovery curve) was obtained by relating the changes in pair interval to the difference in amplitude of the test and conditioning responses. Alterations of the recovery curve (RC) during partial paralysis by muscle relaxants were investigated in healthy adult patients under the lightest plane of general anaesthesia. The control curve obtained in 32 subjects before the administration of a muscle relaxant drug was characterized by slight depressions at very short intervals of paired stimuli, followed by a slight potentiation at 20-100 msec. With non-depolarizing relaxants, RC altered to the characteristic pattern of potentiation at very short intervals of stimuli, followed by a notable depression at longer intervals. In depolarizing blocks with small doses of suxamethonium, the depression of RC at short intervals in the control was enhanced and the pattern of RC was different from that of non-depolarizing agents. When desensitization blocks were instigated by the i.v. administration of suxamethonium, the RC patterns were similar to those of competitive agents.

  1. Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

    PubMed Central

    Fiorellini, Joseph P.

    2017-01-01

    Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits. PMID:29090249

  2. Mindfulness meditation and relaxation training increases time sensitivity.

    PubMed

    Droit-Volet, S; Fanget, M; Dambrun, M

    2015-01-01

    Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    PubMed

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  4. Effects of relaxation on the delayed-type hypersensitivity (DTH) reaction to diphenylcyclopropenone (DCP).

    PubMed

    Zachariae, R; Jørgensen, M M; Christensen, S; Bjerring, P

    1997-07-01

    Delayed-type hypersensitivity (DTH) reactions to the experimental allergen diphenylcyclopropenone (DCP) were measured in four groups, which either trained (+) or did not train in relaxation (-) during the sensitization and/or the challenge phase. All groups consisted of high and low hypnotic susceptible subjects. While there were no differences in erythema, the mean induration of the group which trained in relaxation in both the sensitization and the challenge phase (+/+) was significantly greater than that of the group which trained in relaxation in the challenge phase only (-/+). Significant correlations were found between induration and hypnotic susceptibility scores, and between induration and degree of perceived relaxation during challenge. High hypnotic susceptible subjects experienced a higher degree of perceived relaxation and exhibited greater indurative and erythematous DTH reactions to DCP than low hypnotic susceptible subjects in all four experimental conditions. Though the mediating mechanisms remain unclear, our results suggest that relaxation may affect the DTH reaction, and support previous findings of higher psychophysiologic reactivity of high hypnotic susceptible subjects.

  5. Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela

    Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.

  6. Rat isolated phrenic nerve-diaphragm preparation for pharmacological study of muscle spindle afferent activity: effect of oxotremorine.

    PubMed Central

    Ganguly, D K; Nath, D N; Ross, H G; Vedasiromoni, J R

    1978-01-01

    1. Muscle spindle afferent discharges exhibiting an approximately linear length-frequency relation could be recorded from the phrenic nerve in the isolated phrenic nerve-diaphragm preparation of the rat. 2. Muscle spindle afferent discharges could be identified by their characteristic "spindle pause" during muscle contraction and by their response to succinylcholine. 3. Cholinergic influence on spontaneous and stretch-induced afferent discharges was indicated by the augmentation produced by physostigmine and acetylcholine. (+)-Tubocurarine, but not atropine, prevented this augmentation indicating the presence of curariform cholinoceptors in muscle spindles. 4. Acetylcholine did not appear to be involved in the genesis of spindle afferent discharges as incubation with hemicholinium-3 and (+)-tubocurarine failed to affect the rate of spontaneous and stretch-induced spindle discharges. 5. Oxotremorine markedly increased the rate of spontaneous and stretch-induced spindle afferent discharges and this effect was prevented in the presence of hemicholinium-3 and (+)-tubocurarine. 6. These results with oxotremorine are of interest in connection with the observation that muscle spindle afferents and hyperactive in Parkinsonian patients. PMID:151569

  7. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  8. Augmentation of neurally evoked cholinergic bronchoconstrictor responses by prejunctional NK2 receptors in the guinea-pig.

    PubMed

    Hey, J A; Danko, G; del Prado, M; Chapman, R W

    1996-02-01

    1. We examined the effect of exogenously administered tachykinins, neurokinin A (NKA), substance P (SP) and neurokinin B (NKB) on neurally mediated cholinergic bronchoconstrictor responses in guinea-pigs. 2. Electrical stimulation of regions in the dorsal medulla oblongata produced a cholinergic bronchospasm that was not affected by depletion of endogenous tachykinins with capsaicin pretreatment (50 mg kg-1, s.c., 1 week earlier) or by pretreatment with the neutral endopeptidase inhibitor, phosphoramidon (3 mg kg-1, i.v.). 3. Infusion of NKA (0.03-0.1 microgram kg-1 min-1), SP (1 microgram kg-1 min-1) or NKB (1 microgram kg-1 min-1) potentiated the bronchoconstrictor response to electrical stimulation of the dorsal medulla. The doses of tachykinins tested were subthreshold for direct activation of airway smooth muscle, because they were devoid of direct bronchoconstrictor effects. The relative rank order potency for augmentation of centrally induced bronchospasm was NKA > NKB approximately SP, suggesting activation of the NK2 receptor subtype. 4. Infusion of NKA, SP and NKB had no effect on bronchoconstrictor responses to i.v. methacholine (1 microgram kg-1) indicating that a prejunctional neural mechanism of action was responsible for the effects on CNS stimulation-induced bronchospasm. 5. Potentiation of the bronchoconstrictor response to dorsal medullary stimulation produced by infusion of NKA was blocked by pretreatment with the NK2 antagonist SR 48968 (1 mg kg-1, i.v.) but not by the NK1 antagoinst CP 96,345 (1 mg kg-1, i.v.). 6. The potentiation of CNS-induced bronchospasm produced by infusion of SP was partially inhibited by CP 96,345 (1 mg kg-1, i.v.) but not by SR 48968 (1 mg kg-1, i.v.). Treatment with combined SR 48968 (1 mg kg-1, i.v.) and CP 96,345 (1 mg kg-1, i.v.) completely blocked the SP-induced potentiation of CNS-stimulated bronchospasm. 7. These results identify an important modulatory role for NK2 receptors, located at prejunctional sites on

  9. Involvement of hypoglossal and recurrent laryngeal nerves on swallowing pressure.

    PubMed

    Tsujimura, Takanori; Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Koshi, Naomi; Ashiga, Hirokazu; Shiraishi, Naru; Tsuji, Kojun; Magara, Jin; Inoue, Makoto

    2018-05-01

    Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper

  10. Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice

    PubMed Central

    Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2006-01-01

    Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908

  11. Spin relaxation in semiconductor quantum rings and dots--a comparative study.

    PubMed

    Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M

    2011-03-23

    We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.

  12. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  13. Evidence against vasoactive intestinal polypeptide (VIP) as a dilator and in favour of substance P as a constrictor in airway neurogenic responses.

    PubMed Central

    Karlsson, J. A.; Persson, C. G.

    1983-01-01

    Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone. PMID:6197124

  14. Evidence against vasoactive intestinal polypeptide (VIP) as a dilator and in favour of substance P as a constrictor in airway neurogenic responses.

    PubMed

    Karlsson, J A; Persson, C G

    1983-07-01

    Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone.

  15. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia

    PubMed Central

    Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng

    2018-01-01

    The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent

  16. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  17. After stress comes relax(ation)

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    2015-11-01

    Viscoelastic materials take a finite time to relax and dissipate stress and this time scale is directly connected to the microstructure of the material itself. In their paper, Gomez-Solano and Bechinger (2015 New J. Phys. 17 103032) perform ‘miniaturized’ mechanical tests on a range of viscoelastic materials by dragging a micron-sized bead across them using optical tweezers. Upon switching off all the external forces, they watch the bead recoil to its original position and by tracking its motion they pinpoint the relaxation time of the material. These experiments open up a new range of possibilities to characterize stress relaxation at the microscale just by watching it.

  18. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  19. Tenascin-C in peripheral nerve morphogenesis.

    PubMed

    Chiquet, M; Wehrle-Haller, B

    1994-01-01

    The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Pharmacological identification of β-adrenoceptor subtypes mediating isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle.

    PubMed

    Chino, Daisuke; Sone, Tomoyo; Yamazaki, Kumi; Tsuruoka, Yuri; Yamagishi, Risa; Shiina, Shunsuke; Obara, Keisuke; Yamaki, Fumiko; Higai, Koji; Tanaka, Yoshio

    2018-01-01

    Object We aimed to identify the β-adrenoceptor (β-AR) subtypes involved in isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle using pharmacological and biochemical approaches. Methods Longitudinal smooth muscle was prepared from the male guinea pig ascending colon and contracted with histamine prior to comparing the relaxant responses to three catecholamines (isoprenaline, adrenaline, and noradrenaline). The inhibitory effects of subtype-selective β-AR antagonists on isoprenaline-induced relaxation were then investigated. Results The relaxant potencies of the catecholamines were ranked as: isoprenaline > noradrenaline ≈ adrenaline, whereas the rank order was isoprenaline > noradrenaline > adrenaline in the presence of propranolol (a non-selective β-AR antagonist; 3 × 10 -7 M). Atenolol (a selective β 1 -AR antagonist; 3 × 10 -7 -10 -6  M) acted as a competitive antagonist of isoprenaline-induced relaxation, and the pA 2 value was calculated to be 6.49 (95% confidence interval: 6.34-6.83). The relaxation to isoprenaline was not affected by ICI-118,551 (a selective β 2 -AR antagonist) at 10 -9 -10 -8  M, but was competitively antagonized by 10 -7 -3 × 10 -7  M, with a pA 2 value of 7.41 (95% confidence interval: 7.18-8.02). In the presence of propranolol (3 × 10 -7 M), the relaxant effect of isoprenaline was competitively antagonized by bupranolol (a non-selective β-AR antagonist), with a pA 2 value of 5.90 (95% confidence interval: 5.73-6.35). Conclusion These findings indicated that the β-AR subtypes involved in isoprenaline-induced relaxation of colonic longitudinal guinea pig muscles are β 1 -AR and β 3 -AR.

  1. Nerve Transfer Versus Nerve Graft for Reconstruction of High Ulnar Nerve Injuries.

    PubMed

    Sallam, Asser A; El-Deeb, Mohamed S; Imam, Mohamed A

    2017-04-01

    To assess the efficacy of nerve transfer versus nerve grafting in restoring motor and sensory hand function in patients with complete, isolated high ulnar nerve injuries. A retrospective chart review was performed, at a minimum 2 years of follow-up, of 52 patients suffering complete, isolated high ulnar nerve injury between January 2006 and June 2013 in one specialized hand surgery unit. Twenty-four patients underwent motor and sensory nerve transfers (NT group). Twenty-eight patients underwent sural nerve grafting (NG group). Motor recovery, return of sensibility and complications were examined as outcome measures. The Medical Research Council scale was applied to evaluate sensory and motor recovery. Grip and pinch strengths of the hand were measured. Twenty of 24 patients (83.33%) in the NT group regained M3 grade or greater for the adductor pollicis, the abductor digiti minimi, and the medial 2 lumbricals and interossei, compared with only 16 of 28 patients (57.14%) in the NG group. Means for percentage recovery of grip strengths compared with the other healthy hand were significantly higher for the NT group than the NG group. Sensory recovery of S3 or greater was achieved in more than half of each group with no significant difference between groups. Nerve transfer is favored over nerve grafting in managing high ulnar nerve injuries because of better improvement of motor power and better restoration of grip functions of the hand. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals

    PubMed Central

    Cousin, Michael A.

    2017-01-01

    Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space. PMID:28824381

  3. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways

    PubMed Central

    Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.

    2016-01-01

    The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860

  4. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara; Ishizuka, Tamotsu

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bonemore » marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.« less

  5. Neural tissue engineering options for peripheral nerve regeneration.

    PubMed

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

    PubMed

    Hayano, Satoru; Komatsu, Yoshihiro; Pan, Haichun; Mishina, Yuji

    2015-04-01

    Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  7. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  8. Comparison of Different Muscle-Relaxant Anesthetics on Growth, Migration and Invasion of Gastric Cancer Cells.

    PubMed

    Jiang, Aihua; Zhao, Huishan; Liu, Xiaofei; Yu, Mingwei; Chen, Jian; Jiang, Wen G

    2017-08-01

    Muscle relaxants, also known as neuromuscular blocking agents, can block nerve impulses to the muscles and are always used in surgery for general anesthesia. However, the effect of muscle-relaxant anesthetics on cell activity in gastric cancer is currently unknown. The present study aimed to examine and compare the role of three different muscle-relaxant anesthetics in gastric cancer cells. Gastric cancer cells (SGC7901 and BGC 823) were treated with a different dose of muscle-relaxant anesthetics, Rocuronium bromide (Rb), Vecuronium bromide (Vb) and Cisatracurium Besilate (CB). Using in vitro models, the effects on gastric cancer cell invasion, growth and migration of various anesthetics were subsequently investigated. We found that Rb increased the growth, invasion and migration of gastric cancer cells SGC7901 and BGC823. However, Vb and CB, as relatively mitigative anesthetics, did not significantly affect gastric cancer cell malignant phenotype at their regular blood concentration. Our results are important in selecting the type and dose of anesthetic used for surgery of gastric cancer patients. An understanding of the effect of muscle-relaxant anesthetics and their impact on tumor metastasis is critical, since it provides insight into the appropriate anesthetic strategy that could improve long-term survival in some patients with gastric cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Comparative analysis of nitric oxide and SALMFamide neuropeptides as general muscle relaxants in starfish.

    PubMed

    Melarange, Richard; Elphick, Maurice R

    2003-03-01

    Previous studies have established that the gaseous signalling molecule nitric oxide (NO) and the SALMFamide neuropeptides S1 and S2 cause cardiac stomach relaxation in the starfish Asterias rubens. Here we show that S1, S2 and the NO donor SNAP also cause relaxation of two other preparations from Asterias - tube feet and the apical muscle of the body wall. The rank order of effectiveness as muscle relaxants when tested at a concentration of 10 micro mol l(-1) was SNAP>S2>S1 for both tube feet and apical muscle whereas for cardiac stomach it was S2>S1>SNAP. Significantly, these data indicate that NO and SALMFamide neuropeptides function as general muscle relaxants in starfish but vary in their relative importance in different organ systems. The molecular mechanisms by which NO and SALMFamides cause muscle relaxation in starfish are not known, but previous pharmacological studies on the cardiac stomach using the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazol[4,3-a]quinoxalin-1-one (ODQ) indicate that the cyclic nucleotide second messenger cGMP may mediate effects of NO. Consistent with this hypothesis, here we report that ODQ also causes partial inhibition of the relaxing effect of SNAP on tube foot and apical muscle preparations. To further investigate the involvement of cyclic nucleotides as mediators of the effects of NO and SALMFamides on starfish muscle, we have measured both cGMP and cAMP in cardiac stomach and in apical muscle after treatment with S1, S2 or SNAP. However, no significant changes in cyclic nucleotide content were observed compared with controls. Further experiments were performed on apical muscle tissue in the presence of the cyclic-nucleotide-phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), a drug that also causes cardiac stomach relaxation in starfish. Treatment with IBMX caused a 2-3-fold increase above basal levels for cGMP and cAMP, but co-treatment with IBMX and S1 or S2 or SNAP resulted in no significant further

  10. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  11. Vagus-brain communication in atherosclerosis-related inflammation: a neuroimmunomodulation perspective of CAD.

    PubMed

    Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan

    2007-12-01

    The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.

  12. Anterior augmentation plating of aseptic humeral shaft nonunions after intramedullary nailing.

    PubMed

    Gessmann, Jan; Königshausen, Matthias; Coulibaly, Marlon Osman; Schildhauer, Thomas Armin; Seybold, Dominik

    2016-05-01

    Humeral shaft nonunion after intramedullary nailing is a rare but serious complication. Treatment options include implant removal, open plating, exchange nailing and external fixation. The objective of this retrospective study was to determine whether augmentation plating without nail removal is feasible for treating a humeral shaft nonunion. Between 2002 and 2014, 37 patients (mean age 51, range 20-84 years) with aseptic humeral shaft nonunions prior to intramedullary nailing were treated with augmentation plating. The initial fractures had been fixed with retrograde nails (10 cases) or anterograde nails (27 cases). There were 34 atrophic nonunions and 3 hypertrophic nonunions. Nonunion treatment of all patients consisted of local debridement through an anterior approach to the humerus and anterior placement of the augmentation plates. Supplemental bone grafting was performed in all atrophic nonunion cases. All patients were followed until union was radiologically confirmed. Union was achieved in 36 patients (97 %) after a mean of 6 months (range 3-24 months). There was one case of iatrogenic median nerve palsy that showed complete spontaneous recovery 6 weeks postoperatively. One patient sustained a peri-implant stress fracture that was treated successfully by exchanging the augmentation plate to bridge the nonunion and the fracture. No infections or wound healing complications developed. At a mean follow-up of 14 months, all patients showed free shoulder and elbow motion and no restrictions in daily or working life. The results indicate that augmentation plating using an anterior approach is a safe and reliable option for humeral shaft nonunions after failed nailing, and the treatment has no substantial complications. Because the healing rates are similar to the standard technique of nail removal and fixation by compression or locking plates, we consider this technique to be an alternative choice for treatment.

  13. Relaxation-Induced Anxiety: Paradoxical Anxiety Enhancement Due to Relaxation Training.

    ERIC Educational Resources Information Center

    Heide, Frederick J.; Borkovec, T. D.

    1983-01-01

    Documented relaxation-induced anxiety in 14 subjects suffering from tension who were given training in progressive relaxation and mantra meditation. Four of the subjects displayed clinical evidence of an anxiety reaction during a preliminary practice period. Progressive relaxation produced less evidence of relaxation-induced anxiety. (Author/JAC)

  14. Cyclosporin a inhibits T cell-mediated augmentation of mouse natural killer activity.

    PubMed

    Yanagihara, R H; Adler, W H

    1982-06-01

    Cyclosporin A (CSA) in vitro inhibited the spontaneous cytotoxic activity of mouse spleen cells against YAC target cells in a 4 hr 51Cr release assay. While natural killer (NK) cells were inhibited directly by CSA, these suppressive effects were largely reversible by coculture of effector cells for an optimal period with polyinosinic-polycytidylic acid (Poly I:C) or lipopolysaccharide (LPS). In contrast concanavalin A (Con A), in the presence of CSA, was unable to augment NK activity. The supernatant, however, of mouse spleen cells cultured with Con A was fully able to augment the NK the activity by freshly cultured spleen cells in the presence of CSA. The results indicate that CSA inhibits NK activity by two distinct mechanisms: a) a direct inactivation of NK cells and b) a suppression of production or release of an NK-activating factor from T cells, but not B cells or macrophages.

  15. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    PubMed

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  17. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury

    PubMed Central

    Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.

    2016-01-01

    Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521

  18. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  19. Current progress in use of adipose derived stem cells in peripheral nerve regeneration

    PubMed Central

    Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M

    2015-01-01

    Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105

  20. External laryngeal nerve in thyroid surgery: is the nerve stimulator necessary?

    PubMed

    Aina, E N; Hisham, A N

    2001-09-01

    To find out the incidence and type of external laryngeal nerves during operations on the thyroid, and to assess the role of a nerve stimulator in detecting them. Prospective, non-randomised study. Teaching hospital, Malaysia. 317 patients who had 447 dissections between early January 1998 and late November 1999. Number and type of nerves crossing the cricothyroid space, and the usefulness of the nerve stimulator in finding them. The nerve stimulator was used in 206/447 dissections (46%). 392 external laryngeal nerves were seen (88%), of which 196/206 (95%) were detected with the stimulator. However, without the stimulator 196 nerves were detected out of 241 dissections (81%). The stimulator detected 47 (23%) Type I nerves (nerve > 1 cm from the upper edge of superior pole); 86 (42%) Type IIa nerves (nerve < 1 cm from the upper edge of superior pole); and 63 (31%) Type IIb nerves (nerve below upper edge of superior pole). 10 nerves were not detected. When the stimulator was not used the corresponding figures were 32 (13%), 113 (47%), and 51 (21%), and 45 nerves were not seen. If the nerve cannot be found we recommend dissection of capsule close to the medial border of the upper pole of the thyroid to avoid injury to the nerve. Although the use of the nerve stimulator seems desirable, it confers no added advantage in finding the nerve. In the event of uncertainty about whether a structure is the nerve, the stimulator may help to confirm it. However, exposure of the cricothyroid space is most important for good exposure in searching for the external laryngeal nerve.

  1. Learner Presence, Perception, and Learning Achievements in Augmented-Reality-Mediated Learning Environments

    ERIC Educational Resources Information Center

    Chen, Yu-Hsuan; Wang, Chang-Hwa

    2018-01-01

    Although research has indicated that augmented reality (AR)-facilitated instruction improves learning performance, further investigation of the usefulness of AR from a psychological perspective has been recommended. Researchers consider presence a major psychological effect when users are immersed in virtual reality environments. However, most…

  2. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration.

    PubMed

    Stang, Felix; Fansa, Hisham; Wolf, Gerald; Reppin, Michael; Keilhoff, Gerburg

    2005-06-01

    Large nerve defects require nerve grafts to allow regeneration. To avoid donor nerve problems the concept of tissue engineering was introduced into nerve surgery. However, non-neuronal grafts support axonal regeneration only to a certain extent. They lack viable Schwann cells which provide neurotrophic and neurotopic factors and guide the sprouting nerve. This experimental study used the rat sciatic nerve to bridge 2 cm nerve gaps with collagen (type I/III) tubes. The tubes were different in their physical structure (hollow versus inner collagen skeleton, different inner diameters). To improve regeneration Schwann cells were implanted. After 8 weeks the regeneration process was monitored clinically, histologically and morphometrically. Autologous nerve grafts and collagen tubes without Schwann cells served as control. In all parameters autologous nerve grafts showed best regeneration. Nerve regeneration in a noteworthy quality was also seen with hollow collagen tubes and tubes with reduced lumen, both filled with Schwann cells. The inner skeleton, however, impaired nerve regeneration independent of whether Schwann cells were added or not. This indicates that not only viable Schwann cells are an imperative prerequisite but also structural parameters determine peripheral nerve regeneration.

  3. Ca2+ -activated K+ channel (KCa) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction.

    PubMed

    González-Corrochano, R; La Fuente, Jm; Cuevas, P; Fernández, A; Chen, Mx; Sáenz de Tejada, I; Angulo, J

    2013-05-01

    We have evaluated the influence of calcium-activated potassium channels (KCa ) activation on cGMP-mediated relaxation in human penile tissues from non-diabetic and diabetic patients, and on the effects of PDE5 inhibitors on erectile responses in control and diabetic rats. Cavernosal tissues were collected from organ donors and from patients with erectile dysfunction (ED). Relaxations of corpus cavernosum strips (HCC) and penile resistance arteries (HPRA) obtained from these specimens were evaluated. Intracavernosal pressure (ICP) increases to cavernosal nerve electrical stimulation were determined in anaesthetized diabetic and non-diabetic rats. Concentration-dependent vasodilation to the PDE5 inhibitor, sildenafil, in HPRA was sensitive to endothelium removal, NO/cGMP pathway inhibition and KCa blockade. Accordingly, activation of KCa with NS-8 (10 μM) significantly potentiated sildenafil-induced relaxations in HPRA (EC50 0.49 ± 0.22 vs. 5.21 ± 0.63 μM). In HCC, sildenafil-induced relaxation was unaffected by KCa blockade or activation. Potentiating effects in HPRA were reproduced with an alternative PDE5 inhibitor (tadalafil) and KCa activator (NS1619) and prevented by removing the endothelium. Large-conductance KCa (BK) and intermediate-conductance KCa (IK) contribute to NS-8-induced effects and were immunodetected in human and rat penile arteries. NS-8 potentiated sildenafil-induced enhancement of erectile responses in rats. Activation of KCa recovered the impaired relaxation to sildenafil in diabetic HPRA while sildenafil completely reversed diabetes-induced ED in rats only when combined with KCa activation. Activation of KCa improves vasodilatory capacity of PDE5 inhibitors in diabetic and non-diabetic HPRA, resulting in the recovery of erectile function in diabetic rats. These results suggest a therapeutic potential for KCa activation in diabetic ED. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  4. Management of unilateral recurrent laryngeal nerve injury after thyroid surgery: A review.

    PubMed

    Lynch, Jeremy; Parameswaran, Rajeev

    2017-07-01

    Recurrent laryngeal nerve (RLN) damage because of thyroid and parathyroid surgery has been recognized for over a century. Injury rates have been slowly decreasing in this period while effective treatment strategies have been increasing. Recent literature was evaluated on the topics of anatomy, pathophysiology, avoidance, and conservative and surgical treatment of RLN injury. Data for this literature review were identified by PubMed and references from relevant articles using the search terms "thyroid," "laryngeal nerve," and "injury." Only articles published in English between 1990 and 2015 were included. Advances in technique and equipment have made injury less likely. The evidence and role for neuromonitoring is discussed. Treatment strategies may include speech therapy, vocal cord augmentation using injection, laryngeal framework surgery techniques (including laryngoplasty and arytenoid adduction), and reinnervation. Injury rates in specialist centers are very low. Good to excellent results may be obtained in most cases. © 2017 Wiley Periodicals, Inc.

  5. Endothelial cell-dependent relaxation and contraction induced by histamine in the isolated guinea-pig pulmonary artery.

    PubMed

    Satoh, H; Inui, J

    1984-01-27

    Histamine (10(-8)-10(-6) M) relaxed in a concentration-dependent manner the guinea-pig pulmonary artery which had been contracted by noradrenaline (5 X 10(-7) M). After the removal of endothelial cells (ETCs) histamine at the same concentrations did not cause relaxation but induced additional contraction. Both responses to histamine were antagonized by chlorpheniramine (3 X 10(-7) M). These results suggest that in the pulmonary artery histamine simultaneously stimulates H1-receptors located on both ETCs and smooth muscle cells. This results in two opposite effects, relaxation mediated by ETCs, and contraction.

  6. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  7. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  9. Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    PubMed Central

    Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.

    2010-01-01

    Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232

  10. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.

  11. Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis.

    PubMed

    Erin, Nuray; Duymuş, Ozlem; Oztürk, Saffet; Demir, Necdet

    2012-11-10

    Chronic inflammation is involved in initiation as well as in progression of cancer. Semapimod, a tetravalent guanylhydrazon and formerly known as CNI-1493, inhibits the release of inflammatory cytokines from activated macrophages and this effect is partly mediated by the vagus nerve. Our previous findings demonstrated that inactivation of vagus nerve activity as well sensory neurons enhanced visceral metastasis of 4THM breast carcinoma. Hence semapimod by activating vagus nerve may inhibit breast cancer metastasis. Here, effects of semapimod on breast cancer metastasis, the role of vagal sensory neurons on this effect and changes in mediators of the neuroimmune connection, such as substance P (SP) as well as neprilysin-like activity, were examined. Vagotomy was performed on half of the control animals that were treated with semapimod following orthotopic injection of 4THM breast carcinoma cells. Semapimod decreased lung and liver metastases in control but not in vagotomized animals with an associated increased SP levels in sensory nerve endings. Semapimod also increased neprilysin-like activity in lung tissue of control animals but not in tumor-bearing animals. This is the first report demonstrating that semapimod enhances vagal sensory nerve activity and may have anti-tumoral effects under in-vivo conditions. Further studies, however, are required to elucidate the conditions and the mechanisms involved in anti-tumoral effects of semapimod. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  13. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    PubMed

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  15. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  16. Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and β3-adrenoceptor knockout mice

    PubMed Central

    Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio

    2000-01-01

    The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880

  17. Recurrent Isolated Sixth Nerve Palsy in Relapsing-Remitting Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Al-Bustani, Najwa; Weiss, Michael D

    2015-09-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated sensory and motor demyelinating polyneuropathy that typically presents as a relapsing-remitting or progressive disorder. Cranial neuropathies infrequently occur in association with other more typical symptoms of CIDP. We report a case of CIDP with recurrent isolated sixth nerve palsy. Her physical examination showed a right sixth nerve palsy and absent deep tendon reflexes as the only indicator of her disease. Magnetic resonance imaging revealed thickening without enhancement of the trigeminal and sixth cranial nerves. Nerve conduction study (NCS) revealed a sensory and motor demyelinating polyneuropathy with conduction block and temporal dispersion in multiple nerves consistent with CIDP. Cerebrospinal fluid demonstrated albuminic-cytologic dissociation. She had a remarkable response to intravenous immunoglobulin and remains asymptomatic without any additional immunomodulating therapy. Isolated cranial neuropathies can rarely occur as the sole manifestation of relapsing-remitting CIDP. The profound demyelination found on NCS in this case demonstrates that there can be a dramatic discordance between the clinical and electrodiagnostic findings in some patients with this disorder.

  18. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2.

    PubMed

    Telleman, Johan A; Stellingwerff, Menno D; Brekelmans, Geert J; Visser, Leo H

    2018-02-01

    Neurofibromatosis type 2 (NF2) is mainly associated with central nervous system (CNS) tumors. Peripheral nerve involvement is described in symptomatic patients, but evidence of subclinical peripheral nerve involvement is scarce. We conducted a cross-sectional pilot study in 2 asymptomatic and 3 minimally symptomatic patients with NF2 to detect subclinical peripheral nerve involvement. Patients underwent clinical examination, nerve conduction studies (NCS), and high-resolution ultrasonography (HRUS). A total of 30 schwannomas were found, divided over 20 nerve segments (33.9% of all investigated nerve segments). All patients had at least 1 schwannoma. Schwannomas were identified with HRUS in 37% of clinically unaffected nerve segments and 50% of nerve segments with normal NCS findings. HRUS shows frequent subclinical peripheral nerve involvement in NF2. Clinicians should consider peripheral nerve involvement as a cause of weakness and sensory loss in the extremities in patients with this disease. Muscle Nerve 57: 312-316, 2018. © 2017 Wiley Periodicals, Inc.

  19. Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis

    PubMed Central

    Cheyuo, Cletus; Jacob, Asha

    2012-01-01

    Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow. PMID:22068604

  20. Calpain-mediated cleavage of collapsin response mediator protein-2 drives acute axonal degeneration

    PubMed Central

    Zhang, Jian-Nan; Michel, Uwe; Lenz, Christof; Friedel, Caroline C.; Köster, Sarah; d’Hedouville, Zara; Tönges, Lars; Urlaub, Henning; Bähr, Mathias; Lingor, Paul; Koch, Jan C.

    2016-01-01

    Axonal degeneration is a key initiating event in many neurological diseases. Focal lesions to axons result in a rapid disintegration of the perilesional axon by acute axonal degeneration (AAD) within several hours. However, the underlying molecular mechanisms of AAD are only incompletely understood. Here, we studied AAD in vivo through live-imaging of the rat optic nerve and in vitro in primary rat cortical neurons in microfluidic chambers. We found that calpain is activated early during AAD of the optic nerve and that calpain inhibition completely inhibits axonal fragmentation on the proximal side of the crush while it attenuates AAD on the distal side. A screening of calpain targets revealed that collapsin response mediator protein-2 (CRMP2) is a main downstream target of calpain activation in AAD. CRMP2-overexpression delayed bulb formation and rescued impairment of axonal mitochondrial transport after axotomy in vitro. In vivo, CRMP2-overexpression effectively protected the proximal axon from fragmentation within 6 hours after crush. Finally, a proteomic analysis of the optic nerve was performed at 6 hours after crush, which identified further proteins regulated during AAD, including several interactors of CRMP2. These findings reveal CRMP2 as an important mediator of AAD and define it as a putative therapeutic target. PMID:27845394

  1. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  2. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    PubMed

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  3. Overexpression of tropomyosin receptor kinase A improves the survival and Schwann-like cell differentiation of bone marrow stromal cells in nerve grafts for bridging rat sciatic nerve defects.

    PubMed

    Zheng, Meige; Duan, Junxiu; He, Zhendan; Wang, Zhiwei; Mu, Shuhua; Zeng, Zhiwen; Qu, Junle; Zhang, Jian; Wang, Dong

    2016-10-01

    Bone marrow stromal cells (BMSCs) can differentiate into Schwann-like cells in vivo and effectively promote nerve regeneration and functional recovery as the seed cells for peripheral nerve repair. However, the survival rate and neural differentiation rate of the transplanted BMSCs are very low, which would limit their efficacy. In this work, rat BMSCs were infected by recombinant lentiviruses to construct tropomyosin receptor kinase A (TrkA)-overexpressing BMSCs and TrkA-shRNA-expressing BMSCs, which were then used in transplantation for rat sciatic nerve defects. We showed that lentivirus-mediated overexpression of TrkA in BMSCs can promote cell survival and protect against serum-starve-induced apoptosis in vitro. At 8 weeks after transplantation, the Schwann-like differentiated ratio of the existing implanted cells had reached 74.8 ± 1.6% in TrkA-overexpressing BMSCs-laden nerve grafts, while 40.7 ± 2.3% and 42.3 ± 1.5% in vector and control BMSCs-laden nerve grafts, but only 8.2 ± 1.8% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. The cell apoptosis ratio of the existing implanted cells in TrkA-overexpressing BMSCs-laden nerve grafts was 16.5 ± 1.2%, while 33.9 ± 1.9% and 42.6 ± 2.9% in vector and control BMSCs-laden nerve grafts, but 87.2 ± 2.5% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. These results demonstrate that TrkA overexpression can improve the survival and Schwann-like cell differentiation of BMSCs and prevent cell death in nerve grafts, which may have potential implication in advancing cell transplantation for peripheral nerve repair. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy

    PubMed Central

    Barth, Connor W.; Gibbs, Summer L.

    2017-01-01

    Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy. PMID:28255352

  5. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy.

    PubMed

    Barth, Connor W; Gibbs, Summer L

    2017-01-01

    Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.

  6. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  7. The role of great auricular-facial nerve neurorrhaphy in facial nerve damage.

    PubMed

    Sun, Yan; Liu, Limei; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo

    2015-01-01

    Facial nerve is easy to be damaged, and there are many reconstructive methods for facial nerve reconstructive, such as facial nerve end to end anastomosis, the great auricular nerve graft, the sural nerve graft, or hypoglossal-facial nerve anastomosis. However, there is still little study about great auricular-facial nerve neurorrhaphy. The aim of the present study was to identify the role of great auricular-facial nerve neurorrhaphy and the mechanism. Rat models of facial nerve cut (FC), facial nerve end to end anastomosis (FF), facial-great auricular neurorrhaphy (FG), and control (Ctrl) were established. Apex nasi amesiality observation, electrophysiology and immunofluorescence assays were employed to investigate the function and mechanism. In apex nasi amesiality observation, it was found apex nasi amesiality of FG group was partly recovered. Additionally, electrophysiology and immunofluorescence assays revealed that facial-great auricular neurorrhaphy could transfer nerve impulse and express AChR which was better than facial nerve cut and worse than facial nerve end to end anastomosis. The present study indicated that great auricular-facial nerve neurorrhaphy is a substantial solution for facial lesion repair, as it is efficiently preventing facial muscles atrophy by generating neurotransmitter like ACh.

  8. Perform light and optic experiments in Augmented Reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai

    2015-10-01

    In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.

  9. Chronic nerve compression alters Schwann cell myelin architecture in a murine model

    PubMed Central

    Gupta, Ranjan; Nassiri, Nima; Hazel, Antony; Bathen, Mary; Mozaffar, Tahseen

    2011-01-01

    Introduction Myelinating Schwann cells compartmentalize their outermost layer to form actin-rich channels known as Cajal bands. Here, we investigate changes in Schwann cell architecture and cytoplasmic morphology in a novel mouse model of carpal tunnel syndrome. Methods Chronic nerve compression (CNC) injury was created in wild-type and slow-Wallerian degeneration (WldS) mice. Over 12 weeks, nerves were electrodiagnostically assessed, and Schwann cell morphology was thoroughly evaluated. Results A decline in nerve conduction velocity and increase in g-ratio is observed without early axonal damage. Schwann cells display shortened internodal lengths and severely disrupted Cajal bands. Quite surprisingly, the latter is reconstituted without improvements to nerve conduction velocity. Discussion Chronic entrapment injuries like carpal tunnel syndrome are primarily mediated by the Schwann cell response, wherein decreases in internodal length and myelin thickness disrupt the efficiency of impulse propagation. Restitution of Cajal bands is not sufficient for remyelination post-CNC injury. PMID:22246880

  10. A-FABP and oxidative stress underlie the impairment of endothelium-dependent relaxations to serotonin and the intima-medial thickening in the porcine coronary artery with regenerated endothelium.

    PubMed

    Chan, Calvin K; Zhao, Yingzi; Liao, Song Yan; Zhang, Yue Lin; Lee, Mary Y K; Xu, Aimin; Tse, Hung Fat; Vanhoutte, Paul M

    2013-01-16

    Experiments were designed to determine the cause of the selective dysfunction of G(i) proteins, characterized by a reduced endothelium-dependent relaxation to serotonin (5-hydroxytryptamine), in coronary arteries lined with regenerated endothelial cells. Part of the endothelium of the left anterior descending coronary artery of female pigs was removed in vivo to induce regeneration. The animals were treated chronically with vehicle (control), apocynin (antioxidant), or BMS309403 (A-FABP inhibitor) for 28 days before functional examination and histological analysis of segments of coronary arteries with native or regenerated endothelium of the same hearts. Isometric tension was recorded in organ chambers and cumulative concentration-relaxation curves obtained in response to endothelium-dependent [serotonin (G(i) protein mediated activation of eNOS) and bradykinin (G(q) protein mediated activation of eNOS)] and independent [detaNONOate (cGMP-mediated), isoproterenol (cAMP-mediated)] vasodilators. The two inhibitors tested did not acutely affect relaxations of preparations with either native or regenerated endothelium. In the chronically treated groups, however, both apocynin and BMS309403 abolished the reduction in relaxation to serotonin in segments covered with regenerated endothelium and prevented the intima-medial thickening caused by endothelial regeneration, without affecting responses to bradykinin or endothelium-independent agonists (detaNONOate and isoproterenol). Thus, inhibition of either oxidative stress or A-FABP likely prevents both the selective dysfunction of G(i) protein mediated relaxation to serotonin and the neointimal thickening resulting from endothelial regeneration.

  11. Assessment of nerve regeneration across nerve allografts treated with tacrolimus.

    PubMed

    Haisheng, Han; Songjie, Zuo; Xin, Li

    2008-01-01

    Although regeneration of nerve allotransplant is a major concern in the clinic, there have been few papers quantitatively assessing functional recovery of animals' nerve allografts in the long term. In this study, functional recovery, histopathological study, and immunohistochemistry changes of rat nerve allograft with FK506 were investigated up to 12 weeks without slaughtering. C57 and SD rats were used for transplantation. The donor's nerve was sliced and transplanted into the recipient. The sciatic nerve was epineurally sutured with 10-0 nylon. In total, 30 models of transplantation were performed and divided into 3 groups that were either treated with FK506 or not. Functional recovery of the grafted nerve was serially assessed by the pin click test, walking track analysis and electrophysiological evaluations. A histopathological study and immunohistochemistry study were done in the all of the models. Nerve allografts treated with FK506 have no immune rejection through 12 weeks. Sensibility had similarly improved in both isografts and allografts. There has been no difference in each graft. Walk track analysis demonstrates significant recovery of motor function of the nerve graft. No histological results of difference were found up to 12 weeks in each graft. In the rodent nerve graft model, FK506 prevented nerve allograft rejection across a major histocompatibility barrier. Sensory recovery seems to be superior to motor function. Nerve isograft and allograft treated with FK506 have no significant difference in function recovery, histopathological result, and immunohistochemistry changes.

  12. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Ribozyme-mediated signal augmentation on a mass-sensitive biosensor.

    PubMed

    Knudsen, Scott M; Lee, Joonhyung; Ellington, Andrew D; Savran, Cagri A

    2006-12-20

    Mass-based detection methods such as the quartz crystal microbalance (QCM) offer an attractive option to label-based methods; however the sensitivity is generally lower by comparison. In particular, low-molecular-weight analytes can be difficult to detect based on mass addition alone. In this communication, we present the use of effector-dependent ribozymes (aptazymes) as reagents for augmenting small ligand detection on a mass-sensitive device. Two distinct aptazymes were chosen: an L1-ligase-based aptazyme (L1-Rev), which is activated by a small peptide (MW approximately 2.4 kDa) from the HIV-1 Rev protein, and a hammerhead cleavase-based aptazyme (HH-theo3) activated by theophylline (MW = 180 Da). Aptazyme activity was observed in real time, and low-molecular-weight analyte detection has been successfully demonstrated with both aptazymes.

  14. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    DTIC Science & Technology

    2016-04-01

    faster regeneration and functional recovery. Peripheral nerve injury is a common complication of complex tissue trauma and often results in significant...having poor regeneration overall, the areas of regenerating nerve tissue could often be found in sections of the nerve guide where luminal spaces of...conducted in this Aim also provided important insight into the NGC design parameters necessary to allow for maximum nerve tissue ingrowth and regeneration

  15. Horizontal alveolar ridge augmentation using autologous press fit bone cylinders and micro-lag-screw fixation: technical note and initial experience.

    PubMed

    Streckbein, Philipp; Kähling, Christopher; Wilbrand, Jan-Falco; Malik, Christoph-Yves; Schaaf, Heidrun; Howaldt, Hans-Peter; Streckbein, Roland

    2014-07-01

    The use of autologous block bone grafts for horizontal alveolar ridge augmentation in dental implantology is a common surgical procedure. Typically, bone grafts are individually moulded. The aim of this paper is to introduce an innovative procedure in lateral bone augmentation, where the recipient side is adjusted to the graft, not vice versa as in common procedures. Our initial clinical experience of twenty-five consecutive cases is presented. Adjusted trephine drills were used to harvest partly cylindrical grafts from the retromolar region of the mandible. After preparing the recipient site with accurately fitting grinding drills, the bone grafts were transplanted. The horizontally compromised alveolar ridges were successfully augmented and treated with dental implants. No major complication occurred during transplantation, the healing period, and subsequent implant therapy in our experimental setting with 25 patients and 38 augmentation procedures. One out of twenty-five patients presented with temporary dysaesthesia of the inferior alveolar nerve. The new method presented is an effective treatment option for horizontal alveolar ridge augmentation prior to single implant installation. Further studies should evaluate the donor site morbidity and long-term outcome on a larger population. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. The role of great auricular-facial nerve neurorrhaphy in facial nerve damage

    PubMed Central

    Sun, Yan; Liu, Limei; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo

    2015-01-01

    Background: Facial nerve is easy to be damaged, and there are many reconstructive methods for facial nerve reconstructive, such as facial nerve end to end anastomosis, the great auricular nerve graft, the sural nerve graft, or hypoglossal-facial nerve anastomosis. However, there is still little study about great auricular-facial nerve neurorrhaphy. The aim of the present study was to identify the role of great auricular-facial nerve neurorrhaphy and the mechanism. Methods: Rat models of facial nerve cut (FC), facial nerve end to end anastomosis (FF), facial-great auricular neurorrhaphy (FG), and control (Ctrl) were established. Apex nasi amesiality observation, electrophysiology and immunofluorescence assays were employed to investigate the function and mechanism. Results: In apex nasi amesiality observation, it was found apex nasi amesiality of FG group was partly recovered. Additionally, electrophysiology and immunofluorescence assays revealed that facial-great auricular neurorrhaphy could transfer nerve impulse and express AChR which was better than facial nerve cut and worse than facial nerve end to end anastomosis. Conclusions: The present study indicated that great auricular-facial nerve neurorrhaphy is a substantial solution for facial lesion repair, as it is efficiently preventing facial muscles atrophy by generating neurotransmitter like ACh. PMID:26550216

  17. Secondary Breast Augmentation.

    PubMed

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  18. Pseudocatalytic scavenging of the nerve agent VX with human blood components and the oximes obidoxime and HI-6.

    PubMed

    Wille, Timo; von der Wellen, Jens; Thiermann, Horst; Worek, Franz

    2017-03-01

    Despite six decades of extensive research in medical countermeasures against nerve agent poisoning, a broad spectrum acetylcholinesterase (AChE) reactivator is not yet available. One current approach is directed toward synthesizing oximes with high affinity and reactivatability toward butyrylcholinesterase (BChE) in plasma to generate an effective pseudocatalytic scavenger. An interim solution could be the administration of external AChE or BChE from blood products to augment pseudocatalytic scavenging with slower but clinically approved oximes to decrease nerve agent concentrations in the body. We here semiquantitatively investigate the ability of obidoxime and HI-6 to decrease the inhibitory activity of VX with human AChE and BChE from whole blood, erythrocyte membranes, erythrocytes, plasma, clinically available fresh frozen plasma and packed red blood cells. The main findings are that whole blood showed a VX concentration-dependent decrease in inhibitory activity with HI-6 being more potent than obidoxime. Using erythrocytes and erythrocyte membranes again, HI-6 was more potent compared to obidoxime. With freshly prepared plasma, obidoxime and HI-6 showed comparable results for the decrease in VX. The use of the clinically available blood products revealed that packed red blood cells showed similar kinetics as fresh erythrocytes. Fresh frozen plasma resulted in a slower and incomplete decrease in inhibitory plasma compared to freshly prepared plasma. In conclusion, the administration of blood products in combination with available oximes augments pseudocatalytic scavenging and might be useful to decrease the body load of persistent, highly toxic nerve agents.

  19. Chin augmentation

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002986.htm Chin augmentation To use the sharing features on this page, please enable JavaScript. Chin augmentation is surgery to reshape or enhance the size ...

  20. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  1. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter.

    PubMed

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-31

    The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P < 0.01) following desensitisation of purinergic receptors with α,β-methylene-ATP (10 μM). In the presence of guanethidine, atropine, and α,β-methylene-ATP, the remaining relaxatory responses to EFS were examined. These responses were not altered by the cyclooxygenase inhibitor, indomethacin (5 μM), the vasoactive intestinal polypeptide receptor antagonist, [D-p-Cl-Phe(6),Leu(17)]-vasoactive intestinal peptide (PheLeu-VIP; 100 nM), or the purinoceptor antagonists, 8-phenyltheophyline (P1 receptors) or suramin (P2 receptors). However, relaxation responses were reduced by Nω-nitro-L-arginine (L-NNA; 100 μM), an inhibitor of nitric oxide synthesis (40-50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20-40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15-20% reduction). Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide > hydrogen sulfide.

  2. Nerve Blocks

    MedlinePlus

    ... turn off" a pain signal along a specific distribution of nerve. Imaging guidance may be used to place the needle in the most appropriate location for maximum benefit. A nerve block may allow a damaged nerve time to heal, provide temporary pain relief and help ...

  3. Enterocyte-afferent nerve interactions in dietary fat sensing.

    PubMed

    Mansouri, A; Langhans, W

    2014-09-01

    The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept. © 2014 John Wiley & Sons Ltd.

  4. Circadian Rhythm Influences the Promoting Role of Pulsed Electromagnetic Fields on Sciatic Nerve Regeneration in Rats

    PubMed Central

    Zhu, Shu; Ge, Jun; Liu, Zhongyang; Liu, Liang; Jing, Da; Ran, Mingzi; Wang, Meng; Huang, Liangliang; Yang, Yafeng; Huang, Jinghui; Luo, Zhuojing

    2017-01-01

    Circadian rhythm (CR) plays a critical role in the treatment of several diseases. However, the role of CR in the treatment of peripheral nerve defects has not been studied. It is also known that the pulsed electromagnetic fields (PEMF) can provide a beneficial microenvironment to quicken the process of nerve regeneration and to enhance the quality of reconstruction. In this study, we evaluate the impact of CR on the promoting effect of PEMF on peripheral nerve regeneration in rats. We used the self-made “collagen-chitosan” nerve conduits to bridge the 15-mm nerve gaps in Sprague-Dawley rats. Our results show that PEMF stimulation at daytime (DPEMF) has most effective outcome on nerve regeneration and rats with DPEMF treatment achieve quickly functional recovery after 12 weeks. These findings indicate that CR is an important factor that determines the promoting effect of PEMF on peripheral nerve regeneration. PEMF exposure in the daytime enhances the functional recovery of rats. Our study provides a helpful guideline for the effective use of PEMF mediations experimentally and clinically. PMID:28360885

  5. Reflex effects on components of synchronized renal sympathetic nerve activity.

    PubMed

    DiBona, G F; Jones, S Y

    1998-09-01

    The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.

  6. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity.

    PubMed

    Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Park, Myeong Seon; Cha, Sung-Rok; Lillehoj, Erik P; Subramanian, B Mohana; Sriraman, R; Srinivasan, V A

    2010-04-09

    Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, while cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vaccine, this study was designed to assess a purified recombinant protein from Eimeria maxima gametocytes (Gam82) in stimulating immunity against experimental infection with live parasites. Following Gam82 intramuscular immunization and oral parasite challenge, body weight gain, fecal oocyst output, lesion scores, serum antibody response, and cytokine production were assessed to evaluate vaccination efficacy. Animals vaccinated with Gam82 and challenged with E. maxima showed lower oocyst shedding and reduced intestinal pathology compared with non-vaccinated and parasite-challenged animals. Gam82 vaccination also stimulated the production of antigen-specific serum antibodies and induced greater levels of IL-2 and IL-15 mRNAs compared with non-vaccinated controls. These results demonstrate that the Gam82 recombinant protein protects against E. maxima and augments humoral and cell-mediated immunity. Published by Elsevier Ltd.

  7. Fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve).

    PubMed

    Zeng, Rong; Frederick-Dyer, Katherine; Ferguson, N Lynn; Lewis, James; Fu, Yitong

    2012-09-01

    Fibrolipomatous hamartoma (FLH) is a rare, benign lesion of the peripheral nerves most frequently involving the median nerve and its digital branches (80 %). Pathognomonic MR features of FLH such as coaxial-cable-like appearance on axial planes and a spaghetti-like appearance on coronal planes have been described by Marom and Helms, obviating the need for diagnostic biopsy. We present a case of fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve) with associated subcutaneous fat proliferation.

  8. ASM-024, a Piperazinium Compound, Promotes the In Vitro Relaxation of β2-Adrenoreceptor Desensitized Tracheas

    PubMed Central

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short—acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024

  9. ASM-024, a piperazinium compound, promotes the in vitro relaxation of β2-adrenoreceptor desensitized tracheas.

    PubMed

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-Adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024

  10. The Kölliker-Fuse nucleus: a review of animal studies and the implications for cranial nerve function in humans.

    PubMed

    Browaldh, Nanna; Bautista, Tara G; Dutschmann, Mathias; Berkowitz, Robert G

    2016-11-01

    To review the scientific literature on the relationship between Kölliker-Fuse nucleus (KF) and cranial nerve function in animal models, with view to evaluating the potential role of KF maturation in explaining age-related normal physiologic parameters and developmental and acquired impairment of cranial nerve function in humans. Medical databases (Medline and PubMed). Studies investigating evidence of KF activity responsible for a specific cranial nerve function that were based on manipulation of KF activity or the use of neural markers were included. Twenty studies were identified that involved the trigeminal (6 studies), vagus (9), and hypoglossal nerves (5). These pertained specifically to a role of the KF in mediating the dive reflex, laryngeal adductor control, swallowing function and upper airway tone. The KF acts as a mediator of a number of important functions that relate primarily to laryngeal closure, upper airway tone and swallowing. These areas are characterized by a variety of disorders that may present to the otolaryngologist, and hence the importance of understanding the role played by the KF in maintaining normal function.

  11. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection

    PubMed Central

    Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong

    2017-01-01

    Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration. PMID:29085283

  12. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection.

    PubMed

    Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong

    2017-01-01

    Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.

  13. Relaxin augments the inflammatory IL6 response in the choriodecidua

    PubMed Central

    JS, Horton; SY, Yamamoto; GD, Bryant-Greenwood

    2012-01-01

    Intrauterine infection frequently leads to preterm birth (PTB), with the pathophysiology involving activation of the innate immune system and its associated inflammatory response. The choriodecidua produces relaxin (RLN) and elevated levels are associated with preterm premature rupture of the fetal membranes. However, it is not increased in bacterially-mediated PTB, but may act as an endogenous sterile inflammatory mediator. Elevated systemic RLN levels from the corpus luteum are also associated with PTB, but the mechanism is unknown. In clinical obstetrics, intrauterine inflammation or infection can coexist with elevated RLN. Therefore, in this study, we further characterized the effects of RLN alone or together with an inflammatory mediator on the production of IL1B, CSF2 (GM-CSF), IL6, IL8 and TNF, from chorionic cytotrophoblasts (CyT), decidual fibroblasts (DF) and stromal cells (DSC), using interleukin-1 beta (IL1B) to mimic sterile inflammation or lipopolysaccharide (LPS) for bacterial infection. Endogenous differences between the cells showed that the CyT expressed more and the RXFP1, its receptor RXFP1 splice variant D. CyT also showed the most robust cAMP response to RLN with increased IL6 secreted after 4 h, preceded by increased transcription at 1 h, likely due to activation of RXFP1 and cAMP. When all cell types were treated with IL1B and RLN, RLN augmented secretion of IL6 and IL8 from CyT and DF, but not DSC. Similarly, RLN augmented LPS-induced IL6 secretion from CyT and DF. Despite the structural similarity between TLR4 and RXFP1, blocking TLR4 in CyT had no effect on RLN-induced IL6 secretion, suggesting specific activation of RXFP1. Thus, we have shown that in the presence of a low level of intrauterine inflammation/infection, elevated RLN could act on the CyT and DF to augment the inflammatory response, contributing to the pathophysiology of PTB. PMID:22386961

  14. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    PubMed Central

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  15. Electrophysiology of Cranial Nerve Testing: Spinal Accessory and Hypoglossal Nerves.

    PubMed

    Stino, Amro M; Smith, Benn E

    2018-01-01

    Multiple techniques have been developed for the electrodiagnostic evaluation of cranial nerves XI and XII. Each of these carries both benefits and limitations, with more techniques and data being available in the literature for spinal accessory than hypoglossal nerve evaluation. Spinal accessory and hypoglossal neuropathy are relatively uncommon cranial mononeuropathies that may be evaluated in the outpatient electrodiagnostic laboratory setting. A review of available literature using PubMed was conducted regarding electrodiagnostic technique in the evaluation of spinal accessory and hypoglossal nerves searching for both routine nerve conduction studies and repetitive nerve conduction studies. The review provided herein provides a resource by which clinical neurophysiologists may develop and implement clinical and research protocols for the evaluation of both of these lower cranial nerves in the outpatient setting.

  16. Routine exposure of recurrent laryngeal nerve in thyroid surgery can prevent nerve injury.

    PubMed

    Shen, Chenling; Xiang, Mingliang; Wu, Hao; Ma, Yan; Chen, Li; Cheng, Lan

    2013-06-15

    To determine the value of dissecting the recurrent laryngeal nerve during thyroid surgery with respect to preventing recurrent laryngeal nerve injury, we retrospectively analyzed clinical data from 5 344 patients undergoing thyroidectomy. Among these cases, 548 underwent dissection of the recurrent laryngeal nerve, while 4 796 did not. There were 12 cases of recurrent laryngeal nerve injury following recurrent laryngeal nerve dissection (injury rate of 2.2%) and 512 cases of recurrent laryngeal nerve injury in those not undergoing nerve dissection (injury rate of 10.7%). This difference remained statistically significant between the two groups in terms of type of thyroid disease, type of surgery, and number of surgeries. Among the 548 cases undergoing recurrent laryngeal nerve dissection, 128 developed anatomical variations of the recurrent laryngeal nerve (incidence rate of 23.4%), but no recurrent laryngeal nerve injury was found. In addition, the incidence of recurrent laryngeal nerve injury was significantly lower in patients with the inferior parathyroid gland and middle thyroid veins used as landmarks for locating the recurrent laryngeal nerve compared with those with the entry of the recurrent laryngeal nerve into the larynx as a landmark. These findings indicate that anatomical variations of the recurrent laryngeal nerve are common, and that dissecting the recurrent laryngeal nerve during thyroid surgery is an effective means of preventing nerve injury.

  17. Routine exposure of recurrent laryngeal nerve in thyroid surgery can prevent nerve injury★

    PubMed Central

    Shen, Chenling; Xiang, Mingliang; Wu, Hao; Ma, Yan; Chen, Li; Cheng, Lan

    2013-01-01

    To determine the value of dissecting the recurrent laryngeal nerve during thyroid surgery with respect to preventing recurrent laryngeal nerve injury, we retrospectively analyzed clinical data from 5 344 patients undergoing thyroidectomy. Among these cases, 548 underwent dissection of the recurrent laryngeal nerve, while 4 796 did not. There were 12 cases of recurrent laryngeal nerve injury following recurrent laryngeal nerve dissection (injury rate of 2.2%) and 512 cases of recurrent laryngeal nerve injury in those not undergoing nerve dissection (injury rate of 10.7%). This difference remained statistically significant between the two groups in terms of type of thyroid disease, type of surgery, and number of surgeries. Among the 548 cases undergoing recurrent laryngeal nerve dissection, 128 developed anatomical variations of the recurrent laryngeal nerve (incidence rate of 23.4%), but no recurrent laryngeal nerve injury was found. In addition, the incidence of recurrent laryngeal nerve injury was significantly lower in patients with the inferior parathyroid gland and middle thyroid veins used as landmarks for locating the recurrent laryngeal nerve compared with those with the entry of the recurrent laryngeal nerve into the larynx as a landmark. These findings indicate that anatomical variations of the recurrent laryngeal nerve are common, and that dissecting the recurrent laryngeal nerve during thyroid surgery is an effective means of preventing nerve injury. PMID:25206452

  18. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.

    PubMed

    Archibald, S J; Krarup, C; Shefner, J; Li, S T; Madison, R D

    1991-04-22

    When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP

  19. [Facial nerve neurinomas].

    PubMed

    Sokołowski, Jacek; Bartoszewicz, Robert; Morawski, Krzysztof; Jamróz, Barbara; Niemczyk, Kazimierz

    2013-01-01

    Evaluation of diagnostic, surgical technique, treatment results facial nerve neurinomas and its comparison with literature was the main purpose of this study. Seven cases of patients (2005-2011) with facial nerve schwannomas were included to retrospective analysis in the Department of Otolaryngology, Medical University of Warsaw. All patients were assessed with history of the disease, physical examination, hearing tests, computed tomography and/or magnetic resonance imaging, electronystagmography. Cases were observed in the direction of potential complications and recurrences. Neurinoma of the facial nerve occurred in the vertical segment (n=2), facial nerve geniculum (n=1) and the internal auditory canal (n=4). The symptoms observed in patients were analyzed: facial nerve paresis (n=3), hearing loss (n=2), dizziness (n=1). Magnetic resonance imaging and computed tomography allowed to confirm the presence of the tumor and to assess its staging. Schwannoma of the facial nerve has been surgically removed using the middle fossa approach (n=5) and by antromastoidectomy (n=2). Anatomical continuity of the facial nerve was achieved in 3 cases. In the twelve months after surgery, facial nerve paresis was rated at level II-III° HB. There was no recurrence of the tumor in radiological observation. Facial nerve neurinoma is a rare tumor. Currently surgical techniques allow in most cases, the radical removing of the lesion and reconstruction of the VII nerve function. The rate of recurrence is low. A tumor of the facial nerve should be considered in the differential diagnosis of nerve VII paresis. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  20. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  1. Sensory and motor peripheral nerve function and incident mobility disability.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen B; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Simonsick, Eleanor M; Newman, Anne B; Strotmeyer, Elsa S

    2014-12-01

    To assess the relationship between sensorimotor nerve function and incident mobility disability over 10 years. Prospective cohort study with longitudinal analysis. Two U.S. clinical sites. Population-based sample of community-dwelling older adults with no mobility disability at 2000/01 examination (N = 2,148 [Corrected]; mean age ± SD 76.5 ± 2.9, body mass index 27.1 ± 4.6; 50.2% female, 36.6% black, 10.7% with diabetes mellitus). Motor nerve conduction amplitude (poor <1 mV) and velocity (poor <40 m/s) were measured on the deep peroneal nerve. Sensory nerve function was measured using 10- and 1.4-g monofilaments and vibration detection threshold at the toe. Lower extremity symptoms included numbness or tingling and aching or burning pain. Incident mobility disability assessed semiannually over 8.5 years (interquartile range 4.5-9.6 years) was defined as two consecutive self-reports of a lot of difficulty or inability to walk one-quarter of a mile or climb 10 steps. Nerve impairments were detected in 55% of participants, and 30% developed mobility disability. Worse motor amplitude (HR = 1.29 per SD, 95% CI = 1.16-1.44), vibration detection threshold (HR = 1.13 per SD, 95% CI = 1.04-1.23), symptoms (HR = 1.65, 95% CI = 1.26-2.17), two motor impairments (HR = 2.10, 95% CI = 1.43-3.09), two sensory impairments (HR = 1.91, 95% CI = 1.37-2.68), and three or more nerve impairments (HR = 2.33, 95% CI = 1.54-3.53) predicted incident mobility disability after adjustment. Quadriceps strength mediated relationships between certain nerve impairments and mobility disability, although most remained significant. Poor sensorimotor nerve function independently predicted mobility disability. Future work should investigate modifiable risk factors and interventions such as strength training for preventing disability and improving function in older adults with poor nerve function. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  2. HCV RNA Genomic sequences and HCV-E2 glycoprotein in sural nerve biopsies from HCV-infected patients with peripheral neuropathy.

    PubMed

    Russi, S; Sansonno, D; Monaco, S; Mariotto, S; Ferrari, S; Pavone, F; Lauletta, G; Dammacco, F

    2018-06-01

    Peripheral neuropathy (PN), the major neurological complication of chronic HCV infection, is frequently associated with mixed cryoglobulinaemia (MC) and small-vessel systemic vasculitis. While humoral and cell-mediated immune mechanisms are suspected to act together in an aberrant immune response that results in peripheral nerve damage, the role of HCV remains largely speculative. The possible demonstration of HCV in peripheral nerve tissue would obviously assume important pathogenic implications. We studied sural nerve biopsies from 11 HCV-positive patients with neuropathic symptoms: five with and six without MC. In situ hybridization (ISH) and immunofluorescence studies were carried out to detect genomic and antigenomic HCV RNA sequences and HCV-encoded E2-glycoprotein, respectively. Epineurial vascular deposits of E2-glycoprotein were found in four (80%) MC and in two (33.3%) non-MC patients, respectively. These findings were enhanced by the perivascular deposition of positive-, though not negative-strand replicative RNA, as also found in the nerve extracts of all patients. Mild inflammatory cell infiltrates with no deposits of immunoglobulins and/or complement proteins were revealed around small vessels, without distinct vasculitis changes between MC and non-MC patients. These results indicate that nerve vascular HCV RNA/E2 deposits associated to perivascular inflammatory infiltrates were similar in chronically HCV-infected patients, regardless of cryoglobulin occurrence. Given the failure to demonstrate HCV productive infection in the examined sural nerve biopsies, nerve damage is likely to result from virus-triggered immune-mediated mechanisms. © 2017 British Neuropathological Society.

  3. Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis

    PubMed Central

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.

    2016-01-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038

  4. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  5. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    PubMed

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS.

    PubMed

    Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2007-01-15

    An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.

  7. BAY 41-2272, a soluble guanylate cyclase stimulator, relaxes isolated human ureter in a standardized in vitro model.

    PubMed

    Miyaoka, Ricardo; Mendes, Camila; Schenka, André; Gonzalez, Paulo Gabriel; de Nucci, Gilberto; Antunes, Edson; Monga, Manoj; Levi D'Ancona, Carlos Arturo; Mónica, Fabíola Zakia

    2014-01-01

    To characterize the relaxation induced by BAY 41-2272 in human ureteral segments. Ureter specimens (n = 17) from multiple organ human deceased donors (mean age 40 ± 3.2 years, male/female ratio 2:1) were used to characterize the relaxing response of BAY 41-2272. Immunohistochemical analysis for endothelial and neuronal nitric oxide synthase, guanylate cyclase stimulator (sGC) and type 5 phosphodiesterase was also performed. The potency values were determined as the negative log of the molar to produce 50% of the maximal relaxation in potassium chloride-precontracted specimens. The unpaired Student t test was used for the comparisons. Immunohistochemistry revealed the presence of endothelial nitric oxide synthase in vessel endothelia and neuronal nitric oxide synthase in urothelium and nerve structures. sGC was expressed in the smooth muscle and urothelium layer, and type 5 phosphodiesterase was present in the smooth muscle only. BAY 41-2272 (0.001-100 μM) relaxed the isolated ureter in a concentration dependent manner, with a potency and maximal relaxation value of 5.82 ± 0.14 and 84% ± 5%, respectively. The addition of nitric oxide synthase and sGC inhibitors reduced the maximal relaxation values by 21% and 45%, respectively. However, the presence of sildenafil (100 nM) significantly potentiated (6.47 ± 0.10, P <.05) this response. Neither glibenclamide or tetraethylammonium nor ureteral urothelium removal influenced the relaxation response by BAY 41-2272. BAY 41-2272 relaxes the human isolated ureter in a concentration-dependent manner, mainly by activating the sGC enzyme in smooth muscle cells rather than in the urothelium, although a cyclic guanosine monophosphate-independent mechanism might have a role. The potassium channels do not seem to be involved. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  9. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats.

    PubMed

    Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen

    2016-07-01

    An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.

  10. Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses.

    PubMed

    Scheufele, P M

    2000-04-01

    The present experiment examined relaxation using different experimental conditions to test whether the effects of individual elements of relaxation could be measured, whether specific effects were revealed, or whether relaxation resulted from a generalized "relaxation response." Sixty-seven normal, male volunteers were exposed to a stress manipulation and then to one of two relaxation (Progressive Relaxation, Music) or control (Attention Control, Silence) conditions. Measurements of attention, relaxation, and stress responses were obtained during each phase of the experiment. All four groups exhibited similar performance on behavioral measures of attention that suggested a reduction in physiological arousal following their relaxation or control condition, as well as a decreased heart rate. Progressive Relaxation, however, resulted in the greatest effects on behavioral and self-report measures of relaxation, suggesting that cognitive cues provided by stress management techniques contribute to relaxation.

  11. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis.

    PubMed

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-03-30

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  12. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis

    PubMed Central

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-01-01

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis. PMID:27025263

  13. Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells.

    PubMed

    Frerichs, Onno; Fansa, Hisham; Schicht, Christoph; Wolf, Gerald; Schneider, Wolfgang; Keilhoff, Gerburg

    2002-01-01

    The bridging of nerve gaps is still one of the major problems in peripheral nerve surgery. The present experiment describes our attempt to engineer different biologic nerve grafts in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into 2-cm autologous acellular nerve grafts or autologous predegenerated nerve grafts. Autologous nerve grafts and predegenerated or acellular nerve grafts without implanted Schwann cells served as controls. The regenerated nerves were assessed histologically and morphometrically after 6 weeks. Predegenerated grafts showed results superior in regard to axon count and histologic appearance in comparison to standard grafts and acellular grafts. The acellular nerve grafts showed the worst histologic picture, but axon counts were in the range of standard grafts. The implantation of Schwann cells did not yield significant improvements in any group. In conclusion, the status of activation of Schwann cells and the stadium of Wallerian degeneration in a nerve graft might be key factors for regeneration, rather than total number of Schwann cells. Predegenerated nerve grafts are therefore superior to standard grafts in the rat model. Acellular grafts are able to bridge nerve gaps of up to 2 cm in the rat model, but even the addition of cultivated Schwann cells did not lead to results as good as in the group with autologous nerve grafts. Copyright 2002 Wiley-Liss, Inc. MICROSURGERY 22:311-315 2002

  14. Novel Immunohistochemical Techniques Using Discrete Signal Amplification Systems for Human Cutaneous Peripheral Nerve Fiber Imaging

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Freeman, Roy

    2011-01-01

    Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues. PMID:21411809

  15. Abnormal Neurocirculatory Control During Exercise in Humans with Chronic Renal Failure

    PubMed Central

    Park, Jeanie; Middlekauff, Holly R.

    2014-01-01

    Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies. PMID:25458430

  16. Diabetes impairs the atrial natriuretic peptide relaxant action mediated by potassium channels and prostacyclin in the rabbit renal artery.

    PubMed

    Marrachelli, Vannina G; Centeno, José M; Miranda, Ignacio; Castelló-Ruiz, María; Burguete, María C; Jover-Mengual, Teresa; Salom, Juan B; Torregrosa, Germán; Miranda, Francisco J; Alborch, Enrique

    2012-11-01

    Diabetes is associated with increased prevalence of hypertension, cardiovascular and renal disease. Atrial natriuretic peptide (ANP) plays an important role in cardiovascular pathophysiology and is claimed to have cardioprotective and renoprotective effect in diabetic patients. The working hypothesis was that alloxan-induced diabetes might modify the vascular effects of ANP in isolated rabbit renal arteries and the mechanisms involved in such actions. Plasma ANP levels were higher in diabetic rabbits than in control rabbits. ANP (10(-12)-10(-7)M) induced a relaxation of precontracted renal arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal decreased the ANP-induced relaxation but inhibition of NO-synthesis did not modify ANP-induced relaxations. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium (TEA) partly inhibited the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. Glibenclamide and 4-aminopyridine inhibited the relaxation to ANP, and these inhibitions were lower in diabetic than in control rabbits. Indomethacin potentiated the relaxation to ANP, more in control than in diabetic rabbits. In the presence of ANP the renal artery released thromboxane A(2) and prostacyclin, and the release of prostacyclin resulted decreased in diabetic rabbits. The present results suggest that diabetes produces hyporeactivity of the rabbit renal artery to ANP by mechanisms that at least include the reduced modulation by prostacyclin and a lower participation of ATP-sensitive K(+) channel (K(ATP)), voltage-sensitive K(+) channels (K(V)) and TEA-sensitive K(+) channels (K(Ca)). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  18. Greek women and broken nerves in Montreal.

    PubMed

    Dunk, P

    1989-05-01

    In this paper, I examine the importance of class, ethnicity and gender in the causation and meaning of somatization for Greek women in Montreal. I argue that nevra--a form of psychosocial distress experienced by many of the women--is a phenomenon of the poor working conditions, low wages and gender relations in the Greek community. Data is based on interviews with 100 Greek families in Montreal and 45 patients in two different clinical settings. Comparing results with material on nervios and nerves from Latin America and the United States, I concur with Low (1985) that nerves should be viewed as a 'culturally-interpreted symptom' rather than a 'culture bound syndrome'. It is further suggested that the importance of social and material conditions and gender relations in mediating the cultural interpretation must be stressed. Failure to do so often results in the medicalization of nevra and the creation of a chronic sick role for the patient.

  19. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats

    PubMed Central

    De Schepper, H U; De Winter, B Y; Van Nassauw, L; Timmermans, J-P; Herman, A G; Pelckmans, P A; De Man, J G

    2008-01-01

    Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25–5 mg kg−1) or its vehicle (hydroxypropyl-β-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6–S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Aδ-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Aδ-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition. PMID:18755744

  20. Sympathetic vascular transduction is augmented in young normotensive blacks

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  1. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se

    2016-07-21

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less

  2. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA.

    PubMed

    Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2017-01-01

    Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3-3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1-100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.

  3. Radial nerve palsy

    PubMed Central

    Bumbasirevic, Marko; Palibrk, Tomislav; Lesic, Aleksandar; Atkinson, Henry DE

    2016-01-01

    As a result of its proximity to the humeral shaft, as well as its long and tortuous course, the radial nerve is the most frequently injured major nerve in the upper limb, with its close proximity to the bone making it vulnerable when fractures occur. Injury is most frequently sustained during humeral fracture and gunshot injuries, but iatrogenic injuries are not unusual following surgical treatment of various other pathologies. Treatment is usually non-operative, but surgery is sometimes necessary, using a variety of often imaginative procedures. Because radial nerve injuries are the least debilitating of the upper limb nerve injuries, results are usually satisfactory. Conservative treatment certainly has a role, and one of the most important aspects of this treatment is to maintain a full passive range of motion in all the affected joints. Surgical treatment is indicated in cases when nerve transection is obvious, as in open injuries or when there is no clinical improvement after a period of conservative treatment. Different techniques are used including direct suture or nerve grafting, vascularised nerve grafts, direct nerve transfer, tendon transfer, functional muscle transfer or the promising, newer treatment of biological therapy. Cite this article: Bumbasirevic M, Palibrk T, Lesic A, Atkinson HDE. Radial nerve palsy. EFORT Open Rev 2016;1:286-294. DOI: 10.1302/2058-5241.1.000028. PMID:28461960

  4. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels

    PubMed Central

    Nam, Sungmin; Hu, Kenneth H.; Chaudhuri, Ovijit

    2016-01-01

    The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction. PMID:27140623

  5. Relaxant effect of proton pump inhibitors on in vitro myometrium from pregnant women.

    PubMed

    Terranova, C; Petrella, C; Improta, G; Severini, C; Signore, F; Damiani, P; Plotti, F; Scarpignato, C; Angioli, R

    2014-02-14

    In this study we investigate in in vitro myometrial tissue samples of pregnant women: (a) the effects of proton pomp inhibitors (PPIs) (omeprazole, esomeprazole, pantoprazole, lansoprazole and rabeprazole) on spontaneous contractions; (b) the muscle-relaxant efficacy of the most active PPI considered (pantoprazole) in comparison with that of other known tocolytics (nifedipine, atosiban, MgSO4, isoxsuprine); (c) the effect of pantoprazole on contractions induced by calcium (Ca(++)), KCl, oxytocin and prostaglandin (PGE2); (d) the possible mediators of pantoprazole relaxant effect. Organ bath studies were performed on myometrial tissue samples (40×10×10 mm) from pregnant women (38-42 weeks of gestational age) undergoing elective caesarian section. All the PPIs studied reduce the spontaneous contraction of the myometrial smooth muscle. Pantoprazole is the most effective and most potent inhibitor among those analyzed. Pantoprazole also reduces the contractions induced by Ca(++), KCl, oxytocin and PGE2. Neither NO, nor PGs, or the activation of Ca(++)-dependent K(+) currents mediate the muscle-relaxant effect of this PPI. These data, together with the fact that PPIs almost do not present side effects, suggest that these drugs can offer new therapeutic strategies for preterm delivery. Undoubtedly, further investigations and clinical studies are necessary before adding PPIs to the list of drugs available for the treatment of preterm delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Anesthetic efficacy and heart rate effects of the intraosseous injection of 3% mepivacaine after an inferior alveolar nerve block.

    PubMed

    Gallatin, E; Stabile, P; Reader, A; Nist, R; Beck, M

    2000-01-01

    The purpose of this study was to determine the anesthetic efficacy and heart rate effects of an intraosseous injection of 3% mepivacaine after an inferior alveolar nerve block. Through use of a repeated-measures design, each of 48 subjects randomly received 2 combinations of injections at 2 separate appointments. The combinations were (1) an inferior alveolar nerve block (with 1.8 mL of 3% mepivacaine) + intraosseous injection with 1.8 mL of 3% mepivacaine and (2) an inferior alveolar nerve (with 1. 8 mL of 3% mepivacaine) + mock intraosseous injection. The first molar was blindly pulp tested at 2-minute cycles for 60 minutes postinjection. Anesthesia was considered successful with 2 consecutive 80 readings. Heart rate (pulse rate) was measured with a pulse oximeter. All subjects had lip numbness with both of the inferior alveolar nerve + intraosseous techniques. Anesthetic success for the first molar was significantly increased for 30 minutes with intraosseous injection of mepivacaine in comparison with the inferior alveolar nerve block alone (mock intraosseous injection). Subjects receiving the intraosseous injection of mepivacaine experienced minimal increases in heart rate. The intraosseous injection of 1.8 mL of 3% mepivacaine, when used to augment an inferior alveolar nerve block, significantly increased anesthetic success for 30 minutes in the first molar. The 3% mepivacaine had a minimal effect on heart rate and would be useful in patients with contraindications to epinephrine use.

  7. Comparison between two pedicle screw augmentation instrumentations in adult degenerative scoliosis with osteoporosis.

    PubMed

    Xie, Yang; Fu, Qiang; Chen, Zi-qiang; Shi, Zhi-cai; Zhu, Xiao-dong; Wang, Chuan-feng; Li, Ming

    2011-12-21

    The operative treatment of adult degenerative scoliosis combined with osteoporosis increase following the epidemiological development. Studies have confirmed that screws in osteoporotic spines have significant lower-screw strength with more frequent screw movements within the vertebra than normal spines. Screws augmented with polymethylmethacrylate (PMMA) or with autogenous bone can offer more powerful corrective force and significant advantages. A retrospective analysis was conducted on 31 consecutive patients with degenerative lumbar scoliosis combined with osteoporosis who had surgery from December 2000. All had a minimum of 2-year follow-up. All patients had posterior approach surgery. 14 of them were fixed with pedicle screw by augmentation with polymethylmethacrylate (PMMA) and the other 17 patients with autogenous bone. Age, sex and whether smoking were similar between the two groups. Surgical time, blood loss, blood transfusion, medical cost, post surgery ICU time, hospital day, length of oral pain medicines taken, Pre-and postoperative Oswestry disability index questionnaire and surgical revision were documented and compared. Preoperative, postoperative and final follow up Cobb angle, sagittal lumbar curve, correction rate, and Follow up Cobb loss were also compared. No significant differences were found between the autogenous bone group and polymethylmethacrylate group with regards to all the targets above except for length of oral pain medicines taken and surgery cost. 2 patients were seen leakage during operation, but there is neither damage of nerve nor symptom after operation. No revision was needed. Both augmentation pedicle screw with polymethylmethacrylate (PMMA) and autogenous bone treating degenerative lumbar scoliosis combined with osteoporosis can achieve a good surgical result. Less oral pain medicines taken are the potential benefits of polymethylmethacrylate augmentation, but that is at the cost of more medical spending.

  8. IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function

    PubMed Central

    Cai, Liying; Johnstone, Brian H.; Cook, Todd G.; Tan, Jian; Fishbein, Michael C.; Chen, Peng-Sheng; March, Keith L.

    2010-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  9. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?

    PubMed

    Moreau, Nathan; Mauborgne, Annie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2017-01-01

    Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway

  10. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes.

    PubMed

    Ma, Jihua; Luo, Antao; Wu, Lin; Wan, Wei; Zhang, Peihua; Ren, Zhiqiang; Zhang, Shuo; Qian, Chunping; Shryock, John C; Belardinelli, Luiz

    2012-04-15

    An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) augments late sodium current (I(Na.L)) in cardiomyocytes. This study tests the hypothesis that both Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca(2+)](i) to increase I(Na.L). Whole cell and open cell-attached patch clamp techniques were used to record I(Na.L) in rabbit ventricular myocytes dialyzed with solutions containing various concentrations of [Ca(2+)](i). Dialysis of cells with [Ca(2+)](i) from 0.1 to 0.3, 0.6, and 1.0 μM increased I(Na.L) in a concentration-dependent manner from 0.221 ± 0.038 to 0.554 ± 0.045 pA/pF (n = 10, P < 0.01) and was associated with an increase in mean Na(+) channel open probability and prolongation of channel mean open-time (n = 7, P < 0.01). In the presence of 0.6 μM [Ca(2+)](i), KN-93 (10 μM) and bisindolylmaleimide (BIM, 2 μM) decreased I(Na.L) by 45.2 and 54.8%, respectively. The effects of KN-93 and autocamtide-2-related inhibitory peptide II (2 μM) were not different. A combination of KN-93 and BIM completely reversed the increase in I(Na.L) as well as the Ca(2+)-induced changes in Na(+) channel mean open probability and mean open-time induced by 0.6 μM [Ca(2+)](i). Phorbol myristoyl acetate increased I(Na.L) in myocytes dialyzed with 0.1 μM [Ca(2+)](i); the effect was abolished by Gö-6976. In summary, both CaMKII and PKC are involved in [Ca(2+)](i)-mediated augmentation of I(Na.L) in ventricular myocytes. Inhibition of CaMKII and/or PKC pathways may be a therapeutic target to reduce myocardial dysfunction and cardiac arrhythmias caused by calcium overload.

  11. Abnormal afferent nerve endings in the soft palatal mucosa of sleep apnoics and habitual snorers.

    PubMed

    Friberg, D; Gazelius, B; Hökfelt, T; Nordlander, B

    1997-07-23

    Habitual snoring precedes obstructive sleep apnea (OSA), but the pathophysiological mechanisms behind progression are still unclear. The patency of upper airways depends on a reflexogen mechanism reacting on negative intrapharyngeal pressure at inspiration, probably mediated by mucosal receptors, i.e., via afferent nerve endings. Such nerves contain a specific nerve protein, protein-gene product 9.5 (PGP 9.5) and in some cases substance P (SP) and calcitonin gene-related (CGRP). Biopsies of the soft palatial mucosa were obtained from non-smoking men ten OSA patients, 11 habitual snorers and 11 non-snoring controls. The specimens were immunohistochemically analyzed for PGP 9.5, SP and CGRP. As compared to controls, an increased number of PGP-, SP- and CGRP-immunoreactive nerves were demonstrated in the mucosa in 9/10 OSA patients and 4/11 snorers, in addition to varicose nerve endings in the papillae and epithelium. Using double staining methodology, it could be shown that SP- and CGRP-like immunoreactivities (LIs) often coexisted in these fibres, as did CGRP- and PGP 9.5-LIs. The increased density in sensory nerve terminals are interpreted to indicate an afferent nerve lesion. Our results support the hypothesis of a progressive neurogenic lesion as a contributory factor to the collapse of upper airways during sleep in OSA patients.

  12. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

    PubMed Central

    Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan

    2017-01-01

    PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598

  13. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    PubMed

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  14. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  15. Adverse reactions to suxamethonium and other muscle relaxants under general anesthesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vervloet, D.; Nizankowska, E.; Arnaud, A.

    The mechanisms of anaphylactic reactions to muscle relaxants under general anesthesia are not completely understood. Extending an earlier study, we report 41 cases of anaphylactic shock investigated by intradermal skin tests with muscle relaxants (suxamethonium, pancuronium, gallamine, nortoxiferine), in vitro leukocyte histamine release, and Prausnitz-Kuestner tests. Intradermal tests were significantly positive at concentrations ranging from 10 to 10(5) times less than those in controls. Reproducibility tested for suxamethonium at a 1-year interval in five patients was good. Histamine release induced by muscle relaxants in Tris-albumin-Ca++-Mg++ buffer showed positive results in 8/25 instances and was inhibited by antigen excess in sevenmore » cases. Addition of 50% deuterium oxide (D2O) caused significant increase of histamine release in positive cases and induced release in all five negative cases studied. Muscle relaxant-induced histamine release was inhibited by in vitro anti-IgE leukocyte desensitization. The mean maximal histamine release dropped from 58.2% +/- 9.7 to 5.8% +/- 2 (p less than 0.01). Similarly, leukocyte desensitization also inhibited histamine release induced by anti-IgE but not by formyl-L-methionyl-L-leucyl-L-phenylalanine or poly-L-arginine. Prausnitz-Kuestner tests were positive in five out of 21 cases studied and became negative after heat inactivation. These results confirm the usefulness of intradermal skin tests in diagnosis of patients' reaction to muscle relaxants and suggest an IgE-mediated rather than an idiosyncratic mechanism.« less

  16. Electrophysiology of Cranial Nerve Testing: Trigeminal and Facial Nerves.

    PubMed

    Muzyka, Iryna M; Estephan, Bachir

    2018-01-01

    The clinical examination of the trigeminal and facial nerves provides significant diagnostic value, especially in the localization of lesions in disorders affecting the central and/or peripheral nervous system. The electrodiagnostic evaluation of these nerves and their pathways adds further accuracy and reliability to the diagnostic investigation and the localization process, especially when different testing methods are combined based on the clinical presentation and the electrophysiological findings. The diagnostic uniqueness of the trigeminal and facial nerves is their connectivity and their coparticipation in reflexes commonly used in clinical practice, namely the blink and corneal reflexes. The other reflexes used in the diagnostic process and lesion localization are very nerve specific and add more diagnostic yield to the workup of certain disorders of the nervous system. This article provides a review of commonly used electrodiagnostic studies and techniques in the evaluation and lesion localization of cranial nerves V and VII.

  17. Demonstration of relaxed static stability on a commercial transport

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J.; Willey, C. S.; Cokeley, R. C.

    1984-01-01

    Increasing jet aircraft fuel costs from 25 percent to nearly 60 percent of the aircraft direct operating costs have led to a heavy emphasis on the development of transport aircraft with significantly improved aerodynamic performance. The application of the concept of relaxed static stability (RSS) and the utilization of an active control stability augmentation system make it possible to design an aircraft with reduced aerodynamic trim drag due to a farther-aft cg balance. Reduced aerodynamic parasite drag and lower structural weight due to a smaller horizontal tail surface can also be obtained. The application of RSS has been studied under a NASA-sponsored program to determine ways of improving the energy efficiency in current and future transport aircraft. Attention is given to a near-term pitch active control system, an advanced pitch active control system, and an operational overview.

  18. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.

    PubMed

    Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin

    2018-05-01

    Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.

  19. Optic Nerve Disorders

    MedlinePlus

    The optic nerve is a bundle of more than 1 million nerve fibers that carry visual messages. You have one connecting ... retina) to your brain. Damage to an optic nerve can cause vision loss. The type of vision ...

  20. Axillary nerve injury.

    PubMed

    Perlmutter, G S

    1999-11-01

    Axillary nerve injury remains the most common peripheral nerve injury to affect the shoulder. It most often is seen after glenohumeral joint dislocation, proximal humerus fracture, or a direct blow to the deltoid muscle. Compression neuropathy has been reported to occur in the quadrilateral space syndrome, although the true pathophysiology of this disorder remains unclear. The axillary nerve is vulnerable during any operative procedure involving the inferior aspect of the shoulder and iatrogenic injury remains a serious complication of shoulder surgery. During the acute phase of injury, the shoulder should be rested, and when clinically indicated, a patient should undergo an extensive rehabilitation program emphasizing range of motion and strengthening of the shoulder girdle muscles. If no axillary nerve recovery is observed by 3 to 6 months after injury, surgical exploration may be indicated, especially if the mechanism of injury is consistent with nerve rupture. Patients who sustain injury to the axillary nerve have a variable prognosis for nerve recovery although return of function of the involved shoulder typically is good to excellent, depending on associated ligamentous or bony injury.

  1. Lacosamide diminishes dryness-induced hyperexcitability of corneal cold sensitive nerve terminals.

    PubMed

    Kovács, Illés; Dienes, Lóránt; Perényi, Kristóf; Quirce, Susana; Luna, Carolina; Mizerska, Kamila; Acosta, M Carmen; Belmonte, Carlos; Gallar, Juana

    2016-09-15

    Lacosamide is an anti-epileptic drug that is also used for the treatment of painful diabetic neuropathy acting through voltage-gated sodium channels. The aim of this work was to evaluate the effects of acute application of lacosamide on the electrical activity of corneal cold nerve terminals in lacrimo-deficient guinea pigs. Four weeks after unilateral surgical removal of the main lachrimal gland in guinea pigs, corneas were excised and superfused in vitro at 34°C for extracellular electrophysiological recording of nerve terminal impulse activity of cold thermosensitive nerve terminals. The characteristics of the spontaneous and the stimulus-evoked (cooling ramps from 34°C to 15°C) activity before and in presence of lacosamide 100µM and lidocaine 100µM were compared. Cold nerve terminals (n=34) recorded from dry eye corneas showed significantly enhanced spontaneous activity (8.0±1.1 vs. 5.2±0.7imp/s; P<0.05) and cold response (21.2±1.7 vs. 16.8±1.3imp/s; P<0.05) as well as reduced cold threshold (1.5±0.1 vs. 2.8±0.2 Δ°C; P<0.05) to cooling ramps compared to terminals (n=58) from control animals. Both lacosamide and lidocaine decreased spontaneous activity and peak response to cooling ramps significantly (P<0.05). Temperature threshold was increased by the addition of lidocaine (P<0.05) but not lacosamide (P>0.05) to the irrigation fluid. In summary, the application of lacosamide results in a significant decrease of the augmented spontaneous activity and responsiveness to cold of corneal sensory nerves from tear-deficient animals. Based on these promising results we speculate that lacosamide might be used to reduce the hyperexcitability of corneal cold receptors caused by prolonged ocular surface dryness due to hyposecretory or evaporative dry eye disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural Relaxation of Vit4Amorphous Alloy by the Enthalpy Relaxation

    NASA Astrophysics Data System (ADS)

    O'Reilly, James; Hammond, Vincent

    2002-03-01

    The structural relaxation of an amorphous alloy designated Vit4 has been investigated as a function of thermal history using differential scanning calorimetry. Results indicate that the width of the glass transition region is approximately 30 °C, which is broader than molecular or polymeric glasses but similar to inorganic glasses. The broad transition implies a large distribution of relaxation times, a low activation energy, or a combination of these effects. The Tool-Narayanaswamy model for structural relaxation has been used to analyze the change in fictive temperature that occurs for a series of cooling rates. The activation energy calculated from these data the is 187 kJ/mol, a value that is low compared to other glasses. Using optimization programs, the other relaxation parameters, the characteristic relaxation time, the non-linearity parameter, x, and the fractional exponent of distribution of relaxation times, b, were determined from the experimental specific heat curves. Although the parameters were in good agreement with values typical of other glassy materials, there appears to be less correlation between them than is observed in molecular and polymeric glasses. The results obtained in this study indicate that the structural relaxation of Vit 4 is similar to other glasses except for a low activation energy with high glass transition. This could be due to a low free volume or configurational entropy. The width of the glass transition could result from a large distribution of relaxation times or a low activation energy. The exponent of the distribution of relaxation times, b, is 0.45±0.1 and the non-linearity parameter, x =0.5±0.2. The structural relaxation of Vit 4 is dominated by a low activation energy which is related to the atomic jump motion of hard spheres. The DCp at Tg should be 11.7 J/mol. deg per bead according to Wunderlich’s rule. This means that the change in Cp at Tg in Vit4 can be accounted for by one bead although there are five metal

  3. Permanent nerve damage from inferior alveolar nerve blocks: a current update.

    PubMed

    Pogrel, M Anthony

    2012-10-01

    Permanent nerve involvement has been reported following inferior alveolar nerve blocks. This study provides an update on cases reported to one unit in the preceding six years. Lidocaine was associated with 25 percent of cases, articaine with 33 percent of cases, and prilocaine with 34 percent of cases. It does appear that inferior alveolar nerve blocks can cause permanent nerve damage with any local anesthetic, but the incidences may vary.

  4. Relaxation by urocortin of rat renal arteries: effects of diabetes in males and females.

    PubMed

    Sanz, Elena; Fernández, Nuria; Monge, Luis; Climent, Belén; Diéguez, Godofredo; García-Villalón, Angel Luis

    2003-06-01

    Urocortin is a peptide structurally related to corticotropin releasing factor (CRF), and the present study was performed to examine the effects of diabetes mellitus on the relaxation by urocortin of renal arteries from males and females. The response to urocortin was studied in isolated segments, 2 mm long, from renal arteries, from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats. In the renal arterial segments precontracted with endothelin-1, urocortin produced concentration-dependent relaxation, that was not different between males and females. Diabetes reduced the relaxation in renal arteries from females but not in those from males. The potassium channel blocker charybdotoxin (10(-7) M) reduced the relaxation to urocortin of renal arteries from normoglycemic males and females. The cyclooxygenase inhibitor meclofenamate did not modify the relaxation to urocortin in renal arteries from normoglycemic males or females. The inhibitor of nitric oxide synthesis N(W)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) reduced the relaxation to urocortin in renal arteries from normoglycemic females, but not in renal arteries from normoglycemic males. Neither charybdotoxin, L-NAME or meclofenamate modified the relaxation to urocortin of renal arteries from diabetic females. These results suggest that urocortin produces a marked vasodilation of renal arteries, which may be mediated by nitric oxide in females and by activation of potassium channels in both genders, and is reduced by diabetes in renal arteries from females.

  5. Nerve Growth Factor Sensitizes Adult Sympathetic Neurons to the Proinflammatory Peptide Bradykinin

    PubMed Central

    Vivas, Oscar; Kruse, Martin

    2014-01-01

    Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca2+ elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca2+ levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin. PMID:25186743

  6. The vestibulocochlear nerve (VIII).

    PubMed

    Benoudiba, F; Toulgoat, F; Sarrazin, J-L

    2013-10-01

    The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. Copyright © 2013. Published by Elsevier Masson SAS.

  7. Sensory Nerve Induced Inflammation Contributes to Heterotopic Ossification

    PubMed Central

    Salisbury, Elizabeth; Rodenberg, Eric; Sonnet, Corinne; Hipp, John; Gannon, Francis H.; Vadakkan, Tegy J.; Dickinson, Mary E.; Olmsted-Davis, Elizabeth A.; Davis, Alan R.

    2012-01-01

    Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation. PMID:21678472

  8. Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.

    PubMed

    Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J

    2017-12-01

    Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.

  9. Non-recurrent laryngeal nerve with a coexisting contralateral nerve demonstrating extralaryngeal branching.

    PubMed

    Constable, James D; Bathala, Srinivasalu; Ahmed, Jacob J; McGlashan, Julian A

    2017-03-17

    Non-recurrence and extralaryngeal branching are 2 of the more frequently encountered anomalies of the recurrent laryngeal nerve. If not anticipated intraoperatively, these abnormalities can put the nerve at risk, with subsequent vocal cord palsy. It is therefore important to report on and understand these abnormalities. We present a unique case of a non-recurrent laryngeal nerve with a coexisting contralateral nerve demonstrating extralaryngeal branching. This case allows us to demonstrate the importance of arteria lusoria in head and neck surgery, and to conclude that non-recurrence and extralaryngeal branching can occur separately within individual nerves in the same patient. The case also highlights the importance of a systematic intraoperative approach to the identification of every recurrent laryngeal nerve, especially in bilateral procedures having already exposed an anomalous nerve on one side. 2017 BMJ Publishing Group Ltd.

  10. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    PubMed

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Mass transfer effect of the stalk contraction-relaxation cycle of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Zhou, Jiazhong; Admiraal, David; Ryu, Sangjin

    2014-11-01

    Vorticella convallaria is a genus of protozoa living in freshwater. Its stalk contracts and coil pulling the cell body towards the substrate at a remarkable speed, and then relaxes to its extended state much more slowly than the contraction. However, the reason for Vorticella's stalk contraction is still unknown. It is presumed that water flow induced by the stalk contraction-relaxation cycle may augment mass transfer near the substrate. We investigated this hypothesis using an experimental model with particle tracking velocimetry and a computational fluid dynamics model. In both approaches, Vorticella was modeled as a solid sphere translating perpendicular to a solid surface in water. After having been validated by the experimental model and verified by grid convergence index test, the computational model simulated water flow during the cycle based on the measured time course of stalk length changes of Vorticella. Based on the simulated flow field, we calculated trajectories of particles near the model Vorticella, and then evaluated the mass transfer effect of Vorticella's stalk contraction based on the particles' motion. We acknowlege support from Laymann Seed Grant of the University of Nebraska-Lincoln.

  12. Immediate versus delayed primary nerve repair in the rabbit sciatic nerve

    PubMed Central

    Piskin, Ahmet; Altunkaynak, Berrin Zühal; Çιtlak, Atilla; Sezgin, Hicabi; Yazιcι, Ozgür; Kaplan, Süleyman

    2013-01-01

    It is well known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and delayed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cell morphology, and the mechanical property of nerve fibers did not differ obviously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair. PMID:25206663

  13. Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits.

    PubMed

    Shukla, Nilima; Jones, Robert; Persad, Raj; Angelini, Gianni D; Jeremy, Jamie Y

    2005-07-11

    Hypercholesterolaemia promotes erectile dysfunction through increased superoxide formation and negation of nitric oxide (NO) bioactivity in cavernosal tissue. The source of superoxide has not been clearly defined, however. Sildenafil (Viagra), the standard therapy for erectile dysfunction, may also be rendered more effective by the presence of an NO donor. One drug that intrinsically fulfils this criterion is sildenafil nitrate (NCX 911), an NO donating derivative of sildenafil. The objective of this study, therefore, was to determine the source of superoxide and its effect on erectile function in corpus cavernosum from hypercholesterolaemic rabbits and to determine whether NCX 911 confers an improvement over sildenafil citrate in this model. Hypercholesterolaemia elicited an increase in superoxide formation by rabbit cavernosal tissue and a reduction of carbachol-stimulated relaxation both of which were reversed by diphenylene iodonium chloride and apocynin (NADPH oxidase inhibitors). In response to sodium nitroprusside, hypercholesterolaemia also caused an attenuation of cavernosal relaxation which was not reversed with NADPH oxidase inhibitors. Both sildenafil citrate and NCX 911 significantly reversed impaired carbachol-stimulated relaxation and inhibited superoxide formation by cavernosal tissue from hypercholesterolaemic rabbits, NCX 911 being more potent. NCX 911 also augmented cavernosal cGMP levels, an effect blocked by the guanylyl cyclase inhibitor, 1H-{1,2,4}oxadiazolo {4,3-a}quinoxalin-1-one (ODQ). These data demonstrate that hypercholesterolaemia promotes erectile dysfunction through an augmentation of superoxide derived from NADPH oxidase in cavernosal tissue. It also indicates that NO donating sildenafil may be therapeutically more beneficial than conventional sildenafil in treating erectile dysfunction with an oxidative stress-related aetiology.

  14. The neglected cranial nerve: nervus terminalis (cranial nerve N).

    PubMed

    Vilensky, Joel A

    2014-01-01

    The nervus terminalis (NT; terminal nerve) was clearly identified as an additional cranial nerve in humans more than a century ago yet remains mostly undescribed in modern anatomy textbooks. The nerve is referred to as the nervus terminalis because in species initially examined its fibers were seen entering the brain in the region of the lamina terminalis. It has also been referred to as cranial nerve 0, but because there is no Roman symbol for zero, an N for the Latin word nulla is a better numerical designation. This nerve is very distinct in human fetuses and infants but also has been repeatedly identified in adult human brains. The NT fibers are unmyelinated and emanate from ganglia. The fibers pass through the cribriform plate medial to those of the olfactory nerve fila. The fibers end in the nasal mucosa and probably arise from autonomic/neuromodulatory as well as sensory neurons. The NT has been demonstrated to release luteinizing-releasing luteinizing hormone and is therefore thought to play a role in reproductive behavior. Based on the available evidence, the NT appears to be functional in adult humans and should be taught in medical schools and incorporated into anatomy/neuroanatomy textbooks. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  15. Facial reanimation by muscle-nerve neurotization after facial nerve sacrifice. Case report.

    PubMed

    Taupin, A; Labbé, D; Babin, E; Fromager, G

    2016-12-01

    Recovering a certain degree of mimicry after sacrifice of the facial nerve is a clinically recognized finding. The authors report a case of hemifacial reanimation suggesting a phenomenon of neurotization from muscle-to-nerve. A woman benefited from a parotidectomy with sacrifice of the left facial nerve indicated for recurrent tumor in the gland. The distal branches of the facial nerve, isolated at the time of resection, were buried in the masseter muscle underneath. The patient recovered a voluntary hémifacial motricity. The electromyographic analysis of the motor activity of the zygomaticus major before and after block of the masseter nerve showed a dependence between mimic muscles and the masseter muscle. Several hypotheses have been advanced to explain the spontaneous reanimation of facial paralysis. The clinical case makes it possible to argue in favor of muscle-to-nerve neurotization from masseter muscle to distal branches of the facial nerve. It illustrates the quality of motricity that can be obtained thanks to this procedure. The authors describe a simple implantation technique of distal branches of the facial nerve in the masseter muscle during a radical parotidectomy with facial nerve sacrifice and recovery of resting tone but also a quality voluntary mimicry. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  17. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  18. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  19. Use of Sacral Nerve Stimulation for the Treatment of Overlapping Constipation and Fecal Incontinence

    PubMed Central

    Sreepati, Gouri; James-Stevenson, Toyia

    2017-01-01

    Patient: Female, 51 Final Diagnosis: Fecal incontinence Symptoms: Constipation • fecal incontinence Medication: — Clinical Procedure: Sacral nerve stimulator Specialty: Gastroenterology and Hepatology Objective: Rare co-existance of disease or pathology Background: Fecal incontinence and constipation are common gastrointestinal complaints, but rarely occur concurrently. Management of these seemingly paradoxical processes is challenging, as treatment of one symptom may exacerbate the other. Case Report: A 51-year-old female with lifelong neurogenic bladder secondary to spina bifida occulta presented with progressive symptoms of daily urge fecal incontinence as well as hard bowel movements associated with straining and a sensation of incomplete evacuation requiring manual disimpaction. Pelvic floor testing showed poor ability to squeeze the anal sphincter, which indicated sphincter weakness as a major contributor to her fecal incontinence symptoms. Additionally, on defecography she was unable to widen her posterior anorectal angle or relax the anal sphincter during defecation consistent with dyssynergic defecation. A sacral nerve stimulator was placed for management of her fecal incontinence. Interestingly, her constipation also dramatically improved with sacral neuromodulation. Conclusions: This unique case highlights the emerging role of sacral nerve stimulation in the treatment of complex pelvic floor dysfunction with improvement in symptoms beyond fecal incontinence in a patient with dyssynergic-type constipation. PMID:28265107

  20. Synovial sarcoma of nerve.

    PubMed

    Scheithauer, Bernd W; Amrami, Kimberly K; Folpe, Andrew L; Silva, Ana I; Edgar, Mark A; Woodruff, James M; Levi, Allan D; Spinner, Robert J

    2011-04-01

    Tumors of peripheral nerve are largely neuroectodermal in nature and derived from 2 elements of nerve, Schwann or perineurial cells. In contrast, mesenchymal tumors affecting peripheral nerve are rare and are derived mainly from epineurial connective tissue. The spectrum of the latter is broad and includes lipoma, vascular neoplasms, hematopoietic tumors, and even meningioma. Of malignant peripheral nerve neoplasms, the vast majority are primary peripheral nerve sheath tumors. Malignancies of mesenchymal type are much less common. To date, only 12 cases of synovial sarcoma of nerve have been described. Whereas in the past, parallels were drawn between synovial sarcoma and malignant glandular schwannoma, an uncommon form of malignant peripheral nerve sheath tumor, molecular genetics have since clarified the distinction. Herein, we report 10 additional examples of molecularly confirmed synovial sarcoma, all arising within minor or major nerves. Affecting 7 female and 3 male patients, 4 tumors occurred in pediatric patients. Clinically and radiologically, most lesions were initially thought to be benign nerve sheath tumors. On reinterpretation of imaging, they were considered indeterminate in nature with some features suspicious for malignancy. Synovial sarcoma of nerve, albeit rare, seems to behave in a manner similar to its more common, soft tissue counterpart. Those affecting nerve have a variable prognosis. Definitive recommendations regarding surgery and adjuvant therapies await additional reports and long-term follow-up. The literature is reviewed and a meta-analysis is performed with respect to clinicopathologic features versus outcome. Copyright © 2011. Published by Elsevier Inc.

  1. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit

    PubMed Central

    Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing

    2016-01-01

    The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF+/− mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784

  2. [Which changes occur in nerve grafts harvested with a nerve stripper? Morphological studies].

    PubMed

    Koller, R; Frey, M; Rab, M; Deutinger, M; Freilinger, G

    1995-03-01

    A histological and morphometric study was undertaken in order to evaluate the alterations in sural nerves harvested for nerve grafting using a nerve stripper. In 19 nerves biopsies were taken from the proximal and/or the distal end of the stripped nerve graft. Cross sections were examined for alterations of the perineurium and the myelin sheaths. In four nerves alterations within the perineurium were found, which affected 37% of the endoneural cross-sectional area on the average. In all specimens, the perineurial sheath was seen to be intact. The results of the present study suggest that harvesting of a nerve graft using a stripper does not cause major injuries to the graft and therefore successful neurotization of the graft should not be impaired.

  3. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  4. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  5. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.

    PubMed

    Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten

    2016-01-01

    Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient.

    PubMed

    Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho

    2018-01-01

    In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.

  7. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  8. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    PubMed

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  9. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye.

    PubMed

    Hirata, Harumitsu; Mizerska, Kamila; Dallacasagrande, Valentina; Guaiquil, Victor H; Rosenblatt, Mark I

    2017-05-01

    It is widely accepted that the mechanisms for transducing sensory information reside in the nerve terminals. Occasionally, however, studies have appeared demonstrating that similar mechanisms may exist in the axon to which these terminals are connected. We examined this issue in the cornea, where nerve terminals in the epithelial cell layers are easily accessible for debridement, leaving the underlying stromal (axonal) nerves undisturbed. In isoflurane-anesthetized rats, we recorded extracellularly from single trigeminal ganglion neurons innervating the cornea that are excited by ocular dryness and cooling: low-threshold (<2°C cooling) and high-threshold (>2°C) cold-sensitive plus dry-sensitive neurons playing possible roles in tearing and ocular pain. We found that the responses in both types of neurons to dryness, wetness, and menthol stimuli were effectively abolished by the debridement, indicating that their transduction mechanisms lie in the nerve terminals. However, some responses to the cold, heat, and hyperosmolar stimuli in low-threshold cold-sensitive plus dry-sensitive neurons still remained. Surprisingly, the responses to heat in approximately half of the neurons were augmented after the debridement. We were also able to evoke these residual responses and follow the trajectory of the stromal nerves, which we subsequently confirmed histologically. The residual responses always disappeared when the stromal nerves were cut at the limbus, suggesting that the additional transduction mechanisms for these sensory modalities originated most likely in stromal nerves. The functional significance of these residual and enhanced responses from stromal nerves may be related to the abnormal sensations observed in ocular disease. NEW & NOTEWORTHY In addition to the traditional view that the sensory transduction mechanisms exist in the nerve terminals, we report here that the proximal axons (stromal nerves in the cornea from which these nerve terminals originate) may

  10. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye

    PubMed Central

    Mizerska, Kamila; Dallacasagrande, Valentina; Guaiquil, Victor H.; Rosenblatt, Mark I.

    2017-01-01

    It is widely accepted that the mechanisms for transducing sensory information reside in the nerve terminals. Occasionally, however, studies have appeared demonstrating that similar mechanisms may exist in the axon to which these terminals are connected. We examined this issue in the cornea, where nerve terminals in the epithelial cell layers are easily accessible for debridement, leaving the underlying stromal (axonal) nerves undisturbed. In isoflurane-anesthetized rats, we recorded extracellularly from single trigeminal ganglion neurons innervating the cornea that are excited by ocular dryness and cooling: low-threshold (<2°C cooling) and high-threshold (>2°C) cold-sensitive plus dry-sensitive neurons playing possible roles in tearing and ocular pain. We found that the responses in both types of neurons to dryness, wetness, and menthol stimuli were effectively abolished by the debridement, indicating that their transduction mechanisms lie in the nerve terminals. However, some responses to the cold, heat, and hyperosmolar stimuli in low-threshold cold-sensitive plus dry-sensitive neurons still remained. Surprisingly, the responses to heat in approximately half of the neurons were augmented after the debridement. We were also able to evoke these residual responses and follow the trajectory of the stromal nerves, which we subsequently confirmed histologically. The residual responses always disappeared when the stromal nerves were cut at the limbus, suggesting that the additional transduction mechanisms for these sensory modalities originated most likely in stromal nerves. The functional significance of these residual and enhanced responses from stromal nerves may be related to the abnormal sensations observed in ocular disease. NEW & NOTEWORTHY In addition to the traditional view that the sensory transduction mechanisms exist in the nerve terminals, we report here that the proximal axons (stromal nerves in the cornea from which these nerve terminals originate) may

  11. Treatment of peroneal nerve injuries with simultaneous tendon transfer and nerve exploration.

    PubMed

    Ho, Bryant; Khan, Zubair; Switaj, Paul J; Ochenjele, George; Fuchs, Daniel; Dahl, William; Cederna, Paul; Kung, Theodore A; Kadakia, Anish R

    2014-08-06

    Common peroneal nerve palsy leading to foot drop is difficult to manage and has historically been treated with extended bracing with expectant waiting for return of nerve function. Peroneal nerve exploration has traditionally been avoided except in cases of known traumatic or iatrogenic injury, with tendon transfers being performed in a delayed fashion after exhausting conservative treatment. We present a new strategy for management of foot drop with nerve exploration and concomitant tendon transfer. We retrospectively reviewed a series of 12 patients with peroneal nerve palsies that were treated with tendon transfer from 2005 to 2011. Of these patients, seven were treated with simultaneous peroneal nerve exploration and repair at the time of tendon transfer. Patients with both nerve repair and tendon transfer had superior functional results with active dorsiflexion in all patients, compared to dorsiflexion in 40% of patients treated with tendon transfers alone. Additionally, 57% of patients treated with nerve repair and tendon transfer were able to achieve enough function to return to running, compared to 20% in patients with tendon transfer alone. No patient had full return of native motor function resulting in excessive dorsiflexion strength. The results of our limited case series for this rare condition indicate that simultaneous nerve repair and tendon transfer showed no detrimental results and may provide improved function over tendon transfer alone.

  12. Comparison between two pedicle screw augmentation instrumentations in adult degenerative scoliosis with osteoporosis

    PubMed Central

    2011-01-01

    Background The operative treatment of adult degenerative scoliosis combined with osteoporosis increase following the epidemiological development. Studies have confirmed that screws in osteoporotic spines have significant lower-screw strength with more frequent screw movements within the vertebra than normal spines. Screws augmented with Polymethylmethacrylate (PMMA) or with autogenous bone can offer more powerful corrective force and significant advantages. Methods A retrospective analysis was conducted on 31 consecutive patients with degenerative lumbar scoliosis combined with osteoporosis who had surgery from December 2000. All had a minimum of 2-year follow-up. All patients had posterior approach surgery. 14 of them were fixed with pedicle screw by augmentation with Polymethylmethacrylate (PMMA) and the other 17 patients with autogenous bone. Age, sex and whether smoking were similar between the two groups. Surgical time, blood loss, blood transfusion, medical cost, post surgery ICU time, hospital day, length of oral pain medicines taken, Pre-and postoperative Oswestry disability index questionnaire and surgical revision were documented and compared. Preoperative, postoperative and final follow up Cobb angle, sagittal lumbar curve, correction rate, and Follow up Cobb loss were also compared. Results No significant differences were found between the autogenous bone group and Polymethylmethacrylate group with regards to all the targets above except for length of oral pain medicines taken and surgery cost. 2 patients were seen leakage during operation, but there is neither damage of nerve nor symptom after operation. No revision was needed. Conclusion Both augmentation pedicle screw with Polymethylmethacrylate (PMMA) and autogenous bone treating degenerative lumbar scoliosis combined with osteoporosis can achieve a good surgical result. Less oral pain medicines taken are the potential benefits of Polymethylmethacrylate augmentation, but that is at the cost of more

  13. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2-CREB-Trx-1 Signaling.

    PubMed

    Zhao, Lu; Feng, Yi; Hu, Hong; Shi, Aiwei; Zhang, Lei; Wan, Mingxi

    2016-12-01

    Enhancing the action of nerve growth factor (NGF) is a potential therapeutic approach to neural regeneration. To facilitate neural regeneration, we investigated whether combining low-intensity pulsed ultrasound (LIPUS) and NGF could promote neurite outgrowth, an essential process in neural regeneration. In the present study, PC12 cells were subjected to a combination of LIPUS (1 MHz, 30 or 50 mW/cm 2 , 20% duty cycle and 100-Hz pulse repetition frequency, 10 min every other day) and NGF (50 ng/mL) treatment, and then neurite outgrowth was compared. Our findings indicated that the combined treatment with LIPUS (50 mW/cm 2 ) and NGF (50 ng/mL) promotes neurite outgrowth that is comparable to that achieved by NGF (100 ng/mL) treatment alone. LIPUS significantly increased NGF-induced neurite length, but not neurite branching. These effects were attributed to the enhancing effects of LIPUS on NGF-induced phosphorylation of ERK1/2 and CREB and the expression of thioredoxin (Trx-1). Furthermore, blockage of stretch-activated ion channels with Gd 3+ suppressed the stimulating effects of LIPUS on NGF-induced neurite outgrowth and the downstream signaling activation. Taken together, our findings suggest that LIPUS enhances NGF-induced neurite outgrowth through mechanotransduction-mediated signaling of the ERK1/2-CREB-Trx-1 pathway. The combination of LIPUS and NGF could potentially be used for the treatment of nerve injury and neurodegenerative diseases. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Reinnervation of Urethral and Anal Sphincters With Femoral Motor Nerve to Pudendal Nerve Transfer

    PubMed Central

    Ruggieri, Michael R.; Braverman, Alan S.; Bernal, Raymond M.; Lamarre, Neil S.; Brown, Justin M.; Barbe, Mary F.

    2012-01-01

    Aims Lower motor neuron damage to sacral roots or nerves can result in incontinence and a flaccid urinary bladder. We showed bladder reinnervation after transfer of coccygeal to sacral ventral roots, and genitofemoral nerves (L1, 2 origin) to pelvic nerves. This study assesses the feasibility of urethral and anal sphincter reinnervation using transfer of motor branches of the femoral nerve (L2–4 origin) to pudendal nerves (S1, 2 origin) that innervate the urethral and anal sphincters in a canine model. Methods Sacral ventral roots were selected by their ability to stimulate bladder, urethral sphincter, and anal sphincter contraction and transected. Bilaterally, branches of the femoral nerve, specifically, nervus saphenous pars muscularis [Evans HE. Miller’s anatomy of the dog. Philadelphia: W.B. Saunders; 1993], were transferred and end-to-end anastomosed to transected pudendal nerve branches in the perineum, then enclosed in unipolar nerve cuff electrodes with leads to implanted RF micro-stimulators. Results Nerve stimulation induced increased anal and urethral sphincter pressures in five of six transferred nerves. Retrograde neurotracing from the bladder, urethral sphincter, and anal sphincter using fluorogold, fast blue, and fluororuby, demonstrated urethral and anal sphincter labeled neurons in L2–4 cord segments (but not S1–3) in nerve transfer canines, consistent with rein-nervation by the transferred femoral nerve motor branches. Controls had labeled neurons only in S1–3 segments. Postmortem DiI and DiO labeling confirmed axonal regrowth across the nerve repair site. Conclusions These results show spinal cord reinnervation of urethral and anal sphincter targets after sacral ventral root transection and femoral nerve transfer (NT) to the denervated pudendal nerve. These surgical procedures may allow patients to regain continence. PMID:21953679

  15. Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury.

    PubMed

    Li, Xin; Li, Yao-hua; Yu, Shun; Liu, Yaobo

    2008-10-22

    To study changes of Ryk expression in dorsal root ganglia (DRG) after peripheral nerve injury, we set up an animal model of unilateral sciatic nerve lesioned rats. Changes of Ryk protein expression in DRG neurons after unilateral sciatic nerve injury were investigated by immunostaining. Changes of Ryk mRNA were also tested by semi-quantitative PCR concurrently. We found, both at the level of protein and mRNA, that Ryk could be induced in cells of ipsilateral DRG after unilateral sciatic nerve lesion. Further investigation by co-immunostaining confirmed that the Ryk-immunoreactive (Ryk-IR) cells were NeuN-immunoreactive (NeuN-IR) neurons of DRG. We also showed the pattern of Ryk induction in DRG neurons after sciatic nerve injury: the number of Ryk IR neurons peaked at 2 weeks post-lesion and decreased gradually by 3 weeks post-lesion. The proportions of different sized Ryk IR neurons were also observed and counted at various stages after nerve lesion. Analysis of Ryk mRNA by RT-PCR showed the same induction pattern as by immunostaining. Ryk mRNA was not expressed in normal or contralateral DRG, but was expressed 1, 2 and 3 weeks post-lesion in the ipsilateral DRG. Ryk mRNA levels increased slightly from 1 to 2 weeks, decreased then by 3 weeks post-lesion. These results indicate that Ryk might be involved in peripheral nerve plasticity after injury. This is a novel function apart from its well-known fundamental activity as a receptor mediating axon guidance and outgrowth.

  16. Laparoscopic anatomy of the autonomic nerves of the pelvis and the concept of nerve-sparing surgery by direct visualization of autonomic nerve bundles.

    PubMed

    Lemos, Nucelio; Souza, Caroline; Marques, Renato Moretti; Kamergorodsky, Gil; Schor, Eduardo; Girão, Manoel J B C

    2015-11-01

    To demonstrate the laparoscopic neuroanatomy of the autonomic nerves of the pelvis using the laparoscopic neuronavigation technique, as well as the technique for a nerve-sparing radical endometriosis surgery. Step-by-step explanation of the technique using videos and pictures (educational video) to demonstrate the anatomy of the intrapelvic bundles of the autonomic nerve system innervating the bladder, rectum, and pelvic floor. Tertiary referral center. One 37-year-old woman with an infiltrative endometriotic nodule on the anterior third of the left uterosacral ligament and one 34-year-old woman with rectovaginal endometriosis. Exposure and preservation by direct visualization of the hypogastric nerve and the inferior hypogastric plexus. Visual control and identification of the autonomic nerve branches of the posterior pelvis. Exposure and preservation of the hypogastric nerve and the superficial part of the left hypogastric nerve were achieved on the first patient. Nerve roots S2, S3, and S4 were identified on the second patient, allowing for the exposure and preservation of the pelvic splanchnic nerves and the deep portion inferior hypogastric plexus. Radical surgery for endometriosis can induce urinary dysfunction in 2.4%-17.5% of patients owing to lesion of the autonomic nerves. The surgeon's knowledge of the anatomy of these nerves is the main factor for preserving postoperative urinary function. The following nerves are the intrapelvic part of the autonomic nervous system: the hypogastric nerves, which derive from the superior hypogastric plexus and carry the sympathetic signals to the internal urethral and anal sphincters as well as to the pelvic visceral proprioception; and the pelvic splanchnic nerves, which arise from S2 to S4 and carry nociceptive and parasympathetic signals to the bladder, rectum, and the sigmoid and left colons. The hypogastric and pelvic splanchnic nerves merge into the pararectal fossae to form the inferior hypogastric plexus. Most

  17. Direct detection of exothermic dark matter with light mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Department of Physics, National Tsing Hua University,Hsinchu, Taiwan; Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan

    2016-08-05

    We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identifymore » any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.« less

  18. Electrophysiology of Cranial Nerve Testing: Cranial Nerves IX and X.

    PubMed

    Martinez, Alberto R M; Martins, Melina P; Moreira, Ana Lucila; Martins, Carlos R; Kimaid, Paulo A T; França, Marcondes C

    2018-01-01

    The cranial nerves IX and X emerge from medulla oblongata and have motor, sensory, and parasympathetic functions. Some of these are amenable to neurophysiological assessment. It is often hard to separate the individual contribution of each nerve; in fact, some of the techniques are indeed a composite functional measure of both nerves. The main methods are the evaluation of the swallowing function (combined IX and X), laryngeal electromyogram (predominant motor vagal function), and heart rate variability (predominant parasympathetic vagal function). This review describes, therefore, the techniques that best evaluate the major symptoms presented in IX and X cranial nerve disturbance: dysphagia, dysphonia, and autonomic parasympathetic dysfunction.

  19. More is less: Learning but not relaxing buffers deviance under job stressors.

    PubMed

    Zhang, Chen; Mayer, David M; Hwang, Eunbit

    2018-02-01

    Workplace deviance harms the well-being of an organization and its members. Unfortunately, theory and prior research suggest that deviance is associated with job stressors, which are endemic to work organizations and often cannot be easily eliminated. To address this conundrum, we explore actions individuals can take at work that serve as buffering conditions for the positive relationship between job stressors and deviant behavior. Drawing upon conservation of resources theory, we examine a resource-building activity (i.e., learning something new at work) and a demand-shielding activity (i.e., taking time for relaxation at work) as potential boundary conditions. In 2 studies with employee samples using complementary designs, we find support for the buffering role of learning but not for relaxation. When employees learn new things at work, the relationship between hindrance stressors and deviance is weaker; as is the indirect relationship mediated by negative emotions. Taking time for relaxation at work did not show a moderating role in either study. Therefore, although relaxation is a response that individuals might be inclined to turn to for counteracting work stress, our findings suggest that, when it comes to addressing negative emotions and deviance in stressful work environments, building positive resources by learning something new at work could be more useful. In that way, doing more (i.e., learning, and not relaxing) is associated with less (deviance) in the face of job stressors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  1. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation.

    PubMed

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.

  2. Melanopsin mediates light-dependent relaxation in blood vessels

    PubMed Central

    Sikka, Gautam; Hussmann, G. Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C.; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K.; Koehler, Raymond C.; Snyder, Solomon H.; Shimoda, Larissa A.; Berkowitz, Dan E.

    2014-01-01

    Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4−/− mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430–460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor. PMID:25404319

  3. Melanopsin mediates light-dependent relaxation in blood vessels.

    PubMed

    Sikka, Gautam; Hussmann, G Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K; Koehler, Raymond C; Snyder, Solomon H; Shimoda, Larissa A; Berkowitz, Dan E

    2014-12-16

    Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4(-/-) mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430-460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor.

  4. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    PubMed Central

    Liu, Ying; Xu, Xun-cheng; Zou, Yi; Li, Su-rong; Zhang, Bin; Wang, Yue

    2015-01-01

    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery. PMID:25883637

  5. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics.

    PubMed

    Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue

    2015-02-01

    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  6. Development of a nerve conduction technique for the recurrent laryngeal nerve.

    PubMed

    J Kim, Sang; G Lee, Dae; Kwon, Jeong-Yi

    2014-12-01

    To develop a reliable and safe laryngeal nerve conduction technique and to obtain consistent parameters as normal reference values. A prospective single-arm study. A nerve conduction test was performed on the contralateral normal side in 42 patients with unilateral vocal fold palsy. The recording was performed in the intact thyroarytenoid muscle using a monopolar needle. The electrical stimulation using a 37-mm monopolar needle was applied 3 cm below the lower margin of the cricoid cartilage, just lateral to the trachea and medial to the carotid artery, and its intensity was gradually increased until the amplitude of the electrical response reached the maximum level. The latency of the evoked muscle response was acquired at the first evoked waveform deflection from the baseline. The average latency of the recurrent laryngeal nerves was 1.98 ± 0.26 ms. The latencies showed normal distribution according to the quantile-quantile plot and Kolmogorov-Smirnov test (P = .098). There was no significant difference in latencies between the right and left recurrent laryngeal nerves. Anthropometric factors including height and weight did not show any correlation with the latencies. We developed a reliable and safe laryngeal nerve conduction technique and obtained normal reference values for the recurrent laryngeal nerve conduction study. This laryngeal nerve conduction study can be an additional tool for detecting recurrent laryngeal nerve injury if it is performed in combination with the conventional laryngeal electromyography. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Cancer.gov

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  8. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    PubMed

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  9. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    PubMed

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  10. A randomized controlled trial of mindfulness meditation versus relaxation training: effects on distress, positive states of mind, rumination, and distraction.

    PubMed

    Jain, Shamini; Shapiro, Shauna L; Swanick, Summer; Roesch, Scott C; Mills, Paul J; Bell, Iris; Schwartz, Gary E R

    2007-02-01

    Although mindfulness meditation interventions have recently shown benefits for reducing stress in various populations, little is known about their relative efficacy compared with relaxation interventions. This randomized controlled trial examines the effects of a 1-month mindfulness meditation versus somatic relaxation training as compared to a control group in 83 students (M age = 25; 16 men and 67 women) reporting distress. Psychological distress, positive states of mind, distractive and ruminative thoughts and behaviors, and spiritual experience were measured, while controlling for social desirability. Hierarchical linear modeling reveals that both meditation and relaxation groups experienced significant decreases in distress as well as increases in positive mood states over time, compared with the control group (p < .05 in all cases). There were no significant differences between meditation and relaxation on distress and positive mood states over time. Effect sizes for distress were large for both meditation and relaxation (Cohen's d = 1.36 and .91, respectively), whereas the meditation group showed a larger effect size for positive states of mind than relaxation (Cohen's d =.71 and .25, respectively). The meditation group also demonstrated significant pre-post decreases in both distractive and ruminative thoughts/behaviors compared with the control group (p < .04 in all cases; Cohen's d = .57 for rumination and .25 for distraction for the meditation group), with mediation models suggesting that mindfulness meditation's effects on reducing distress were partially mediated by reducing rumination. No significant effects were found for spiritual experience. The data suggest that compared with a no-treatment control, brief training in mindfulness meditation or somatic relaxation reduces distress and improves positive mood states. However, mindfulness meditation may be specific in its ability to reduce distractive and ruminative thoughts and behaviors, and this

  11. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Motor nerve transplantation.

    PubMed

    Gray, W P; Keohane, C; Kirwan, W O

    1997-10-01

    The motor nerve transplantation (MNT) technique is used to transfer an intact nerve into a denervated muscle by harvesting a neurovascular pedicle of muscle containing motor endplates from the motor endplate zone of a donor muscle and implanting it into a denervated muscle. Thirty-six adult New Zealand White rabbits underwent reinnervation of the left long peroneal (LP) muscle (fast twitch) with a motor nerve graft from the soleus muscle (slow twitch). The right LP muscle served as a control. Reinnervation was assessed using microstimulatory single-fiber electromyography (SFEMG), alterations in muscle fiber typing and grouping, and isometric response curves. Neurofilament antibody was used for axon staining. The neurofilament studies provided direct evidence of nerve growth from the motor nerve graft into the adjacent denervated muscle. Median motor endplate jitter was 13 microsec preoperatively, and 26 microsec at 2 months, 29.5 microsec at 4 months, and 14 microsec at 6 months postoperatively (p < 0.001). Isometric tetanic tension studies showed a progressive functional recovery in the reinnervated muscle over 6 months. There was no histological evidence of aberrant reinnervation from any source outside the nerve pedicle. Isometric twitch responses and adenosine triphosphatase studies confirmed the conversion of the reinnervated LP muscle to a slow-type muscle. Acetylcholinesterase studies confirmed the presence of functioning motor endplates beneath the insertion of the motor nerve graft. It is concluded that the MNT technique achieves motor reinnervation by growth of new nerve fibers across the pedicle graft into the recipient muscle.

  13. Extralaryngeal division of the recurrent laryngeal nerve: a new description for the inferior laryngeal nerve.

    PubMed

    Yalcin, Bulent; Tunali, Selcuk; Ozan, Hasan

    2008-05-01

    Extralaryngeal division of the recurrent laryngeal nerve was contradictory in the literature. We aimed to investigate extralaryngeal division of the nerve, and also propose a new description for the inferior laryngeal nerve. Sixty specimens (120 sides) were examined for this project, including 41 men and 19 women cadavers between the ages of 40 and 89 years at death. In one right side, terminal segment of the nerve gave off many small branches surrounding the inferior thyroid artery then reaching the larynx, trachea, thyroid gland and esophagus. In eight sides, terminal segment of the nerve had no extralaryngeal division and entered the larynx as a single trunk. In 110 sides, the nerve had extralaryngeal division. One hundred and three nerves had two laryngeal and one to three extralaryngeal branches. Two types were described in this group. In type I (66 nerves), both branches arose from the same level of nerve. Type I had two subtypes: type Ia, the origin of the branches was just below the inferior constrictor muscle; type Ib, the origin of the branches was 15-35 mm below the muscle. In type II (37 nerves), the laryngeal branches arose just 3-5 mm above the extralaryngeal branches. We observed that the laryngeal and extralaryngeal branches arose generally from the same point of the recurrent laryngeal nerve. The inferior laryngeal nerve is thus very short, or even nonexistent. Therefore, we suggest that if the term "superior laryngeal nerve" is a given, standard, and accepted term, then the term "inferior laryngeal nerve" should also be accepted instead of the term "recurrent laryngeal nerve."

  14. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  15. Pathogenesis and treatment of immune-mediated neuropathies.

    PubMed

    Lehmann, Helmar C; Meyer Zu Horste, Gerd; Kieseier, Bernd C; Hartung, Hans-Peter

    2009-07-01

    Immune-mediated neuropathies represent a heterogeneous spectrum of peripheral nerve disorders that can be classified according to time course, predominant involvement of motor/sensory fibers, distribution of deficits and paraclinical parameters such as electrophysiology and serum antibodies. In the last few years, significant advances have been achieved in elucidating underlying pathomechanisms, which made it possible to identify potential therapeutic targets. In this review, we discuss the latest development in pathogenesis and treatment of immune-mediated neuropathies.

  16. Augmenting the access grid using augmented reality

    NASA Astrophysics Data System (ADS)

    Li, Ying

    2012-01-01

    The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.

  17. Electrodynamic smooth muscle sphincter: development and biomechanical evaluation of a novel porcine artificial smooth muscle sphincter in a new in vitro stoma simulator.

    PubMed

    Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T

    2005-07-01

    Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically

  18. Mechanisms involved in the relaxant action of the ethanolic extract of propolis in the guinea-pig trachea in-vitro.

    PubMed

    Paulino, Niraldo; Scremin, Fernando M; Raichaski, Lisiane B; Marcucci, Maria Cristina; Scremin, Amarilis; Calixto, João B

    2002-06-01

    This study examines the mechanisms by which the standardised ethanolic extract of propolis induces relaxation of the guinea-pig trachea in-vitro. In guinea-pig trachea with or without epithelium and contracted by histamine, the propolis extract caused reproducible and graded relaxation, with a mean EC50 value of 3.8 or 10.5 microg mL(-1) and Emax of 100%, respectively. The propolis extract-induced relaxation was markedly reduced (26+/-9 and 96+/-3%) when guinea-pig tracheas were exposed to Krebs solution containing elevated K+ in the medium (40 or 80 mM). Pre-incubation of guinea-pig tracheas with tetraethylamonium (100 mM) or with 4-aminopyridine (10mM) reduced the propolis extract-induced relaxation by 31+/-10% and 28+/-2%. Likewise, apamin (0.1 microM), charybdotoxin (0.1 microM) or iberiotoxin (0.1 microM) caused marked inhibition of propolis extract-mediated relaxation in guinea-pig trachea (percentage of inhibition: 65+/-3%, 60+/-5% and 65+/-9%, respectively). Also, glibenclamide (1 microM) inhibited the relaxant response caused by the propolis extract by 57+/-4%. Omega-conotoxin GIVA (0.1 microM) or capsaicin (1 microM) produced small but significant inhibition (30+/-5% or 47+/-7%, respectively) of the propolis extract-induced relaxation. The vasoactive intestinal peptide (VIP) antagonist D-p-Cl-Phe6,Leu17[VIP] porcine (0.1 microM) inhibited relaxation by 55+/-5%, while propranolol (1 microM) induced a parallel rightward displacement (about 20 fold) of the propolis extract concentration-response curve. Finally, the propolis extract-induced relaxation was inhibited by the nitric oxide synthase inhibitor L-N(G)-nitroarginine (L-NOArg, 100 microM) (48+/-6%), and by the soluble guanylatecyclase inhibitormethylene blue (10 microM) (37+/-6%), whilethe moreselectivesoluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolol[4,3-alquinoxalin-1-one (ODQ, 1 microM) produced only a parallel (about 3 fold) rightward displacement of the propolis extract concentration

  19. Intraoperative cranial nerve monitoring.

    PubMed

    Harper, C Michel

    2004-03-01

    The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.

  20. Dexmedetomidine's inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation.

    PubMed

    Mikami, Maya; Zhang, Yi; Kim, Benjamin; Worgall, Tilla S; Groeben, Harald; Emala, Charles W

    2017-03-29

    Airway instrumentation can evoke upper airway reflexes including bronchoconstriction and cough which can cause serious complications including airway trauma, laryngospasm or bronchospasm which may in turn lead to difficulty with ventilation and hypoxemia. These airway events are mediated in part by irritant-induced neuronal modulation of airway tone and cough responses. We investigated whether the commonly used anesthetic agents dexmedetomidine, lidocaine or remifentanil attenuated neuronal and airway smooth muscle responses in the upper airways of guinea pigs. The ability of dexmedetomidine, lidocaine or remifentanil to attenuate direct cholinergic nerve stimulation, C-fiber stimulation or direct smooth muscle contraction were studied using isolated tracheal rings from male guinea pigs under four paradigms; (1) the magnitude of contractile force elicited by cholinergic electrical field stimulation (EFS); (2) the amount of acetylcholine released during cholinergic EFS; (3) the direct airway smooth muscle relaxation of a sustained acetylcholine-induced contraction and (4) the magnitude of C-fiber mediated contraction. Dexmedetomidine (1-100 μM) and lidocaine (1 mM) attenuated cholinergic 30Hz EFS-induced tracheal ring contraction while remifentanil (10 μM) had no effect. Dexmedetomidine at 10 μM (p = 0.0047) and 100 μM (p = 0.01) reduced cholinergic EFS-induced acetylcholine release while lidocaine (10 μM-1 mM) and remifentanil (0.1-10 μM) did not. Tracheal ring muscle force induced by the exogenous addition of the contractile agonist acetylcholine or by a prototypical C-fiber analogue of capsaicin were also attenuated by 100 μM dexmedetomidine (p = 0.0061 and p = 0.01, respectively). The actual tracheal tissue concentrations of dexmedetomidine achieved (0.54-26 nM) following buffer application of 1-100 μM of dexmedetomidine were within the range of clinically achieved plasma concentrations (12 nM). The α2 adrenoceptor agonist

  1. Tendon Transfers Part II: Transfers for Ulnar Nerve Palsy and Median Nerve Palsy

    PubMed Central

    Sammer, Douglas M.; Chung, Kevin C.

    2009-01-01

    Objectives After reading this article (part II of II), the participant should be able to: 1. Describe the anatomy and function of the median and ulnar nerves in the forearm and hand. 2. Describe the clinical deficits associated with injury to each nerve. 3. Describe the indications, benefits, and drawbacks for various tendon transfer procedures used to treat median and ulnar nerve palsy.4. Describe the treatment of combined nerve injuries. 5. Describe postoperative care and possible complications associated with these tendon transfer procedures. Summary This article discusses the use of tendon transfer procedures for treatment of median and ulnar nerve palsy as well as combined nerve palsies. Postoperative management and potential complications are also discussed. PMID:19730287

  2. Microsurgical reconstruction of large nerve defects using autologous nerve grafts.

    PubMed

    Daoutis, N K; Gerostathopoulos, N E; Efstathopoulos, D G; Misitizis, D P; Bouchlis, G N; Anagnostou, S K

    1994-01-01

    Between 1986 and 1993, 643 patients with peripheral nerve trauma were treated in our clinic. Primary neurorraphy was performed in 431 of these patients and nerve grafting in 212 patients. We present the functional results after nerve grafting in 93 patients with large nerve defects who were followed for more than 2 years. Evaluation of function was based on the Medical Research Council (MRC) classification for motor and sensory recovery. Factors affecting functional outcome, such as age of the patient, denervation time, length of the defect, and level of the injury were noted. Good results according to the MRC classification were obtained in the majority of cases, although function remained less than that of the uninjured side.

  3. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

    PubMed Central

    Walsh, Michael E.; Sloane, Lauren B.; Fischer, Kathleen E.; Austad, Steven N.; Richardson, Arlan

    2015-01-01

    Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice. PMID:25477428

  4. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transfer of obturator nerve for femoral nerve injury: an experiment study in rats.

    PubMed

    Meng, Depeng; Zhou, Jun; Lin, Yaofa; Xie, Zheng; Chen, Huihao; Yu, Ronghua; Lin, Haodong; Hou, Chunlin

    2018-07-01

    Quadriceps palsy is mainly caused by proximal lesions in the femoral nerve. The obturator nerve has been previously used to repair the femoral nerve, although only a few reports have described the procedure, and the outcomes have varied. In the present study, we aimed to confirm the feasibility and effectiveness of this treatment in a rodent model using the randomized control method. Sixty Sprague-Dawley rats were randomized into two groups: the experimental group, wherein rats underwent femoral neurectomy and obturator nerve transfer to the femoral nerve motor branch; and the control group, wherein rats underwent femoral neurectomy without nerve transfer. Functional outcomes were measured using the BBB score, muscle mass, and histological assessment. At 12 and 16 weeks postoperatively, the rats in the experimental group exhibited recovery to a stronger stretch force of the knee and higher BBB score, as compared to the control group (p < 0.05). The muscle mass and myofiber cross-sectional area of the quadriceps were heavier and larger than those in the control group (p < 0.05). A regenerated nerve with myelinated and unmyelinated fibers was observed in the experimental group. No significant differences were observed between groups at 8 weeks postoperatively (p > 0.05). Obturator nerve transfer for repairing femoral nerve injury was feasible and effective in a rat model, and can hence be considered as an option for the treatment of femoral nerve injury.

  6. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    PubMed

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  7. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.

    PubMed

    Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing

    2006-09-28

    In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.

  8. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    PubMed

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  9. Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury★

    PubMed Central

    Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin

    2012-01-01

    Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102

  10. Hydroxyethyl starch inhibits endothelium-derived relaxation in porcine coronary arteries.

    PubMed

    Dagtekin, Oguzhan; Krep, Henning; Fischer, Jürgen Hartmut

    2008-01-01

    Hydroxyethyl starch (HES) solutions are widely used for fluid resuscitation. We studied the effects of HES on endothelium-dependent relaxation (EDR), especially on the endothelium-derived hyperpolarizing factor (EDHF). Four-millimeter-long rings of fresh porcine coronary arteries from the local slaughterhouse were consecutively tested with or without HES (6 mg/ml). Indomethacin (10 micromol/l) was added in all measurements to eliminate prostacyclin effects. Prostaglandin F2alpha (10 micromol/l) was used for contraction and bradykinin (10(-10) to 10(-5) mol/l) for inducing EDR, which was calculated in percentage of the precontraction. After blocking all nitric oxide formation by N-nitro-L-arginine (300 micromol/l), the experiments were repeated to assess the EDHF-mediated relaxation response to bradykinin. HES 6 mg/ml induced a significant (p < 0.01) reduction in EDR (n = 8). After incubation with HES and nitric oxide blockage with N-nitro-L-arginine, the relaxation response was reduced especially for the bradykinin concentrations of 10(-6) mol/l (p < 0.05) and 10(-5) mol/l (p < 0.01). For the clinically relevant concentration of 6 mg/ml HES, a significant reduction in EDR and the EDHF can be found in epicardial coronary arteries of the pig. Copyright 2008 S. Karger AG, Basel.

  11. CXCL4 is a novel nickel-binding protein and augments nickel allergy.

    PubMed

    Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S

    2017-08-01

    Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.

  12. In the Age of Breast Augmentation, Breast Reconstruction Provides an Opportunity to Augment the Breast.

    PubMed

    Zimmerman, Amanda L; Tugertimur, Bugra; Smith, Paul D; Kumar, Ambuj; Dayicioglu, Deniz

    2017-01-01

    Augmentation mammoplasty remains the most common cosmetic surgery procedure performed. The objective of this article is to evaluate the impact of augmented volume of the reconstructed breast in patients that undergo nipple-sparing mastectomy and patients previously augmented who undergo mastectomy with tissue expander/implant-based reconstruction. Patients undergoing skin-sparing mastectomy, nipple-sparing mastectomy, and mastectomy after previous augmentation followed by tissue expander/implant-based reconstruction between June 2011 and April 2015 by 2 surgeons at the same institution were included. Retrospective chart review of the patients identified using these criteria was performed to record patient characteristics, complications, breast volume, implant volume, and percentage change in volume at the time of reconstruction. Percentage change of breast volume was calculated using the formula (implant breast weight)/(breast weight) for skin-sparing and nipple-sparing mastectomy patients and (final breast implant weight - [breast weight + augmentation breast implant weight])/([breast weight + augmentation breast implant]) for patients undergoing mastectomy following previous augmentation. A total of 293 patients were included in the study with 63 patients who underwent nipple-sparing mastectomy, 166 patients who underwent skin-sparing mastectomy, and 64 patients who underwent previous augmentation with subsequent mastectomy. Mean percentage change in breast volume was 66% in the nipple-sparing mastectomy group, 15% for the right breast and 18% for the left breast in the skin-sparing mastectomy group, and 81% for the right breast and 72% for the left breast in the mastectomy following previous augmentation group. Complication rate for nipple-sparing mastectomy was 27%, mastectomy following previous augmentation was 20.3%, and skin-sparing mastectomy group was 18.7%. Patients who undergo nipple-sparing mastectomy or mastectomy following previous augmentation have

  13. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    PubMed Central

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  14. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    PubMed Central

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  15. Active Components of Ginger Potentiate β-Agonist–Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins

    PubMed Central

    Zhang, Yi; Xu, Carrie; Wakita, Ryo; Emala, Charles W.

    2014-01-01

    β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist–induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C–potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist–induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms

  16. In-vivo spinal nerve sensing in MISS using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xu, Weiliang; Broderick, Neil

    2016-04-01

    In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.

  17. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal ofmore » extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries.

  18. Recent advances in nerve tissue engineering.

    PubMed

    Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M

    2014-04-01

    Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.

  19. Ulnar nerve damage (image)

    MedlinePlus

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...

  20. Chondromyxoid fibroma of the mastoid facial nerve canal mimicking a facial nerve schwannoma.

    PubMed

    Thompson, Andrew L; Bharatha, Aditya; Aviv, Richard I; Nedzelski, Julian; Chen, Joseph; Bilbao, Juan M; Wong, John; Saad, Reda; Symons, Sean P

    2009-07-01

    Chondromyxoid fibroma of the skull base is a rare entity. Involvement of the temporal bone is particularly rare. We present an unusual case of progressive facial nerve paralysis with imaging and clinical findings most suggestive of a facial nerve schwannoma. The lesion was tubular in appearance, expanded the mastoid facial nerve canal, protruded out of the stylomastoid foramen, and enhanced homogeneously. The only unusual imaging feature was minor calcification within the tumor. Surgery revealed an irregular, cystic lesion. Pathology diagnosed a chondromyxoid fibroma involving the mastoid portion of the facial nerve canal, destroying the facial nerve.

  1. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    PubMed

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. © 2013.

  2. Femoral nerve damage (image)

    MedlinePlus

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  3. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  4. The mechanism of bradykinin-induced endothelium-dependent contraction and relaxation in the porcine interlobar renal artery

    PubMed Central

    Ihara, Eikichi; Hirano, Katsuya; Derkach, Dmitry N; Nishimura, Junji; Nawata, Hajime; Kanaide, Hideo

    2000-01-01

    The mechanism of endothelium-dependent regulation of vascular tone of bradykinin was investigated by simultaneously monitoring the changes in the cytosolic Ca2+ concentration and the force of smooth muscle in fura-2-loaded strips of the porcine renal artery with endothelium. During phenylephrine-induced sustained contraction, bradykinin (>3×10−9 M) caused endothelium-dependent triphasic changes in the force of the strips, composed of an initial relaxation, a subsequent transient contraction and a late sustained relaxation. At low concentrations (10−10–10−9 M), bradykinin caused an endothelium-dependent biphasic relaxation with no contraction. A thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist (10−5 M ONO-3708) completely inhibited, while a TXA2 synthase inhibitor (10−5 M OKY-046) only partially inhibited, the transient contraction induced by bradykinin. Under conditions where the bradykinin-induced contraction was inhibited by ONO-3708 during the phenylephrine-induced contraction, bradykinin induced only a transient relaxation in the presence of NΩ-nitro-L-arginine methyl ester (L-NAME). This transient relaxation was inhibited when the precontraction was initiated by phenylephrine plus 40 mM extracellular K+. The removal of L-NAME from this condition caused a partial reappearance of the initial relaxation and a complete reappearance of the sustained relaxation. In conclusion, bradykinin caused the endothelium-dependent triphasic regulation of vascular tone in the porcine renal artery. The concentrations of bradykinin required to induce a contraction was higher than that required to induce relaxation. Both TXA2 and PGH2 were involved in the bradykinin-induced contraction. The initial relaxation was mediated by nitric oxide and hyperpolarizing factors while the sustained relaxation depended on nitric oxide. PMID:10696094

  5. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  6. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    PubMed

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  7. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb

    PubMed Central

    Sudoł-Szopińska, Iwona

    2012-01-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the “elevator technique”. All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the “Journal of Ultrasonography”. PMID:26674560

  8. [Augmentation technique on the proximal humerus].

    PubMed

    Scola, A; Gebhard, F; Röderer, G

    2015-09-01

    The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.

  9. Parasympathomimetic effect of shilajit accounts for relaxation of rat corpus cavernosum.

    PubMed

    Kaur, Sarabjeet; Kumar, Pravin; Kumar, Deo; Kharya, M D; Singh, Nityanand

    2013-03-01

    Previous studies have reported an enhancement of central cholinergic signal cascade by shilajit. For the present study, it was hypothesized that parasympathomimetic effect of shilajit accounting for relaxation of rat corpus cavernosum may be one of the major mechanisms attributing to its traditional role as an aphrodisiac. To test this hypothesis, the acute peripheral effect of standard acetylcholine (ACh), shilajit, and their combination was evaluated on cardiorespiratory parameters such as mean arterial blood pressure (MABP), heart rate (HR), respiratory rate (RR), and neuromuscular transmission (NMT). Furthermore, in vitro effect of standard ACh, shilajit, and their combination was tested on the rat corpus cavernosum. Six groups were used for the in vivo study (N = 5): Group I (control-saline), Group II (ACh), Group III (Sh), Group IV (Sh followed by ACh), Group V (Atropine followed by ACh), and Group VI (Atropine followed by Sh). The in vitro study included four groups: Group I (control-saline), Group II (ACh), Group III (Sh), and Group IV (Sh followed by ACh). The results of the in vivo study confirmed the peripheral parasympathomimetic effect of shilajit (400 µg/mL). The in vitro results revealed that shilajit (400 and 800 µg/mL) relaxed cavernous strips' concentration dependently and enhanced ACh-mediated relaxations. The peripheral parasympathomimetic effects of shilajit were confirmed by blockade of shilajit-induced relaxations (in vitro) and shilajit-induced lowering of MABP and HR (in vivo) by atropine.

  10. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5-spinal nerve axotomy and are not mediated by HCN channels.

    PubMed

    Djouhri, L; Smith, T; Alotaibi, M; Weng, X

    2018-06-03

    What is the central question of this study? Is spontaneous activity (SA) in L4-DRG neurons induced by L5 spinal nerve axotomy is associated with membrane potentials oscillations in theses neurons, and are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons which have been shown to be incapable of firing spontaneously without membrane potentials oscillations, such membrane oscillations are not essential for SA generation in conducting "uninjured'' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and "uninjured'' DRG neurons induced by spinal nerve injury are distinct. The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models of this debilitating condition suggest that it is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5-spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4-neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7-days after SNA: (a) none of control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs respectively in SNA rats with established neuropathic pain behaviors, (b) neither SMPOs nor SA in L4 Aβ-neurons were suppressed by blocking HCN

  11. Phrenic and intercostal nerves with rhythmic discharge can promote early nerve regeneration after brachial plexus repair in rats.

    PubMed

    Rui, Jing; Xu, Ya-Li; Zhao, Xin; Li, Ji-Feng; Gu, Yu-Dong; Lao, Jie

    2018-05-01

    Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons

  12. Electrophysiological Assessment of a Peptide Amphiphile Nanofiber Nerve Graft for Facial Nerve Repair.

    PubMed

    Greene, Jacqueline J; McClendon, Mark T; Stephanopoulos, Nicholas; Álvarez, Zaida; Stupp, Samuel I; Richter, Claus-Peter

    2018-04-27

    Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with 1) an intact nerve, 2) following resection of a nerve segment, and following resection and immediate repair with either a 3) autograft (using the resected nerve segment), 4) neurograft, or 5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes while nerve compound action potentials (nCAPs) and electromygraphic (EMG) responses were recorded. After 8 weeks, the proximal buccal branch was surgically re-exposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and TEM confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair. This article is protected by copyright. All rights reserved.

  13. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  14. Advanced intellect-augmentation techniques

    NASA Technical Reports Server (NTRS)

    Engelbart, D. C.

    1972-01-01

    User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.

  15. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  16. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto.

    PubMed

    Pan, Hung-Chuan; Yang, Dar-Yu; Ho, Shu-Peng; Sheu, Meei-Ling; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-08-23

    Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  17. [Immediate recurrent laryngeal nerve reconstruction in the treatment of thyroid cancer invading the recurrent laryngeal nerve].

    PubMed

    Feng, Yun; Yang, Dazhang; Liu, Dandan; Chen, Jian; Bi, Qingling; Luo, Keqiang

    2014-08-01

    To explore the application of immediate recurrent laryngeal nerve reconstruction in the treatment of thyroid cancer invading the recurrent laryngeal nerve. Ten patients with thyroid cancer invading unilateral recurrent laryngeal nerve underwent radical surgery and immediate recurrent laryngeal nerve reconstruction. The reconstructive surgical approach included recurrent laryngeal nerve decompression surgery, end-to-end anastomosis of the recurrent laryngeal nerve, anastomosis of ansa cervicalis nerve to the recurrent laryngeal nerve, and nerve-muscle pedicle (NMP) technique. Among the ten patients, one underwent nerve decompression, one underwent end-to-end anastomosis of the recurrent laryngeal nerve, seven had anastomosis of ansa cervicalis to recurrent laryngeal nerve, and one case had anastomosis of ansa cervicalis to recurrent laryngeal nerve combined with nerve-muscle pedicle (NMP) technique. The effect of surgery was evaluated by videolaryngoscopy, maximum phonation time (MPT), phonation efficiency index (PEI) and voice assessment. T-test was used in the statistical analysis. All of the 10 patients had no complications including tumor recurrence and hypoparathyroidism after the surgery. Their hoarseness symptoms were improved, and the patients returned to normal or near-normal voice. Postoperative videolaryngoscopy showed that paralyzed vocal cord returned to normal muscle tone and volume, and the vocal cord vibration and mucosal wave were symmetric and the patients got good glottal closure. The pre- and post-operative maximum phone times of the patients were (4.52 ± 0.89) s and (11.91 ± 1.87) s, respectively (P < 0.01). The pre- and post-operative phonation efficiency indices were (1.37 ± 0.43) s/L and (4.02 ± 1.33) s/L, respectively (P < 0.05). In patients with thyroid cancer invading unilateral recurrent laryngeal nerve, immediate recurrent laryngeal nerve reconstruction following radical surgery of thyroid cancer can effectively achieve recovery in

  18. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  19. Demyelination of vestibular nerve axons in unilateral Ménière's disease.

    PubMed

    Spencer, Robert F; Sismanis, Aristides; Kilpatrick, Jefferson K; Shaia, Wayne T

    2002-11-01

    We conducted a study to determine whether vestibular nerves in patients with unilateral Ménière's disease whose symptoms are refractory to medical management exhibit neuropathologic changes. We also endeavored to determine whether retrocochlear abnormalities are primary or secondary factors in the disease process. To these ends, we obtained vestibular nerve segments from five patients during retrosigmoid (posterior fossa) neurectomy, immediately fixed them, and processed them for light and electron microscopy. We found that all five segments exhibited moderate to severe demyelination with axonal sparing. Moreover, we noted that reactive astrocytes produced an extensive proliferation of fibrous processes and that the microglia assumed a phagocytic role. We conclude that the possible etiologies of demyelination include viral and/or immune-mediated factors similar to those seen in other demyelinating diseases, such as multiple sclerosis and Guillain-Barré syndrome. Our findings suggest that some forms of Ménière's disease that are refractory to traditional medical management might be the result of retrocochlear pathology that affects the neuroglial portion of the vestibular nerve.

  20. Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase.

    PubMed

    Liu, Juan; Chen, Zhengju; Ye, Liping; Liu, Huixia; Dou, Dou; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng

    2014-10-01

    Soluble guanylyl cyclase (sGC), phosphodiesterase type 5 (PDE5), and guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) are all dimeric. The present study was to determine the role of their dimeric status in nitric oxide-induced vasodilatation. In isolated porcine coronary arteries, after 20 h incubation with serum-free medium, serum-containing medium, or phosphate-buffered saline solution, the protein levels of the dimers of sGC, PDE5, and PKG were diminished while the monomer levels remained unchanged, associated with reduced cGMP elevation in response to DETA NONOate and decreased PDE5 activity; the activity of PKG was not significantly altered. DETA NONOate caused a greater relaxation in arteries incubated for 20 vs. 2 h. The relaxant response was largely abolished by 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor. Zaprinast, a PDE5 inhibitor, had no effect on relaxation caused by DETA NONOate of arteries incubated for 20 h but augmented the response incubated for 2 h. A greater relaxation to 8-bromo-guanosine 3'5'-cyclic monophosphate occurred in arteries incubated for 20 than for 2 h. The protein level of the dimers but not monomers of PDE5 was reduced by dithiothreitol and unaffected by hydrogen peroxide, accompanied with decreased PDE5 activity and reduced response to DETA NONOate. These results demonstrate that the dimeric but not monomeric status of sGC and PDE5 of coronary arteries are closely related to their activities. The preserved vasodilator response after 20 h incubation may result in part from a synchronous reduction of the dimer levels of sGC and PDE5 as well as an augmented response to cGMP.

  1. Augmented reality in neurosurgery

    PubMed Central

    Tagaytayan, Raniel; Kelemen, Arpad

    2016-01-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting. PMID:29765445

  2. Augmented reality in neurosurgery.

    PubMed

    Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia

    2018-04-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.

  3. Microglia as Primary Mediators of Nerve Agent Neuropathy

    DTIC Science & Technology

    2010-01-01

    16. Thomas DM, Francescutti-Verbeem DM and Kuhn DM. Methamphetamine -induced neurotoxicity and microglial activation are not mediated by fractalkine...1-24. Berry WK and Davies DR. The use of carbamates and atropine in the protection of animals against poisoning by 1,2,2-trimethylpropyl...633-8. Dirnhuber P, French MC, Green DM, Leadbeater L and Stratton JA. The protection of primates against soman poisoning by pretreatment with

  4. Slow secondary relaxation in a free-energy landscape model for relaxation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Diezemann, Gregor; Mohanty, Udayan; Oppenheim, Irwin

    1999-02-01

    Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary (α) relaxation is modeled by transitions among different free-energy minima. The secondary (β) relaxation then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not possible to obtain a crossing of the time scales associated with α and β relaxation. In our model these processes always merge at high temperatures and the α process remains above the merging temperature. The relation to other models is discussed.

  5. Reconstruction of the Abdominal Vagus Nerve Using Sural Nerve Grafts in Canine Models

    PubMed Central

    Luo, Fen; Wang, Zhiming; Wang, Yin

    2013-01-01

    Background Recently, vagus nerve preservation or reconstruction of vagus has received increasing attention. The present study aimed to investigate the feasibility of reconstructing the severed vagal trunk using an autologous sural nerve graft. Methods Ten adult Beagle dogs were randomly assigned to two groups of five, the nerve grafting group (TG) and the vagal resection group (VG). The gastric secretion and emptying functions in both groups were assessed using Hollander insulin and acetaminophen tests before surgery and three months after surgery. All dogs underwent laparotomy under general anesthesia. In TG group, latency and conduction velocity of the action potential in a vagal trunk were measured, and then nerves of 4 cm long were cut from the abdominal anterior and posterior vagal trunks. Two segments of autologous sural nerve were collected for performing end-to-end anastomoses with the cut ends of vagal trunk (8–0 nylon suture, 3 sutures for each anastomosis). Dogs in VG group only underwent partial resections of the anterior and posterior vagal trunks. Laparotomy was performed in dogs of TG group, and latency and conduction velocity of the action potential in their vagal trunks were measured. The grafted nerve segment was removed, and stained with anti-neurofilament protein and toluidine blue. Results Latency of the action potential in the vagal trunk was longer after surgery than before surgery in TG group, while the conduction velocity was lower after surgery. The gastric secretion and emptying functions were weaker after surgery in dogs of both groups, but in TG group they were significantly better than in VG group. Anti-neurofilament protein staining and toluidine blue staining showed there were nerve fibers crossing the anastomosis of the vagus and sural nerves in dogs of TG group. Conclusion Reconstruction of the vagus nerve using the sural nerve is technically feasible. PMID:23555604

  6. Electrophysiology of Extraocular Cranial Nerves: Oculomotor, Trochlear, and Abducens Nerve.

    PubMed

    Hariharan, Praveen; Balzer, Jeffery R; Anetakis, Katherine; Crammond, Donald J; Thirumala, Parthasarathy D

    2018-01-01

    The utility of extraocular cranial nerve electrophysiologic recordings lies primarily in the operating room during skull base surgeries. Surgical manipulation during skull base surgeries poses a risk of injury to multiple cranial nerves, including those innervating extraocular muscles. Because tumors distort normal anatomic relationships, it becomes particularly challenging to identify cranial nerve structures. Studies have reported the benefits of using intraoperative spontaneous electromyographic recordings and compound muscle action potentials evoked by electrical stimulation in preventing postoperative neurologic deficits. Apart from surgical applications, electromyography of extraocular muscles has also been used to guide botulinum toxin injections in patients with strabismus and as an adjuvant diagnostic test in myasthenia gravis. In this article, we briefly review the rationale, current available techniques to monitor extraocular cranial nerves, technical difficulties, clinical and surgical applications, as well as future directions for research.

  7. Anomalous relaxation in fractal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, S.; Yonezawa, F.

    1995-03-01

    For the purpose of studying some interesting properties of anomalous relaxation in fractal structures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures (Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341 (1941)], which is one of the empirical laws of anomalous relaxation. Scaling properties are found in the relaxation function as well as in the particle density. We also find that, in strucures with almost the same fractal dimension, relaxation in structures withmore » dead ends is slower than that in structures without them. This paper ascertains that the essential aspects of the anomalous relaxation due to many-body effects can be explained in the framework of the one-body model.« less

  8. Ultrasound-guided approach for axillary brachial plexus, femoral nerve, and sciatic nerve blocks in dogs.

    PubMed

    Campoy, Luis; Bezuidenhout, Abraham J; Gleed, Robin D; Martin-Flores, Manuel; Raw, Robert M; Santare, Carrie L; Jay, Ariane R; Wang, Annie L

    2010-03-01

    To describe an ultrasound-guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Prospective experimental trial. Four hound-cross dogs aged 2 +/- 0 years (mean +/- SD) weighing 30 +/- 5 kg and four Beagles aged 2 +/- 0 years and weighing 8.5 +/- 0.5 kg. Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation-guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Ultrasound-guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.

  9. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  10. P2X1 Receptor-Mediated Ca2+ Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth.

    PubMed

    Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong

    2016-11-16

    Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.

  11. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    PubMed

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nebivolol dilates human penile arteries and reverses erectile dysfunction in diabetic rats through enhancement of nitric oxide signaling.

    PubMed

    Angulo, Javier; Wright, Harold M; Cuevas, Pedro; González-Corrochano, Rocío; Fernández, Argentina; Cuevas, Begoña; La Fuente, José M; Gupta, Sandeep; Sáenz de Tejada, Iñigo

    2010-08-01

    Traditional beta-blockers have sometimes been associated with erectile dysfunction (ED). Nebivolol is a cardioselective β(1)-adrenoceptor antagonist that promotes vasodilation through a nitric oxide (NO)-dependent mechanism. We evaluated the effects of nebivolol on the NO/cyclic guanosine monophosphate (cGMP) signaling pathway, on erectile function and dysfunction, and in human penile vascular tissues. Erectile response to cavernosal nerve electrical stimulation in control and diabetes-induced ED rats were evaluated, along with serum nitrite/nitrate (NOx) concentration and plasma/tissue cGMP levels. Endothelium-dependent and sildenafil-induced relaxation of isolated human corpus cavernosum (HCC) and human penile resistance arteries (HPRA) were also determined. The effects of nebivolol on erectile function and dysfunction and on NO/cGMP-mediated responses. Treatment with nebivolol significantly potentiated erectile response in control rats, regardless of its effects on blood pressure. Nebivolol increased NOx and plasma cGMP by 3-fold and 2.75-fold, respectively, and significantly augmented the elevation of plasma cGMP produced by sildenafil. Nebivolol enhanced endothelium-dependent and sildenafil-induced relaxations of HCC tissue, and produced endothelium-dependent vasodilation of HPRA. Nebivolol, but not atenolol, significantly improved erectile response in diabetic rats (51.6%, 53.2%, and 87.1% of response at 3 Hz in nondiabetic rats, for vehicle-treated, atenolol-treated, and nebivolol-treated diabetic rats, respectively); after sildenafil administration, ED was completely reversed in nebivolol-treated diabetic rats (69.6% and 112% for diabetic rats treated with sildenafil and nebivolol plus sildenafil, respectively). Accordingly, nebivolol restored systemic NOx levels and cGMP content in penile tissue from these animals. Nebivolol in vivo activated the NO/cGMP pathway, enhanced erectile response and reversed ED in diabetic rats. Moreover, nebivolol in vitro

  13. [Does intraoperative nerve monitoring reduce the rate of recurrent nerve palsies during thyroid surgery?].

    PubMed

    Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A

    2002-05-01

    Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.

  14. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair.

    PubMed

    Zhang, Li; Zhao, Weijia; Niu, Changmei; Zhou, Yujie; Shi, Haiyan; Wang, Yalin; Yang, Yumin; Tang, Xin

    2018-07-01

    Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.

  15. Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration

    DTIC Science & Technology

    2015-10-01

    structured nanofibrous biodegradable nerve graft system that present ECM protein, neurotrophic factor, and pre-seeded with bone marrow stromal cells in...nanofibrous biodegradable nerve graft system that present extracellular matrix (ECM) protein, nerve growth factor, and pre-seeded with bone marrow stromal...proposed novel structured nanofibrous biodegradable grafts will provide the micro environment, bioactivity, transport features and mechanics ideal for

  16. Methylprednisolone prevents nerve injury-induced hyperalgesia in neprilysin knockout mice.

    PubMed

    He, Lan; Uçeyler, Nurcan; Krämer, Heidrun H; Colaço, Maria Nandini; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2014-03-01

    The pathophysiology of the complex regional pain syndrome involves enhanced neurogenic inflammation mediated by neuropeptides. Neutral endopeptidase (neprilysin, NEP) is a key enzyme in neuropeptide catabolism. Our previous work revealed that NEP knock out (ko) mice develop more severe hypersensitivity to thermal and mechanical stimuli after chronic constriction injury (CCI) of the sciatic nerve than wild-type (wt) mice. Because treatment with glucocorticoids is effective in early complex regional pain syndrome, we investigated whether methylprednisolone (MP) reduces pain and sciatic nerve neuropeptide content in NEP ko and wt mice with nerve injury. After CCI, NEP ko mice developed more severe thermal and mechanical hypersensitivity and hind paw edema than wt mice, confirming previous findings. Hypersensitivity was prevented by MP treatment in NEP ko but not in wt mice. MP treatment had no effect on protein levels of calcitonin-gene related peptide, substance P, and bradykinin in sciatic nerves of NEP ko mice. Endothelin-1 (ET-1) levels were higher in naïve and nerve-injured NEP ko than in wt mice, without an effect of MP treatment. Gene expression of the ET-1 receptors ETAR and ETBR was not different between genotypes and was not altered after CCI, but was increased after additional MP treatment. The ETBR agonist IRL-1620 was analgesic in NEP ko mice after CCI, and the ETBR antagonist BQ-788 showed a trend to reduce the analgesic effect of MP. The results provide evidence that MP reduces CCI-induced hyperalgesia in NEP ko mice, and that this may be related to ET-1 via analgesic actions of ETBR. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  17. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  18. Optic Nerve Imaging

    MedlinePlus

    ... About Us Donate In This Section Optic Nerve Imaging email Send this article to a friend by ... may use one of these optic nerve computer imaging techniques as part of your glaucoma examination. By ...

  19. Nerve Injuries in Gynecologic Laparoscopy.

    PubMed

    Abdalmageed, Osama S; Bedaiwy, Mohamed A; Falcone, Tommaso

    2017-01-01

    Nerve injuries during gynecologic endoscopy are an infrequent but distressing complication. In benign gynecologic surgery, most of these injuries are associated with patient positioning, although some are related to port placement. Most are potentially preventable with attention to patient placement on the operating room bed and knowledge of the relative anatomy of the nerves. The highest risk group vulnerable to these injuries includes women who have extreme body mass index and those with longer surgical times in the Trendelenburg position. Upper and lower limb peripheral nerves are the most common nerves injured during gynecologic endoscopy. These injuries can result in transient or permanent sensory and motor disabilities that can interrupt patient recovery in an otherwise successful surgery. Numerous strategies are suggested to reduce the frequency of nerve injuries during gynecologic endoscopies. Proper patient positioning and proper padding of the pressure areas are mandatory to prevent malposition-related nerve injuries. Anatomic knowledge of the course of nerves, especially ilioinguinal and iliohypogastric, nerves can minimize injury. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  20. Enhanced vasorelaxant effects of the endocannabinoid-like mediator, oleamide, in hypertension.

    PubMed

    Hopps, Jamie J; Dunn, William R; Randall, Michael D

    2012-06-05

    Oleamide is an endocannabinoid-like, fatty acid amide with structural similarities to anandamide. The cardiovascular effects of anandamide are enhanced in hypertension and we have now examined how hypertension affects responses to oleamide. Vasorelaxant responses to oleamide were significantly (P<0.001) enhanced in aortic rings from spontaneously hypertensive rats (SHRs), such that the maximal relaxation to oleamide was 40.3 ± 3.5%, compared to 15.7 ± 3.9% in normotensive Wistar Kyoto (WKY) controls. The augmented responses to oleamide in SHR arteries were unaffected by either inhibition of nitric oxide synthase (300 μM l-NAME) or fatty acid amide hydrolase (1 μM URB597) and independent of cannabinoid CB(1) receptors or the endothelium. The enhanced responses to oleamide were opposed by pre-treatment with capsaicin (such that R(max) was reduced to 9.8 ± 1.5%) and this occurred independently of TRPV1 receptor and sensory nerve activity, as the TRPV1 antagonist capsazepine (1-5 μM) and the cation channel inhibitor ruthenium red (10 μM) had no effect on the responses to oleamide. However, inhibition of cyclooxygenase (10 μM indomethacin) enhanced the responses in the WKY aortae, such that the responses were comparable to those in the SHR. The results suggest that the cyclooxygenase pathway has a role in modulating vasorelaxation caused by oleamide in normotensive aortae and that this is lost in hypertension, possibly as an adaptation to the increase in blood pressure. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  2. Drug Distribution into Peripheral Nerve.

    PubMed

    Liu, Houfu; Chen, Yan; Huang, Liang; Sun, Xueying; Fu, Tingting; Wu, Shengqian; Zhu, Xiaoyan; Zhen, Wei; Liu, Jihong; Lu, Gang; Cai, Wei; Yang, Ting; Zhang, Wandong; Yu, Xiaohong; Wan, Zehong; Wang, Jianfei; Summerfield, Scott G; Dong, Kelly; Terstappen, Georg C

    2018-05-01

    Little is known about the impact of the blood-nerve barrier (BNB) on drug distribution into peripheral nerves. In this study, we examined the peripheral nerve penetration in rats of 11 small-molecule drugs possessing diverse physicochemical and transport properties and ProTx-II, a tarantula venom peptide with molecular mass of 3826 Daltons. Each drug was administered as constant rate intravenous infusion for 6 hours (small molecules) or 24 hours (ProTx-II). Blood and tissues including brain, spinal cord, sciatic nerve, and dorsal root ganglion (DRG) were collected for drug concentration measurements. Unbound fractions of a set of compounds were determined by equilibrium dialysis method in rat blood, brains, spinal cords, sciatic nerves, and DRG. We also investigated the influence of N -[4-[2-(6,7-dimethoxy-3,4-dihydro-1 H -isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10 H -acridine-4-carboxamide (GF120918), a P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) inhibitor, on the peripheral nerve and central nervous system (CNS) tissue penetration of imatinib. We found that: 1) the unbound fraction in brain tissue homogenate highly correlates with that in the spinal cord, sciatic nerve, and DRG for a set of compounds and thus provides a good surrogate for spinal cord and peripheral nerve tissues, 2) small-molecule drugs investigated can penetrate the DRG and sciatic nerve, 3) P-gp and BCRP have a limited impact on the distribution of small-molecule drugs into peripheral nerves, and 4) DRG is permeable to ProTx-II, but its distribution into sciatic nerve and CNS tissues is restricted. These results demonstrate that small-molecule drugs investigated can penetrate peripheral nerve tissues, and P-gp/BCRP may not be a limiting factor at the BNB. Biologics as large as ProTx-II can access the DRG but not sciatic nerve and CNS tissues. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    PubMed

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  4. Interfascicular suture with nerve autografts for median, ulnar and radial nerve lesions.

    PubMed

    Pluchino, F; Luccarelli, G

    1981-05-01

    Interfascicular nerve suture with autografts is the operation of choice for repairing peripheral nerve injuries because it ensures more precise alignment of the fasciculi and so better chances of reinnervation of the sectioned nerve. The procedure as described by Millesi et al has been used at the Istituto Neurologico di Milano in 30 patients with traumatic lesions of the median, ulnar and radial nerves. All have been followed up for 2 to 7 years since operation. The results obtained are compared with those of other series obtained with interfascicular suture and with epineural suture. Microsurgery is essential. The best time to operate is discussed.

  5. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    PubMed Central

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  6. Anatomy of pudendal nerve at urogenital diaphragm--new critical site for nerve entrapment.

    PubMed

    Hruby, Stephan; Ebmer, Johannes; Dellon, A Lee; Aszmann, Oskar C

    2005-11-01

    To investigate the relations of the pudendal nerve in this complex anatomic region and determine possible entrapment sites that are accessible for surgical decompression. Entrapment neuropathies of the pudendal nerve are an uncommon and, therefore, often overlooked or misdiagnosed clinical entity. The detailed relations of this nerve as it exits the pelvis through the urogenital diaphragm and enters the mobile part of the penis have not yet been studied. Detailed anatomic dissections were performed in 10 formalin preserved hemipelves under 3.5x loupe magnification. The pudendal nerve was dissected from the entrance into the Alcock canal to the dorsum of the penis. The branching pattern of the nerve and its topographic relationship were recorded and photographs taken. The anatomic dissections revealed that the pudendal nerve passes through a tight osteofibrotic canal just distal to the urogenital diaphragm at the entrance to the base of the penis. This canal is, in part, formed by the inferior ramus of the pubic bone, the suspensory ligament of the penis, and the ischiocavernous body. In two specimens, a fusiform pseudoneuromatous thickening was found. The pudendal nerve is susceptible to compression at the passage from the Alcock canal to the dorsum of the penis. Individuals exposed to repetitive mechanical irritation in this region are especially endangered. Diabetic patients with peripheral neuropathy can have additional compression neuropathy with decreased penile sensibility and will benefit from decompression of the pudendal nerve.

  7. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Nam Lyong, E-mail: nlkang@pusan.ac.kr

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  8. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    PubMed

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Relaxation Dynamics in Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the

  10. [Augmentation with PMMA cement].

    PubMed

    Kühn, K-D; Höntzsch, D

    2015-09-01

    Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects.

  11. Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies.

    PubMed

    Sellaro, Roberta; de Gelder, Beatrice; Finisguerra, Alessandra; Colzato, Lorenza S

    2018-02-01

    The polyvagal theory suggests that the vagus nerve is the key phylogenetic substrate enabling optimal social interactions, a crucial aspect of which is emotion recognition. A previous study showed that the vagus nerve plays a causal role in mediating people's ability to recognize emotions based on images of the eye region. The aim of this study is to verify whether the previously reported causal link between vagal activity and emotion recognition can be generalized to situations in which emotions must be inferred from images of whole faces and bodies. To this end, we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that causes the vagus nerve to fire by the application of a mild electrical stimulation to the auricular branch of the vagus nerve, located in the anterior protuberance of the outer ear. In two separate sessions, participants received active or sham tVNS before and while performing two emotion recognition tasks, aimed at indexing their ability to recognize emotions from facial and bodily expressions. Active tVNS, compared to sham stimulation, enhanced emotion recognition for whole faces but not for bodies. Our results confirm and further extend recent observations supporting a causal relationship between vagus nerve activity and the ability to infer others' emotional state, but restrict this association to situations in which the emotional state is conveyed by the whole face and/or by salient facial cues, such as eyes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation.

    PubMed

    Li, Yi-Jia; Perkins, Angela L; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A; Chen, Yuan

    2012-03-13

    Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects.

  13. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".

    PubMed

    Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J

    2017-07-11

    Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option

  14. Nicotine impairs reflex renal nerve and respiratory activity in deoxycorticosterone acetate-salt rats.

    PubMed

    Whitescarver, S A; Roberts, A M; Stremel, R W; Jimenez, A E; Passmore, J C

    1991-02-01

    Smoking exacerbates the increase in arterial pressure in hypertension. The effect of nicotine on the baroreceptor-mediated reflex responses of renal nerve activity (RNA), heart rate, and respiratory activity (minute diaphragmatic activity [MDA]) after bolus injections of phenylephrine was compared in deoxycorticosterone acetate (DOCA)-salt sensitive and normotensive rats. Osmotic minipumps that dispensed either nicotine (2.4 mg/kg/day) or saline were implanted in DOCA and normotensive rats for 18 days. Anesthetized DOCA-nicotine, DOCA-saline, control-nicotine, and control-saline rats had mean arterial pressures (MAP) of 117 +/- 3, 110 +/- 9, 90 +/- 3, and 89 +/- 5 mm Hg, respectively. Nicotine decreased the sensitivity (p less than 0.05) of baroreceptor reflex control of RNA (% delta RNA/delta MAP) in the DOCA-nicotine rats (-0.92 +/- 0.08) compared with the DOCA-saline (-1.44 +/- 0.16), control-nicotine (-1.45 +/- 0.08), or control-saline (-1.45 +/- 0.21) rats. The reflex decrease in respiratory activity (% delta MDA/delta MAP x 100) was impaired (p less than 0.01) in both control-nicotine (-24.5 +/- 3.3) and DOCA-nicotine (-18.2 +/- 4.6) rats compared with control-saline (-59.2 +/- 9.1) and DOCA-saline (-52.5 +/- 9.9) rats. The reflex decrease in heart rate (absolute delta HR/delta MAP) in both DOCA-nicotine (1.56 +/- 0.17) and control-nicotine (1.54 +/- 0.24) rats was augmented compared with DOCA-saline and control-saline rats (0.91 +/- 0.12 and 0.97 +/- 0.14).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mime therapy improves facial symmetry in people with long-term facial nerve paresis: a randomised controlled trial.

    PubMed

    Beurskens, Carien H G; Heymans, Peter G

    2006-01-01

    What is the effect of mime therapy on facial symmetry and severity of paresis in people with facial nerve paresis? Randomised controlled trial. 50 people recruited from the Outpatient department of two metropolitan hospitals with facial nerve paresis for more than nine months. The experimental group received three months of mime therapy consisting of massage, relaxation, inhibition of synkinesis, and co-ordination and emotional expression exercises. The control group was placed on a waiting list. Assessments were made on admission to the trial and three months later by a measurer blinded to group allocation. Facial symmetry was measured using the Sunnybrook Facial Grading System. Severity of paresis was measured using the House-Brackmann Facial Grading System. After three months of mime therapy, the experimental group had improved their facial symmetry by 20.4 points (95% CI 10.4 to 30.4) on the Sunnybrook Facial Grading System compared with the control group. In addition, the experimental group had reduced the severity of their paresis by 0.6 grade (95% CI 0.1 to 1.1) on the House-Brackmann Facial Grading System compared with the control group. These effects were independent of age, sex, and duration of paresis. Mime therapy improves facial symmetry and reduces the severity of paresis in people with facial nerve paresis.

  16. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats.

    PubMed

    Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y

    2016-02-01

    Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. © 2014

  17. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  18. Axillary nerve dysfunction

    MedlinePlus

    ... Causes Axillary nerve dysfunction is a form of peripheral neuropathy . It occurs when there is damage to the ... and the A.D.A.M. Editorial team. Peripheral Nerve Disorders Read more NIH MedlinePlus Magazine Read more Health ...

  19. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  20. M1 Macrophages Are Predominantly Recruited to the Major Pelvic Ganglion of the Rat Following Cavernous Nerve Injury.

    PubMed

    Matsui, Hotaka; Sopko, Nikolai A; Hannan, Johanna L; Reinhardt, Allison A; Kates, Max; Yoshida, Takahiro; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Weyne, Emmanuel; Albersen, Maarten; Bivalacqua, Trinity J

    2017-02-01

    Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206