Science.gov

Sample records for augmented reality engineering

  1. Usability Engineering: Domain Analysis Activities for Augmented Reality Systems

    DTIC Science & Technology

    2002-01-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured...management principals and techniques, formal and semiformal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system...originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented

  2. Usability engineering for augmented reality: employing user-based studies to inform design.

    PubMed

    Gabbard, Joseph L; Swan, J Edward

    2008-01-01

    A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.

  3. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  4. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  5. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  6. Augmented Reality in astrophysics

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-09-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.

  7. Augmented reality system

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  8. Intelligent Filtering for Augmented Reality

    DTIC Science & Technology

    2000-03-01

    1 Intelligent Filtering for Augmented Reality Sabrina Sestito*, Simon Julier, Marco Lanzagorta and Larry Rosenblum Advanced Information Technology...Technology Organisation, Melbourne, Australia) KEYWORDS: Augmented Reality , Intelligent Systems, Databases ABSTRACT: Recent developments in computing...hardware have begun to make mobile and wearable Augmented Reality (AR) systems a reality . With this new freedom, AR systems can now be used in a very wide

  9. A Tracker Alignment Framework for Augmented Reality

    DTIC Science & Technology

    2003-01-01

    A Tracker Alignment Framework for Augmented Reality Yohan Baillot and Simon J. Julier ITT Advanced Engineering & Sciences 2560 Huntington Ave...with as few as three measurements. 1. Introduction Almost all Augmented Reality (AR) systems use a track- ing system to capture motion of objects in...DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE A Tracker Alignment Framework for Augmented Reality 5a. CONTRACT NUMBER 5b. GRANT

  10. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    PubMed

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  11. Augmented reality in surgery.

    PubMed

    Shuhaiber, Jeffrey H

    2004-02-01

    To evaluate the history and current knowledge of computer-augmented reality in the field of surgery and its potential goals in education, surgeon training, and patient treatment. National Library of Medicine's database and additional library searches. Only articles suited to surgical sciences with a well-defined aim of study, methodology, and precise description of outcome were included. Augmented reality is an effective tool in executing surgical procedures requiring low-performance surgical dexterity; it remains a science determined mainly by stereotactic registration and ergonomics. Strong evidence was found that it is an effective teaching tool for training residents. Weaker evidence was found to suggest a significant influence on surgical outcome, both morbidity and mortality. No evidence of cost-effectiveness was found. Augmented reality is a new approach in executing detailed surgical operations. Although its application is in a preliminary stage, further research is needed to evaluate its long-term clinical impact on patients, surgeons, and hospital administrators. Its widespread use and the universal transfer of such technology remains limited until there is a better understanding of registration and ergonomics.

  12. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  13. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  14. Augmented Reality Binoculars.

    PubMed

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes.

  15. Advancing Human Centered Augmented Reality Research

    DTIC Science & Technology

    2004-01-01

    ADVANCING HUMAN CENTERED AUGMENTED REALITY RESEARCH Brian Goldiez1, Mark A. Livingston 2, Jeffrey Dawson1, Dennis Brown2, Peter Hancock1, Yohan...Advanced Engineering & Sciences Alexandria, VA 22303 ABSTRACT Augmented Reality (AR) is an emerging technology that offers possibilities that...other technologies are not able to fulfill. AR uses a computer to add information to the real world. Future AR technology will be low cost

  16. BARS: Battlefield Augmented Reality System

    DTIC Science & Technology

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010892 TITLE: BARS: Battlefield Augmented Reality System DISTRIBUTION...component part numbers comprise the compilation report: ADP010865 thru. ADP010894 UNCLASSIFIED 27-1 BARS: Battlefield Augmented Reality System Simon Julier... future military operations are expected to occur overload, we have developed an intelligent filter which in urban environments. These complex, 3D

  17. Augmented Virtual Reality Laboratory

    NASA Technical Reports Server (NTRS)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  18. The Augmented REality Sandtable (ARES)

    DTIC Science & Technology

    2015-10-01

    Introduction The US Army Research Laboratory (ARL) Human Sciences Campaign calls out the topic of Virtual /Mixed and Augmented Reality as one of the...type of virtual environment. In virtual reality (VR), the totality of the environment is computer generated. In AR, the real world is augmented by...effectively. 20 17. References Alexander T. Visualisation of geographic data in virtual environments - what is essential for virtual reality systems

  19. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  20. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  1. Augmented Reality Comes to Physics

    NASA Astrophysics Data System (ADS)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  2. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  3. Augmented reality for anatomical education.

    PubMed

    Thomas, Rhys Gethin; John, Nigel William; Delieu, John Michael

    2010-03-01

    The use of Virtual Environments has been widely reported as a method of teaching anatomy. Generally such environments only convey the shape of the anatomy to the student. We present the Bangor Augmented Reality Education Tool for Anatomy (BARETA), a system that combines Augmented Reality (AR) technology with models produced using Rapid Prototyping (RP) technology, to provide the student with stimulation for touch as well as sight. The principal aims of this work were to provide an interface more intuitive than a mouse and keyboard, and to evaluate such a system as a viable supplement to traditional cadaver based education.

  4. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    NASA Astrophysics Data System (ADS)

    Mejías Borrero, A.; Andújar Márquez, J. M.

    2012-10-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL

  5. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  6. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  7. Augmented reality building operations tool

    DOEpatents

    Brackney, Larry J.

    2014-09-09

    A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

  8. Military Applications of Augmented Reality

    DTIC Science & Technology

    2011-01-01

    NOTES book chapter in Handbook of Augmented Reality, 2011. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...real ob- jects by simply not rendering graphics where they are computed to be hidden from view; this is a standard property of the depth buffer in...Adam Lederer, Jason Jerald, Erik Tomlin, Eric Burns, Donald Char- ity, Joshua Eliason, Jesus Arango, and Scott Frees. In addition, the authors would like

  9. Urban Terrain Modeling for Augmented Reality Applications

    DTIC Science & Technology

    2001-01-01

    Recent developments in wearable computers have begun to make mobile augmented reality systems a reality (Feiner, 1997; Piekarski, 1999, Julier, 2000...Augmented Reality Applications 3 Figure 1. A wearable augmented reality system. The large size of the system is the result of the fact that it is...for the light to travel out to the target and back to the LIDAR is used to determine the range of the target. LIDAR operates in the ultraviolet , visible

  10. Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games

    ERIC Educational Resources Information Center

    Klopfer, Eric; Sheldon, Josh

    2010-01-01

    Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…

  11. Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games

    ERIC Educational Resources Information Center

    Klopfer, Eric; Sheldon, Josh

    2010-01-01

    Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…

  12. Webizing mobile augmented reality content

    NASA Astrophysics Data System (ADS)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  13. Augmented reality in intraventricular neuroendoscopy.

    PubMed

    Finger, T; Schaumann, A; Schulz, M; Thomale, Ulrich-W

    2017-06-01

    Individual planning of the entry point and the use of navigation has become more relevant in intraventricular neuroendoscopy. Navigated neuroendoscopic solutions are continuously improving. We describe experimentally measured accuracy and our first experience with augmented reality-enhanced navigated neuroendoscopy for intraventricular pathologies. Augmented reality-enhanced navigated endoscopy was tested for accuracy in an experimental setting. Therefore, a 3D-printed head model with a right parietal lesion was scanned with a thin-sliced computer tomography. Segmentation of the tumor lesion was performed using Scopis NovaPlan navigation software. An optical reference matrix is used to register the neuroendoscope's geometry and its field of view. The pre-planned ROI and trajectory are superimposed in the endoscopic image. The accuracy of the superimposed contour fitting on endoscopically visualized lesion was acquired by measuring the deviation of both midpoints to one another. The technique was subsequently used in 29 cases with CSF circulation pathologies. Navigation planning included defining the entry points, regions of interests and trajectories, superimposed as augmented reality on the endoscopic video screen during intervention. Patients were evaluated for postoperative imaging, reoperations, and possible complications. The experimental setup revealed a deviation of the ROI's midpoint from the real target by 1.2 ± 0.4 mm. The clinical study included 18 cyst fenestrations, ten biopsies, seven endoscopic third ventriculostomies, six stent placements, and two shunt implantations, being eventually combined in some patients. In cases of cyst fenestrations postoperatively, the cyst volume was significantly reduced in all patients by mean of 47%. In biopsies, the diagnostic yield was 100%. Reoperations during a follow-up period of 11.4 ± 10.2 months were necessary in two cases. Complications included one postoperative hygroma and one insufficient

  14. Augmented Reality for Maintenance and Repair (ARMAR)

    DTIC Science & Technology

    2007-08-01

    The purpose of this research, Augmented Reality for Maintenance and Repair (ARMAR), was to research the design and development of experimental... augmented reality systems for maintenance job aiding. The goal was to explore and evaluate the feasibility of developing prototype adaptive augmented ... reality systems that can be used to investigate how real time computer graphics, overlaid on and registered with the actual equipment being maintained, can

  15. Developing a New Medical Augmented Reality System.

    DTIC Science & Technology

    1996-05-01

    Augmented reality is a technique for combining supplementary imagery such that it appears as part of the scene and can be used for guidance, training...and locational aids. In the medical domain, augmented reality can be used to combine medical imagery to the physician’s view of a patient to help...the physician establish a direct relation between the imagery and the patient. This project report will examine medical augmented reality systems for

  16. Eyekon: Distributed Augmented Reality for Soldier Teams

    DTIC Science & Technology

    2003-06-01

    Eyekon: Distributed Augmented Reality for Soldier Teams TOPIC: Information Superiority/Information Operations and Information Age... Augmented Reality for Soldier Teams 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...by ANSI Std Z39-18 Eyekon: Distributed Augmented Reality for Soldier Teams Abstract The battlefield is a place of violence ruled by

  17. Augmented reality in medical education?

    PubMed

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality.

  18. Enhancing Education through Mobile Augmented Reality

    ERIC Educational Resources Information Center

    Joan, D. R. Robert

    2015-01-01

    In this article, the author has discussed about the Mobile Augmented Reality and enhancing education through it. The aim of the present study was to give some general information about mobile augmented reality which helps to boost education. Purpose of the current study reveals the mobile networks which are used in the institution campus as well…

  19. Information Filtering for Mobile Augmented Reality

    DTIC Science & Technology

    2000-10-01

    Augmented reality is a potentially powerful paradigm for annotating the environment with computer-generated material. These benefits will be even...greater when augmented reality systems become mobile and wearable. However, to minimize the problem of clutter and maximize the effectiveness of the

  20. Information Filtering for Mobile Augmented Reality

    DTIC Science & Technology

    2002-07-02

    Augmented Reality (AR) has the potential to revolutionise the way in which information is delivered to a user. By tracking the user s position and...on the problem of developing mobile augmented reality systems which can be worn by an individual user operating in a large, complicated environment

  1. Augmented Reality for Close Quarters Combat

    ScienceCinema

    None

    2016-07-12

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  2. Augmented Reality for Close Quarters Combat

    SciTech Connect

    2013-09-20

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  3. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    PubMed

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  4. Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory

    ERIC Educational Resources Information Center

    Andujar, J. M.; Mejias, A.; Marquez, M. A.

    2011-01-01

    Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…

  5. Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory

    ERIC Educational Resources Information Center

    Andujar, J. M.; Mejias, A.; Marquez, M. A.

    2011-01-01

    Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…

  6. Augmented Reality in Architecture: Rebuilding Archeological Heritage

    NASA Astrophysics Data System (ADS)

    de la Fuente Prieto, J.; Castaño Perea, E.; Labrador Arroyo, F.

    2017-02-01

    With the development in recent years of augmented reality and the appearance of new mobile terminals and storage bases on-line, we find the possibility of using a powerful tool for transmitting architecture. This paper analyzes the relationship between Augmented Reality and Architecture. Firstly, connects the theoretical framework of both disciplines through the Representation concept. Secondly, describes the milestones and possibilities of Augmented Reality in the particular field of archaeological reconstruction. And lastly, once recognized the technology developed, we face the same analysis from a critical point of view, assessing their suitability to the discipline that concerns us is the architecture and within archeology.

  7. Augmented reality: past, present, future

    NASA Astrophysics Data System (ADS)

    Inzerillo, Laura

    2013-03-01

    A great opportunity has permitted to carry out a cultural, historical, architectural and social research with great impact factor on the international cultural interest. We are talking about the realization of a museum whose the main theme is the visit and the discovery of a monument of great prestige: the monumental building the "Steri" in Palermo. The museum is divided into sub themes including the one above all, that has aroused the international interest so much that it has been presented the instance to include the museum in the cultural heritage of UNESCO. It is the realization of a museum path that regards the cells of the Inquisition, which are located just inside of some buildings of the monumental building. The project, as a whole, is faced, in a total view, between the various competences implicated: historic, chemic, architectonic, topographic, drawing, representation, virtual communication, informatics. The birth of the museum will be a sum of the results of all these disciplines involved. Methodology, implementation, fruition, virtual museum, goals, 2D graphic restitution, effects on the cultural heritage and landscape environmental, augmented reality, Surveying 2D and 3D, hi-touch screen, Photogrammetric survey, Photographic survey, representation, drawing 3D and more than this has been dealt with this research.

  8. Location-Based Learning through Augmented Reality

    ERIC Educational Resources Information Center

    Chou, Te-Lien; Chanlin, Lih-Juan

    2014-01-01

    A context-aware and mixed-reality exploring tool cannot only effectively provide an information-rich environment to users, but also allows them to quickly utilize useful resources and enhance environment awareness. This study integrates Augmented Reality (AR) technology into smartphones to create a stimulating learning experience at a university…

  9. Location-Based Learning through Augmented Reality

    ERIC Educational Resources Information Center

    Chou, Te-Lien; Chanlin, Lih-Juan

    2014-01-01

    A context-aware and mixed-reality exploring tool cannot only effectively provide an information-rich environment to users, but also allows them to quickly utilize useful resources and enhance environment awareness. This study integrates Augmented Reality (AR) technology into smartphones to create a stimulating learning experience at a university…

  10. Augmented REality Sandtables (ARESs) Impact on Learning

    DTIC Science & Technology

    2016-07-01

    Virtual Reality Annual International Symposium; 1998 March 14–18; Atlanta (GA). p. 12–19. Darken RP, Peterson B. Spatial orientation, wayfinding, and...ARL-CR-0803 ● JULY 2016 US Army Research Laboratory Augmented REality Sandtable’s (ARES’s) Impact on Learning by Tarah N... REality Sandtable’s (ARES’s) Impact on Learning by Tarah N Schmidt-Daly, Jennifer M Riley, Kelly S Hale, David Yacht, and Jack Hart Design

  11. ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field

    ERIC Educational Resources Information Center

    El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.

    2011-01-01

    Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…

  12. ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field

    ERIC Educational Resources Information Center

    El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.

    2011-01-01

    Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…

  13. Cognitive Cost of Using Augmented Reality Displays.

    PubMed

    Baumeister, James; Ssin, Seung Youb; ElSayed, Neven A M; Dorrian, Jillian; Webb, David P; Walsh, James A; Simon, Timothy M; Irlitti, Andrew; Smith, Ross T; Kohler, Mark; Thomas, Bruce H

    2017-11-01

    This paper presents the results of two cognitive load studies comparing three augmented reality display technologies: spatial augmented reality, the optical see-through Microsoft HoloLens, and the video see-through Samsung Gear VR. In particular, the two experiments focused on isolating the cognitive load cost of receiving instructions for a button-pressing procedural task. The studies employed a self-assessment cognitive load methodology, as well as an additional dual-task cognitive load methodology. The results showed that spatial augmented reality led to increased performance and reduced cognitive load. Additionally, it was discovered that a limited field of view can introduce increased cognitive load requirements. The findings suggest that some of the inherent restrictions of head-mounted displays materialize as increased user cognitive load.

  14. Augmented reality-assisted skull base surgery.

    PubMed

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Formwork application optimization by using augmented reality

    NASA Astrophysics Data System (ADS)

    Diaconu, R.; Petruse, R.; Brindasu, P. D.

    2016-11-01

    By using the PLM (Product Lifecycle Management) principle on the formwork case study, after determining the functions and the technical solutions, the application must be made as optimum as possible in order to assure productivity and provide the necessary information as quick as possible. The concept is to create a complex management for the formwork based on augmented reality. By taking into account the development rate of the information, augmented reality is tending to be one of the widest (in term of domain) visualization instrument. Also used in the construction domain, augmented reality can be applied also for the case of formwork design and management. The application of the solution will be retrieved in the construction of the product, its transportation and deposit. The usage of this concept will help reduce, even eliminate human or technical errors and can offer a precise state of a specific required formwork from the stock.

  16. Evaluating Human Factors in Augmented Reality Systems

    DTIC Science & Technology

    2005-12-01

    A ugmented reality (AR) has been part of computergraphics methodology for decades. A number of prototype AR systems have shown the possibilities this...and predicting what might happen in the near future in your environment. We per- formed a domain analysis to determine which AR capa- bilities most...user’s location and then per- forming the (cognitive) task of Mark A. Livingston Naval Research Laboratory Evaluating Human Factors in Augmented Reality

  17. Understanding the Conics through Augmented Reality

    ERIC Educational Resources Information Center

    Salinas, Patricia; Pulido, Ricardo

    2017-01-01

    This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…

  18. The Educational Possibilities of Augmented Reality

    ERIC Educational Resources Information Center

    Cabero, Julio; Barroso, Julio

    2016-01-01

    A large number of emergent technologies have been acquiring a strong impulse in recent years. One of these emergent technologies is Augmented Reality (RA), which will surely have a high level of penetration into all our educational centers, including universities, in the next 3 to 5 years, as a number of different reports have already highlighted.…

  19. Intelligent Augmented Reality Training for Motherboard Assembly

    ERIC Educational Resources Information Center

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  20. CARE: Creating Augmented Reality in Education

    ERIC Educational Resources Information Center

    Latif, Farzana

    2012-01-01

    This paper explores how Augmented Reality using mobile phones can enhance teaching and learning in education. It specifically examines its application in two cases, where it is identified that the agility of mobile devices and the ability to overlay context specific resources offers opportunities to enhance learning that would not otherwise exist.…

  1. Determination of Student Opinions in Augmented Reality

    ERIC Educational Resources Information Center

    Bicen, Huseyin; Bal, Erkan

    2016-01-01

    The rapid development of the new technology has changed classroom teaching methods and tools in a positive way. This study investigated the classroom learning with augmented reality and the impact of student opinions. 97 volunteer undergraduate students took part in this study. Results included data in the form of frequencies, percentages and…

  2. Personalized augmented reality for anatomy education.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.

  3. Design Principles for Augmented Reality Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  4. Get Real: Augmented Reality for the Classroom

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; DeBay, Dennis

    2012-01-01

    Kids love augmented reality (AR) simulations because they are like real-life video games. AR simulations allow students to learn content while collaborating face to face and interacting with a multimedia-enhanced version of the world around them. Although the technology may seem advanced, AR software makes it easy to develop content-based…

  5. Understanding the Conics through Augmented Reality

    ERIC Educational Resources Information Center

    Salinas, Patricia; Pulido, Ricardo

    2017-01-01

    This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…

  6. Intelligent Augmented Reality Training for Motherboard Assembly

    ERIC Educational Resources Information Center

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  7. CARE: Creating Augmented Reality in Education

    ERIC Educational Resources Information Center

    Latif, Farzana

    2012-01-01

    This paper explores how Augmented Reality using mobile phones can enhance teaching and learning in education. It specifically examines its application in two cases, where it is identified that the agility of mobile devices and the ability to overlay context specific resources offers opportunities to enhance learning that would not otherwise exist.…

  8. Design Principles for Augmented Reality Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  9. Spacecraft 3D Augmented Reality Mobile App

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  10. Opportunistic tangible user interfaces for augmented reality.

    PubMed

    Henderson, Steven; Feiner, Steven

    2010-01-01

    Opportunistic Controls are a class of user interaction techniques that we have developed for augmented reality (AR) applications to support gesturing on, and receiving feedback from, otherwise unused affordances already present in the domain environment. By leveraging characteristics of these affordances to provide passive haptics that ease gesture input, Opportunistic Controls simplify gesture recognition, and provide tangible feedback to the user. In this approach, 3D widgets are tightly coupled with affordances to provide visual feedback and hints about the functionality of the control. For example, a set of buttons can be mapped to existing tactile features on domain objects. We describe examples of Opportunistic Controls that we have designed and implemented using optical marker tracking, combined with appearance-based gesture recognition. We present the results of two user studies. In the first, participants performed a simulated maintenance inspection of an aircraft engine using a set of virtual buttons implemented both as Opportunistic Controls and using simpler passive haptics. Opportunistic Controls allowed participants to complete their tasks significantly faster and were preferred over the baseline technique. In the second, participants proposed and demonstrated user interfaces incorporating Opportunistic Controls for two domains, allowing us to gain additional insights into how user interfaces featuring Opportunistic Controls might be designed.

  11. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    PubMed

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  12. Augmented reality in surgical procedures

    NASA Astrophysics Data System (ADS)

    Samset, E.; Schmalstieg, D.; Vander Sloten, J.; Freudenthal, A.; Declerck, J.; Casciaro, S.; Rideng, Ø.; Gersak, B.

    2008-02-01

    Minimally invasive therapy (MIT) is one of the most important trends in modern medicine. It includes a wide range of therapies in videoscopic surgery and interventional radiology and is performed through small incisions. It reduces hospital stay-time by allowing faster recovery and offers substantially improved cost-effectiveness for the hospital and the society. However, the introduction of MIT has also led to new problems. The manipulation of structures within the body through small incisions reduces dexterity and tactile feedback. It requires a different approach than conventional surgical procedures, since eye-hand co-ordination is not based on direct vision, but more predominantly on image guidance via endoscopes or radiological imaging modalities. ARIS*ER is a multidisciplinary consortium developing a new generation of decision support tools for MIT by augmenting visual and sensorial feedback. We will present tools based on novel concepts in visualization, robotics and haptics providing tailored solutions for a range of clinical applications. Examples from radio-frequency ablation of liver-tumors, laparoscopic liver surgery and minimally invasive cardiac surgery will be presented. Demonstrators were developed with the aim to provide a seamless workflow for the clinical user conducting image-guided therapy.

  13. Simulating autonomous agents wtih augmented reality

    NASA Astrophysics Data System (ADS)

    Gelenbe, Erol; Hussain, Khaled F.; Kaptan, Varol

    2002-07-01

    In many critical applications such as airport operations (for capacity planning), military simulations (for tactical training and planning), and medical simulations (for the planning of medical treatment and surgical operations), it is very useful to conduct simulations within physically accurate and visually realistic settings that are represented by real video imaging sequences. Furthermore, it is important that the simulated entities conduct autonomous actions which are realistic and which follow plans of action or intelligent behavior in reaction to current situations. We describe the research we have conducted to incorporate synthetic objects in a visually realistic manner in video sequences representing a real scene. We also discuss how the synthetic objects can be designed to conduct intelligent behavior within an augmented reality setting. The paper discusses both the computer vision aspects that we have addressed and solved, and the issues related to the insertion of intelligent autonomous objects within an augmented reality simulation.

  14. Vision-based augmented reality system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan

    2003-04-01

    The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.

  15. Augmented-reality-based segmentation refinement

    NASA Astrophysics Data System (ADS)

    Bornik, Alexander; Reitinger, Bernhard; Beichel, Reinhard; Sorantin, Erich; Werkgartner, Georg

    2004-05-01

    Planning of surgical liver tumor resections based on image data from X-ray computed tomography requires correct segmentation of the liver, liver vasculature and pathological structures. Automatic liver segmentation methods frequently fail in cases where the anatomy is degenerated by lesions or other present liver diseases. On the other hand performing a manual segmentation is a tedious and time consuming task. Therefore Augmented Reality based segmentation refinement tools are reported, that aid radiologists to efficiently correct incorrect segmentations in true 3D using head-mounted displays and tracked input devices. The developed methods facilitate segmentation refinement by interactively deforming a mesh data structure reconstructed from an initial segmentation. The variety of refinement methods are all accessible through the intuitive, direct 3D user interface of an Augmented Reality system.

  16. Augmented reality visualization for thoracoscopic spine surgery

    NASA Astrophysics Data System (ADS)

    Sauer, Frank; Vogt, Sebastian; Khamene, Ali; Heining, Sandro; Euler, Ekkehard; Schneberger, Marc; Zuerl, Konrad; Mutschler, Wolf

    2006-03-01

    We are developing an augmented reality (AR) image guidance system in which information derived from medical images is overlaid onto a video view of the patient. The centerpiece of the system is a head-mounted display custom fitted with two miniature color video cameras that capture the stereo view of the scene. Medical graphics is overlaid onto the video view and appears firmly anchored in the scene, without perceivable time lag or jitter. We have been testing the system for different clinical applications. In this paper we discuss minimally invasive thoracoscopic spine surgery as a promising new orthopedic application. In the standard approach, the thoracoscope - a rigid endoscope - provides visual feedback for the minimally invasive procedure of removing a damaged disc and fusing the two neighboring vertebrae. The navigation challenges are twofold. From a global perspective, the correct vertebrae on the spine have to be located with the inserted instruments. From a local perspective, the actual spine procedure has to be performed precisely. Visual feedback from the thoracoscope provides only limited support for both of these tasks. In the augmented reality approach, we give the surgeon additional anatomical context for the navigation. Before the surgery, we derive a model of the patient's anatomy from a CT scan, and during surgery we track the location of the surgical instruments in relation to patient and model. With this information, we can help the surgeon in both the global and local navigation, providing a global map and 3D information beyond the local 2D view of the thoracoscope. Augmented reality visualization is a particularly intuitive method of displaying this information to the surgeon. To adapt our augmented reality system to this application, we had to add an external optical tracking system, which works now in combination with our head-mounted tracking camera. The surgeon's feedback to the initial phantom experiments is very positive.

  17. Adaptive information design for outdoor augmented reality.

    PubMed

    Neuhöfer, Jan A; Govaers, Felix; El Mokni, Hichem; Alexander, Thomas

    2012-01-01

    Augmented Reality focuses on the enrichment of the user's natural field of view by consistent integration of text, symbols and interactive three-dimensional objects in real time. Placing virtual objects directly into the user's view in a natural context empowers highly dynamic applications. On the other hand, this necessitates deliberate choice of information design and density, in particular for deployment in hazardous environments like military combat scenarios. As the amount of information needed is not foreseeable and strongly depends on the individual mission, an appropriate system must offer adequate adaptation capabilities. The paper presents a prototypical, vehicle-mountable Augmented Reality vision system, designed for enhancing situation awareness in stressful urban warfare scenarios. Tracking, as one of the most crucial challenges for outdoor Augmented Reality, is accomplished by means of a Differential-GPS approach while the type of display to attach can be modified, ranging from ocular displays to standard LCD mini-screens. The overall concept also includes envisioning of own troops (blue forces), for which a multi-sensor tracking approach has been chosen. As a main feature, the system allows switching between different information categories, focusing on friendly, hostile, unidentified or neutral data. Results of an empirical study on the superiority of an in-view navigation cue approach conclude the paper.

  18. Data Distribution for Mobile Augmented Reality in Simulation and Training

    DTIC Science & Technology

    2003-01-01

    The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays head-up battlefield intelligence information to a...constraints, we present a robust event-based data distribution mechanism for mobile augmented reality and virtual environments. It is based on replicated...its name, a plan of its interior, icons to represent reported hazard locations, and the names of adjacent streets. The full power of mobile augmented

  19. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    NASA Astrophysics Data System (ADS)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  20. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  1. Augmented assessment as a means to augmented reality.

    PubMed

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  2. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    ERIC Educational Resources Information Center

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  3. A telescope with augmented reality functions

    NASA Astrophysics Data System (ADS)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  4. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    PubMed Central

    Kim, Youngjun; Kim, Hannah

    2017-01-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091

  5. Augmented reality for breast tumors visualization.

    PubMed

    Ghaderi, Mohammad Ali; Heydarzadeh, Mehrdad; Nourani, Mehrdad; Gupta, Gopal; Tamil, Lakshman

    2016-08-01

    3D visualization of breast tumors are shown to be effective by previous studies. In this paper, we introduce a new augmented reality application that can help doctors and surgeons to have a more accurate visualization of breast tumors; this system uses a marker-based image-processing technique to render a 3D model of the tumors on the body. The model can be created using a combination of breast 3D mammography by experts. We have tested the system using an Android smartphone and a head-mounted device. This proof of concept can be useful for oncologists to have a more effective screening, and surgeons to plan the surgery.

  6. Augmented reality and training for airway management procedures.

    PubMed

    Davis, Larry; Ha, Yonggang; Frolich, Seth; Martin, Glenn; Meyer, Catherine; Pettitt, Beth; Norfleet, Jack; Lin, Kuo-Chi; Rolland, Jannick P

    2002-01-01

    Augmented reality is often used for interactive, three-dimensional visualization within the medical community. To this end, we present the integration of an augmented reality system that will be used to train military medics in airway management. The system demonstrates how a head-mounted projective display can be integrated with a desktop PC to create an augmented reality visualization. Furthermore, the system, which uses a lightweight optical tracker, demonstrates the low cost and the portability of the application.

  7. Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency

    DTIC Science & Technology

    2016-03-03

    Functional reflective polarizer for augmented reality and color vision deficiency Ruidong Zhu, Guanjun Tan, Jiamin Yuan, and Shin-Tson Wu* College...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and...augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective

  8. Human Performance Assessments when Using Augmented Reality for Navigation

    DTIC Science & Technology

    2006-06-01

    Human performance executing search and rescue type of navigation is one area that can benefit from augmented reality technology when the proper...landmarks. We briefly report on an experiment that demonstrated the benefits of augmented reality in a search and rescue task. Specifically, 120...participants, equally divided by gender, were tested in speed and accuracy using augmented reality in a search and rescue task. Accuracy performance was

  9. NASA's Wireless Augmented Reality Prototype (WARP)

    NASA Astrophysics Data System (ADS)

    Agan, Martin; Voisinet, Leeann; Devereaux, Ann

    1998-01-01

    The objective of Wireless Augmented Reality Prototype (WARP) effort is to develop and integrate advanced technologies for real-time personal display of information relevant to the health and safety of space station/shuttle personnel. The WARP effort will develop and demonstrate technologies that will ultimately be incorporated into operational Space Station systems and that have potential earth applications such as aircraft pilot alertness monitoring and in various medical and consumer environments where augmented reality is required. To this end a two phase effort will be undertaken to rapidly develop a prototype (Phase I) and an advanced prototype (Phase II) to demonstrate the following key technology features that could be applied to astronaut internal vehicle activity (IVA) and potentially external vehicle activity (EVA) as well: 1) mobile visualization, and 2) distributed information system access. Specifically, Phase I will integrate a low power, miniature wireless communication link and a commercial biosensor with a head mounted display. The Phase I design will emphasize the development of a relatively small, lightweight, and unobtrusive body worn prototype system. Phase II will put increased effort on miniaturization, power consumption reduction, increased throughput, higher resolution, and ``wire removal'' of the subsystems developed in Phase I.

  10. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  11. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  12. Augmenting your own reality: student authoring of science-based augmented reality games.

    PubMed

    Klopfer, Eric; Sheldon, Josh

    2010-01-01

    Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent games, TimeLab 2100, players role-play citizens of the early 22nd century when global climate change is out of control. Through AR, they see their community as it might be nearly one hundred years in the future. TimeLab and other similar AR games balance location specificity and portability--they are games that are tied to a location and games that are movable from place to place. Focusing students on developing their own AR games provides the best of both virtual and physical worlds: a more portable solution that deeply connects young people to their own surroundings. A series of initiatives has focused on technical and pedagogical solutions to supporting students authoring their own games.

  13. Holographic Rovers: Augmented Reality and the Microsoft HoloLens

    NASA Technical Reports Server (NTRS)

    Toler, Laura

    2017-01-01

    Augmented Reality is an emerging field in technology, and encompasses Head Mounted Displays, smartphone apps, and even projected images. HMDs include the Meta 2, Magic Leap, Avegant Light Field, and the Microsoft HoloLens, which is evaluated specifically. The Microsoft HoloLens is designed to be used as an AR personal computer, and is being optimized with that goal in mind. Microsoft allied with the Unity3D game engine to create an SDK for interested application developers that can be used in the Unity environment.

  14. On Location Learning: Authentic Applied Science with Networked Augmented Realities

    ERIC Educational Resources Information Center

    Rosenbaum, Eric; Klopfer, Eric; Perry, Judy

    2007-01-01

    The learning of science can be made more like the practice of science through authentic simulated experiences. We have created a networked handheld Augmented Reality environment that combines the authentic role-playing of Augmented Realities and the underlying models of Participatory Simulations. This game, known as Outbreak @ The Institute, is…

  15. Potential Use of Augmented Reality in LIS Education

    ERIC Educational Resources Information Center

    Wójcik, Magdalena

    2016-01-01

    The subject of this article is the use of augmented reality technology in library and information science education. The aim is to determine the scope and potential uses of augmented reality in the education of information professionals. In order to determine the scope and forms of potential use of AR technology in LIS education a two-step…

  16. Augmenting a Child's Reality: Using Educational Tablet Technology

    ERIC Educational Resources Information Center

    Tanner, Patricia; Karas, Carly; Schofield, Damian

    2014-01-01

    This study investigates the classroom integration of an innovative technology, augmented reality. Although the process of adding new technologies into a classroom setting can be daunting, the concept of augmented reality has demonstrated the ability to educate students and to assist with their comprehension of a procedural task. One half of the…

  17. Potential Use of Augmented Reality in LIS Education

    ERIC Educational Resources Information Center

    Wójcik, Magdalena

    2016-01-01

    The subject of this article is the use of augmented reality technology in library and information science education. The aim is to determine the scope and potential uses of augmented reality in the education of information professionals. In order to determine the scope and forms of potential use of AR technology in LIS education a two-step…

  18. On Location Learning: Authentic Applied Science with Networked Augmented Realities

    ERIC Educational Resources Information Center

    Rosenbaum, Eric; Klopfer, Eric; Perry, Judy

    2007-01-01

    The learning of science can be made more like the practice of science through authentic simulated experiences. We have created a networked handheld Augmented Reality environment that combines the authentic role-playing of Augmented Realities and the underlying models of Participatory Simulations. This game, known as Outbreak @ The Institute, is…

  19. The Local Games Lab ABQ: Homegrown Augmented Reality

    ERIC Educational Resources Information Center

    Holden, Christopher

    2014-01-01

    Experiments in the use of augmented reality games formerly required extensive material resources and expertise to implement above and beyond what might be possible within the usual educational contexts. Currently, the more common availability of hardware in these contexts and the existence of easy-to-use, general purpose augmented reality design…

  20. Augmenting a Child's Reality: Using Educational Tablet Technology

    ERIC Educational Resources Information Center

    Tanner, Patricia; Karas, Carly; Schofield, Damian

    2014-01-01

    This study investigates the classroom integration of an innovative technology, augmented reality. Although the process of adding new technologies into a classroom setting can be daunting, the concept of augmented reality has demonstrated the ability to educate students and to assist with their comprehension of a procedural task. One half of the…

  1. The Local Games Lab ABQ: Homegrown Augmented Reality

    ERIC Educational Resources Information Center

    Holden, Christopher

    2014-01-01

    Experiments in the use of augmented reality games formerly required extensive material resources and expertise to implement above and beyond what might be possible within the usual educational contexts. Currently, the more common availability of hardware in these contexts and the existence of easy-to-use, general purpose augmented reality design…

  2. Augmented Reality as a Countermeasure for Sleep Deprivation.

    PubMed

    Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H

    2016-04-01

    Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.

  3. Image-processing with augmented reality (AR)

    NASA Astrophysics Data System (ADS)

    Babaei, Hossein R.; Mohurutshe, Pagiel L.; Habibi Lashkari, Arash

    2013-03-01

    In this project, the aim is to discuss and articulate the intent to create an image-based Android Application. The basis of this study is on real-time image detection and processing. It's a new convenient measure that allows users to gain information on imagery right on the spot. Past studies have revealed attempts to create image based applications but have only gone up to crating image finders that only work with images that are already stored within some form of database. Android platform is rapidly spreading around the world and provides by far the most interactive and technical platform for smart-phones. This is why it was important to base the study and research on it. Augmented Reality is this allows the user to maipulate the data and can add enhanced features (video, GPS tags) to the image taken.

  4. Augmented reality based surgery navigation system

    NASA Astrophysics Data System (ADS)

    Zang, Xiaojun; Yang, Jian; Weng, Dongdong; Wang, Yongtian; Liu, Yue

    2009-11-01

    A surgery navigation system based on augmented reality is presented. The system is based on 3D visualization and 3D registration techniques with an infrared tracking device and a 3D scanner. After reconstructing the 3D model of the patient's organs and scanning the surface of the patient's face, the system uses Iterative Closest Point (ICP) algorithm to calculate the transformation between the 3D model of patient and the three-dimensional scanner. During the surgery navigation, 3D model can be overlaid onto the image of the real patient. The proposed system doesn't require the attachment of markers because of the adoption of 3D scanner. Experimental result shows that the tracking accuracy of the system is appropriate for the requirements of actual surgery and can bring down the risk of endoscopic surgery.

  5. Temporal Coherence Strategies for Augmented Reality Labeling.

    PubMed

    Madsen, Jacob Boesen; Tatzqern, Markus; Madsen, Claus B; Schmalstieg, Dieter; Kalkofen, Denis

    2016-04-01

    Temporal coherence of annotations is an important factor in augmented reality user interfaces and for information visualization. In this paper, we empirically evaluate four different techniques for annotation. Based on these findings, we follow up with subjective evaluations in a second experiment. Results show that presenting annotations in object space or image space leads to a significant difference in task performance. Furthermore, there is a significant interaction between rendering space and update frequency of annotations. Participants improve significantly in locating annotations, when annotations are presented in object space, and view management update rate is limited. In a follow-up experiment, participants appear to be more satisfied with limited update rate in comparison to a continuous update rate of the view management system.

  6. Augmented reality laser projection device for surgery.

    PubMed

    Glossop, Neil; Wang, Zhanhe; Wedlake, Chris; Moore, John; Peters, Terry

    2004-01-01

    We have developed an augmented reality system capable of projecting preoperative plans directly onto a patient using rapidly scanned laser beams. Projected contours can typically represent cut paths, tumors or delineate boundaries of interest. The system can be used as part of, or a replacement for, conventional robotic Telesurgery systems. Because the graphics are projected, there is no degradation in surgeon's view due to optical components interposed between the surgeon's eye and the patient. This system has been designed to work with a common infrared 3D camera system used in image-guided surgery, and projects both visible and infrared beams. The IR beam enables surface digitization functions to be carried out using the camera. The clinical accuracy is in the range required by CAS procedures, around 1-2mm. The device will be particularly useful for executing precise preoperative plans and for teleconsultation applications, where planned or live consultations can be efficiently communicated to a less skilled local caregiver.

  7. Visualizing Sea Level Rise with Augmented Reality

    NASA Astrophysics Data System (ADS)

    Kintisch, E. S.

    2013-12-01

    Looking Glass is an application on the iPhone that visualizes in 3-D future scenarios of sea level rise, overlaid on live camera imagery in situ. Using a technology known as augmented reality, the app allows a layperson user to explore various scenarios of sea level rise using a visual interface. Then the user can see, in an immersive, dynamic way, how those scenarios would affect a real place. The first part of the experience activates users' cognitive, quantitative thinking process, teaching them how global sea level rise, tides and storm surge contribute to flooding; the second allows an emotional response to a striking visual depiction of possible future catastrophe. This project represents a partnership between a science journalist, MIT, and the Rhode Island School of Design, and the talk will touch on lessons this projects provides on structuring and executing such multidisciplinary efforts on future design projects.

  8. Augmented reality in bone tumour resection

    PubMed Central

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. Conclusion We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  9. Augmented reality in neurosurgery: a systematic review.

    PubMed

    Meola, Antonio; Cutolo, Fabrizio; Carbone, Marina; Cagnazzo, Federico; Ferrari, Mauro; Ferrari, Vincenzo

    2016-05-07

    Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms "Augmented reality" and "Neurosurgery." Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, display type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.

  10. Augmented Reality at the Tactical and Operational Levels of War

    DTIC Science & Technology

    2015-10-24

    environments and each other. Augmented reality systems merge virtual content with a user’s real-world perceptual experiences. Information from one’s...experiences. Unlike virtual reality systems that immerse users in completely computer generated experience, AR provides virtual content over AR users...some analysts believe that virtual and augmented reality technologies will be worth as much as $150 billion as early as 2020. 8 A large reason the AR

  11. Augmented Reality vs Virtual Reality for 3D Object Manipulation.

    PubMed

    Krichenbauer, Max; Yamamoto, Goshiro; Taketomi, Takafumi; Sandor, Christian; Kato, Hirokazu

    2017-01-25

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5% on average compared to AR (p < 0:024). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3% slower in VR than in AR (p < 0:04). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  12. SmartG: Spontaneous Malaysian Augmented Reality Tourist Guide

    NASA Astrophysics Data System (ADS)

    Kasinathan, Vinothini; Mustapha, Aida; Subramaniam, Tanabalan

    2016-11-01

    In effort to attract higher tourist expenditure along with higher tourist arrivals, this paper proposes a travel application called the SmartG, acronym for Spontaneous Malaysian Augmented Reality Tourist Guide, which operates by making recommendations to user based on the travel objective and individual budget constraints. The applications relies on augmented reality technology, whereby a three dimensional model is presented to the user based on input from real world environment. User testing returned a favorable feedback on the concept of using augmented reality in promoting Malaysian tourism.

  13. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  14. Augmented reality for underground pipe inspection and maintenance

    NASA Astrophysics Data System (ADS)

    Lawson, Shaun W.; Pretlove, John R. G.

    1998-12-01

    The University of Surrey is engaged in developing augmented reality systems and teleoperation techniques for enhanced visual analysis and task performance in hostile environments. One particular current project in the UK is addressing the development of stereo vision systems, augmented reality, image processing techniques and specialist robotic vehicles which may be used for the future examination and maintenance of underground sewage pipes. This paper describes the components of the stereo vision and augmented reality system and illustrates some preliminary results of the use of the stereo robotic system mounted on a mobile laboratory vehicle and calibrated using a pin-hole camera model.

  15. Augmented reality in a tumor resection model.

    PubMed

    Chauvet, Pauline; Collins, Toby; Debize, Clement; Novais-Gameiro, Lorraine; Pereira, Bruno; Bartoli, Adrien; Canis, Michel; Bourdel, Nicolas

    2017-08-15

    Augmented Reality (AR) guidance is a technology that allows a surgeon to see sub-surface structures, by overlaying pre-operative imaging data on a live laparoscopic video. Our objectives were to evaluate a state-of-the-art AR guidance system in a tumor surgical resection model, comparing the accuracy of the resection with and without the system. Our system has three phases. Phase 1: using the MRI images, the kidney's and pseudotumor's surfaces are segmented to construct a 3D model. Phase 2: the intra-operative 3D model of the kidney is computed. Phase 3: the pre-operative and intra-operative models are registered, and the laparoscopic view is augmented with the pre-operative data. We performed a prospective experimental study on ex vivo porcine kidneys. Alginate was injected into the parenchyma to create pseudotumors measuring 4-10 mm. The kidneys were then analyzed by MRI. Next, the kidneys were placed into pelvictrainers, and the pseudotumors were laparoscopically resected. The AR guidance system allows the surgeon to see tumors and margins using classical laparoscopic instruments, and a classical screen. The resection margins were measured microscopically to evaluate the accuracy of resection. Ninety tumors were segmented: 28 were used to optimize the AR software, and 62 were used to randomly compare surgical resection: 29 tumors were resected using AR and 33 without AR. The analysis of our pathological results showed 4 failures (tumor with positive margins) (13.8%) in the AR group, and 10 (30.3%) in the Non-AR group. There was no complete miss in the AR group, while there were 4 complete misses in the non-AR group. In total, 14 (42.4%) tumors were completely missed or had a positive margin in the non-AR group. Our AR system enhances the accuracy of surgical resection, particularly for small tumors. Crucial information such as resection margins and vascularization could also be displayed.

  16. Stereoscopic augmented reality for laparoscopic surgery.

    PubMed

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and

  17. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  18. Virtual reality, augmented reality…I call it i-Reality.

    PubMed

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  19. Virtual reality, augmented reality…I call it i-Reality

    PubMed Central

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients. PMID:28293571

  20. Recent Development of Augmented Reality in Surgery: A Review

    PubMed Central

    Vávra, P.; Zonča, P.; Ihnát, P.; El-Gendi, A.

    2017-01-01

    Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  1. Directing driver attention with augmented reality cues

    PubMed Central

    Rusch, Michelle L.; Schall, Mark C.; Gavin, Patrick; Lee, John D.; Dawson, Jeffrey D.; Vecera, Shaun; Rizzo, Matthew

    2013-01-01

    This simulator study evaluated the effects of augmented reality (AR) cues designed to direct the attention of experienced drivers to roadside hazards. Twenty-seven healthy middle-aged licensed drivers with a range of attention capacity participated in a 54 mile (1.5 hour) drive in an interactive fixed-base driving simulator. Each participant received AR cues to potential roadside hazards in six simulated straight (9 mile long) rural roadway segments. Drivers were evaluated on response time for detecting a potentially hazardous event, detection accuracy for target (hazard) and non-target objects, and headway with respect to the hazards. Results showed no negative outcomes associated with interference. AR cues did not impair perception of non-target objects, including for drivers with lower attentional capacity. Results showed near significant response time benefits for AR cued hazards. AR cueing increased response rate for detecting pedestrians and warning signs but not vehicles. AR system false alarms and misses did not impair driver responses to potential hazards. PMID:24436635

  2. Evaluating User Experience of Augmented Reality Eyeglasses.

    PubMed

    Gamberini, Luciano; Orso, Valeria; Beretta, Andrea; Jacucci, Giulio; Spagnolli, Anna; Rimondi, Romina

    2015-01-01

    Augmented reality based applications have been experimented with in various contexts. Typically, the interaction is supported by handled devices, which, in specific scenarios, may hinder the interaction and spoil the experience of use, as the user is forced to hold the device and to keep her eyes on it at all times. The recent launch on the market of light-weight, unobtrusive head-mounted displays may change this circumstance. Nevertheless, investigations are needed to understand if such head-worn devices effectively outperform handheld devices in terms of comfort and pleasant experience of use. Here we present two experiments aimed at assessing the comfort of wearing a head-worn, see-through AR viewer in both a controlled and a natural setting. Besides the comfort of wearing the device, aspects related to the user experience were also investigated in the field evaluation. Our findings suggest that the head-mounted display examined is comfortable to wear regardless of the context of use. Interestingly in the field trails, participants did not express concern for the impression they would have made on other people and the experience of use was overall pleasant. Possible issues related to visual fatigue emerged.

  3. Videometric head tracker for augmented reality applications

    NASA Astrophysics Data System (ADS)

    Janin, Adam L.; Zikan, Karel; Mizell, David; Banner, Mike; Sowizral, Henry A.

    1995-12-01

    For the past three years, we have been developing augmented reality technology for application to a variety of touch labor tasks in aircraft manufacturing and assembly. The system would be worn by factory workers to provide them with better-quality information for performing their tasks than was previously available. Using a see-through head-mounted display (HMD) whose optics are set at a focal length of about 18 in., the display and its associated head tracking system can be used to superimpose and stabilize graphics on the surface of a work piece. This technology would obviate many expensive marking systems now used in aerospace manufacturing. The most challenging technical issue with respect to factory applications of AR is head position and orientation tracking. It requires high accuracy, long- range tracking in a high-noise environment. The approach we have chosen uses a head- mounted miniature video camera. The user's wearable computer system utilizes the camera to find fiducial markings that have been placed on known coordinates on or near the work piece. The system then computes the user's position and orientation relative to the fiducial marks. It is referred to as a `videometric' head tracker. In this paper, we describe the steps we took and the results we obtained in the process of prototyping our videometric head tracker, beginning with analytical and simulation results, and continuing through the working prototypes.

  4. Augmented Reality Marker Hiding with Texture Deformation.

    PubMed

    Kawai, Norihiko; Sato, Tomokazu; Nakashima, Yuta; Yokoya, Naokazu

    2016-10-19

    Augmented reality (AR) marker hiding is a technique to visually remove AR markers in a real-time video stream. A conventional approach transforms a background image with a homography matrix calculated on the basis of a camera pose and overlays the transformed image on an AR marker region in a real-time frame, assuming that the AR marker is on a planar surface. However, this approach may cause discontinuities in textures around the boundary between the marker and its surrounding area when the planar surface assumption is not satisfied. This paper proposes a method for AR marker hiding without discontinuities around texture boundaries even under nonplanar background geometry without measuring it. For doing this, our method estimates the dense motion in the marker's background by analyzing the motion of sparse feature points around it, together with a smooth motion assumption, and deforms the background image according to it. Our experiments demonstrate the effectiveness of the proposed method in various environments with different background geometries and textures.

  5. Graphical user interface concepts for tactical augmented reality

    NASA Astrophysics Data System (ADS)

    Argenta, Chris; Murphy, Anne; Hinton, Jeremy; Cook, James; Sherrill, Todd; Snarski, Steve

    2010-04-01

    Applied Research Associates and BAE Systems are working together to develop a wearable augmented reality system under the DARPA ULTRA-Vis program†. Our approach to achieve the objectives of ULTRAVis, called iLeader, incorporates a full color 40° field of view (FOV) see-thru holographic waveguide integrated with sensors for full position and head tracking to provide an unobtrusive information system for operational maneuvers. iLeader will enable warfighters to mark-up the 3D battle-space with symbologic identification of graphical control measures, friendly force positions and enemy/target locations. Our augmented reality display provides dynamic real-time painting of symbols on real objects, a pose-sensitive 360° representation of relevant object positions, and visual feedback for a variety of system activities. The iLeader user interface and situational awareness graphical representations are highly intuitive, nondisruptive, and always tactically relevant. We used best human-factors practices, system engineering expertise, and cognitive task analysis to design effective strategies for presenting real-time situational awareness to the military user without distorting their natural senses and perception. We present requirements identified for presenting information within a see-through display in combat environments, challenges in designing suitable visualization capabilities, and solutions that enable us to bring real-time iconic command and control to the tactical user community.

  6. Hands in space: gesture interaction with augmented-reality interfaces.

    PubMed

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  7. Augmented Reality System for E-maintenance Application

    NASA Astrophysics Data System (ADS)

    Benbelkacem, S.; Zenati-Henda, N.; Belhocine, M.; Malek, S.

    2009-03-01

    We present in this paper an Augmented Reality platform for e-maintenance application. In our case, the aim is not to develop a vision system based on augmented reality concept, but to show the relationship between the different actors in the proposed architecture and to facilitate maintenance of the machine. With this platform we identify all possible scenarios which allow the technician to intervene on a machine breakdown using distant expert if necessary. Each scenario depends on the machine parameters and the technician competences. To implement a configuration of Augmented Reality system, we chose a case study of maintenance scenario for machine breakdown. Then we represent this scenario by an interaction model which allows establishing Augmented Reality configuration.

  8. Mobile Augmented Reality: Applications and Human Factors Evaluations

    DTIC Science & Technology

    2006-06-01

    increased the difficulty in acquiring and maintaining situation awareness (SA). Augmented reality (AR) has the potential to meet some of these new...intuitive and unambiguous. In the training applications, the virtual OPFOR must appear and behave realistically. We discuss the development of our augmented ... reality system and the human factors testing we have performed. We apply the system to two military needs: situation awareness during operations and training.

  9. Visual Environment for Designing Interactive Learning Scenarios with Augmented Reality

    ERIC Educational Resources Information Center

    Mota, José Miguel; Ruiz-Rube, Iván; Dodero, Juan Manuel; Figueiredo, Mauro

    2016-01-01

    Augmented Reality (AR) technology allows the inclusion of virtual elements on a vision of actual physical environment for the creation of a mixed reality in real time. This kind of technology can be used in educational settings. However, the current AR authoring tools present several drawbacks, such as, the lack of a mechanism for tracking the…

  10. Improving Robotic Operator Performance Using Augmented Reality

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Bowen, Charles K.; Pace, John W.

    2007-01-01

    The Special Purpose Dexterous Manipulator (SPDM) is a two-armed robot that functions as an extension to the end effector of the Space Station Robotics Manipulator System (SSRMS), currently in use on the International Space Station (ISS). Crew training for the SPDM is accomplished using a robotic hardware simulator, which performs most of SPDM functions under normal static Earth gravitational forces. Both the simulator and SPDM are controlled from a standard robotic workstation using a laptop for the user interface and three monitors for camera views. Most operations anticipated for the SPDM involve the manipulation, insertion, and removal of any of several types of Orbital Replaceable Unit (ORU), modules which control various ISS functions. Alignment tolerances for insertion of the ORU into its receptacle are 0.25 inch and 0.5 degree from nominal values. The pre-insertion alignment task must be performed within these tolerances by using available video camera views of the intrinsic features of the ORU and receptacle, without special registration markings. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit periods of viewing, a successful ORU insertion operation may require an extended period of time. This study explored the feasibility of using augmented reality (AR) to assist SPDM operations. Geometric graphical symbols were overlaid on one of the workstation monitors to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment. Twelve skilled subjects performed eight ORU insertion tasks using the simulator with and without the AR symbols in a repeated measures experimental design. Results indicated that using the AR symbols reduced pre-insertion alignment error for all subjects and reduced the time to complete pre-insertion alignment for most subjects.

  11. Improving Robotic Operator Performance Using Augmented Reality

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Bowen, Charles K.; Pace, John W.

    2007-01-01

    The Special Purpose Dexterous Manipulator (SPDM) is a two-armed robot that functions as an extension to the end effector of the Space Station Robotics Manipulator System (SSRMS), currently in use on the International Space Station (ISS). Crew training for the SPDM is accomplished using a robotic hardware simulator, which performs most of SPDM functions under normal static Earth gravitational forces. Both the simulator and SPDM are controlled from a standard robotic workstation using a laptop for the user interface and three monitors for camera views. Most operations anticipated for the SPDM involve the manipulation, insertion, and removal of any of several types of Orbital Replaceable Unit (ORU), modules which control various ISS functions. Alignment tolerances for insertion of the ORU into its receptacle are 0.25 inch and 0.5 degree from nominal values. The pre-insertion alignment task must be performed within these tolerances by using available video camera views of the intrinsic features of the ORU and receptacle, without special registration markings. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit periods of viewing, a successful ORU insertion operation may require an extended period of time. This study explored the feasibility of using augmented reality (AR) to assist SPDM operations. Geometric graphical symbols were overlaid on one of the workstation monitors to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment. Twelve skilled subjects performed eight ORU insertion tasks using the simulator with and without the AR symbols in a repeated measures experimental design. Results indicated that using the AR symbols reduced pre-insertion alignment error for all subjects and reduced the time to complete pre-insertion alignment for most subjects.

  12. Multimodal augmented reality system for surgical microscopy

    NASA Astrophysics Data System (ADS)

    Garcia Giraldez, Jaime; Talib, Haydar; Caversaccio, Marco; Gonzalez Ballester, Miguel A.

    2006-03-01

    Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

  13. Augmented Reality, the Future of Contextual Mobile Learning

    ERIC Educational Resources Information Center

    Sungkur, Roopesh Kevin; Panchoo, Akshay; Bhoyroo, Nitisha Kirtee

    2016-01-01

    Purpose: This study aims to show the relevance of augmented reality (AR) in mobile learning for the 21st century. With AR, any real-world environment can be augmented by providing users with accurate digital overlays. AR is a promising technology that has the potential to encourage learners to explore learning materials from a totally new…

  14. Augmented Reality, the Future of Contextual Mobile Learning

    ERIC Educational Resources Information Center

    Sungkur, Roopesh Kevin; Panchoo, Akshay; Bhoyroo, Nitisha Kirtee

    2016-01-01

    Purpose: This study aims to show the relevance of augmented reality (AR) in mobile learning for the 21st century. With AR, any real-world environment can be augmented by providing users with accurate digital overlays. AR is a promising technology that has the potential to encourage learners to explore learning materials from a totally new…

  15. Augmented reality aiding collimator exchange at the LHC

    NASA Astrophysics Data System (ADS)

    Martínez, Héctor; Fabry, Thomas; Laukkanen, Seppo; Mattila, Jouni; Tabourot, Laurent

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  16. Virtual Reality and Engineering Education.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  17. Potential perils of peri-Pokémon perambulation: the dark reality of augmented reality?

    PubMed

    Joseph, Bellal; Armstrong, David G

    2016-10-01

    Recently, the layering of augmented reality information on top of smartphone applications has created unprecedented user engagement and popularity. One augmented reality-based entertainment application, Pokémon Go (Pokémon Company, Tokyo, Japan) has become the most rapidly downloaded in history. This technology holds tremendous promise to promote ambulatory activity. However, there exists the obvious potential for distraction-related morbidity. We report two cases, presenting simultaneously to our trauma center, with injuries sustained secondary to gameplay with this augmented reality-based application.

  18. Potential perils of peri-Pokémon perambulation: the dark reality of augmented reality?

    PubMed Central

    Joseph, Bellal; Armstrong, David G.

    2016-01-01

    Recently, the layering of augmented reality information on top of smartphone applications has created unprecedented user engagement and popularity. One augmented reality-based entertainment application, Pokémon Go (Pokémon Company, Tokyo, Japan) has become the most rapidly downloaded in history. This technology holds tremendous promise to promote ambulatory activity. However, there exists the obvious potential for distraction-related morbidity. We report two cases, presenting simultaneously to our trauma center, with injuries sustained secondary to gameplay with this augmented reality-based application. PMID:27713831

  19. Augmented reality in laparoscopic surgical oncology.

    PubMed

    Nicolau, Stéphane; Soler, Luc; Mutter, Didier; Marescaux, Jacques

    2011-09-01

    Minimally invasive surgery represents one of the main evolutions of surgical techniques aimed at providing a greater benefit to the patient. However, minimally invasive surgery increases the operative difficulty since the depth perception is usually dramatically reduced, the field of view is limited and the sense of touch is transmitted by an instrument. However, these drawbacks can currently be reduced by computer technology guiding the surgical gesture. Indeed, from a patient's medical image (US, CT or MRI), Augmented Reality (AR) can increase the surgeon's intra-operative vision by providing a virtual transparency of the patient. AR is based on two main processes: the 3D visualization of the anatomical or pathological structures appearing in the medical image, and the registration of this visualization on the real patient. 3D visualization can be performed directly from the medical image without the need for a pre-processing step thanks to volume rendering. But better results are obtained with surface rendering after organ and pathology delineations and 3D modelling. Registration can be performed interactively or automatically. Several interactive systems have been developed and applied to humans, demonstrating the benefit of AR in surgical oncology. It also shows the current limited interactivity due to soft organ movements and interaction between surgeon instruments and organs. If the current automatic AR systems show the feasibility of such system, it is still relying on specific and expensive equipment which is not available in clinical routine. Moreover, they are not robust enough due to the high complexity of developing a real-time registration taking organ deformation and human movement into account. However, the latest results of automatic AR systems are extremely encouraging and show that it will become a standard requirement for future computer-assisted surgical oncology. In this article, we will explain the concept of AR and its principles. Then, we

  20. Augmented reality for biomedical wellness sensor systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Szu, Harold

    2013-05-01

    Due to the commercial move and gaming industries, Augmented Reality (AR) technology has matured. By definition of AR, both artificial and real humans can be simultaneously present and realistically interact among one another. With the help of physics and physiology, we can build in the AR tool together with real human day-night webcam inputs through a simple interaction of heat transfer -getting hot, action and reaction -walking or falling, as well as the physiology -sweating due to activity. Knowing the person age, weight and 3D coordinates of joints in the body, we deduce the force, the torque, and the energy expenditure during real human movements and apply to an AR human model. We wish to support the physics-physiology AR version, PPAR, as a BMW surveillance tool for senior home alone (SHA). The functionality is to record senior walking and hand movements inside a home environment. Besides the fringe benefit of enabling more visits from grand children through AR video games, the PP-AR surveillance tool may serve as a means to screen patients in the home for potential falls at points around in house. Moreover, we anticipate PP-AR may help analyze the behavior history of SHA, e.g. enhancing the Smartphone SHA Ubiquitous Care Program, by discovering early symptoms of candidate Alzheimer-like midnight excursions, or Parkinson-like trembling motion for when performing challenging muscular joint movements. Using a set of coordinates corresponding to a set of 3D positions representing human joint locations, we compute the Kinetic Energy (KE) generated by each body segment over time. The Work is then calculated, and converted into calories. Using common graphics rendering pipelines, one could invoke AR technology to provide more information about patients to caretakers. Alerts to caretakers can be prompted by a patient's departure from their personal baseline, and the patient's time ordered joint information can be loaded to a graphics viewer allowing for high

  1. Gunner Goggles: Implementing Augmented Reality into Medical Education.

    PubMed

    Wang, Leo L; Wu, Hao-Hua; Bilici, Nadir; Tenney-Soeiro, Rebecca

    2016-01-01

    There is evidence that both smartphone and tablet integration into medical education has been lacking. At the same time, there is a niche for augmented reality (AR) to improve this process through the enhancement of textbook learning. Gunner Goggles is an attempt to enhance textbook learning in shelf exam preparatory review with augmented reality. Here we describe our initial prototype and detail the process by which augmented reality was implemented into our textbook through Layar. We describe the unique functionalities of our textbook pages upon augmented reality implementation, which includes links, videos and 3D figures, and surveyed 24 third year medical students for their impression of the technology. Upon demonstrating an initial prototype textbook chapter, 100% (24/24) of students felt that augmented reality improved the quality of our textbook chapter as a learning tool. Of these students, 92% (22/24) agreed that their shelf exam review was inadequate and 19/24 (79%) felt that a completed Gunner Goggles product would have been a viable alternative to their shelf exam review. Thus, while students report interest in the integration of AR into medical education test prep, future investigation into how the use of AR can improve performance on exams is warranted.

  2. Current progress on augmented reality visualization in endoscopic surgery.

    PubMed

    Nakamoto, Masahiko; Ukimura, Osamu; Faber, Kenneth; Gill, Inderbir S

    2012-03-01

    Advancements in surgery are progressing at a rapid rate; however, there are still limitations, including the ability to accurately visualize the target organ, in particular during laparoscopic surgery. Augmented reality visualization is a novel technique that has been developed to allow the fusion of three-dimensional medical images, such as those from transrectal ultrasound or computed tomography/MRI, with live camera images in real-time. In this review, we describe the current advancements and future directions of augmented reality and its application to laparoscopic surgery. Geometrically-correct superimposed images can be generated by tracking of the laparoscope and registration of the target organ. The fused image between the live laparoscopic images and the reconstructed three-dimensional organ model aides the surgeon in his or her understanding of anatomical structures. Laparoscopic and robot-assisted surgeries in both general surgery and urology have been performed with technical success to date. The primary limitation of the current augmented reality systems is its infancy in dynamic tracking of organ motion or deformation. Recently, augmented reality systems with organ tracking based on real-time image analysis were developed. Further improvement and/or development of such new technologies would resolve these issues. Augmented reality visualization is a significant advancement, improving the precision of laparoscopic/endoscopic surgery. New technologies to improve the dynamic tracking of organ motion or deformation are currently under investigation.

  3. Towards Robot teaching based on Virtual and Augmented Reality Concepts

    NASA Astrophysics Data System (ADS)

    Ennakr, Said; Domingues, Christophe; Benchikh, Laredj; Otmane, Samir; Mallem, Malik

    2009-03-01

    A complex system is a system made up of a great number of entities in local and simultaneous interaction. Its design requires the collaboration of engineers of various complementary specialties, so that it is necessary to invent new design methods. Indeed, currently the industry loses much time between the moment when the product model is designed and when the latter is serially produced on the lines of factories. This production is generally ensured by automated and more often robotized means. A deadline is thus necessary for the development of the automatisms and the robots work on a new product model. In this context we launched a study based on the principle of the mechatronics design in Augmented Reality-Virtual Reality. This new approach will bring solutions to problems encountered in many application scopes, but also to problems involved in the distance which separates the offices from design of vehicles and their production sites. This new approach will minimize the differences of errors between the design model and real prototype.

  4. Soldier-worn augmented reality system for tactical icon visualization

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared

    2012-06-01

    This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.

  5. Augmented reality three-dimensional display with light field fusion.

    PubMed

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chengyu

    2016-05-30

    A video see-through augmented reality three-dimensional display method is presented. The system that is used for dense viewpoint augmented reality presentation fuses the light fields of the real scene and the virtual model naturally. Inherently benefiting from the rich information of the light field, depth sense and occlusion can be handled under no priori depth information of the real scene. A series of processes are proposed to optimize the augmented reality performance. Experimental results show that the reconstructed fused 3D light field on the autostereoscopic display is well presented. The virtual model is naturally integrated into the real scene with a consistence between binocular parallax and monocular depth cues.

  6. Vision-based augmented reality computer assisted surgery navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Xin; Xu, Kebin; Li, Xin; Xu, Wei

    2007-12-01

    A vision-based Augmented Reality computer assisted surgery navigation system is presented in this paper. It applies the Augmented Reality technique to surgery navigation system, so the surgeon's vision of the real world is enhanced. In the system, the camera calibration is adopted to calculate the cameras projection matrix, and then make the virtual-real registration by using the transformation relation. The merging of synthetic 3D information into user's vision is realized by texture technique. The experiment results demonstrate the feasibility of the system we have designed.

  7. Cranial implant design using augmented reality immersive system.

    PubMed

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  8. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    ERIC Educational Resources Information Center

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  9. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    ERIC Educational Resources Information Center

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  10. Augmented Virtual Reality: How to Improve Education Systems

    ERIC Educational Resources Information Center

    Fernandez, Manuel

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…

  11. Mobile Technologies and Augmented Reality in Open Education

    ERIC Educational Resources Information Center

    Kurubacak, Gulsun, Ed.; Altinpulluk, Hakan, Ed.

    2017-01-01

    Novel trends and innovations have enhanced contemporary educational environments. When applied properly, these computing advances can create enriched learning opportunities for students. "Mobile Technologies and Augmented Reality in Open Education" is a pivotal reference source for the latest academic research on the integration of…

  12. The Design of Immersive English Learning Environment Using Augmented Reality

    ERIC Educational Resources Information Center

    Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei

    2016-01-01

    The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…

  13. Using Augmented Reality Tools to Enhance Children's Library Services

    ERIC Educational Resources Information Center

    Meredith, Tamara R.

    2015-01-01

    Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…

  14. Effect on Academic Procrastination after Introducing Augmented Reality

    ERIC Educational Resources Information Center

    Bendicho, Peña Fabiani; Mora, Carlos Efren; Añorbe-Díaz, Beatriz; Rivero-Rodríguez, Pedro

    2017-01-01

    Students suffer academic procrastination while dealing with frequent deadlines and working under pressure. This causes to delay their coursework and may affect their academic progress, despite feeling worse. Triggering students' motivation, like introducing technologies, helps to reduce procrastination. In this context, Augmented Reality has been…

  15. Learning Physics through Play in an Augmented Reality Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; Delacruz, Girlie; Kumar, Melissa

    2012-01-01

    The Learning Physics through Play Project (LPP) engaged 6-8-year old students (n = 43) in a series of scientific investigations of Newtonian force and motion including a series of augmented reality activities. We outline the two design principles behind the LPP curriculum: 1) the use of socio-dramatic, embodied play in the form of participatory…

  16. Augmented Reality Games: Using Technology on a Budget

    ERIC Educational Resources Information Center

    Annetta, Leonard; Burton, Erin Peters; Frazier, Wendy; Cheng, Rebecca; Chmiel, Margaret

    2012-01-01

    As smartphones become more ubiquitous among adolescents, there is increasing potential for these as a tool to engage students in science instruction through innovative learning environments such as augmented reality (AR). Aligned with the National Science Education Standards (NRC 1996) and integrating the three dimensions of "A Framework for K-12…

  17. Augmented Reality Games: Using Technology on a Budget

    ERIC Educational Resources Information Center

    Annetta, Leonard; Burton, Erin Peters; Frazier, Wendy; Cheng, Rebecca; Chmiel, Margaret

    2012-01-01

    As smartphones become more ubiquitous among adolescents, there is increasing potential for these as a tool to engage students in science instruction through innovative learning environments such as augmented reality (AR). Aligned with the National Science Education Standards (NRC 1996) and integrating the three dimensions of "A Framework for K-12…

  18. Using Augmented Reality Tools to Enhance Children's Library Services

    ERIC Educational Resources Information Center

    Meredith, Tamara R.

    2015-01-01

    Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…

  19. Augmented Reality in Education--Cases, Places and Potentials

    ERIC Educational Resources Information Center

    Bower, Matt; Howe, Cathie; McCredie, Nerida; Robinson, Austin; Grover, David

    2014-01-01

    Augmented Reality is poised to profoundly transform Education as we know it. The capacity to overlay rich media onto the real world for viewing through web-enabled devices such as phones and tablet devices means that information can be made available to students at the exact time and place of need. This has the potential to reduce cognitive…

  20. Effect on Academic Procrastination after Introducing Augmented Reality

    ERIC Educational Resources Information Center

    Bendicho, Peña Fabiani; Mora, Carlos Efren; Añorbe-Díaz, Beatriz; Rivero-Rodríguez, Pedro

    2017-01-01

    Students suffer academic procrastination while dealing with frequent deadlines and working under pressure. This causes to delay their coursework and may affect their academic progress, despite feeling worse. Triggering students' motivation, like introducing technologies, helps to reduce procrastination. In this context, Augmented Reality has been…

  1. Augmented Reality and Mobile Learning: The State of the Art

    ERIC Educational Resources Information Center

    FitzGerald, Elizabeth; Ferguson, Rebecca; Adams, Anne; Gaved, Mark; Mor, Yishay; Thomas, Rhodri

    2013-01-01

    In this paper, the authors examine the state of the art in augmented reality (AR) for mobile learning. Previous work in the field of mobile learning has included AR as a component of a wider toolkit but little has been done to discuss the phenomenon in detail or to examine in a balanced fashion its potential for learning, identifying both positive…

  2. Current Status, Opportunities and Challenges of Augmented Reality in Education

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Liang, Jyh-Chong

    2013-01-01

    Although augmented reality (AR) has gained much research attention in recent years, the term AR was given different meanings by varying researchers. In this article, we first provide an overview of definitions, taxonomies, and technologies of AR. We argue that viewing AR as a concept rather than a type of technology would be more productive for…

  3. Augmented Reality and Mobile Learning: The State of the Art

    ERIC Educational Resources Information Center

    FitzGerald, Elizabeth; Ferguson, Rebecca; Adams, Anne; Gaved, Mark; Mor, Yishay; Thomas, Rhodri

    2013-01-01

    In this paper, the authors examine the state of the art in augmented reality (AR) for mobile learning. Previous work in the field of mobile learning has included AR as a component of a wider toolkit but little has been done to discuss the phenomenon in detail or to examine in a balanced fashion its potential for learning, identifying both positive…

  4. Augmented Reality in Education--Cases, Places and Potentials

    ERIC Educational Resources Information Center

    Bower, Matt; Howe, Cathie; McCredie, Nerida; Robinson, Austin; Grover, David

    2014-01-01

    Augmented Reality is poised to profoundly transform Education as we know it. The capacity to overlay rich media onto the real world for viewing through web-enabled devices such as phones and tablet devices means that information can be made available to students at the exact time and place of need. This has the potential to reduce cognitive…

  5. Learning Physics through Play in an Augmented Reality Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; Delacruz, Girlie; Kumar, Melissa

    2012-01-01

    The Learning Physics through Play Project (LPP) engaged 6-8-year old students (n = 43) in a series of scientific investigations of Newtonian force and motion including a series of augmented reality activities. We outline the two design principles behind the LPP curriculum: 1) the use of socio-dramatic, embodied play in the form of participatory…

  6. Frames of Reference in Mobile Augmented Reality Displays

    ERIC Educational Resources Information Center

    Mou, Weimin; Biocca, Frank; Owen, Charles B.; Tang, Arthur; Xiao, Fan; Lim, Lynette

    2004-01-01

    In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the…

  7. Improving Situational Awareness on Submarines Using Augmented Reality

    DTIC Science & Technology

    2008-09-01

    Control............. 66 4. Provide a Shared Contact Picture in Control ...................... 67 D. DISADVANTAGES OF THE PROPOSED DISPLAY SYSTEM...76 D. DISADVANTAGE OF AN AUGMENTED REALITY SYSTEM........... 77 1. AR Display Devices can be Considered Cumbersome ...... 77 2...point and the subjects’ displayed complete cooperation with me. A disadvantage of conducting the research under these conditions was that control

  8. Current Status, Opportunities and Challenges of Augmented Reality in Education

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Liang, Jyh-Chong

    2013-01-01

    Although augmented reality (AR) has gained much research attention in recent years, the term AR was given different meanings by varying researchers. In this article, we first provide an overview of definitions, taxonomies, and technologies of AR. We argue that viewing AR as a concept rather than a type of technology would be more productive for…

  9. Sensors for Location-Based Augmented Reality the Example of Galileo and Egnos

    NASA Astrophysics Data System (ADS)

    Pagani, Alain; Henriques, José; Stricker, Didier

    2016-06-01

    Augmented Reality has long been approached from the point of view of Computer Vision and Image Analysis only. However, much more sensors can be used, in particular for location-based Augmented Reality scenarios. This paper reviews the various sensors that can be used for location-based Augmented Reality. It then presents and discusses several examples of the usage of Galileo and EGNOS in conjonction with Augmented Reality.

  10. Calibration, registration, and synchronization for high precision augmented reality haptics.

    PubMed

    Harders, Matthias; Bianchi, Gérald; Knoerlein, Benjamin; Székely, Gábor

    2009-01-01

    In our current research we examine the application of visuo-haptic augmented reality setups in medical training. To this end, highly accurate calibration, system stability, and low latency are indispensable prerequisites. These are necessary to maintain user immersion and avoid breaks in presence which potentially diminish the training outcome. In this paper we describe the developed calibration methods for visuo-haptic integration, the hybrid tracking technique for stable alignment of the augmentation, and the distributed framework ensuring low latency and component synchronization. Finally, we outline an early prototype system based on the multimodal augmented reality framework. The latter allows colocated visuo-haptic interaction with real and virtual scene components in a simplified open surgery setting.

  11. The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Estapa, Anne; Nadolny, Larysa

    2015-01-01

    The purpose of the study was to assess student achievement and motivation during a high school augmented reality mathematics activity focused on dimensional analysis. Included in this article is a review of the literature on the use of augmented reality in mathematics and the combination of print with augmented reality, also known as interactive…

  12. The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Estapa, Anne; Nadolny, Larysa

    2015-01-01

    The purpose of the study was to assess student achievement and motivation during a high school augmented reality mathematics activity focused on dimensional analysis. Included in this article is a review of the literature on the use of augmented reality in mathematics and the combination of print with augmented reality, also known as interactive…

  13. An Analysis of Engagement in a Combination Indoor/Outdoor Augmented Reality Educational Game

    ERIC Educational Resources Information Center

    Folkestad, James; O'Shea, Patrick

    2011-01-01

    This paper describes the results of a qualitative analysis of video captured during a dual indoor/outdoor Augmented Reality experience. Augmented Reality is the layering of virtual information on top of the physical world. This Augmented Reality experience asked students to interact with the San Diego Museum of Art and the Botanical Gardens in San…

  14. Event-Based Data Distribution for Mobile Augmented Reality and Virtual Environments

    DTIC Science & Technology

    2004-04-01

    demonstrated in the Battlefield Augmented Reality System (BARS) situation awareness system, composed of several mobile augmented reality systems, immersive...connectivity and their bandwidth can be highly constrained. This paper presents a robust event-based data distribution mechanism for mobile augmented ... reality and virtual environments. It is based on replicated databases, pluggable networking protocols, and communication channels. The mechanism is

  15. An Event-Based Data Distribution Mechanism for Collaborative Mobile Augmented Reality and Virtual Environments

    DTIC Science & Technology

    2003-01-01

    mechanism in the Battlefield Augmented Reality System (BARS) situation awareness system, which is composed of several mobile augmented reality systems...connectivity and their bandwidth can be highly constrained. In this paper we present a robust event based data distribution mechanism for mobile augmented ... reality and virtual environments. It is based on replicated databases, pluggable networking protocols, and communication channels. We demonstrate the

  16. Augmented reality based real-time subcutaneous vein imaging system.

    PubMed

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  17. Augmented reality based real-time subcutaneous vein imaging system

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-01-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  18. Use of augmented reality in aircraft maintenance operations

    NASA Astrophysics Data System (ADS)

    De Marchi, L.; Ceruti, A.; Testoni, N.; Marzani, A.; Liverani, A.

    2014-03-01

    This paper illustrates a Human-Machine Interface based on Augmented Reality (AR) conceived to provide to maintenance operators the results of an impact detection methodology. In particular, the implemented tool dynamically interacts with a head portable visualization device allowing the inspector to see the estimated impact position on the structure. The impact detection methodology combines the signals collected by a network of piezosensors bonded on the structure to be monitored. Then a signal processing algorithm is applied to compensate for dispersion the acquired guided waves. The compensated waveforms yield to a robust estimation of guided waves difference in distance of propagation (DDOP), used to feed hyperbolic algorithms for impact location determination. The output of the impact methodology is passed to an AR visualization technology that is meant to support the inspector during the on-field inspection/diagnosis as well as the maintenance operations. The inspector, in fact, can see interactively in real time the impact data directly on the surface of the structure. Here the proposed approach is tested on the engine cowling of a Cessna 150 general aviation airplane. Preliminary results confirm the feasibility of the method and its exploitability in maintenance practice.

  19. Use of display technologies for augmented reality enhancement

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2016-06-01

    Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.

  20. ChemPreview: an augmented reality-based molecular interface.

    PubMed

    Zheng, Min; Waller, Mark P

    2017-05-01

    Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Application of augmented reality to visualizing anatomical airways

    NASA Astrophysics Data System (ADS)

    Davis, Larry; Hamza-Lup, Felix G.; Daly, Jason; Ha, Yonggang; Frolich, Seth; Meyer, Catherine; Martin, Glenn; Norfleet, Jack; Lin, Kuo-Chi; Imielinska, Celina; Rolland, Jannick P.

    2002-08-01

    Visualizing information in three dimensions provides an increased understanding of the data presented. Furthermore, the ability to manipulate or interact with data visualized in three dimensions is superior. Within the medical community, augmented reality is being used for interactive, three-dimensional (3D) visualization. This type of visualization, which enhances the real world with computer generated information, requires a display device, a computer to generate the 3D data, and a system to track the user. In addition to these requirements, however, the hardware must be properly integrated to insure correct visualization. To this end, we present components of an integrated augmented reality system consisting of a novel head-mounted projective display, a Linux-based PC, and a commercially available optical tracking system. We demonstrate the system with the visualization of anatomical airways superimposed on a human patient simulator.

  2. An augmented reality haptic training simulator for spinal needle procedures.

    PubMed

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  3. Using augmented reality to teach and learn biochemistry.

    PubMed

    Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo

    2017-09-01

    Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract concepts because students can manipulate 3D molecules in real time. Here we describe an application named Augmented Reality Metabolic Pathways (ARMET), which allowed students to visualize the 3D molecular structure of substrates and products, thus perceiving changes in each molecule. The structural modification of molecules shows students the flow and exchange of compounds and energy through metabolism. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):417-420, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    NASA Astrophysics Data System (ADS)

    Cherukuru, N. W.; Calhoun, R.

    2016-06-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  5. An augmented reality framework for soft tissue surgery.

    PubMed

    Mountney, Peter; Fallert, Johannes; Nicolau, Stephane; Soler, Luc; Mewes, Philip W

    2014-01-01

    Augmented reality for soft tissue laparoscopic surgery is a growing topic of interest in the medical community and has potential application in intra-operative planning and image guidance. Delivery of such systems to the operating room remains complex with theoretical challenges related to tissue deformation and the practical limitations of imaging equipment. Current research in this area generally only solves part of the registration pipeline or relies on fiducials, manual model alignment or assumes that tissue is static. This paper proposes a novel augmented reality framework for intra-operative planning: the approach co-registers pre-operative CT with stereo laparoscopic images using cone beam CT and fluoroscopy as bridging modalities. It does not require fiducials or manual alignment and compensates for tissue deformation from insufflation and respiration while allowing the laparoscope to be navigated. The paper's theoretical and practical contributions are validated using simulated, phantom, ex vivo, in vivo and non medical data.

  6. Fourier holographic display for augmented reality using holographic optical element

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho

    2016-03-01

    A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.

  7. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  8. a Generic Augmented Reality Telescope for Heritage Valorization

    NASA Astrophysics Data System (ADS)

    Chendeb, S.; Ridene, T.; Leroy, L.

    2013-08-01

    Heritage valorisation is one of the greatest challenges that face countries in preserving their own identity from the globalization process. One of those scientific areas which allow this valorisation to be more attractive and at its bravest is the augmented reality. In this paper, we present an innovative augmented reality telescope used by tourists to explore a panoramic view with optional zooming facility, allowing thereby an accurate access to heritage information. The telescope we produced is generic, ergonomic, extensible, and modular by nature. It is designed to be conveniently set up anywhere in the world. We improve the practical use of our system by testing it right in the heart of Paris within a specific use case.

  9. Quantification of Visual Capabilities Using Augmented Reality Displays

    DTIC Science & Technology

    2006-10-01

    completed this task. No subject reported any color-blindness. The set of color samples were again presented in a randomly per- muted order. As these sets of...Teleperators and Virtual Environments, 14(5):550–562, October 2005. [7] Joseph L. Gabbard, J. Edward Swan II, Deborah Hix, Robert S. Schulman, John Lucas, and...Catherine A. Zanbaka, J. Edward Swan II, and Harvey S. Smallman. Objective measures for the effectiveness of augmented reality. In IEEE Virtual Re

  10. Augmented reality assisted surgery: a urologic training tool.

    PubMed

    Dickey, Ryan M; Srikishen, Neel; Lipshultz, Larry I; Spiess, Philippe E; Carrion, Rafael E; Hakky, Tariq S

    2016-01-01

    Augmented reality is widely used in aeronautics and is a developing concept within surgery. In this pilot study, we developed an application for use on Google Glass ® optical head-mounted display to train urology residents in how to place an inflatable penile prosthesis. We use the phrase Augmented Reality Assisted Surgery to describe this novel application of augmented reality in the setting of surgery. The application demonstrates the steps of the surgical procedure of inflatable penile prosthesis placement. It also contains software that allows for detection of interest points using a camera feed from the optical head-mounted display to enable faculty to interact with residents during placement of the penile prosthesis. Urology trainees and faculty who volunteered to take part in the study were given time to experience the technology in the operative or perioperative setting and asked to complete a feedback survey. From 30 total participants using a 10-point scale, educational usefulness was rated 8.6, ease of navigation was rated 7.6, likelihood to use was rated 7.4, and distraction in operating room was rated 4.9. When stratified between trainees and faculty, trainees found the technology more educationally useful, and less distracting. Overall, 81% of the participants want this technology in their residency program, and 93% see this technology in the operating room in the future. Further development of this technology is warranted before full release, and further studies are necessary to better characterize the effectiveness of Augmented Reality Assisted Surgery in urologic surgical training.

  11. Augmented reality assisted surgery: a urologic training tool

    PubMed Central

    Dickey, Ryan M; Srikishen, Neel; Lipshultz, Larry I; Spiess, Philippe E; Carrion, Rafael E; Hakky, Tariq S

    2016-01-01

    Augmented reality is widely used in aeronautics and is a developing concept within surgery. In this pilot study, we developed an application for use on Google Glass® optical head-mounted display to train urology residents in how to place an inflatable penile prosthesis. We use the phrase Augmented Reality Assisted Surgery to describe this novel application of augmented reality in the setting of surgery. The application demonstrates the steps of the surgical procedure of inflatable penile prosthesis placement. It also contains software that allows for detection of interest points using a camera feed from the optical head-mounted display to enable faculty to interact with residents during placement of the penile prosthesis. Urology trainees and faculty who volunteered to take part in the study were given time to experience the technology in the operative or perioperative setting and asked to complete a feedback survey. From 30 total participants using a 10-point scale, educational usefulness was rated 8.6, ease of navigation was rated 7.6, likelihood to use was rated 7.4, and distraction in operating room was rated 4.9. When stratified between trainees and faculty, trainees found the technology more educationally useful, and less distracting. Overall, 81% of the participants want this technology in their residency program, and 93% see this technology in the operating room in the future. Further development of this technology is warranted before full release, and further studies are necessary to better characterize the effectiveness of Augmented Reality Assisted Surgery in urologic surgical training. PMID:26620455

  12. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  13. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  14. Augmented reality-assisted bypass surgery: embracing minimal invasiveness.

    PubMed

    Cabrilo, Ivan; Schaller, Karl; Bijlenga, Philippe

    2015-04-01

    The overlay of virtual images on the surgical field, defined as augmented reality, has been used for image guidance during various neurosurgical procedures. Although this technology could conceivably address certain inherent problems of extracranial-to-intracranial bypass procedures, this potential has not been explored to date. We evaluate the usefulness of an augmented reality-based setup, which could help in harvesting donor vessels through their precise localization in real-time, in performing tailored craniotomies, and in identifying preoperatively selected recipient vessels for the purpose of anastomosis. Our method was applied to 3 patients with Moya-Moya disease who underwent superficial temporal artery-to-middle cerebral artery anastomoses and 1 patient who underwent an occipital artery-to-posteroinferior cerebellar artery bypass because of a dissecting aneurysm of the vertebral artery. Patients' heads, skulls, and extracranial and intracranial vessels were segmented preoperatively from 3-dimensional image data sets (3-dimensional digital subtraction angiography, angio-magnetic resonance imaging, angio-computed tomography), and injected intraoperatively into the operating microscope's eyepiece for image guidance. In each case, the described setup helped in precisely localizing donor and recipient vessels and in tailoring craniotomies to the injected images. The presented system based on augmented reality can optimize the workflow of extracranial-to-intracranial bypass procedures by providing essential anatomical information, entirely integrated to the surgical field, and help to perform minimally invasive procedures. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. In vitro cardiac catheter navigation via augmented reality surgical guidance

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Moore, John; Wiles, Andrew; Lo, Jennifer; Wedlake, Chris; Peters, Terry M.

    2009-02-01

    Catheter-driven cardiac interventions have emerged in response to the need of reducing invasiveness associated with the traditional cut-and-sew techniques. Catheter manipulation is traditionally performed under real-time fluoroscopy imaging, resulting in an overall trade-off of procedure invasiveness for radiation exposure of both the patient and clinical staff. Our approach to reducing and potentially eliminating the use of flouroscopy in the operating room entails the use of multi-modality imaging and magnetic tracking technologies, wrapped together into an augmented reality environment for enhanced intra-procedure visualization and guidance. Here we performed an in vitro study in which a catheter was guided to specific targets located on the endocardial atrial surface of a beating heart phantom. "Therapy delivery" was modeled in the context of a blinded procedure, mimicking a beating heart, intracardiac intervention. The users navigated the tip of a magnetically tracked Freezor 5 CRYOCATH catheter to the specified targets. Procedure accuracy was determined as the distance between the tracked catheter tip and the tracked surgical target at the time of contact, and it was assessed under three different guidance modalities: endoscopic, augmented reality, and ultrasound image guidance. The overall RMS targeting accuracy achieved under augmented reality guidance averaged to 1.1 mm. This guidance modality shows significant improvements in both procedure accuracy and duration over ultrasound image guidance alone, while maintianing an overall targeting accuracy comparable to that achieved under endoscopic guidance.

  16. Flexible augmented reality architecture applied to environmental management

    NASA Astrophysics Data System (ADS)

    Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo

    2003-05-01

    Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.

  17. Contextualized Interdisciplinary Learning in Mainstream Schools Using Augmented Reality-Based Technology: A Dream or Reality?

    ERIC Educational Resources Information Center

    Ong, Alex

    2010-01-01

    The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…

  18. Contextualized Interdisciplinary Learning in Mainstream Schools Using Augmented Reality-Based Technology: A Dream or Reality?

    ERIC Educational Resources Information Center

    Ong, Alex

    2010-01-01

    The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…

  19. Augmented Reality Environments in Learning, Communicational and Professional Contexts in Higher Education

    ERIC Educational Resources Information Center

    Martín Gutiérrez, Jorge; Meneses Fernández, María Dolores

    2014-01-01

    This paper explores educational and professional uses of augmented learning environment concerned with issues of training and entertainment. We analyze the state-of-art research of some scenarios based on augmented reality. Some examples for the purpose of education and simulation are described. These applications show that augmented reality can…

  20. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  1. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  2. Intra-operative augmented reality in distal locking.

    PubMed

    Londei, Roberto; Esposito, Marco; Diotte, Benoit; Weidert, Simon; Euler, Ekkehard; Thaller, Peter; Navab, Nassir; Fallavollita, Pascal

    2015-09-01

    To design an augmented reality solution that assists surgeons during the distal locking of intramedullary nailing procedures. Traditionally, the procedure is performed under X-ray guidance and requires a significant amount of time and radiation exposure. To absolve these complications, we propose video guidance that allows surgeons to achieve both the down-the-beam position of the intramedullary nail and its subsequent locking. For the down-the-beam position, the IM nail pose in X-ray is calculated using a 2D/3D registration scheme and later related to the patient leg pose which is calculated using video-tracked AR markers. For the distal locking, surgeons use an augmented radiolucent drill in which its tip position is detected and tracked in real-time under video guidance. To evaluate the feasibility of our solution, we performed a preclinical study on dry bone phantom with the participation of four clinicians. Participants achieved 100 % success rate in the down-the beam positioning and 93 % success rate in distal locking using only two X-ray images in 100 s. We confirmed that intra-operative navigation using augmented reality provides an alternative way to perform distal locking in a safe and timely manner.

  3. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  4. Systems Engineering: From Dream to Reality

    DTIC Science & Technology

    2011-04-01

    Frankenstein a good systems engineer? Page 158 Created: 120211/v0.2 SSTC2011_Presentation_TEMPLATE Systems Engineering: From Dream to Reality SSTC 2011...ConstraintsSystems Engineering: From Dream to Reality Epilogue (2) Stating the Problem: Frankenstein was depressed when his mother dies. So he wanted to...Inc., 2009, Hoboken, New Jersey • Shelly,Mary, Frankenstein , Barnes & Noble Inc, 2003, New York • Blanchard, Benjamin S., System Engineering

  5. Simulation and augmented reality in endovascular neurosurgery: lessons from aviation.

    PubMed

    Mitha, Alim P; Almekhlafi, Mohammed A; Janjua, Major Jameel J; Albuquerque, Felipe C; McDougall, Cameron G

    2013-01-01

    Endovascular neurosurgery is a discipline strongly dependent on imaging. Therefore, technology that improves how much useful information we can garner from a single image has the potential to dramatically assist decision making during endovascular procedures. Furthermore, education in an image-enhanced environment, especially with the incorporation of simulation, can improve the safety of the procedures and give interventionalists and trainees the opportunity to study or perform simulated procedures before the intervention, much like what is practiced in the field of aviation. Here, we examine the use of simulators in the training of fighter pilots and discuss how similar benefits can compensate for current deficiencies in endovascular training. We describe the types of simulation used for endovascular procedures, including virtual reality, and discuss the relevant data on its utility in training. Finally, the benefit of augmented reality during endovascular procedures is discussed, along with future computerized image enhancement techniques.

  6. Application of Virtual, Augmented, and Mixed Reality to Urology.

    PubMed

    Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun

    2016-09-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.

  7. Preliminary development of augmented reality systems for spinal surgery

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.

    2017-02-01

    Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

  8. Application of Virtual, Augmented, and Mixed Reality to Urology

    PubMed Central

    2016-01-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017

  9. Deformation-based augmented reality for hepatic surgery.

    PubMed

    Haouchine, Nazim; Dequidt, Jérémie; Berger, Marie-Odile; Cotin, Stéphane

    2013-01-01

    In this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration.

  10. An augmented reality simulator for ultrasound guided needle placement training.

    PubMed

    Magee, D; Zhu, Y; Ratnalingam, R; Gardner, P; Kessel, D

    2007-10-01

    Details are presented of a low cost augmented-reality system for the simulation of ultrasound guided needle insertion procedures (tissue biopsy, abscess drainage, nephrostomy etc.) for interventional radiology education and training. The system comprises physical elements; a mannequin, a mock ultrasound probe and a needle, and software elements; generating virtual ultrasound anatomy and allowing data collection. These two elements are linked by a pair of magnetic 3D position sensors. Virtual anatomic images are generated based on anatomic data derived from full body CT scans of live humans. Details of the novel aspects of this system are presented including; image generation, registration and calibration.

  11. Beyond laser safety glasses: augmented reality in optics laboratories.

    PubMed

    Quercioli, Franco

    2017-02-01

    Blocking visibility of a laser beam after a pair of safety goggles have been worn is always an unpleasant experience. Working blindly is hard, sometimes even dangerous, and safety could be again at risk. A safe, clear view of the laser beam path would be highly desirable. This paper presents a technique for laboratory laser safety, using a smartphone's camera and display, in conjunction with an augmented reality headset to allow clear viewing of laser experiments without any risk of laser eye injury. Use of the technique is demonstrated, and strengths and weaknesses of the solution are discussed.

  12. Development of microprojection system of mixed and augmented reality

    NASA Astrophysics Data System (ADS)

    Rudakova, M. S.

    2016-08-01

    The paper deals with the problems of development and designing of microprojection system of mixed and augmented reality designed so that an observer could see the information of the microdisplay and the surrounding space as the background at the same time. The combiner on planar waveguides screens based on the composite structure of the prism elements was developed. In this work different results of the simulation with the TracePro software are considered and also the main problems encountered in the development of such systems are considered.

  13. Context-aware Augmented Reality in laparoscopic surgery.

    PubMed

    Katić, Darko; Wekerle, Anna-Laura; Görtler, Jochen; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Suwelack, Stefan; Kenngott, Hannes Götz; Wagner, Martin; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2013-03-01

    Augmented Reality is a promising paradigm for intraoperative assistance. Yet, apart from technical issues, a major obstacle to its clinical application is the man-machine interaction. Visualization of unnecessary, obsolete or redundant information may cause confusion and distraction, reducing usefulness and acceptance of the assistance system. We propose a system capable of automatically filtering available information based on recognized phases in the operating room. Our system offers a specific selection of available visualizations which suit the surgeon's needs best. The system was implemented for use in laparoscopic liver and gallbladder surgery and evaluated in phantom experiments in conjunction with expert interviews. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A Survey of Mobile and Wireless Technologies for Augmented Reality Systems (Preprint)

    DTIC Science & Technology

    2008-02-01

    Page 1 of 30 A survey of mobile and wireless technologies for augmented reality systems George Papagiannakis*, Gurminder Singh**, Nadia...performance of the current task, enabling an “ Augmented Reality ” (AR) Caudell et al [2]. Although AR was meant to include mobility, it was not until...The Columbia Touring Machine” by Feiner et al [3] that the first outdoor Mobile Augmented Reality System (MARS) was created. Around the same time

  15. Transforming Fleet Network Operations with Collaborative Decision Support and Augmented Reality Technologies

    DTIC Science & Technology

    2004-03-01

    NETWORK OPERATIONS WITH COLLABORATIVE DECISION SUPPORT AND AUGMENTED REALITY TECHNOLOGIES by John J. Fay March 2004 Thesis Advisor: Alex...Network Operations with Collaborative Decision Support and Augmented Reality Technologies 6. AUTHOR(S) John J Fay 5. FUNDING NUMBERS 7. PERFORMING...management for distributed sea-based forces using existing technologies. Combining a collaborative tool, Decision Support System (DSS), and Augmented Reality (AR

  16. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    DTIC Science & Technology

    2006-06-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect... augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14 , 28...fields of view much greater than 47 are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.

  17. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    NASA Astrophysics Data System (ADS)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  18. The status of augmented reality in laparoscopic surgery as of 2016.

    PubMed

    Bernhardt, Sylvain; Nicolau, Stéphane A; Soler, Luc; Doignon, Christophe

    2017-04-01

    This article establishes a comprehensive review of all the different methods proposed by the literature concerning augmented reality in intra-abdominal minimally invasive surgery (also known as laparoscopic surgery). A solid background of surgical augmented reality is first provided in order to support the survey. Then, the various methods of laparoscopic augmented reality as well as their key tasks are categorized in order to better grasp the current landscape of the field. Finally, the various issues gathered from these reviewed approaches are organized in order to outline the remaining challenges of augmented reality in laparoscopic surgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts

    NASA Astrophysics Data System (ADS)

    hong, Zhou; Wenhua, Lu

    2017-01-01

    Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.

  20. On Location Learning: Authentic Applied Science with Networked Augmented Realities

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Eric; Klopfer, Eric; Perry, Judy

    2007-02-01

    The learning of science can be made more like the practice of science through authentic simulated experiences. We have created a networked handheld Augmented Reality environment that combines the authentic role-playing of Augmented Realities and the underlying models of Participatory Simulations. This game, known as Outbreak @ The Institute, is played across a university campus where players take on the roles of doctors, medical technicians, and public health experts to contain a disease outbreak. Players can interact with virtual characters and employ virtual diagnostic tests and medicines. They are challenged to identify the source and prevent the spread of an infectious disease that can spread among real and/or virtual characters according to an underlying model. In this paper, we report on data from three high school classes who played the game. We investigate students' perception of the authenticity of the game in terms of their personal embodiment in the game, their experience playing different roles, and their understanding of the dynamic model underlying the game.

  1. Robust augmented reality guidance with fluorescent markers in laparoscopic surgery.

    PubMed

    Wild, Esther; Teber, Dogu; Schmid, Daniel; Simpfendörfer, Tobias; Müller, Michael; Baranski, Ann-Christin; Kenngott, Hannes; Kopka, Klaus; Maier-Hein, Lena

    2016-06-01

    Laparoscopic interventions require the precise navigation of medical instruments through the patient's body, while taking critical structures into account. Although numerous concepts have been proposed for displaying subsurface anatomical detail using augmented reality, clinical translation of these methods has suffered from a lack of robustness as well as from cumbersome integration into the clinical workflow. The purpose of this study was to investigate the feasibility of a new approach to intra-operative registration based on fluorescent markers. The proposed approach to augmented reality visualization relies on metabolizable fluorescent markers that are attached to the target organ to guide a 2D/3D intra-operative registration algorithm. In an ex vivo porcine study, marker tracking performance is evaluated in the presence of smoke, blood, and tissue in the field of view of the endoscope. In contrast to state-of-the-art needle-shaped fiducial markers, the fluorescent markers can be reliably tracked when occluded by smoke, blood or tissue. This makes the new 2D/3D intra-operative registration approach considerably more robust than state-of-the-art marker-based methods. As the concept can be smoothly integrated into the clinical workflow, its potential for application in clinical laparoscopy is high.

  2. Augmented reality needle guidance improves facet joint injection training

    NASA Astrophysics Data System (ADS)

    Ungi, Tamas; Yeo, Caitlin T.; U-Thainual, Paweena; McGraw, Robert C.; Fichtinger, Gabor

    2011-03-01

    PURPOSE: The purpose of this study was to determine if medical trainees would benefit from augmented reality image overlay and laser guidance in learning how to set the correct orientation of a needle for percutaneous facet joint injection. METHODS: A total of 28 medical students were randomized into two groups: (1) The Overlay group received a training session of four insertions with image and laser guidance followed by two insertions with laser overlay only; (2) The Control group was trained by carrying out six freehand insertions. After the training session, needle trajectories of two facet joint injections without any guidance were recorded by an electromagnetic tracker and were analyzed. Number of successful needle placements, distance covered by needle tip inside the phantom and procedural time were measured to evaluate performance. RESULTS: Number of successful placements was significantly higher in the Overlay group compared to the Control group (85.7% vs. 57.1%, p = 0.038). Procedure time and distance covered inside phantom have both been found to be less in the Overlay group, although not significantly. CONCLUSION: Training with augmented reality image overlay and laser guidance improves the accuracy of facet joint injections in medical students learning image-guided facet joint needle placement.

  3. Preliminary study on the clinical application of augmented reality neuronavigation.

    PubMed

    Inoue, D; Cho, B; Mori, M; Kikkawa, Y; Amano, T; Nakamizo, A; Yoshimoto, K; Mizoguchi, M; Tomikawa, M; Hong, J; Hashizume, M; Sasaki, T

    2013-03-01

    To develop an augmented reality (AR) neuronavigation system with Web cameras and examine its clinical utility. The utility of the system was evaluated in three patients with brain tumors. One patient had a glioblastoma and two patients had convexity meningiomas. Our navigation system comprised the open-source software 3D Slicer (Brigham and Women's Hospital, Boston, Massachusetts, USA), the infrared optical tracking sensor Polaris (Northern Digital Inc., Waterloo, Canada), and Web cameras. We prepared two different types of Web cameras: a handheld type and a headband type. Optical markers were attached to each Web camera. We used this system for skin incision planning before the operation, during craniotomy, and after dural incision. We were able to overlay these images in all cases. In Case 1, accuracy could not be evaluated because the tumor was not on the surface, though it was generally suitable for the outline of the external ear and the skin. In Cases 2 and 3, the augmented reality error was ∼2 to 3 mm. AR technology was examined with Web cameras in neurosurgical operations. Our results suggest that this technology is clinically useful in neurosurgical procedures, particularly for brain tumors close to the brain surface. Georg Thieme Verlag KG Stuttgart · New York.

  4. archAR: an archaeological augmented reality experience

    NASA Astrophysics Data System (ADS)

    Wiley, Bridgette; Schulze, Jürgen P.

    2015-03-01

    We present an application for Android phones or tablets called "archAR" that uses augmented reality as an alternative, portable way of viewing archaeological information from UCSD's Levantine Archaeology Laboratory. archAR provides a unique experience of flying through an archaeological dig site in the Levantine area and exploring the artifacts uncovered there. Using a Google Nexus tablet and Qualcomm's Vuforia API, we use an image target as a map and overlay a three-dimensional model of the dig site onto it, augmenting reality such that we are able to interact with the plotted artifacts. The user can physically move the Android device around the image target and see the dig site model from any perspective. The user can also move the device closer to the model in order to "zoom" into the view of a particular section of the model and its associated artifacts. This is especially useful, as the dig site model and the collection of artifacts are very detailed. The artifacts are plotted as points, colored by type. The user can touch the virtual points to trigger a popup information window that contains details of the artifact, such as photographs, material descriptions, and more.

  5. Mobile markerless augmented reality and its application in forensic medicine.

    PubMed

    Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena

    2015-05-01

    During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.

  6. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  7. Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load

    ERIC Educational Resources Information Center

    Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel

    2016-01-01

    Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…

  8. A Mobile Service Oriented Multiple Object Tracking Augmented Reality Architecture for Education and Learning Experiences

    ERIC Educational Resources Information Center

    Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul

    2014-01-01

    This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…

  9. Mobile Augmented Reality in Supporting Peer Assessment: An Implementation in a Fundamental Design Course

    ERIC Educational Resources Information Center

    Lan, Chung-Hsien; Chao, Stefan; Kinshuk; Chao, Kuo-Hung

    2013-01-01

    This study presents a conceptual framework for supporting mobile peer assessment by incorporating augmented reality technology to eliminate limitation of reviewing and assessing. According to the characteristics of mobile technology and augmented reality, students' work can be shown in various ways by considering the locations and situations. This…

  10. Augmented Reality Trends in Education: A Systematic Review of Research and Applications

    ERIC Educational Resources Information Center

    Bacca, Jorge; Baldiris, Silvia; Fabregat, Ramon; Graf, Sabine; Kinshuk

    2014-01-01

    In recent years, there has been an increasing interest in applying Augmented Reality (AR) to create unique educational settings. So far, however, there is a lack of review studies with focus on investigating factors such as: the uses, advantages, limitations, effectiveness, challenges and features of augmented reality in educational settings.…

  11. Augmented Reality Trends in Education: A Systematic Review of Research and Applications

    ERIC Educational Resources Information Center

    Bacca, Jorge; Baldiris, Silvia; Fabregat, Ramon; Graf, Sabine; Kinshuk

    2014-01-01

    In recent years, there has been an increasing interest in applying Augmented Reality (AR) to create unique educational settings. So far, however, there is a lack of review studies with focus on investigating factors such as: the uses, advantages, limitations, effectiveness, challenges and features of augmented reality in educational settings.…

  12. Social Augmented Reality: Enhancing Context-Dependent Communication and Informal Learning at Work

    ERIC Educational Resources Information Center

    Pejoska, Jana; Bauters, Merja; Purma, Jukka; Leinonen, Teemu

    2016-01-01

    Our design proposal of social augmented reality (SoAR) grows from the observed difficulties of practical applications of augmented reality (AR) in workplace learning. In our research we investigated construction workers doing physical work in the field and analyzed the data using qualitative methods in various workshops. The challenges related to…

  13. Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load

    ERIC Educational Resources Information Center

    Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel

    2016-01-01

    Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…

  14. Social Augmented Reality: Enhancing Context-Dependent Communication and Informal Learning at Work

    ERIC Educational Resources Information Center

    Pejoska, Jana; Bauters, Merja; Purma, Jukka; Leinonen, Teemu

    2016-01-01

    Our design proposal of social augmented reality (SoAR) grows from the observed difficulties of practical applications of augmented reality (AR) in workplace learning. In our research we investigated construction workers doing physical work in the field and analyzed the data using qualitative methods in various workshops. The challenges related to…

  15. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    PubMed Central

    Chicchi Giglioli, Irene Alice; Pedroli, Elisa

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology. PMID:26339283

  16. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders.

    PubMed

    Chicchi Giglioli, Irene Alice; Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Riva, Giuseppe

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.

  17. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    PubMed

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  18. D3D augmented reality imaging system: proof of concept in mammography.

    PubMed

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

  19. Augmented Reality Implementation in Watch Catalog as e-Marketing Based on Mobile Aplication

    NASA Astrophysics Data System (ADS)

    Adrianto, D.; Luwinda, F. A.; Yesmaya, V.

    2017-01-01

    Augmented Reality is one of important methods to provide user with a better interactive user interface. In this research, Augmented Reality in Mobile Application will be applied to provide user with useful information related with Watch Catalogue. This research will be focused on design and implementation an application using Augmented Reality. The process model used in this research is Extreme Programming. Extreme Programming have a several steps which are planning, design, coding, and testing. The result of this research is Augmented Reality application based on Android. This research will be conclude that implementation of Augmented Reality based on Android in Watch Catalogue will help customer to collect the useful information related to the specific object of watch.

  20. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    PubMed Central

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  1. Simulating low-cost cameras for augmented reality compositing.

    PubMed

    Klein, Georg; Murray, David W

    2010-01-01

    Video see-through Augmented Reality adds computer graphics to the real world in real time by overlaying graphics onto a live video feed. To achieve a realistic integration of the virtual and real imagery, the rendered images should have a similar appearance and quality to those produced by the video camera. This paper describes a compositing method which models the artifacts produced by a small low-cost camera, and adds these effects to an ideal pinhole image produced by conventional rendering methods. We attempt to model and simulate each step of the imaging process, including distortions, chromatic aberrations, blur, Bayer masking, noise, sharpening, and color-space compression, all while requiring only an RGBA image and an estimate of camera velocity as inputs.

  2. A see through future: augmented reality and health information systems.

    PubMed

    Monkman, Helen; Kushniruk, Andre W

    2015-01-01

    Augmented Reality (AR) is a method whereby virtual objects are superimposed on the real world. AR technology is becoming increasingly accessible and affordable and it has many potential health applications. This paper discusses current research on AR health applications such as medical education and medical practice. Some of the potential future uses for this technology (e.g., health information systems, consumer health applications) will also be presented. Additionally, there will be a discussion outlining some of usability and human factors challenges associated with AR in healthcare. It is expected that AR will become increasingly prevalent in healthcare; however, further investigation is required to demonstrate that they provide benefits over traditional methods. Moreover, AR applications must be thoroughly tested to ensure they do not introduce new errors into practice and have patient safety implications.

  3. An augmented reality assistance platform for eye laser surgery.

    PubMed

    Ee Ping Ong; Lee, Jimmy Addison; Jun Cheng; Beng Hai Lee; Guozhen Xu; Laude, Augustinus; Teoh, Stephen; Tock Han Lim; Wong, Damon W K; Jiang Liu

    2015-08-01

    This paper presents a novel augmented reality assistance platform for eye laser surgery. The aims of the proposed system are for the application of assisting eye doctors in pre-planning as well as providing guidance and protection during laser surgery. We developed algorithms to automatically register multi-modal images, detect macula and optic disc regions, and demarcate these as protected areas from laser surgery. The doctor will then be able to plan the laser treatment pre-surgery using the registered images and segmented regions. Thereafter, during live surgery, the system will automatically register and track the slit lamp video frames on the registered retina images, send appropriate warning when the laser is near protected areas, and disable the laser function when it points into the protected areas. The proposed system prototype can help doctors to speed up laser surgery with confidence without fearing that they may unintentionally fire laser in the protected areas.

  4. Pose tracking for augmented reality applications in outdoor archaeological sites

    NASA Astrophysics Data System (ADS)

    Younes, Georges; Asmar, Daniel; Elhajj, Imad; Al-Harithy, Howayda

    2017-01-01

    In recent years, agencies around the world have invested huge amounts of effort toward digitizing many aspects of the world's cultural heritage. Of particular importance is the digitization of outdoor archaeological sites. In the spirit of valorization of this digital information, many groups have developed virtual or augmented reality (AR) computer applications themed around a particular archaeological object. The problem of pose tracking in outdoor AR applications is addressed. Different positional systems are analyzed, resulting in the selection of a monocular camera-based user tracker. The limitations that challenge this technique from map generation, scale, anchoring, to lighting conditions are analyzed and systematically addressed. Finally, as a case study, our pose tracking system is implemented within an AR experience in the Byblos Roman theater in Lebanon.

  5. Computer vision and augmented reality in gastrointestinal endoscopy

    PubMed Central

    Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M.

    2015-01-01

    Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy—which relies on the integration of high-definition video data with pathologic correlates—requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy. PMID:26133175

  6. Holographic and light-field imaging for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jong-Young; Jang, Changwon; Jeong, Jinsoo; Lee, Chang-Kun

    2017-02-01

    We discuss on the recent state of the augmented reality (AR) display technology. In order to realize AR, various seethrough three-dimensional (3D) display techniques have been reported. We describe the AR display with 3D functionality such as light-field display and holography. See-through light-field display can be categorized by the optical elements which are used for see-through property: optical elements controlling path of the light-fields and those generating see-through light-field. Holographic display can be also a good candidate for AR display because it can reconstruct wavefront information and provide realistic virtual information. We introduce the see-through holographic display using various optical techniques.

  7. Real-time tomographic holography for augmented reality

    PubMed Central

    Galeotti, John M.; Siegel, Mel; Stetten, George

    2011-01-01

    The concept and instantiation of Real-Time Tomographic Holography (RTTH) for augmented reality is presented. RTTH enables natural hand-eye coordination to guide invasive medical procedures without requiring tracking or a head-mounted device. It places a real-time virtual image of an object's cross-section into its actual location, without noticeable viewpoint dependence (e.g. parallax error). The virtual image is viewed through a flat narrow-band Holographic Optical Element with optical power that generates an in-situ virtual image (within 1 m of the HOE) from a small SLM display without obscuring a direct view of the physical world. Rigidly fixed upon a medical ultrasound probe, an RTTH device could show the scan in its actual location inside the patient, even as the probe was moved relative to the patient. PMID:20634827

  8. Tools for augmented-reality-based liver resection planning

    NASA Astrophysics Data System (ADS)

    Reitinger, Bernhard; Bornik, Alexander; Beichel, Reinhard; Werkgartner, Georg; Sorantin, Erich

    2004-05-01

    Surgical resection has evolved to an accepted and widely-used method for the treatment of liver tumors. In order to elaborate an optimal resection strategy, computer-aided planning tools are required. However, measurements based on 2D cross sectional images are difficult to perform. Moreover, resection planning with current desktopbased systems using 3D visualization is also a tedious task because of limited 3D interaction. For facilitating the planning process, different tools are presented allowing easy user interaction in an Augmented Reality environment. Methods for quantitative analysis like volume calculation and distance measurements are discussed with focus on the user interaction aspect. In addition, a tool for automatically generating anatomical resection proposals based on knowledge about tumor locations and the portal vein tree is described. The presented methods are part of an evolving liver surgery planning system which is currently evaluated by physicians.

  9. Augmented reality visualization for guidance in neurovascular surgery.

    PubMed

    Kersten-Oertel, Marta; Chen, Sean S J; Drouin, Simon; Sinclair, David S; Collins, D Louis

    2012-01-01

    In neurovascular surgery, and in particular surgery for arteriovenous malformations (AVMs), the surgeon maps pre-operative images to the patient on the operating table to aid in vessel localization and resection. This type of spatial mapping is not trivial, is time consuming, and may be prone to error. Using augmented reality (AR) we can register the microscope/camera image of the patient to pre-operative data in order to help the surgeon better understand the topology and locations of vessels that lie below the visible surface of the cortex. In this work we describe a prototype system, developed using open source software and built with off-the-shelf hardware, for AR visualization for AVM neurosurgery. Furthermore, we consider two visualization techniques, colour-coding and chromadepth, to enhance the depth perception of vessels.

  10. Pose Estimation for Augmented Reality: A Hands-On Survey.

    PubMed

    Marchand, Eric; Uchiyama, Hideaki; Spindler, Fabien

    2016-12-01

    Augmented reality (AR) allows to seamlessly insert virtual objects in an image sequence. In order to accomplish this goal, it is important that synthetic elements are rendered and aligned in the scene in an accurate and visually acceptable way. The solution of this problem can be related to a pose estimation or, equivalently, a camera localization process. This paper aims at presenting a brief but almost self-contented introduction to the most important approaches dedicated to vision-based camera localization along with a survey of several extension proposed in the recent years. For most of the presented approaches, we also provide links to code of short examples. This should allow readers to easily bridge the gap between theoretical aspects and practical implementations.

  11. Efficient Verification of Holograms Using Mobile Augmented Reality.

    PubMed

    Hartl, Andreas Daniel; Arth, Clemens; Grubert, Jens; Schmalstieg, Dieter

    2016-07-01

    Paper documents such as passports, visas and banknotes are frequently checked by inspection of security elements. In particular, optically variable devices such as holograms are important, but difficult to inspect. Augmented Reality can provide all relevant information on standard mobile devices. However, hologram verification on mobiles still takes long and provides lower accuracy than inspection by human individuals using appropriate reference information. We aim to address these drawbacks by automatic matching combined with a special parametrization of an efficient goal-oriented user interface which supports constrained navigation. We first evaluate a series of similarity measures for matching hologram patches to provide a sound basis for automatic decisions. Then a re-parametrized user interface is proposed based on observations of typical user behavior during document capture. These measures help to reduce capture time to approximately 15 s with better decisions regarding the evaluated samples than what can be achieved by untrained users.

  12. Computer vision and augmented reality in gastrointestinal endoscopy.

    PubMed

    Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M

    2015-08-01

    Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy-which relies on the integration of high-definition video data with pathologic correlates-requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy.

  13. Visualizing UAS-collected imagery using augmented reality

    NASA Astrophysics Data System (ADS)

    Conover, Damon M.; Beidleman, Brittany; McAlinden, Ryan; Borel-Donohue, Christoph C.

    2017-05-01

    One of the areas where augmented reality will have an impact is in the visualization of 3-D data. 3-D data has traditionally been viewed on a 2-D screen, which has limited its utility. Augmented reality head-mounted displays, such as the Microsoft HoloLens, make it possible to view 3-D data overlaid on the real world. This allows a user to view and interact with the data in ways similar to how they would interact with a physical 3-D object, such as moving, rotating, or walking around it. A type of 3-D data that is particularly useful for military applications is geo-specific 3-D terrain data, and the visualization of this data is critical for training, mission planning, intelligence, and improved situational awareness. Advances in Unmanned Aerial Systems (UAS), photogrammetry software, and rendering hardware have drastically reduced the technological and financial obstacles in collecting aerial imagery and in generating 3-D terrain maps from that imagery. Because of this, there is an increased need to develop new tools for the exploitation of 3-D data. We will demonstrate how the HoloLens can be used as a tool for visualizing 3-D terrain data. We will describe: 1) how UAScollected imagery is used to create 3-D terrain maps, 2) how those maps are deployed to the HoloLens, 3) how a user can view and manipulate the maps, and 4) how multiple users can view the same virtual 3-D object at the same time.

  14. Augmented reality in bone tumour resection: An experimental study.

    PubMed

    Cho, H S; Park, Y K; Gupta, S; Yoon, C; Han, I; Kim, H-S; Choi, H; Hong, J

    2017-03-01

    We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time.Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137-143. © 2017 Cho et al.

  15. Evaluating System Capabilities and User Performance in the Battlefield Augmented Reality System

    DTIC Science & Technology

    2004-08-01

    future military operations on ur- banized terrain, July 1997. [3] J. E. Cutting. How the eye measures reality and virtual real- ity. Behavior Research...Evaluating System Capabilities and User Performance in the Battlefield Augmented Reality System∗ Mark A. Livingston† J. Edward Swan II† Simon J...Abstract We describe a first experiment in evaluating the system capabilities of the Battlefield Augmented Reality System, an interactive system

  16. Invisible waves and hidden realms: augmented reality and experimental art

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia

    2012-03-01

    Augmented reality is way of both altering the visible and revealing the invisible. It offers new opportunities for artistic exploration through virtual interventions in real space. In this paper, the author describes the implementation of two art installations using different AR technologies, one using optical marker tracking on mobile devices and one integrating stereoscopic projections into the physical environment. The first artwork, De Ondas y Abejas (The Waves and the Bees), is based on the widely publicized (but unproven) hypothesis of a link between cellphone radiation and the phenomenon of bee colony collapse disorder. Using an Android tablet, viewers search out small fiducial markers in the shape of electromagnetic waves hidden throughout the gallery, which reveal swarms of bees scattered on the floor. The piece also creates a generative soundscape based on electromagnetic fields. The second artwork, Urban Fauna, is a series of animations in which features of the urban landscape become plants and animals. Surveillance cameras become flocks of birds while miniature cellphone towers, lampposts, and telephone poles grow like small seedlings in time-lapse animation. The animations are presented as small stereoscopic projections, integrated into the physical space of the gallery. These two pieces explore the relationship between nature and technology through the visualization of invisible forces and hidden alternate realities.

  17. Training for planning tumour resection: augmented reality and human factors.

    PubMed

    Abhari, Kamyar; Baxter, John S H; Chen, Elvis C S; Khan, Ali R; Peters, Terry M; de Ribaupierre, Sandrine; Eagleson, Roy

    2015-06-01

    Planning surgical interventions is a complex task, demanding a high degree of perceptual, cognitive, and sensorimotor skills to reduce intra- and post-operative complications. This process requires spatial reasoning to coordinate between the preoperatively acquired medical images and patient reference frames. In the case of neurosurgical interventions, traditional approaches to planning tend to focus on providing a means for visualizing medical images, but rarely support transformation between different spatial reference frames. Thus, surgeons often rely on their previous experience and intuition as their sole guide is to perform mental transformation. In case of junior residents, this may lead to longer operation times or increased chance of error under additional cognitive demands. In this paper, we introduce a mixed augmented-/virtual-reality system to facilitate training for planning a common neurosurgical procedure, brain tumour resection. The proposed system is designed and evaluated with human factors explicitly in mind, alleviating the difficulty of mental transformation. Our results indicate that, compared to conventional planning environments, the proposed system greatly improves the nonclinicians' performance, independent of the sensorimotor tasks performed ( ). Furthermore, the use of the proposed system by clinicians resulted in a significant reduction in time to perform clinically relevant tasks ( ). These results demonstrate the role of mixed-reality systems in assisting residents to develop necessary spatial reasoning skills needed for planning brain tumour resection, improving patient outcomes.

  18. Augmented Reality as a Telemedicine Platform for Remote Procedural Training.

    PubMed

    Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew

    2017-10-10

    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.

  19. Augmented reality simulator for training in two-dimensional echocardiography.

    PubMed

    Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A

    2000-02-01

    In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.

  20. Applied Operations Research: Augmented Reality in an Industrial Environment

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.

    2015-01-01

    Augmented reality is the application of computer generated data or graphics onto a real world view. Its use provides the operator additional information or a heightened situational awareness. While advancements have been made in automation and diagnostics of high value critical equipment to improve readiness, reliability and maintenance, the need for assisting and support to Operations and Maintenance staff persists. AR can improve the human machine interface where computer capabilities maximize the human experience and analysis capabilities. NASA operates multiple facilities with complex ground based HVCE in support of national aerodynamics and space exploration, and the need exists to improve operational support and close a gap related to capability sustainment where key and experienced staff consistently rotate work assignments and reach their expiration of term of service. The initiation of an AR capability to augment and improve human abilities and training experience in the industrial environment requires planning and establishment of a goal and objectives for the systems and specific applications. This paper explored use of AR in support of Operation staff in real time operation of HVCE and its maintenance. The results identified include identification of specific goal and objectives, challenges related to availability and computer system infrastructure.

  1. Augmented reality and stereo vision for remote scene characterization

    NASA Astrophysics Data System (ADS)

    Lawson, Shaun W.; Pretlove, John R. G.

    1999-11-01

    In this paper we present our progress in the research and development of an augmented reality (AR) system for the remote inspection of hazardous environments. It specifically addresses one particular application with which we are involved--that of improving the inspection of underground sewer pipes using robotic vehicles and 3D graphical overlays coupled with stereoscopic visual data. Traditional sewer inspection using a human operator and CCTV systems is a mature technology--though the task itself is difficult, subjective and prone to error. The work described here proposes not to replace the expert human inspector--but to enhance and increase the information that is available to him and to augment that information with other previously stored data. We describe our current system components which comprise a robotic stereo head device, a simulated sewer crawling vehicle and our AR system. We then go on to discuss the lengthy calibration procedures which are necessary in to align any graphical overlay information with live video data. Some experiments in determining alignment errors under head motion and some investigations into the use of a calibrated virtual cursor are then described.

  2. Augmented reality to enhance an active telepresence system

    NASA Astrophysics Data System (ADS)

    Wheeler, Alison; Pretlove, John R. G.; Parker, Graham A.

    1996-12-01

    Tasks carried out remotely via a telerobotic system are typically complex, occur in hazardous environments and require fine control of the robot's movements. Telepresence systems provide the teleoperator with a feeling of being physically present at the remote site. Stereoscopic video has been successfully applied to telepresence vision systems to increase the operator's perception of depth in the remote scene and this sense of presence can be further enhanced using computer generated stereo graphics to augment the visual information presented to the operator. The Mechatronic Systems and Robotics Research Group have over seven years developed a number of high performance active stereo vision systems culminating in the latest, a four degree-of-freedom stereohead. This carries two miniature color cameras and is controlled in real time by the motion of the operator's head, who views the stereoscopic video images on an immersive head mounted display or stereo monitor. The stereohead is mounted on a mobile robot, the movement of which is controlled by a joystick interface. This paper describes the active telepresence system and the development of a prototype augmented reality (AR) application to enhance the operator's sense of presence at the remote site. The initial enhancements are a virtual map and compass to aid navigation in degraded visual conditions and a virtual cursor that provides a means for the operator to interact with the remote environment. The results of preliminary experiments using the initial enhancements are presented.

  3. D Tracking Based Augmented Reality for Cultural Heritage Data Management

    NASA Astrophysics Data System (ADS)

    Battini, C.; Landi, G.

    2015-02-01

    The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.

  4. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have

  5. Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens

    NASA Astrophysics Data System (ADS)

    Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.

    2017-09-01

    In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.

  6. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  7. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality.

    PubMed

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. "DJINNI" is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient's state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.

  8. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality

    PubMed Central

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup. PMID:28503155

  9. Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference?

    PubMed Central

    Botden, Sanne M.B.I.; Buzink, Sonja N.; Schijven, Marlies P.

    2007-01-01

    Background Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic instruments are used within an hybrid mannequin on tissue or objects while using video tracking. This study was designed to assess the difference in realism, haptic feedback, and didactic value between AR and VR laparoscopic simulation. Methods The ProMIS AR and LapSim VR simulators were used in this study. The participants performed a basic skills task and a suturing task on both simulators, after which they filled out a questionnaire about their demographics and their opinion of both simulators scored on a 5-point Likert scale. The participants were allotted to 3 groups depending on their experience: experts, intermediates and novices. Significant differences were calculated with the paired t-test. Results There was general consensus in all groups that the ProMIS AR laparoscopic simulator is more realistic than the LapSim VR laparoscopic simulator in both the basic skills task (mean 4.22 resp. 2.18, P < 0.000) as well as the suturing task (mean 4.15 resp. 1.85, P < 0.000). The ProMIS is regarded as having better haptic feedback (mean 3.92 resp. 1.92, P < 0.000) and as being more useful for training surgical residents (mean 4.51 resp. 2.94, P < 0.000). Conclusions In comparison with the VR simulator, the AR laparoscopic simulator was regarded by all participants as a better simulator for laparoscopic skills training on all tested features. PMID:17361356

  10. An Augmented-Reality Edge Enhancement Application for Google Glass

    PubMed Central

    Hwang, Alex D.; Peli, Eli

    2014-01-01

    Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871

  11. An augmented-reality edge enhancement application for Google Glass.

    PubMed

    Hwang, Alex D; Peli, Eli

    2014-08-01

    Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.

  12. Shape recognition and pose estimation for mobile Augmented Reality.

    PubMed

    Hagbi, Nate; Bergig, Oriel; El-Sana, Jihad; Billinghurst, Mark

    2011-10-01

    Nestor is a real-time recognition and camera pose estimation system for planar shapes. The system allows shapes that carry contextual meanings for humans to be used as Augmented Reality (AR) tracking targets. The user can teach the system new shapes in real time. New shapes can be shown to the system frontally, or they can be automatically rectified according to previously learned shapes. Shapes can be automatically assigned virtual content by classification according to a shape class library. Nestor performs shape recognition by analyzing contour structures and generating projective-invariant signatures from their concavities. The concavities are further used to extract features for pose estimation and tracking. Pose refinement is carried out by minimizing the reprojection error between sample points on each image contour and its library counterpart. Sample points are matched by evolving an active contour in real time. Our experiments show that the system provides stable and accurate registration, and runs at interactive frame rates on a Nokia N95 mobile phone.

  13. Explore and experience: mobile augmented reality for medical training.

    PubMed

    Albrecht, Urs-Vito; Noll, Christoph; von Jan, Ute

    2013-01-01

    In medicine, especially in basic education, it may sometimes be inappropriate to integrate real patients into classes due to ethical issues that must be avoided. Nevertheless, the quality of medical education may suffer without the use of real cases. This is especially true of medical specialties such as legal medicine: survivors of a crime are already subjected to procedures that constitute a severe emotional burden and may cause additional distress even without the added presence of students. Using augmented reality based applications may alleviate this ethical dilemma by giving students the possibility to practice the necessary skills based on virtual but nevertheless almost realistic cases. The app "mARble®" that is presented in this paper follows this approach. The currently available learning module for legal medicine gives users an opportunity to learn about various wound patterns by virtually overlaying them on their own skin and is applicable in different learning settings. Preliminary evaluation results covering learning efficiency and emotional components of the learning process are promising. Content modules for other medical specialtiesare currently under construction.

  14. Time-lapse microscopy using smartphone with augmented reality markers.

    PubMed

    Baek, Dongyoub; Cho, Sungmin; Yun, Kyungwon; Youn, Keehong; Bang, Hyunwoo

    2014-04-01

    A prototype system that replaces the conventional time-lapse imaging in microscopic inspection for use with smartphones is presented. Existing time-lapse imaging requires a video data feed between a microscope and a computer that varies depending on the type of image grabber. Even with proper hardware setups, a series of tedious and repetitive tasks is still required to relocate to the region-of-interest (ROI) of the specimens. In order to simplify the system and improve the efficiency of time-lapse imaging tasks, a smartphone-based platform utilizing microscopic augmented reality (μ-AR) markers is proposed. To evaluate the feasibility and efficiency of the proposed system, a user test was designed and performed, measuring the elapse time for a trial of the task starting from the execution of the application software to the completion of restoring and imaging of an ROI saved in advance. The results of the user test showed that the average elapse time was 65.3 ± 15.2 s with 6.86 ± 3.61 μm of position error and 0.08 ± 0.40 degrees of angle error. This indicates that the time-lapse imaging task was accomplished rapidly with a high level of accuracy. Thus, simplification of both the system and the task was achieved via our proposed system.

  15. MetaTree: augmented reality narrative explorations of urban forests

    NASA Astrophysics Data System (ADS)

    West, Ruth; Margolis, Todd; O'Neil-Dunne, Jarlath; Mendelowitz, Eitan

    2012-03-01

    As cities world-wide adopt and implement reforestation initiatives to plant millions of trees in urban areas, they are engaging in what is essentially a massive ecological and social experiment. Existing air-borne, space-borne, and fieldbased imaging and inventory mechanisms fail to provide key information on urban tree ecology that is crucial to informing management, policy, and supporting citizen initiatives for the planting and stewardship of trees. The shortcomings of the current approaches include: spatial and temporal resolution, poor vantage point, cost constraints and biological metric limitations. Collectively, this limits their effectiveness as real-time inventory and monitoring tools. Novel methods for imaging and monitoring the status of these emerging urban forests and encouraging their ongoing stewardship by the public are required to ensure their success. This art-science collaboration proposes to re-envision citizens' relationship with urban spaces by foregrounding urban trees in relation to local architectural features and simultaneously creating new methods for urban forest monitoring. We explore creating a shift from overhead imaging or field-based tree survey data acquisition methods to continuous, ongoing monitoring by citizen scientists as part of a mobile augmented reality experience. We consider the possibilities of this experience as a medium for interacting with and visualizing urban forestry data and for creating cultural engagement with urban ecology.

  16. Inattentional blindness increased with augmented reality surgical navigation.

    PubMed

    Dixon, Benjamin J; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2014-01-01

    Augmented reality (AR) surgical navigation systems, designed to increase accuracy and efficiency, have been shown to negatively impact on attention. We wished to assess the effect "head-up" AR displays have on attention, efficiency, and accuracy, while performing a surgical task, compared with the same information being presented on a submonitor (SM). Fifty experienced otolaryngology surgeons (n = 42) and senior otolaryngology trainees (n = 8) performed an endoscopic surgical navigation exercise on a predissected cadaveric model. Computed tomography-generated anatomic contours were fused with the endoscopic image to provide an AR view. Subjects were randomized to perform the task with a standard endoscopic monitor with the AR navigation displayed on an SM or with AR as a single display. Accuracy, task completion time, and the recognition of unexpected findings (a foreign body and a critical complication) were recorded. Recognition of the foreign body was significantly better in the SM group (15/25 [60%]) compared with the AR alone group (8/25 [32%]; p = 0.02). There was no significant difference in task completion time (p = 0.83) or accuracy (p = 0.78) between the two groups. Providing identical surgical navigation on a SM, rather than on a single head-up display, reduced the level of inattentional blindness as measured by detection of unexpected findings. These gains were achieved without any measurable impact on efficiency or accuracy. AR displays may distract the user and we caution injudicious adoption of this technology for medical procedures.

  17. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  18. Realistic Real-Time Outdoor Rendering in Augmented Reality

    PubMed Central

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  19. Spatial augmented reality on industrial CNC-machines

    NASA Astrophysics Data System (ADS)

    Olwal, Alex; Gustafsson, Jonny; Lindfors, Christoffer

    2008-02-01

    In this work we present how Augmented Reality (AR) can be used to create an intimate integration of process data with the workspace of an industrial CNC (computer numerical control) machine. AR allows us to combine interactive computer graphics with real objects in a physical environment - in this case, the workspace of an industrial lathe. ASTOR is an autostereoscopic optical see-through spatial AR system, which provides real-time 3D visual feedback without the need for user-worn equipment, such as head-mounted displays or sensors for tracking. The use of a transparent holographic optical element, overlaid onto the safety glass, allows the system to simultaneously provide bright imagery and clear visibility of the tool and workpiece. The system makes it possible to enhance visibility of occluded tools as well as to visualize real-time data from the process in the 3D space. The graphics are geometrically registered with the workspace and provide an intuitive representation of the process, amplifying the user's understanding and simplifying machine operation.

  20. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  1. Augmented reality 3D display based on integral imaging

    NASA Astrophysics Data System (ADS)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  2. Concealed target detection using augmented reality with SIRE radar

    NASA Astrophysics Data System (ADS)

    Saponaro, Philip; Kambhamettu, Chandra; Ranney, Kenneth; Sullivan, Anders

    2013-05-01

    The Synchronous Impulse Reconstruction (SIRE) forward-looking radar, developed by the U.S. Army Research Laboratory (ARL), can detect concealed targets using ultra-wideband synthetic aperture technology. The SIRE radar has been mounted on a Ford Expedition and combined with other sensors, including a pan/tilt/zoom camera, to test its capabilities of concealed target detection in a realistic environment. Augmented Reality (AR) can be used to combine the SIRE radar image with the live camera stream into one view, which provides the user with information that is quicker to assess and easier to understand than each separated. In this paper we present an AR system which utilizes a global positioning system (GPS) and inertial measurement unit (IMU) to overlay a SIRE radar image onto a live video stream. We describe a method for transforming 3D world points in the UTM coordinate system onto the video stream by calibrating for the intrinsic parameters of the camera. This calibration is performed offline to save computation time and achieve real time performance. Since the intrinsic parameters are affected by the zoom of the camera, we calibrate at eleven different zooms and interpolate. We show the results of a real time transformation of the SAR imagery onto the video stream. Finally, we quantify both the 2D error and 3D residue associated with our transformation and show that the amount of error is reasonable for our application.

  3. Augmented reality-based navigation system for wrist arthroscopy: feasibility.

    PubMed

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A

    2013-11-01

    In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.

  4. Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility

    PubMed Central

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam

    2013-01-01

    Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832

  5. Intraoperative surgical photoacoustic microscopy (IS-PAM) using augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Changho; Han, Seunghoon; Kim, Sehui; Jeon, Mansik; Kim, Jeehyun; Kim, Chulhong

    2014-03-01

    We have developed an intraoperative surgical photoacoustic microscopy (IS-PAM) system by integrating an optical resolution photoacoustic microscopy (OR-PAM) and conventional surgical microscope. Based on the common optical path in the OR-PAM and microscope system, we can acquire the PAM and microscope images at the same time. Furthermore, by utilizing a mini-sized beam projector, 2D PAM images are back-projected onto the microscope view plane as augmented reality. Thus, both the conventional microscopic and 2D cross-sectional PAM images are displayed on the plane through an eyepiece lens of the microscope. In our method, additional image display tool is not required to show the PAM image. Therefore, it potentially offers significant convenience to surgeons without movement of their sights during surgeries. In order to demonstrate the performance of our IS-PAM system, first, we successfully monitored needle intervention in phantoms. Moreover, we successfully guided needle insertion into mice skins in vivo by visualizing surrounding blood vessels from the PAM images and the magnified skin surfaces from the conventional microscopic images simultaneously.

  6. An augmented reality binocular system (ARBS) for air traffic controllers

    NASA Astrophysics Data System (ADS)

    Fulbrook, Jim E.; Ruffner, John W.; Labbe, Roger

    2008-04-01

    The primary means by which air traffic tower controllers obtain information is through direct out-thewindow viewing, although a considerable amount of time is spent looking at electronic displays and other information sources inside the tower cab. The Air Force Research Laboratory sponsored the development of a prototype Augmented Reality Binocular System (ARBS) that enhances tower controller performance, situation awareness, and safety. The ARBS is composed of a virtual binocular (VB) that displays real-time imagery from high resolution telephoto cameras and sensors mounted on pan/tilt units (PTUs). The selected PTU tracks to the movement of the VB, which has an inertial heading and elevation sensor. Relevant airfield situation text and graphic depictions that identify airfield features are overlaid on the imagery. In addition, the display is capable of labeling and tracking vehicles on which an Automatic Dependent Surveillance - Broadcast (ADS-B) system has been installed. The ARBS provides air traffic controllers and airfield security forces with the capability to orient toward, observe, and conduct continuous airfield operations and surveillance/security missions from any number of viewing aspects in limited visibility conditions. In this paper, we describe the ARBS in detail, discuss the results of a Usability Test of the prototype ARBS, and discuss ideas for follow-on efforts to develop the ARBS to a fieldable level.

  7. Utility of augmented reality system in hepatobiliary surgery.

    PubMed

    Okamoto, Tomoyoshi; Onda, Shinji; Matsumoto, Michinori; Gocho, Takeshi; Futagawa, Yasuro; Fujioka, Shuichi; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki

    2013-02-01

    The aim of this study was to evaluate the utility of an image display system for augmented reality in hepatobiliary surgery under laparotomy. An overlay display of organs, vessels, or tumor was obtained using a video see-through system as a display system developed at our institute. Registration between visceral organs and the surface-rendering image reconstructed by preoperative computed tomography (CT) was carried out with an optical location sensor. Using this system, we performed laparotomy for a patient with benign biliary stricture, a patient with gallbladder carcinoma, and a patient with hepatocellular carcinoma. The operative procedures performed consisted of choledochojejunostomy, right hepatectomy, and microwave coagulation therapy. All the operations were carried out safely using images of the site of tumor, preserved organs, and resection aspect overlaid onto the operation field images observed on the monitors. The position of each organ in the overlaid image closely corresponded with that of the actual organ. Intraoperative information generated from this system provided us with useful navigation. However, several problems such as registration error and lack of depth knowledge were noted. The image display system appeared to be useful in performing hepatobiliary surgery under laparotomy. Further improvement of the system with individualized function for each operation will be essential, with feedback from clinical trials in the future.

  8. Augmented Reality Image Guidance in Minimally Invasive Prostatectomy

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel; Mayer, Erik; Chen, Dongbin; Anstee, Ann; Vale, Justin; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip'eddie'

    This paper presents our work aimed at providing augmented reality (AR) guidance of robot-assisted laparoscopic surgery (RALP) using the da Vinci system. There is a good clinical case for guidance due to the significant rate of complications and steep learning curve for this procedure. Patients who were due to undergo robotic prostatectomy for organ-confined prostate cancer underwent preoperative 3T MRI scans of the pelvis. These were segmented and reconstructed to form 3D images of pelvic anatomy. The reconstructed image was successfully overlaid onto screenshots of the recorded surgery post-procedure. Surgeons who perform minimally-invasive prostatectomy took part in a user-needs analysis to determine the potential benefits of an image guidance system after viewing the overlaid images. All surgeons stated that the development would be useful at key stages of the surgery and could help to improve the learning curve of the procedure and improve functional and oncological outcomes. Establishing the clinical need in this way is a vital early step in development of an AR guidance system. We have also identified relevant anatomy from preoperative MRI. Further work will be aimed at automated registration to account for tissue deformation during the procedure, using a combination of transrectal ultrasound and stereoendoscopic video.

  9. Navigation surgery using an augmented reality for pancreatectomy.

    PubMed

    Okamoto, Tomoyoshi; Onda, Shinji; Yasuda, Jungo; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki

    2015-01-01

    The aim of this study was to evaluate the utility of navigation surgery using augmented reality technology (AR-based NS) for pancreatectomy. The 3D reconstructed images from CT were created by segmentation. The initial registration was performed by using the optical location sensor. The reconstructed images were superimposed onto the real organs in the monitor display. Of the 19 patients who had undergone hepatobiliary and pancreatic surgery using AR-based NS, the accuracy, visualization ability, and utility of our system were assessed in five cases with pancreatectomy. The position of each organ in the surface-rendering image corresponded almost to that of the actual organ. Reference to the display image allowed for safe dissection while preserving the adjacent vessels or organs. The locations of the lesions and resection line on the targeted organ were overlaid on the operating field. The initial mean registration error was improved to approximately 5 mm by our refinements. However, several problems such as registration accuracy, portability and cost still remain. AR-based NS contributed to accurate and effective surgical resection in pancreatectomy. The pancreas appears to be a suitable organ for further investigations. This technology is promising to improve surgical quality, training, and education. © 2015 S. Karger AG, Basel.

  10. Augmented reality visualization of deformable tubular structures for surgical simulation.

    PubMed

    Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro

    2016-06-01

    Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Use of augmented reality in laparoscopic gynecology to visualize myomas.

    PubMed

    Bourdel, Nicolas; Collins, Toby; Pizarro, Daniel; Debize, Clement; Grémeau, Anne-Sophie; Bartoli, Adrien; Canis, Michel

    2017-03-01

    To report the use of augmented reality (AR) in gynecology. AR is a surgical guidance technology that enables important hidden surface structures to be visualized in endoscopic images. AR has been used for other organs, but never in gynecology and never with a very mobile organ like the uterus. We have developed a new AR approach specifically for uterine surgery and demonstrated its use for myomectomy. Tertiary university hospital. Three patients with one, two, and multiple myomas, respectively. AR was used during laparoscopy to localize the myomas. Three-dimensional (3D) models of the patient's uterus and myomas were constructed before surgery from T2-weighted magnetic resonance imaging. The intraoperative 3D shape of the uterus was determined. These models were automatically aligned and "fused" with the laparoscopic video in real time. The live fused video made the uterus appear semitransparent, and the surgeon can see the location of the myoma in real time while moving the laparoscope and the uterus. With this information, the surgeon can easily and quickly decide on how best to access the myoma. We developed an AR system for gynecologic surgery and have used it to improve laparoscopic myomectomy. Technically, the software we developed is very different to approaches tried for other organs, and it can handle significant challenges, including image blur, fast motion, and partial views of the organ. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Augmented reality enabling intelligence exploitation at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Roy, Heather; Bowman, Elizabeth K.; Patton, Debra

    2015-05-01

    Today's Warfighters need to make quick decisions while interacting in densely populated environments comprised of friendly, hostile, and neutral host nation locals. However, there is a gap in the real-time processing of big data streams for edge intelligence. We introduce a big data processing pipeline called ARTEA that ingests, monitors, and performs a variety of analytics including noise reduction, pattern identification, and trend and event detection in the context of an area of operations (AOR). Results of the analytics are presented to the Soldier via an augmented reality (AR) device Google Glass (Glass). Non-intrusive AR devices such as Glass can visually communicate contextually relevant alerts to the Soldier based on the current mission objectives, time, location, and observed or sensed activities. This real-time processing and AR presentation approach to knowledge discovery flattens the intelligence hierarchy enabling the edge Soldier to act as a vital and active participant in the analysis process. We report preliminary observations testing ARTEA and Glass in a document exploitation and person of interest scenario simulating edge Soldier participation in the intelligence process in disconnected deployment conditions.

  13. L-split marker for augmented reality in aircraft assembly

    NASA Astrophysics Data System (ADS)

    Han, Pengfei; Zhao, Gang

    2016-04-01

    In order to improve the performance of conventional square markers widely used by marker-based augmented reality systems in aircraft assembly environments, an L-split marker is proposed. Every marker consists of four separate L-shaped parts and each of them contains partial information about the marker. Geometric features of the L-shape, which are more discriminate than the symmetrical square shape adopted by conventional markers, are used to detect proposed markers from the camera images effectively. The marker is split into four separate parts in order to improve the robustness to occlusion and curvature to some extent. The registration process can be successfully completed as long as three parts are detected (up to about 80% of the area could be occluded). Moreover, when we attach the marker on nonplanar surfaces, the curvature status of the marker can be roughly analyzed with every part's normal direction, which can be obtained since their six corners have been explicitly determined in the previous detection process. And based on the marker design, new detection and recognition algorithms are proposed and detailed. The experimental results show that the marker and the algorithms are effective.

  14. Interactive augmented reality system for product design review

    NASA Astrophysics Data System (ADS)

    Caruso, Giandomenico; Re, Guido Maria

    2010-01-01

    The product development process, of industrial products, includes a phase dedicated to the design review that is a crucial phase where various experts cooperate in selecting the optimal product shape. Although computer graphics allows us to create very realistic virtual representations of the products, it is not uncommon that designers decide to build physical mock-ups of their newly conceived products because they need to physically interact with the prototype and also to evaluate the product within a plurality of real contexts. This paper describes the hardware and software development of our Augmented Reality design review system that allows to overcome some issues related to the 3D visualization and to the interaction with the virtual objects. Our system is composed by a Video See Through Head Mounted Display, which allows to improve the 3D visualization by controlling the convergence of the video cameras automatically, and a wireless control system, which allows us to create some metaphors to interact with the virtual objects. During the development of the system, in order to define and tune the algorithms, we have performed some testing sessions. Then, we have performed further tests in order to verify the effectiveness of the system and to collect additional data and comments about usability and ergonomic aspects.

  15. Realistic real-time outdoor rendering in augmented reality.

    PubMed

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  16. Intraoperative augmented reality for minimally invasive liver interventions

    NASA Astrophysics Data System (ADS)

    Scheuering, Michael; Schenk, Andrea; Schneider, Armin; Preim, Bernhard; Greiner, Guenther

    2003-05-01

    Minimally invasive liver interventions demand a lot of experience due to the limited access to the field of operation. In particular, the correct placement of the trocar and the navigation within the patient's body are hampered. In this work, we present an intraoperative augmented reality system (IARS) that directly projects preoperatively planned information and structures extracted from CT data, onto the real laparoscopic video images. Our system consists of a preoperative planning tool for liver surgery and an intraoperative real time visualization component. The planning software takes into account the individual anatomy of the intrahepatic vessels and determines the vascular territories. Methods for fast segmentation of the liver parenchyma, of the intrahepatic vessels and of liver lesions are provided. In addition, very efficient algorithms for skeletonization and vascular analysis allowing the approximation of patient-individual liver vascular territories are included. The intraoperative visualization is based on a standard graphics adapter for hardware accelerated high performance direct volume rendering. The preoperative CT data is rigidly registered to the patient position by the use of fiducials that are attached to the patient's body, and anatomical landmarks in combination with an electro-magnetic navigation system. Our system was evaluated in vivo during a minimally invasive intervention simulation in a swine under anesthesia.

  17. An indoor augmented reality mobile application for simulation of building evacuation

    NASA Astrophysics Data System (ADS)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  18. Integrating a Mobile Augmented Reality Activity to Contextualize Student Learning of a Socioscienti?c Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…

  19. Integrating a Mobile Augmented Reality Activity to Contextualize Student Learning of a Socioscienti?c Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…

  20. What is going on in augmented reality simulation in laparoscopic surgery?

    PubMed

    Botden, Sanne M B I; Jakimowicz, Jack J

    2009-08-01

    To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.

  1. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change

    PubMed Central

    Riva, Giuseppe; Baños, Rosa M.; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies – augmented reality (AR) and virtual reality (VR) – exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual’s worldview. PMID:27746747

  2. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change.

    PubMed

    Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies - augmented reality (AR) and virtual reality (VR) - exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual's worldview.

  3. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    ERIC Educational Resources Information Center

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  4. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    ERIC Educational Resources Information Center

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  5. Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions

    ERIC Educational Resources Information Center

    Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.

    2015-01-01

    Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…

  6. Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions

    ERIC Educational Resources Information Center

    Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.

    2015-01-01

    Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…

  7. Augmented reality in healthcare education: an integrative review

    PubMed Central

    Zhu, Egui; Hadadgar, Arash; Masiello, Italo

    2014-01-01

    Background. The effective development of healthcare competencies poses great educational challenges. A possible approach to provide learning opportunities is the use of augmented reality (AR) where virtual learning experiences can be embedded in a real physical context. The aim of this study was to provide a comprehensive overview of the current state of the art in terms of user acceptance, the AR applications developed and the effect of AR on the development of competencies in healthcare. Methods. We conducted an integrative review. Integrative reviews are the broadest type of research review methods allowing for the inclusion of various research designs to more fully understand a phenomenon of concern. Our review included multi-disciplinary research publications in English reported until 2012. Results. 2529 research papers were found from ERIC, CINAHL, Medline, PubMed, Web of Science and Springer-link. Three qualitative, 20 quantitative and 2 mixed studies were included. Using a thematic analysis, we’ve described three aspects related to the research, technology and education. This study showed that AR was applied in a wide range of topics in healthcare education. Furthermore acceptance for AR as a learning technology was reported among the learners and its potential for improving different types of competencies. Discussion. AR is still considered as a novelty in the literature. Most of the studies reported early prototypes. Also the designed AR applications lacked an explicit pedagogical theoretical framework. Finally the learning strategies adopted were of the traditional style ‘see one, do one and teach one’ and do not integrate clinical competencies to ensure patients’ safety. PMID:25071992

  8. Augmented Reality Cues and Elderly Driver Hazard Perception

    PubMed Central

    Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew

    2013-01-01

    Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037

  9. Implementation of augmented reality in operative dentistry learning.

    PubMed

    Llena, C; Folguera, S; Forner, L; Rodríguez-Lozano, F J

    2017-03-31

    To evaluate the efficacy of augmented reality (AR) in the gaining of knowledge and skills amongst dental students in the design of cavity preparations and analyse their degree of satisfaction. AR cavity models were prepared for use with computers and mobile devices. Forty-one students were divided into two groups (traditional teaching methods vs AR). Questionnaires were designed to evaluate knowledge and skills, with the administration of a satisfaction questionnaire for those using AR. The degree of compliance with the standards in cavity design was assessed. The Mann-Whitney U-test was used to compare knowledge and skills between the two groups, and the Wilcoxon test was applied to compare intragroup differences. The chi-square test in turn was used to compare the qualitative parameters of the cavity designs between the groups. Statistical significance was considered for P<.05 in all cases. No significant differences were observed in level of knowledge before, immediately after or 6 months after teaching between the two groups (P>.05). Although the results corresponding to most of the studied skills parameters were better in the experimental group, significant differences (P<.05) were only founded for cavity depth and extent for Class I and divergence of the buccal and lingual walls for the Class II. The experience was rated as favourable or very favourable by 100% of the participants. The students showed preference for computers (60%) vs mobile devices (10%). The AR techniques favoured the gaining of knowledge and skills and were regarded as a useful tool by the students. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Augmented reality guidance system for peripheral nerve blocks

    NASA Astrophysics Data System (ADS)

    Wedlake, Chris; Moore, John; Rachinsky, Maxim; Bainbridge, Daniel; Wiles, Andrew D.; Peters, Terry M.

    2010-02-01

    Peripheral nerve block treatments are ubiquitous in hospitals and pain clinics worldwide. State of the art techniques use ultrasound (US) guidance and/or electrical stimulation to verify needle tip location. However, problems such as needle-US beam alignment, poor echogenicity of block needles and US beam thickness can make it difficult for the anesthetist to know the exact needle tip location. Inaccurate therapy delivery raises obvious safety and efficacy issues. We have developed and evaluated a needle guidance system that makes use of a magnetic tracking system (MTS) to provide an augmented reality (AR) guidance platform to accurately localize the needle tip as well as its projected trajectory. Five anesthetists and five novices performed simulated nerve block deliveries in a polyvinyl alcohol phantom to compare needle guidance under US alone to US placed in our AR environment. Our phantom study demonstrated a decrease in targeting attempts, decrease in contacting of critical structures, and an increase in accuracy of 0.68 mm compared to 1.34mm RMS in US guidance alone. Currently, the MTS uses 18 and 21 gauge hypodermic needles with a 5 degree of freedom sensor located at the needle tip. These needles can only be sterilized using an ethylene oxide process. In the interest of providing clinicians with a simple and efficient guidance system, we also evaluated attaching the sensor at the needle hub as a simple clip-on device. To do this, we simultaneously performed a needle bending study to assess the reliability of a hub-based sensor.

  11. Sharing skills: using augmented reality for human-robot collaboration

    NASA Astrophysics Data System (ADS)

    Giesler, Bjorn; Steinhaus, Peter; Walther, Marcus; Dillmann, Ruediger

    2004-05-01

    Both stationary 'industrial' and autonomous mobile robots nowadays pervade many workplaces, but human-friendly interaction with them is still very much an experimental subject. One of the reasons for this is that computer and robotic systems are very bad at performing certain tasks well and robust. A prime example is classification of sensor readings: Which part of a 3D depth image is the cup, which the saucer, which the table? These are tasks that humans excel at. To alleviate this problem, we propose a team approah, wherein the robot records sensor data and uses an Augmented-Reality (AR) system to present the data to the user directly in the 3D environment. The user can then perform classification decisions directly on the data by pointing, gestures and speech commands. After the classification has been performed by the user, the robot takes the classified data and matches it to its environment model. As a demonstration of this approach, we present an initial system for creating objects on-the-fly in the environment model. A rotating laser scanner is used to capture a 3D snapshot of the environment. This snapshot is presented to the user as an overlay over his view of the scene. The user classifies unknown objects by pointing at them. The system segments the snapshot according to the user's indications and presents the results of segmentation back to the user, who can then inspect, correct and enhance them interactively. After a satisfying result has been reached, the laser-scanner can take more snapshots from other angles and use the previous segmentation hints to construct a 3D model of the object.

  12. Augmented reality application utility for aviation maintenance work instruction

    NASA Astrophysics Data System (ADS)

    Pourcho, John Bryan

    Current aviation maintenance work instructions do not display information effectively enough to prevent costly errors and safety concerns. Aircraft are complex assemblies of highly interrelated components that confound troubleshooting and can make the maintenance procedure difficult (Drury & Gramopadhye, 2001). The sophisticated nature of aircraft maintenance necessitates a revolutionized training intervention for aviation maintenance technicians (United States General Accounting Office, 2003). Quite simply, the paper based job task cards fall short of offering rapid access to technical data and the system or component visualization necessary for working on complex integrated aircraft systems. Possible solutions to this problem include upgraded standards for paper based task cards and the use of integrated 3D product definition used on various mobile platforms (Ropp, Thomas, Lee, Broyles, Lewin, Andreychek, & Nicol, 2013). Previous studies have shown that incorporation of 3D graphics in work instructions allow the user to more efficiently and accurately interpret maintenance information (Jackson & Batstone, 2008). For aircraft maintenance workers, the use of mobile 3D model-based task cards could make current paper task card standards obsolete with their ability to deliver relevant, synchronized information to and from the hangar. Unlike previous versions of 3D model-based definition task cards and paper task cards, which are currently used in the maintenance industry, 3D model based definition task cards have the potential to be more mobile and accessible. Utilizing augmented reality applications on mobile devices to seamlessly deliver 3D product definition on mobile devices could increase the efficiency, accuracy, and reduce the mental workload for technicians when performing maintenance tasks (Macchiarella, 2004). This proposal will serve as a literary review of the aviation maintenance industry, the spatial ability of maintenance technicians, and benefits of

  13. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy.

    PubMed

    Müller, Michael; Rassweiler, Marie-Claire; Klein, Jan; Seitel, Alexander; Gondan, Matthias; Baumhauer, Matthias; Teber, Dogu; Rassweiler, Jens J; Meinzer, Hans-Peter; Maier-Hein, Lena

    2013-07-01

    Percutaneous nephrolithotomy (PCNL) plays an integral role in treatment of renal stones. Creating percutaneous renal access is the most important and challenging step in the procedure. To facilitate this step, we evaluated our novel mobile augmented reality (AR) system for its feasibility of use for PCNL. A tablet computer, such as an iPad[Formula: see text], is positioned above the patient with its camera pointing toward the field of intervention. The images of the tablet camera are registered with the CT image by means of fiducial markers. Structures of interest can be superimposed semi-transparently on the video images. We present a systematic evaluation by means of a phantom study. An urological trainee and two experts conducted 53 punctures on kidney phantoms. The trainee performed best with the proposed AR system in terms of puncturing time (mean: 99 s), whereas the experts performed best with fluoroscopy (mean: 59 s). iPad assistance lowered radiation exposure by a factor of 3 for the inexperienced physician and by a factor of 1.8 for the experts in comparison with fluoroscopy usage. We achieve a mean visualization accuracy of 2.5 mm. The proposed tablet computer-based AR system has proven helpful in assisting percutaneous interventions such as PCNL and shows benefits compared to other state-of-the-art assistance systems. A drawback of the system in its current state is the lack of depth information. Despite that, the simple integration into the clinical workflow highlights the potential impact of this approach to such interventions.

  14. Augmented reality in healthcare education: an integrative review.

    PubMed

    Zhu, Egui; Hadadgar, Arash; Masiello, Italo; Zary, Nabil

    2014-01-01

    Background. The effective development of healthcare competencies poses great educational challenges. A possible approach to provide learning opportunities is the use of augmented reality (AR) where virtual learning experiences can be embedded in a real physical context. The aim of this study was to provide a comprehensive overview of the current state of the art in terms of user acceptance, the AR applications developed and the effect of AR on the development of competencies in healthcare. Methods. We conducted an integrative review. Integrative reviews are the broadest type of research review methods allowing for the inclusion of various research designs to more fully understand a phenomenon of concern. Our review included multi-disciplinary research publications in English reported until 2012. Results. 2529 research papers were found from ERIC, CINAHL, Medline, PubMed, Web of Science and Springer-link. Three qualitative, 20 quantitative and 2 mixed studies were included. Using a thematic analysis, we've described three aspects related to the research, technology and education. This study showed that AR was applied in a wide range of topics in healthcare education. Furthermore acceptance for AR as a learning technology was reported among the learners and its potential for improving different types of competencies. Discussion. AR is still considered as a novelty in the literature. Most of the studies reported early prototypes. Also the designed AR applications lacked an explicit pedagogical theoretical framework. Finally the learning strategies adopted were of the traditional style 'see one, do one and teach one' and do not integrate clinical competencies to ensure patients' safety.

  15. Medical telementoring using an augmented reality transparent display.

    PubMed

    Andersen, Daniel; Popescu, Voicu; Cabrera, Maria Eugenia; Shanghavi, Aditya; Gomez, Gerardo; Marley, Sherri; Mullis, Brian; Wachs, Juan P

    2016-06-01

    The goal of this study was to design and implement a novel surgical telementoring system called the System for Telementoring with Augmented Reality (STAR) that uses a virtual transparent display to convey precise locations in the operating field to a trainee surgeon. This system was compared with a conventional system based on a telestrator for surgical instruction. A telementoring system was developed and evaluated in a study which used a 1 × 2 between-subjects design with telementoring system, that is, STAR or conventional, as the independent variable. The participants in the study were 20 premedical or medical students who had no prior experience with telementoring. Each participant completed a task of port placement and a task of abdominal incision under telementoring using either the STAR or the conventional system. The metrics used to test performance when using the system were placement error, number of focus shifts, and time to task completion. When compared with the conventional system, participants using STAR completed the 2 tasks with less placement error (45% and 68%) and with fewer focus shifts (86% and 44%), but more slowly (19% for each task). Using STAR resulted in decreased annotation placement error, fewer focus shifts, but greater times to task completion. STAR placed virtual annotations directly onto the trainee surgeon's field of view of the operating field by conveying location with great accuracy; this technology helped to avoid shifts in focus, decreased depth perception, and enabled fine-tuning execution of the task to match telementored instruction, but led to greater times to task completion. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Augmented reality-guided artery-first pancreatico-duodenectomy.

    PubMed

    Marzano, Ettore; Piardi, Tullio; Soler, Luc; Diana, Michele; Mutter, Didier; Marescaux, Jacques; Pessaux, Patrick

    2013-11-01

    Augmented Reality (AR) in surgery consists in the fusion of synthetic computer-generated images (3D virtual model) obtained from medical imaging preoperative work-up and real-time patient images with the aim to visualize unapparent anatomical details. The potential of AR navigation as a tool to improve safety of the surgical dissection is presented in a case of pancreatico-duodenectomy (PD). A 77-year-old male patient underwent an AR-assisted PD. The 3D virtual anatomical model was obtained from thoraco-abdominal CT scan using customary software (VR-RENDER®, IRCAD). The virtual model was superimposed to the operative field using an Exoscope (VITOM®, Karl Storz, Tüttlingen, Germany) as well as different visible landmarks (inferior vena cava, left renal vein, aorta, superior mesenteric vein, inferior margin of the pancreas). A computer scientist manually registered virtual and real images using a video mixer (MX 70; Panasonic, Secaucus, NJ) in real time. Dissection of the superior mesenteric artery and the hanging maneuver were performed under AR guidance along the hanging plane. AR allowed for precise and safe recognition of all the important vascular structures. Operative time was 360 min. AR display and fine registration was performed within 6 min. The postoperative course was uneventful. The pathology was positive for ampullary adenocarcinoma; the final stage was pT1N0 (0/43 retrieved lymph nodes) with clear surgical margins. AR is a valuable navigation tool that can enhance the ability to achieve a safe surgical resection during PD.

  17. Augmented reality graphic interface for upstream dam inspection

    NASA Astrophysics Data System (ADS)

    Cote, Jean; Lavallee, Jean

    1995-12-01

    This paper presents a 3D graphic interface for the inspection of cracks along a dam. The monitoring of concrete dams is restricted by the accessibility of the various parts of the structure. Since the upstream face of a dam is not usually exposed, as in our case at Hydro- Quebec, a systematic and even ad hoc inspection become extremely complex. The piloting of a ROV (Remotely Operated Vehicle) underwater is like driving in a snowstorm. The view from the camera is similar to the visibility a driver would have in a snowstorm. Sensor fusion has to be performed by the operator since each sensor is specialized for its task. Even with a 2D positioning system or sonar scan, the approach to the inspection area is very tedious. A new 3D interface has been developed using augmented reality since the position and orientation of the vehicle are known. The point of view of the observer can easily be changed during a manipulation of the ROV. A shared memory based server can access the position data of the ROV and update the graphics in real time. The graphic environment can be used as well to drive the ROV with computer generated trajectories. A video card will be added to the Silicon Graphics workstation to display the view of the camera fixed to the ROV. This visual feedback will only be available when the ROV is close enough to the dam. The images will be calibrated since the position of the camera is known. The operator interface also includes a set of stereoscopic camera, hydrophonic (sound) feedback and imaging tools for measuring cracks.

  18. [Potentials of monocular augmented reality technology in automobile production].

    PubMed

    Kampmeier, J; Cucera, A; Fritzsche, L; Brau, H; Duthweiler, M; Lang, G K

    2007-07-01

    Augmented reality (AR) technologies can enrich the real environment with visual data, which has potential benefits for optimising the operator's working process. It offers the possibility to provide context-sensitive information independently of the user's location and position. Data are presented to the dominant eye on a semi-transparent mirror using a head-mounted display (HMD) unit that works with retinal laser technology. In this study the potential benefits and drawbacks of this new AR technology were evaluated. 45 participants without any visual impairment were randomly assigned to 3 groups and completed a variety of tasks during a simulated working day. Group 1 received conventional working aids (paper-based documents) to support the task processing. Group 2 additionally wore an HMD unit that was switched off. Group 3 wore a functioning HMD without any additional aids. Evaluation was carried out by means of a standardised questionnaire (BMS) and a concentration test ("d2 Aufmerksamkeits-Belastungs-Test"). No significant differences between the 3 groups were found in terms of mental strain, concentration-test performance and physical or mental complaints reported in a follow-up interview. Around 20 % of the subjects noticed a higher pressure and blurred vision in both eyes as well as headaches. Half of the participants complained about deficiencies concerning the ergonomic hardware design of the AR system. Changes in objective ophthalmological investigation parameters were not observed. Subjects reported reduced acceptance of the HMD based on non-ophthalmological reasons, for example, the weight of the unit or the length of the cable. However, for some specific working tasks, advantages in process optimisation and operator support were observed.

  19. Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; DeLiema, David

    2015-01-01

    In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…

  20. Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; DeLiema, David

    2015-01-01

    In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…

  1. Evaluating the Effect on User Perception and Performance of Static and Dynamic Contents Deployed in Augmented Reality Based Learning Application

    ERIC Educational Resources Information Center

    Montoya, Mauricio Hincapié; Díaz, Christian Andrés; Moreno, Gustavo Adolfo

    2017-01-01

    Nowadays, the use of technology to improve teaching and learning experiences in the classroom has been promoted. One of these technologies is augmented reality, which allows overlaying layers of virtual information on real scene with the aim of increasing the perception that user has of reality. Augmented reality has proved to offer several…

  2. Evaluating the Effect on User Perception and Performance of Static and Dynamic Contents Deployed in Augmented Reality Based Learning Application

    ERIC Educational Resources Information Center

    Montoya, Mauricio Hincapié; Díaz, Christian Andrés; Moreno, Gustavo Adolfo

    2017-01-01

    Nowadays, the use of technology to improve teaching and learning experiences in the classroom has been promoted. One of these technologies is augmented reality, which allows overlaying layers of virtual information on real scene with the aim of increasing the perception that user has of reality. Augmented reality has proved to offer several…

  3. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-09-01

    Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.

  4. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    NASA Astrophysics Data System (ADS)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  5. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery

    PubMed Central

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-01-01

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442

  6. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room.

    PubMed

    Kersten-Oertel, Marta; Gerard, Ian; Drouin, Simon; Mok, Kelvin; Sirhan, Denis; Sinclair, David S; Collins, D Louis

    2015-11-01

    The aim of this report is to present a prototype augmented reality (AR) intra-operative brain imaging system. We present our experience of using this new neuronavigation system in neurovascular surgery and discuss the feasibility of this technology for aneurysms, arteriovenous malformations (AVMs), and arteriovenous fistulae (AVFs). We developed an augmented reality system that uses an external camera to capture the live view of the patient on the operating room table and to merge this view with pre-operative volume-rendered vessels. We have extensively tested the system in the laboratory and have used the system in four surgical cases: one aneurysm, two AVMs and one AVF case. The developed AR neuronavigation system allows for precise patient-to-image registration and calibration of the camera, resulting in a well-aligned augmented reality view. Initial results suggest that augmented reality is useful for tailoring craniotomies, localizing vessels of interest, and planning resection corridors. Augmented reality is a promising technology for neurovascular surgery. However, for more complex anomalies such as AVMs and AVFs, better visualization techniques that allow one to distinguish between arteries and veins and determine the absolute depth of a vessel of interest are needed.

  7. Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.

    PubMed

    Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan

    2016-03-07

    Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.

  8. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery.

    PubMed

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-02-15

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.

  9. Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins

    PubMed Central

    2016-01-01

    Background Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. Objective The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Methods Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. Results We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. Conclusions As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations. PMID:27731862

  10. Evaluating the use of augmented reality to support undergraduate student learning in geomorphology

    NASA Astrophysics Data System (ADS)

    Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.

    2016-12-01

    Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.

  11. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.

  12. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed wi th respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the use ful specifications of augmented reality displays, an optical see-thro ugh display was used in an ATC Tower simulation. Three different binocular fields of view (14 deg, 28 deg, and 47 deg) were examined to det ermine their effect on subjects# ability to detect aircraft maneuveri ng and landing. The results suggest that binocular fields of view much greater than 47 deg are unlikely to dramatically improve search perf ormance and that partial binocular overlap is a feasible display tech nique for augmented reality Tower applications.

  13. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.

  14. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed wi th respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the use ful specifications of augmented reality displays, an optical see-thro ugh display was used in an ATC Tower simulation. Three different binocular fields of view (14 deg, 28 deg, and 47 deg) were examined to det ermine their effect on subjects# ability to detect aircraft maneuveri ng and landing. The results suggest that binocular fields of view much greater than 47 deg are unlikely to dramatically improve search perf ormance and that partial binocular overlap is a feasible display tech nique for augmented reality Tower applications.

  15. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices.

    PubMed

    Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K

    2014-11-01

    The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery.

  16. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    PubMed

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  17. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.

    PubMed

    Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac

    2017-01-01

    Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Multimedia, Augmented Reality Interactive System for the Application of a Guided School Tour

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Huang, Sheng-Wen; Chu, Sheng-Kai; Su, Ming-Wei; Chen, Chia-Yen; Chen, Chi-Fa

    The paper describes an implementation of a multimedia, augmented reality system used for a guided school tour. The aim of this work is to improve the level of interactions between a viewer and the system by means of augmented reality. In the implemented system, hand motions are captured via computer vision based approaches and analyzed to extract representative actions which are used to interact with the system. In this manner, tactile peripheral hardware such as keyboard and mouse can be eliminated. In addition, the proposed system also aims to reduce hardware related costs and avoid health risks associated with contaminations by contact in public areas.

  19. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    PubMed

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  20. Videofetoscopically assisted fetal tissue engineering: bladder augmentation.

    PubMed

    Fauza, D O; Fishman, S J; Mehegan, K; Atala, A

    1998-01-01

    Treatment of several congenital anomalies is frequently hindered by lack of enough tissue for surgical reconstruction in the neonatal period. Minimally invasive harvest of fetal tissue, which is then processed through tissue engineering techniques in vitro while pregnancy is allowed to continue so that at delivery a newborn with a prenatally diagnosed congenital anomaly can benefit from having autologous, expanded tissue promptly available for surgical reconstruction at birth. This concept was applied to a bladder defect. Bladder exstrophy was surgically created in ten 90- to 95-day gestation fetal lambs, which were divided in two groups. In group I, a small fetal bladder specimen was harvested through a minimally invasive technique (videofetoscopy). Urothelial and smooth muscle cells were then separately cultivated and expanded in vitro for 55 to 60 days, resulting in a total of approximately 200 million cells. Seven to 10 days before delivery, the cells were seeded in two layers in a 16- to 20-cm2, 3-mm thick biodegradable polyglycolic acid polymer matrix. One to 4 days after delivery, autologous engineered tissue was used for surgical augmentation of the exstrophic bladder. In group II, no harvest was performed, and the bladder exstrophy was primarily closed after delivery. In both groups, a catheter was left inside the bladder for 3 weeks, at which time a cystogram was performed and the catheter then removed. In all animals, at 60 days, another cystogram was performed and urodynamic studies of the bladder were performed. The bladder was then removed for histological analysis. Fetal survival rate was 100%. One newborn died immediately after the implantation of the engineered bladder from an anesthetic accident. The other nine (four in group I and five in group II) survived. One of the animals from group I lost its bladder catheter prematurely and had a urinary leak detected only at the time of death. There were no other complications. The engineered bladders

  1. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    PubMed Central

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  2. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    PubMed

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  3. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca

    2009-01-01

    The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative…

  4. The Use of Augmented Reality Games in Education: A Review of the Literature

    ERIC Educational Resources Information Center

    Koutromanos, George; Sofos, Alivisos; Avraamidou, Lucy

    2015-01-01

    This paper provides a review of the literature about the use of augmented reality in education and specifically in the context of formal and informal environments. It examines the research that has been conducted up to date on the use of those games through mobile technology devices such as mobile phones and tablets, both in primary and secondary…

  5. Feasibility of Using an Augmented Immersive Virtual Reality Learning Environment to Enhance Music Conducting Skills

    ERIC Educational Resources Information Center

    Orman, Evelyn K.; Price, Harry E.; Russell, Christine R.

    2017-01-01

    Acquiring nonverbal skills necessary to appropriately communicate and educate members of performing ensembles is essential for wind band conductors. Virtual reality learning environments (VRLEs) provide a unique setting for developing these proficiencies. For this feasibility study, we used an augmented immersive VRLE to enhance eye contact, torso…

  6. Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors

    ERIC Educational Resources Information Center

    Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor

    2016-01-01

    Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…

  7. Modeling Augmented Reality Games with Preservice Elementary and Secondary Science Teachers

    ERIC Educational Resources Information Center

    Burton, Erin Peters; Frazier, Wendy; Annetta, Leonard; Lamb, Richard; Cheng, Rebecca; Chmiel, Margaret

    2011-01-01

    Cell phones are ever-present in daily life, yet vastly underused in the formal science classroom. The purpose of this study was to implement a novel learning tool on cell phones, Augmented Reality Games, and determine how the interaction influenced preservice teachers' content knowledge and self-efficacy of cell phone use in schools. Results show…

  8. PRISMA-MAR: An Architecture Model for Data Visualization in Augmented Reality Mobile Devices

    ERIC Educational Resources Information Center

    Gomes Costa, Mauro Alexandre Folha; Serique Meiguins, Bianchi; Carneiro, Nikolas S.; Gonçalves Meiguins, Aruanda Simões

    2013-01-01

    This paper proposes an extension to mobile augmented reality (MAR) environments--the addition of data charts to the more usual text, image and video components. To this purpose, we have designed a client-server architecture including the main necessary modules and services to provide an Information Visualization MAR experience. The server side…

  9. Alien Contact!: Exploring Teacher Implementation of an Augmented Reality Curricular Unit

    ERIC Educational Resources Information Center

    Mitchell, Rebecca

    2011-01-01

    This paper reports on findings from a five-teacher, exploratory case study, critically observing their implementation of a technology-intensive, augmented reality (AR) mathematics curriculum unit, along with its paper-based control. The unit itself was intended to promote multiple proportional-reasoning strategies with urban, public, middle school…

  10. What Teachers Need to Know about Augmented Reality Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Wasko, Christopher

    2013-01-01

    Augmented reality (AR) enhanced learning environments have been designed to teach a variety of subjects by having learners act like professionals in the field as opposed to students in a classroom. The environments, grounded in constructivist and situated learning theories, place students in a meaningful, non-classroom environment and force them…

  11. A Mobile Augmented Reality System for the Learning of Dental Morphology

    ERIC Educational Resources Information Center

    Juan, M.-Carmen; Alexandrescu, Lucian; Folguera, Fernando; García-García, Inmaculada

    2016-01-01

    Three-dimensional models are important when the learning content is difficult to acquire from 2D images or other traditional methods. This is the case for learning dental morphology. In this paper, we present a mobile augmented reality (AR) system for learning dental morphology. A study with students was carried out to determine whether learning…

  12. Comparing Virtual and Location-Based Augmented Reality Mobile Learning: Emotions and Learning Outcomes

    ERIC Educational Resources Information Center

    Harley, Jason M.; Poitras, Eric G.; Jarrell, Amanda; Duffy, Melissa C.; Lajoie, Susanne P.

    2016-01-01

    Research on the effectiveness of augmented reality (AR) on learning exists, but there is a paucity of empirical work that explores the role that positive emotions play in supporting learning in such settings. To address this gap, this study compared undergraduate students' emotions and learning outcomes during a guided historical tour using mobile…

  13. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca

    2009-01-01

    The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative…

  14. Investigating the Role of Augmented Reality Technology in the Language Classroom

    ERIC Educational Resources Information Center

    Solak, Ekrem; Cakir, Recep

    2016-01-01

    The purpose of this study was to inform about some of the current applications and literature on Augmented Reality (AR) technology in education and to present experimental data about the effectiveness of AR application in a language classroom at the elementary level in Turkey. The research design of the study was quasi-experimental. Sixty-one 5th…

  15. Quantification of Contrast Sensitivity and Color Perception using Head-worn Augmented Reality Displays

    DTIC Science & Technology

    2009-03-01

    the case the Sony Glasstron PLM -50, enables a filter that reduces transmittance of light from the environment. Two binocular displays showed differ...Edition). Thomson Wadsworth, 2007. [5] S. E. Kirkley, Jr. Augmented Reality Performance Assessment Bat- tery (ARPAB): Object Recognition, Distance

  16. Augmented Reality for Teaching Science Vocabulary to Postsecondary Education Students with Intellectual Disabilities and Autism

    ERIC Educational Resources Information Center

    McMahon, Don D.; Cihak, David F.; Wright, Rachel E.; Bell, Sherry Mee

    2016-01-01

    The purpose of this study was to examine the use of an emerging technology called augmented reality to teach science vocabulary words to college students with intellectual disability and autism spectrum disorders. One student with autism and three students with an intellectual disability participated in a multiple probe across behaviors (i.e.,…

  17. Integrating Augmented Reality Technology to Enhance Children's Learning in Marine Education

    ERIC Educational Resources Information Center

    Lu, Su-Ju; Liu, Ying-Chieh

    2015-01-01

    Marine education comprises rich and multifaceted issues. Raising general awareness of marine environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative marine learning program integrating augmented reality (AR) technology for lower grade primary…

  18. Exploring the Potential of a Location Based Augmented Reality Game for Language Learning

    ERIC Educational Resources Information Center

    Richardson, Donald

    2016-01-01

    This paper adds to the small but growing body of research into the potential of augmented reality games for teaching and learning English as a foreign language (EFL). It explores the extent to which such games enhance the language learning experience of advanced level EFL learners. The author draws on his work developing "Mission not really…

  19. Examining Augmented Reality to Improve Navigation Skills in Postsecondary Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Smith, Cate C.; Cihak, David F.; Kim, Byungkeon; McMahon, Don D.; Wright, Rachel

    2017-01-01

    The purpose of this study was to examine the effects of using mobile technology to improve navigation skills in three students with intellectual disability (ID) in a postsecondary education program. Navigation skills included using an augmented reality iPhone app to make correct "waypoint" decisions when traveling by foot on a university…

  20. Augmented reality in the surgery of cerebral aneurysms: a technical report.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-06-01

    Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.

  1. Interactive Print: The Design of Cognitive Tasks in Blended Augmented Reality and Print Documents

    ERIC Educational Resources Information Center

    Nadolny, Larysa

    2017-01-01

    The combination of print materials and augmented reality in education is increasingly accessible due to advances in mobile technologies. Using familiar paper-based activities overlaid with digital items, also known as interactive print, educators can create a custom learning experience for students. There is very little guidance on the design of…

  2. ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy

    ERIC Educational Resources Information Center

    Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M. A.; García, S.; Barcia, J. M.

    2015-01-01

    The evolution of technologies and the development of new tools with educational purposes are growing up. This work presents the experience of a new tool based on augmented reality (AR) focusing on the anatomy of the lower limb. ARBOOK was constructed and developed based on TC and MRN images, dissections and drawings. For ARBOOK evaluation, a…

  3. Are Augmented Reality Picture Books Magic or Real for Preschool Children Aged Five to Six?

    ERIC Educational Resources Information Center

    Yilmaz, Rabia M.; Kucuk, Sevda; Goktas, Yuksel

    2017-01-01

    The aim of this study is to determine preschool children's attitudes towards augmented reality picture books (ARPB), their story comprehension performance (SCP) and the relationships between these variables. The sample consisted of 92 five- and six-year-olds (49 boys, 43 girls). An attitude form, story comprehension test and interview form were…

  4. Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places

    ERIC Educational Resources Information Center

    Chang, Yu-Lien; Hou, Huei-Tse; Pan, Chao-Yang; Sung, Yao-Ting; Chang, Kuo-En

    2015-01-01

    Based on the sense of place theory and the design principles of guidance and interpretation, this study developed an augmented reality mobile guidance system that used a historical geo-context-embedded visiting strategy. This tool for heritage guidance and educational activities enhanced visitor sense of place. This study consisted of 3 visitor…

  5. Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note.

    PubMed

    Won, Yu-Jin; Kang, Sang-Hoon

    2017-06-01

    Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics.

  6. Using Augmented Reality in Early Art Education: A Case Study in Hong Kong Kindergarten

    ERIC Educational Resources Information Center

    Huang, Yujia; Li, Hui; Fong, Ricci

    2016-01-01

    Innovation in pedagogy by technology integration in kindergarten classroom has always been a challenge for most teachers. This design-based research aimed to explore the feasibility of using Augmented Reality (AR) technology in early art education with a focus on the gains and pains of this innovation. A case study was conducted in a typical…

  7. Integrated Authoring Tool for Mobile Augmented Reality-Based E-Learning Applications

    ERIC Educational Resources Information Center

    Lobo, Marcos Fermin; Álvarez García, Víctor Manuel; del Puerto Paule Ruiz, María

    2013-01-01

    Learning management systems are increasingly being used to complement classroom teaching and learning and in some instances even replace traditional classroom settings with online educational tools. Mobile augmented reality is an innovative trend in e-learning that is creating new opportunities for teaching and learning. This article proposes a…

  8. Modeling Augmented Reality Games with Preservice Elementary and Secondary Science Teachers

    ERIC Educational Resources Information Center

    Burton, Erin Peters; Frazier, Wendy; Annetta, Leonard; Lamb, Richard; Cheng, Rebecca; Chmiel, Margaret

    2011-01-01

    Cell phones are ever-present in daily life, yet vastly underused in the formal science classroom. The purpose of this study was to implement a novel learning tool on cell phones, Augmented Reality Games, and determine how the interaction influenced preservice teachers' content knowledge and self-efficacy of cell phone use in schools. Results show…

  9. Examining Young Children's Perception toward Augmented Reality-Infused Dramatic Play

    ERIC Educational Resources Information Center

    Han, Jeonghye; Jo, Miheon; Hyun, Eunja; So, Hyo-jeong

    2015-01-01

    Amid the increasing interest in applying augmented reality (AR) in educational settings, this study explores the design and enactment of an AR-infused robot system to enhance children's satisfaction and sensory engagement with dramatic play activities. In particular, we conducted an exploratory study to empirically examine children's perceptions…

  10. Integrating Augmented Reality Technology to Enhance Children's Learning in Marine Education

    ERIC Educational Resources Information Center

    Lu, Su-Ju; Liu, Ying-Chieh

    2015-01-01

    Marine education comprises rich and multifaceted issues. Raising general awareness of marine environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative marine learning program integrating augmented reality (AR) technology for lower grade primary…

  11. The AIDLET Model: A Framework for Selecting Games, Simulations and Augmented Reality Environments in Mobile Learning

    ERIC Educational Resources Information Center

    Bidarra, José; Rothschild, Meagan; Squire, Kurt; Figueiredo, Mauro

    2013-01-01

    Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for…

  12. Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places

    ERIC Educational Resources Information Center

    Chang, Yu-Lien; Hou, Huei-Tse; Pan, Chao-Yang; Sung, Yao-Ting; Chang, Kuo-En

    2015-01-01

    Based on the sense of place theory and the design principles of guidance and interpretation, this study developed an augmented reality mobile guidance system that used a historical geo-context-embedded visiting strategy. This tool for heritage guidance and educational activities enhanced visitor sense of place. This study consisted of 3 visitor…

  13. Exploring the Effect of Materials Designed with Augmented Reality on Language Learners' Vocabulary Learning

    ERIC Educational Resources Information Center

    Solak, Ekrem; Cakir, Recep

    2015-01-01

    The purpose of this study was to determine the motivational level of the participants in a language classroom towards course materials designed in accordance with augmented reality technology and to identify the correlation between academic achievement and motivational level. 130 undergraduate students from a state-run university in Turkey…

  14. Examining Augmented Reality to Improve Navigation Skills in Postsecondary Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Smith, Cate C.; Cihak, David F.; Kim, Byungkeon; McMahon, Don D.; Wright, Rachel

    2017-01-01

    The purpose of this study was to examine the effects of using mobile technology to improve navigation skills in three students with intellectual disability (ID) in a postsecondary education program. Navigation skills included using an augmented reality iPhone app to make correct "waypoint" decisions when traveling by foot on a university…

  15. Exploring the Potential of a Location Based Augmented Reality Game for Language Learning

    ERIC Educational Resources Information Center

    Richardson, Donald

    2016-01-01

    This paper adds to the small but growing body of research into the potential of augmented reality games for teaching and learning English as a foreign language (EFL). It explores the extent to which such games enhance the language learning experience of advanced level EFL learners. The author draws on his work developing "Mission not really…

  16. Comparing Virtual and Location-Based Augmented Reality Mobile Learning: Emotions and Learning Outcomes

    ERIC Educational Resources Information Center

    Harley, Jason M.; Poitras, Eric G.; Jarrell, Amanda; Duffy, Melissa C.; Lajoie, Susanne P.

    2016-01-01

    Research on the effectiveness of augmented reality (AR) on learning exists, but there is a paucity of empirical work that explores the role that positive emotions play in supporting learning in such settings. To address this gap, this study compared undergraduate students' emotions and learning outcomes during a guided historical tour using mobile…

  17. What Teachers Need to Know about Augmented Reality Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Wasko, Christopher

    2013-01-01

    Augmented reality (AR) enhanced learning environments have been designed to teach a variety of subjects by having learners act like professionals in the field as opposed to students in a classroom. The environments, grounded in constructivist and situated learning theories, place students in a meaningful, non-classroom environment and force them…

  18. Assessing the Effectiveness of Learning Solid Geometry by Using an Augmented Reality-Assisted Learning System

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai

    2015-01-01

    This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…

  19. Making the Invisible Visible in Science Museums through Augmented Reality Devices

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Wang, Joyce

    2014-01-01

    Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields.…

  20. Using Augmented Reality in Early Art Education: A Case Study in Hong Kong Kindergarten

    ERIC Educational Resources Information Center

    Huang, Yujia; Li, Hui; Fong, Ricci

    2016-01-01

    Innovation in pedagogy by technology integration in kindergarten classroom has always been a challenge for most teachers. This design-based research aimed to explore the feasibility of using Augmented Reality (AR) technology in early art education with a focus on the gains and pains of this innovation. A case study was conducted in a typical…

  1. Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill

    ERIC Educational Resources Information Center

    Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.

    2017-01-01

    Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…

  2. Augmented Reality M-Learning to Enhance Nursing Skills Acquisition in the Clinical Skills Laboratory

    ERIC Educational Resources Information Center

    Garrett, Bernard M.; Jackson, Cathryn; Wilson, Brian

    2015-01-01

    Purpose: This paper aims to report on a pilot research project designed to explore if new mobile augmented reality (AR) technologies have the potential to enhance the learning of clinical skills in the lab. Design/methodology/approach: An exploratory action-research-based pilot study was undertaken to explore an initial proof-of-concept design in…

  3. Alien Contact!: Exploring Teacher Implementation of an Augmented Reality Curricular Unit

    ERIC Educational Resources Information Center

    Mitchell, Rebecca

    2011-01-01

    This paper reports on findings from a five-teacher, exploratory case study, critically observing their implementation of a technology-intensive, augmented reality (AR) mathematics curriculum unit, along with its paper-based control. The unit itself was intended to promote multiple proportional-reasoning strategies with urban, public, middle school…

  4. ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy

    ERIC Educational Resources Information Center

    Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M. A.; García, S.; Barcia, J. M.

    2015-01-01

    The evolution of technologies and the development of new tools with educational purposes are growing up. This work presents the experience of a new tool based on augmented reality (AR) focusing on the anatomy of the lower limb. ARBOOK was constructed and developed based on TC and MRN images, dissections and drawings. For ARBOOK evaluation, a…

  5. The Use of Augmented Reality in Formal Education: A Scoping Review

    ERIC Educational Resources Information Center

    Saltan, Fatih; Arslan, Ömer

    2017-01-01

    Augmented Reality (AR) is recognized as one of the most important developments in educational technology for both higher and K-12 education as emphasized in Horizon report (Johnson et al., 2016, 2015). Furthermore, AR is expected to achieve widespread adoption that will take two to three years in higher education and four to five years in K-12…

  6. Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study

    ERIC Educational Resources Information Center

    Ibáñez, María-Blanca; Di-Serio, Ángela; Villarán-Molina, Diego; Delgado-Kloos, Carlos

    2015-01-01

    This paper reports empirical evidence on having students use AR-SaBEr, a simulation tool based on augmented reality (AR), to discover the basic principles of electricity through a series of experiments. AR-SaBEr was enhanced with knowledge-based support and inquiry-based scaffolding mechanisms, which proved useful for discovery learning in…

  7. Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note

    PubMed Central

    2017-01-01

    Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics. PMID:28879340

  8. Augmented Reality M-Learning to Enhance Nursing Skills Acquisition in the Clinical Skills Laboratory

    ERIC Educational Resources Information Center

    Garrett, Bernard M.; Jackson, Cathryn; Wilson, Brian

    2015-01-01

    Purpose: This paper aims to report on a pilot research project designed to explore if new mobile augmented reality (AR) technologies have the potential to enhance the learning of clinical skills in the lab. Design/methodology/approach: An exploratory action-research-based pilot study was undertaken to explore an initial proof-of-concept design in…

  9. Augmented Reality for Teaching Science Vocabulary to Postsecondary Education Students with Intellectual Disabilities and Autism

    ERIC Educational Resources Information Center

    McMahon, Don D.; Cihak, David F.; Wright, Rachel E.; Bell, Sherry Mee

    2016-01-01

    The purpose of this study was to examine the use of an emerging technology called augmented reality to teach science vocabulary words to college students with intellectual disability and autism spectrum disorders. One student with autism and three students with an intellectual disability participated in a multiple probe across behaviors (i.e.,…

  10. Applications of Augmented Reality-Based Natural Interactive Learning in Magnetic Field Instruction

    ERIC Educational Resources Information Center

    Cai, Su; Chiang, Feng-Kuang; Sun, Yuchen; Lin, Chenglong; Lee, Joey J.

    2017-01-01

    Educators must address several challenges inherent to the instruction of scientific disciplines such as physics -- expensive or insufficient laboratory equipment, equipment error, difficulty in simulating certain experimental conditions. Augmented reality (AR) can be a promising approach to address these challenges. In this paper, we discuss the…

  11. Assessing the Effectiveness of Learning Solid Geometry by Using an Augmented Reality-Assisted Learning System

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai

    2015-01-01

    This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…

  12. Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill

    ERIC Educational Resources Information Center

    Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.

    2017-01-01

    Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…

  13. Making the Invisible Visible in Science Museums through Augmented Reality Devices

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Wang, Joyce

    2014-01-01

    Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields.…

  14. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  15. Ultrasound image and augmented reality guidance for off-pump, closed, beating, intracardiac surgery.

    PubMed

    Bainbridge, Daniel; Jones, Douglas L; Guiraudon, Gerard M; Peters, Terrence M

    2008-11-01

    Our project is the reintroduction of off-pump intracardiac surgery using the Universal Cardiac Introducer (UCI) for safe intracardiac access. The purpose of this study was to evaluate multimodality visualization using three ultrasound modalities and ultrasound augmented with virtual reality. Image guidance was tested on implanting a mitral valve prosthesis via the UCI in 12 pigs. Initially, two-dimensional (2-D) transesophageal echocardiography (TEE) ultrasound, intravascular ultrasound (intracardiac echocardiography [ICE]), and three-dimensional (3-D) epicardial ultrasound were utilized. Ultrasound augmented with virtual reality was used in the last three experiments. A 2-D TEE assisted navigating the prosthesis into the orifice. Positioning was not intuitive and required trial and error method. A 3-D epicardial ultrasound allowed positioning of the valve into the orifice. Positioning of the clip was difficult because of artifacts with multiple reflections and shadowing. Augmented reality displayed the entire prosthesis and the tools without artifacts; provided intuitive information on navigation, positioning, and orientation of tools; and improved significantly image guidance and surgical skill. Augmented virtual reality, with tracked 2-D or 3-D ultrasound imaging, provides guidance that can effectively substitute for direct vision during beating heart intracardiac surgery.

  16. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    ERIC Educational Resources Information Center

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-01-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…

  17. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    ERIC Educational Resources Information Center

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-01-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…

  18. The AIDLET Model: A Framework for Selecting Games, Simulations and Augmented Reality Environments in Mobile Learning

    ERIC Educational Resources Information Center

    Bidarra, José; Rothschild, Meagan; Squire, Kurt; Figueiredo, Mauro

    2013-01-01

    Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for…

  19. Examining Young Children's Perception toward Augmented Reality-Infused Dramatic Play

    ERIC Educational Resources Information Center

    Han, Jeonghye; Jo, Miheon; Hyun, Eunja; So, Hyo-jeong

    2015-01-01

    Amid the increasing interest in applying augmented reality (AR) in educational settings, this study explores the design and enactment of an AR-infused robot system to enhance children's satisfaction and sensory engagement with dramatic play activities. In particular, we conducted an exploratory study to empirically examine children's perceptions…

  20. The Use of Augmented Reality Games in Education: A Review of the Literature

    ERIC Educational Resources Information Center

    Koutromanos, George; Sofos, Alivisos; Avraamidou, Lucy

    2015-01-01

    This paper provides a review of the literature about the use of augmented reality in education and specifically in the context of formal and informal environments. It examines the research that has been conducted up to date on the use of those games through mobile technology devices such as mobile phones and tablets, both in primary and secondary…

  1. The Use of Augmented Reality in Formal Education: A Scoping Review

    ERIC Educational Resources Information Center

    Saltan, Fatih; Arslan, Ömer

    2017-01-01

    Augmented Reality (AR) is recognized as one of the most important developments in educational technology for both higher and K-12 education as emphasized in Horizon report (Johnson et al., 2016, 2015). Furthermore, AR is expected to achieve widespread adoption that will take two to three years in higher education and four to five years in K-12…

  2. Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors

    ERIC Educational Resources Information Center

    Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor

    2016-01-01

    Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…

  3. Applying Augmented Reality to Enhance Learning: A Study of Different Teaching Materials

    ERIC Educational Resources Information Center

    Hung, Y.-H.; Chen, C.-H.; Huang, S.-W.

    2017-01-01

    The objective of this study was to determine the usefulness of augmented reality (AR) in teaching. An experiment was conducted to examine children's learning performances, which included the number of errors they made, their ability to remember the content of what they had read and their satisfaction with the three types of teaching materials,…

  4. An augmented reality framework for optimization of computer assisted navigation in endovascular surgery.

    PubMed

    Cheng, Irene; Shen, Rui; Moreau, Richard; Brizzi, Vicenzo; Rossol, Nathaniel; Basu, Anup

    2014-01-01

    Endovascular surgery is performed by placing a catheter through blood vessels. Due to the fragility of arteries and the difficulty in controlling a long elastic wire to reach the target region, training plays an extremely important role in helping a surgeon acquire the required complex skills. Virtual reality simulators and augmented reality systems have proven to be effective in minimally invasive surgical training. These systems, however, often employ pre-captured or computer-generated medical images. We have developed an augmented reality system for ultrasound-guided endovascular surgical training, where real ultrasound images captured during the procedure are registered with a pre-scanned phantom model to give the operator a realistic experience. Our goal is to extend the planning and training environment to deliver a system for computer assisted remote endovascular surgery where the navigation of a catheter can be controlled through a robotic device based on the guidance provided by an endovascular surgeon.

  5. Augmented-reality visualization in iMRI operating room: system description and preclinical testing

    NASA Astrophysics Data System (ADS)

    Sauer, Frank; Khamene, Ali; Bascle, Benedicte; Vogt, Sebastian; Rubino, Gregory

    2002-05-01

    We developed an augmented reality system targeting image guidance for surgical procedures. The surgeon wears a video- see-through head mounted display that provides him with a stereo video view of the patient. The live video images are augmented with graphical representations of anatomical structures that are segmented from medical image data. The surgeon can see, e.g., a tumor in its actual location inside the patient. This in-situ visualization, where the computer maps the image information onto the patient, promises the most direct, intuitive guidance for surgical procedures. In this paper, we describe technical details of the system and its installation in UCLA's iMRI operating room. We added instrument tracking to the capabilities of our system to prepare it for minimally invasive procedures. We discuss several pre-clinical phantom experiments that support the potential clinical usefulness of augmented reality guidance.

  6. A novel augmented reality system of image projection for image-guided neurosurgery.

    PubMed

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  7. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study.

    PubMed

    Assis, Gilda Aparecida de; Corrêa, Ana Grasielle Dionísio; Martins, Maria Bernardete Rodrigues; Pedrozo, Wendel Goes; Lopes, Roseli de Deus

    2016-08-01

    To determine the clinical feasibility of a system based on augmented reality for upper-limb (UL) motor rehabilitation of stroke participants. A physiotherapist instructed the participants to accomplish tasks in augmented reality environment, where they could see themselves and their surroundings, as in a mirror. Two case studies were conducted. Participants were evaluated pre- and post-intervention. The first study evaluated the UL motor function using Fugl-Meyer scale. Data were compared using non-parametric sign tests and effect size. The second study used the gain of motion range of shoulder flexion and abduction assessed by computerized biophotogrammetry. At a significance level of 5%, Fugl-Meyer scores suggested a trend for greater UL motor improvement in the augmented reality group than in the other. Moreover, effect size value 0.86 suggested high practical significance for UL motor rehabilitation using the augmented reality system. System provided promising results for UL motor rehabilitation, since enhancements have been observed in the shoulder range of motion and speed. Implications for Rehabilitation Gain of range of motion of flexion and abduction of the shoulder of post-stroke patients can be achieved through an augmented reality system containing exercises to promote the mental practice. NeuroR system provides a mental practice method combined with visual feedback for motor rehabilitation of chronic stroke patients, giving the illusion of injured upper-limb (UL) movements while the affected UL is resting. Its application is feasible and safe. This system can be used to improve UL rehabilitation, an additional treatment past the traditional period of the stroke patient hospitalization and rehabilitation.

  8. Systematic review on the effectiveness of augmented reality applications in medical training.

    PubMed

    Barsom, E Z; Graafland, M; Schijven, M P

    2016-10-01

    Computer-based applications are increasingly used to support the training of medical professionals. Augmented reality applications (ARAs) render an interactive virtual layer on top of reality. The use of ARAs is of real interest to medical education because they blend digital elements with the physical learning environment. This will result in new educational opportunities. The aim of this systematic review is to investigate to which extent augmented reality applications are currently used to validly support medical professionals training. PubMed, Embase, INSPEC and PsychInfo were searched using predefined inclusion criteria for relevant articles up to August 2015. All study types were considered eligible. Articles concerning AR applications used to train or educate medical professionals were evaluated. Twenty-seven studies were found relevant, describing a total of seven augmented reality applications. Applications were assigned to three different categories. The first category is directed toward laparoscopic surgical training, the second category toward mixed reality training of neurosurgical procedures and the third category toward training echocardiography. Statistical pooling of data could not be performed due to heterogeneity of study designs. Face-, construct- and concurrent validity was proven for two applications directed at laparoscopic training, face- and construct validity for neurosurgical procedures and face-, content- and construct validity in echocardiography training. In the literature, none of the ARAs completed a full validation process for the purpose of use. Augmented reality applications that support blended learning in medical training have gained public and scientific interest. In order to be of value, applications must be able to transfer information to the user. Although promising, the literature to date is lacking to support such evidence.

  9. Smart maintenance of riverbanks using a standard data layer and Augmented Reality

    NASA Astrophysics Data System (ADS)

    Pierdicca, Roberto; Frontoni, Emanuele; Zingaretti, Primo; Mancini, Adriano; Malinverni, Eva Savina; Tassetti, Anna Nora; Marcheggiani, Ernesto; Galli, Andrea

    2016-10-01

    Linear buffer strips (BS) along watercourses are commonly adopted to reduce run-off, accumulation of bank-top sediments and the leaking of pesticides into fresh-waters, which strongly increase water pollution. However, the monitoring of their conditions is a difficult task because they are scattered over wide rural areas. This work demonstrates the benefits of using a standard data layer and Augmented Reality (AR) in watershed control and outlines the guideline of a novel approach for the health-check of linear BS. We designed a mobile environmental monitoring system for smart maintenance of riverbanks by embedding the AR technology within a Geographical Information System (GIS). From the technological point of view, the system's architecture consists of a cloud-based service for data sharing, using a standard data layer, and of a mobile device provided with a GPS based AR engine for augmented data visualization. The proposed solution aims to ease the overall inspection process by reducing the time required to run a survey. Indeed, ordinary operational survey conditions are usually performed basing the fieldwork on just classical digitized maps. Our application proposes to enrich inspections by superimposing information on the device screen with the same point of view of the camera, providing an intuitive visualization of buffer strip location. This way, the inspection officer can quickly and dynamically access relevant information overlaying geographic features, comments and other contents in real time. The solution has been tested in fieldwork to prove at what extent this cutting-edge technology contributes to an effective monitoring over large territorial settings. The aim is to encourage officers, land managers and practitioners toward more effective monitoring and management practices.

  10. Mobile augmented reality in support of building damage and safety assessment

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kerle, N.; Gerke, M.

    2016-02-01

    Rapid and accurate assessment of the state of buildings in the aftermath of a disaster event is critical for an effective and timely response. For rapid damage assessment of buildings, the utility of remote sensing (RS) technology has been widely researched, with focus on a range of platforms and sensors. However, RS-based approaches still have limitations to assess structural integrity and the specific damage status of individual buildings. Structural integrity refers to the ability of a building to hold the entire structure. Consequently, ground-based assessment conducted by structural engineers and first responders is still required. This paper demonstrates the concept of mobile augmented reality (mAR) to improve performance of building damage and safety assessment in situ. Mobile AR provides a means to superimpose various types of reference or pre-disaster information (virtual data) on actual post-disaster building data (real buildings). To adopt mobile AR, this study defines a conceptual framework based on the level of complexity (LOC). The framework consists of four LOCs, and for each of these, the data types, required processing steps, AR implementation and use for damage assessment are described. Based on this conceptualization we demonstrate prototypes of mAR for both indoor and outdoor purposes. Finally, we conduct a user evaluation of the prototypes to validate the mAR approach for building damage and safety assessment.

  11. Mobile Augmented Reality in support of building damage and safety assessment

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kerle, N.; Gerke, M.

    2015-04-01

    Rapid and accurate assessment of the state of buildings in the aftermath of a disaster event is critical for an effective and timely response. For rapid damage assessment of buildings, the utility of remote sensing (RS) technology has been widely researched, with focus on a range of platforms and sensors. However, RS-based approach still have limitations to assess structural integrity and the specific damage status of individual buildings. Consequently, ground-based assessment conducted by structural engineers and first responders is still required. This paper demonstrates the concept of mobile Augmented Reality (mAR) to improve performance of building damage and safety assessment in situ. Mobile AR provides a means to superimpose various types of reference or pre-disaster information (virtual data) on actual post-disaster building data (real building). To adopt mobile AR, this study defines a conceptual framework based on Level of Complexity (LOC). The framework consists of four LOCs, and for each of these the data types, required processing steps, AR implementation, and use for damage assessment, are described. Based on this conceptualization we demonstrate prototypes of mAR for both indoor and outdoor purposes. Finally, we conduct a user evaluation of the prototypes to validate the mAR approach for building damage and safety assessment.

  12. A method for real-time generation of augmented reality work instructions via expert movements

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaskar; Winer, Eliot

    2015-03-01

    Augmented Reality (AR) offers tremendous potential for a wide range of fields including entertainment, medicine, and engineering. AR allows digital models to be integrated with a real scene (typically viewed through a video camera) to provide useful information in a variety of contexts. The difficulty in authoring and modifying scenes is one of the biggest obstacles to widespread adoption of AR. 3D models must be created, textured, oriented and positioned to create the complex overlays viewed by a user. This often requires using multiple software packages in addition to performing model format conversions. In this paper, a new authoring tool is presented which uses a novel method to capture product assembly steps performed by a user with a depth+RGB camera. Through a combination of computer vision and imaging process techniques, each individual step is decomposed into objects and actions. The objects are matched to those in a predetermined geometry library and the actions turned into animated assembly steps. The subsequent instruction set is then generated with minimal user input. A proof of concept is presented to establish the method's viability.

  13. Registration based on projective reconstruction technique for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2005-01-01

    In AR systems, registration is one of the most difficult problems currently limiting their application. In this paper, we propose a simple registration method using projective reconstruction. This method consists of two steps: embedding and tracking. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In tracking, a projective reconstruction technique is used to track these four specified points to compute the model view transformation for augmentation. This method is simple, as only four points need to be specified at the embedding stage and the virtual object can then be easily augmented onto a real scene from a video sequence. In addition, it can be extended to a scenario using the projective matrix that has been obtained from previous registration results using the same AR system. The proposed method has three advantages: 1) It is fast because the linear least square method can be used to estimate the related matrix in the algorithm and it is not necessary to calculate the fundamental matrix in the extended case. 2) A virtual object can still be superimposed on a related area even if some parts of the specified area are occluded during the whole process. 3) This method is robust because it remains effective even when not all the reference points are detected during the whole process, as long as at least six pairs of related reference points correspondences can be found. Some experiments have been conducted to validate the performance of the proposed method.

  14. Augmented reality image guidance for minimally invasive coronary artery bypass

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Rueckert, Daniel; Hawkes, David; Casula, Roberto; Hu, Mingxing; Pedro, Ose; Zhang, Dong Ping; Penney, Graeme; Bello, Fernando; Edwards, Philip

    2008-03-01

    We propose a novel system for image guidance in totally endoscopic coronary artery bypass (TECAB). A key requirement is the availability of 2D-3D registration techniques that can deal with non-rigid motion and deformation. Image guidance for TECAB is mainly required before the mechanical stabilization of the heart, thus the most dominant source of non-rigid deformation is the motion of the beating heart. To augment the images in the endoscope of the da Vinci robot, we have to find the transformation from the coordinate system of the preoperative imaging modality to the system of the endoscopic cameras. In a first step we build a 4D motion model of the beating heart. Intraoperatively we can use the ECG or video processing to determine the phase of the cardiac cycle. We can then take the heart surface from the motion model and register it to the stereo-endoscopic images of the da Vinci robot using 2D-3D registration methods. We are investigating robust feature tracking and intensity-based methods for this purpose. Images of the vessels available in the preoperative coordinate system can then be transformed to the camera system and projected into the calibrated endoscope view using two video mixers with chroma keying. It is hoped that the augmented view can improve the efficiency of TECAB surgery and reduce the conversion rate to more conventional procedures.

  15. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  16. Augmented reality: don't we all wish we lived in one?

    SciTech Connect

    Hayes, Birchard P; Michel, Kelly D; Few, Douglas A; Gertman, David; Le Blanc, Katya

    2010-01-01

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometry systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.

  17. Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls.

    PubMed

    Khor, Wee Sim; Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason

    2016-12-01

    The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena.

  18. Augmented and virtual reality in surgery—the digital surgical environment: applications, limitations and legal pitfalls

    PubMed Central

    Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason

    2016-01-01

    The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena. PMID:28090510

  19. Virtual reality, augmented reality, and robotics applied to digestive operative procedures: from in vivo animal preclinical studies to clinical use

    NASA Astrophysics Data System (ADS)

    Soler, Luc; Marescaux, Jacques

    2006-04-01

    Technological innovations of the 20 th century provided medicine and surgery with new tools, among which virtual reality and robotics belong to the most revolutionary ones. Our work aims at setting up new techniques for detection, 3D delineation and 4D time follow-up of small abdominal lesions from standard mecial images (CT scsan, MRI). It also aims at developing innovative systems making tumor resection or treatment easier with the use of augmented reality and robotized systems, increasing gesture precision. It also permits a realtime great distance connection between practitioners so they can share a same 3D reconstructed patient and interact on a same patient, virtually before the intervention and for real during the surgical procedure thanks to a telesurgical robot. In preclinical studies, our first results obtained from a micro-CT scanner show that these technologies provide an efficient and precise 3D modeling of anatomical and pathological structures of rats and mice. In clinical studies, our first results show the possibility to improve the therapeutic choice thanks to a better detection and and representation of the patient before performing the surgical gesture. They also show the efficiency of augmented reality that provides virtual transparency of the patient in real time during the operative procedure. In the near future, through the exploitation of these systems, surgeons will program and check on the virtual patient clone an optimal procedure without errors, which will be replayed on the real patient by the robot under surgeon control. This medical dream is today about to become reality.

  20. Augmented reality and haptic interfaces for robot-assisted surgery.

    PubMed

    Yamamoto, Tomonori; Abolhassani, Niki; Jung, Sung; Okamura, Allison M; Judkins, Timothy N

    2012-03-01

    Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification. An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions. The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace. The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Virtual patients in a real clinical context using augmented reality: impact on antibiotics prescription behaviors.

    PubMed

    Nifakos, Sokratis; Zary, Nabil

    2014-01-01

    The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.

  2. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.

    PubMed

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-12-10

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  3. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    PubMed Central

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  4. Avoiding Focus Shifts in Surgical Telementoring Using an Augmented Reality Transparent Display.

    PubMed

    Andersen, Daniel; Popescu, Voicu; Cabrera, Maria Eugenia; Shanghavi, Aditya; Gomez, Gerardo; Marley, Sherri; Mullis, Brian; Wachs, Juan

    2016-01-01

    Conventional surgical telementoring systems require the trainee to shift focus away from the operating field to a nearby monitor to receive mentor guidance. This paper presents the next generation of telementoring systems. Our system, STAR (System for Telementoring with Augmented Reality) avoids focus shifts by placing mentor annotations directly into the trainee's field of view using augmented reality transparent display technology. This prototype was tested with pre-medical and medical students. Experiments were conducted where participants were asked to identify precise operating field locations communicated to them using either STAR or a conventional telementoring system. STAR was shown to improve accuracy and to reduce focus shifts. The initial STAR prototype only provides an approximate transparent display effect, without visual continuity between the display and the surrounding area. The current version of our transparent display provides visual continuity by showing the geometry and color of the operating field from the trainee's viewpoint.

  5. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  6. Augmented reality partial nephrectomy: examining the current status and future perspectives.

    PubMed

    Hughes-Hallett, Archie; Mayer, Erik K; Marcus, Hani J; Cundy, Thomas P; Pratt, Philip J; Darzi, Ara W; Vale, Justin A

    2014-02-01

    A minimal access approach to partial nephrectomy has historically been under-utilized, but is now becoming more popular with the growth of robot-assisted laparoscopy. One of the criticisms of minimal access partial nephrectomy is the loss of haptic feedback. Augmented reality operating environments are forecast to play a major enabling role in the future of minimal access partial nephrectomy by integrating enhanced visual information to supplement this loss of haptic sensation. In this article, we systematically examine the current status of augmented reality in partial nephrectomy by identifying existing research challenges and exploring future agendas for this technology to achieve wider clinical translation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)

    2002-01-01

    An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.

  8. Comparative evaluation of monocular augmented-reality display for surgical microscopes.

    PubMed

    Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N

    2012-01-01

    Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.

  9. Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device.

    PubMed

    Karmonik, Christof; Boone, Timothy B; Khavari, Rose

    2017-07-06

    Commercial availability of three-dimensional (3D) augmented reality (AR) devices has increased interest in using this novel technology for visualizing neuroimaging data. Here, a technical workflow and algorithm for importing 3D surface-based segmentations derived from magnetic resonance imaging data into a head-mounted AR device is presented and illustrated on selected examples: the pial cortical surface of the human brain, fMRI BOLD maps, reconstructed white matter tracts, and a brain network of functional connectivity.

  10. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    PubMed

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  11. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    PubMed

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  12. Removal of recurrent intraorbital tumour using a system of augmented reality.

    PubMed

    Scolozzi, P; Bijlenga, P

    2017-09-13

    The most crucial step in the management of pleomorphic adenoma of the lacrimal gland is choosing the optimal approach for excision. We report the successful removal of a recurrent pleomorphic adenoma of the lacrimal gland in a 42-year-old woman using a specific microscope-based system of augmented reality. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

    PubMed Central

    Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan

    2017-01-01

    PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598

  14. Building a Mobile Augmented Reality System for Embedded Training: Lessons Learned

    DTIC Science & Technology

    2004-12-01

    tracked see-through Head Mounted Display (HMD) (Sony Glasstron, Microvision Nomad, or Trivisio). Three-dimensional ( 3D ) data about the environment is...graphics, 3D displays, tracking, vision, mobile augmented reality and wearable computers. Baillot is a member of the IEEE Computer Society. Simon...which he is looking. Figure 1 shows the BARS wearable system. Based on this data, the desired 3D data is rendered to appear as if it were in the real

  15. Effectiveness of Occluded Object Representations at Displaying Ordinal Depth Information in Augmented Reality

    DTIC Science & Technology

    2013-03-01

    Displaying Ordinal Depth Information in Augmented Reality 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...iconographic styles in relaying ordinal depth information at vista space distances of more than 1900m. The experiment consisted of two tasks: distance...judgments with respect to discrete zones and ordinal depth determination in the presence of icon overlap. The virtual object representations were

  16. Technical experience from clinical studies with INPRES and a concept for a miniature augmented reality system

    NASA Astrophysics Data System (ADS)

    Sudra, Gunther; Marmulla, Ruediger; Salb, Tobias; Gockel, Tilo; Eggers, Georg; Giesler, Bjoern; Ghanai, Sassan; Fritz, Dominik; Dillmann, Ruediger; Muehling, Joachim

    2005-04-01

    This paper is going to present a summary of our technical experience with the INPRES System -- an augmented reality system based upon a tracked see-through head-mounted display. With INPRES a complete augmented reality solution has been developed that has crucial advantages when compared with previous navigation systems. Using these techniques the surgeon does not need to turn his head from the patient to the computer monitor and vice versa. The system's purpose is to display virtual objects, e.g. cutting trajectories, tumours and risk-areas from computer-based surgical planning systems directly in the surgical site. The INPRES system was evaluated in several patient experiments in craniofacial surgery at the Department of Oral and Maxillofacial Surgery/University of Heidelberg. We will discuss the technical advantages as well as the limitations of INPRES and present two strategies as a result. On the one hand we will improve the existing and successful INPRES system with new hardware and a new calibration method to compensate for the stated disadvantage. On the other hand we will focus on miniaturized augmented reality systems and present a new concept based on fibre optics. This new system should be easily adaptable at surgical instruments and capable of projecting small structures. It consists of a source of light, a miniature TFT display, a fibre optic cable and a tool grip. Compared to established projection systems it has the capability of projecting into areas that are only accessible by a narrow path. No wide surgical exposure of the region is necessary for the use of augmented reality.

  17. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery.

    PubMed

    Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng

    2012-12-01

    Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.

  18. Tracking and registration method based on vector operation for augmented reality system

    NASA Astrophysics Data System (ADS)

    Gao, Yanfei; Wang, Hengyou; Bian, Xiaoning

    2015-08-01

    Tracking and registration is one key issue for an augmented reality (AR) system. For the marker-based AR system, the research focuses on detecting the real-time position and orientation of camera. In this paper, we describe a method of tracking and registration using the vector operations. Our method is proved to be stable and accurate, and have a good real-time performance.

  19. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    PubMed

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.

  20. Microscopic augmented-reality indicators for long-term live cell time-lapsed imaging.

    PubMed

    Yun, Kyungwon; Chung, Jungman; Park, Yong; Lee, Byungjoo; Lee, Won Gu; Bang, Hyunwoo

    2013-06-07

    Microscopic observations of cultured cells in many lab-on-a-chip applications mostly utilize digital image acquisition using CCD sensors connected to a personal computer. The functionalities of this digital imaging can be enhanced by implementing computer-vision based augmented reality technologies. In this study, we present a new method for precisely relocating biological specimens under microscopic inspections by using augmented reality patterns, called microscopic augmented reality indicators (μ-ARIs). Since the method only requires sticky films attached under sample containers of any shape, long-term live cell observations can be conducted at much less extra cost than with conventional methods. On these sticky films, multiple arrays of position-indicating patterns were imprinted to provide a reference coordinate system for recording and relocating the accurate position and rotation of the specimen under inspection. This approach can be useful for obtaining the exact locations of individual cells inside biological samples using μ-ARI imprinted transparent films in a rapid and controlled manner.

  1. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    PubMed Central

    López-Mir, F.; Naranjo, V.; Fuertes, J. J.; Alcañiz, M.; Bueno, J.; Pareja, E.

    2013-01-01

    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery. PMID:24236293

  2. Does Augmented Reality Affect High School Students' Learning Outcomes in Chemistry?

    NASA Astrophysics Data System (ADS)

    Renner, Jonathan Christopher

    Some teens may prefer using a self-directed, constructivist, and technologic approach to learning rather than traditional classroom instruction. If it can be demonstrated, educators may adjust their teaching methodology. The guiding research question for this study focused on how augmented reality affects high school students' learning outcomes in chemistry, as measured by a pretest and posttest methodology when ensuring that the individual outcomes were not the result of group collaboration. This study employed a quantitative, quasi-experimental study design that used a comparison and experimental group. Inferential statistical analysis was employed. The study was conducted at a high school in southwest Colorado. Eighty-nine respondents returned completed and signed consent forms, and 78 participants completed the study. Results demonstrated that augmented reality instruction caused posttest scores to significantly increase, as compared to pretest scores, but it was not as effective as traditional classroom instruction. Scores did improve under both types of instruction; therefore, more research is needed in this area. The present study was the first quantitative experiment controlling for individual learning to validate augmented reality using mobile handheld digital devices that affected individual students' learning outcomes without group collaboration. This topic was important to the field of education as it may help educators understand how students learn and it may also change the way students are taught.

  3. Feasibility and safety of augmented reality-assisted urological surgery using smartglass.

    PubMed

    Borgmann, H; Rodríguez Socarrás, M; Salem, J; Tsaur, I; Gomez Rivas, J; Barret, E; Tortolero, L

    2017-06-01

    To assess the feasibility, safety and usefulness of augmented reality-assisted urological surgery using smartglass (SG). Seven urological surgeons (3 board urologists and 4 urology residents) performed augmented reality-assisted urological surgery using SG for 10 different types of operations and a total of 31 urological operations. Feasibility was assessed using technical metadata (number of photographs taken/number of videos recorded/video time recorded) and structured interviews with the urologists on their use of SG. Safety was evaluated by recording complications and grading according to the Clavien-Dindo classification. Usefulness of SG for urological surgery was queried in structured interviews and in a survey. The implementation of SG use during urological surgery was feasible with no intrinsic (technical defect) or extrinsic (inability to control the SG function) obstacles being observed. SG use was safe as no grade 3-5 complications occurred for the series of 31 urological surgeries of different complexities. Technical applications of SG included taking photographs/recording videos for teaching and documentation, hands-free teleconsultation, reviewing patients' medical records and images and searching the internet for health information. Overall usefulness of SG for urological surgery was rated as very high by 43 % and high by 29 % of surgeons. Augmented reality-assisted urological surgery using SG is both feasible and safe and also provides several useful functions for urological surgeons. Further developments and investigations are required in the near future to harvest the great potential of this exciting technology for urological surgery.

  4. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  5. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  6. Design and validation of an augmented reality system for laparoscopic surgery in a real environment.

    PubMed

    López-Mir, F; Naranjo, V; Fuertes, J J; Alcañiz, M; Bueno, J; Pareja, E

    2013-01-01

    This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.

  7. Planning, simulation, and augmented reality for robotic cardiac procedures: The STARS system of the ChIR team.

    PubMed

    Coste-Manière, Eve; Adhami, Louaï; Mourgues, Fabien; Carpentier, Alain

    2003-04-01

    This paper presents STARS (Simulation and Transfer Architecture for Robotic Surgery), a versatile system that aims at enhancing minimally invasive robotic surgery through patient-dependent optimized planning, realistic simulation, safe supervision, and augmented reality. The underlying architecture of the proposed approach is presented, then each component is detailed. An experimental validation is conducted on a dog for a coronary bypass intervention using the Da Vinci(TM) surgical system focusing on planing, registration, and augmented reality trials.

  8. Augmented reality and cone beam CT guidance for transoral robotic surgery.

    PubMed

    Liu, Wen P; Richmon, Jeremy D; Sorger, Jonathan M; Azizian, Mahdi; Taylor, Russell H

    2015-09-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods.

  9. Augmented reality and cone beam CT guidance for transoral robotic surgery

    PubMed Central

    Richmon, Jeremy D.; Sorger, Jonathan M.; Azizian, Mahdi; Taylor, Russell H.

    2015-01-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods. PMID:26531203

  10. Augmented reality system for MR-guided interventions: phantom studies and first animal test

    NASA Astrophysics Data System (ADS)

    Vogt, Sebastian; Wacker, Frank; Khamene, Ali; Elgort, Daniel R.; Sielhorst, Tobias; Niemann, Heinrich; Duerk, Jeff; Lewin, Jonathan S.; Sauer, Frank

    2004-05-01

    We developed an augmented reality navigation system for MR-guided interventions. A head-mounted display provides in real-time a stereoscopic video-view of the patient, which is augmented with three-dimensional medical information to perform MR-guided needle placement procedures. Besides with the MR image information, we augment the scene with 3D graphics representing a forward extension of the needle and the needle itself. During insertion, the needle can be observed virtually at its actual location in real-time, supporting the interventional procedure in an efficient and intuitive way. In this paper we report on quantitative results of AR guided needle placement procedures on gel phantoms with embedded targets of 12mm and 6mm diameter; we furthermore evaluate our first animal experiment involving needle insertion into deep lying anatomical structures of a pig.

  11. Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.

    PubMed

    Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile

    2015-05-01

    This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.

  12. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    PubMed

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  13. A Design Study Investigating Augmented Reality and Photograph Annotation in a Digitalized Grossing Workstation

    PubMed Central

    Chow, Joyce A.; Törnros, Martin E.; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F.; Kurti, Arianit

    2017-01-01

    Context: Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Aims: Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. Settings and Design: The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Subjects and Methods: Our research institute focused on an experimental and “designerly” approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Statistical Analysis Used: Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as “rapid ethnography” and “conversation with materials”. Results: We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked

  14. A Design Study Investigating Augmented Reality and Photograph Annotation in a Digitalized Grossing Workstation.

    PubMed

    Chow, Joyce A; Törnros, Martin E; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F; Kurti, Arianit

    2017-01-01

    Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Our research institute focused on an experimental and "designerly" approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as "rapid ethnography" and "conversation with materials". We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked information. The augmented reality magnetically tracked scalpel reduces tool switching though limitations

  15. Development of an Augmented Reality Rare Book and Manuscript for Special Library Collection (AR Rare-BM)

    NASA Astrophysics Data System (ADS)

    Parhizkar, Behrang; Badioze Zaman, Halimah

    This research aims to study the development of augmented reality of rare books or manuscripts of special collections in the libraries. Augmented reality has the ability to enhance users' perception of and interaction with the real world. Libraries has to ensure that this special collection is well handled as these rare books and manuscripts are priceless as they represent the inheritance of each nation. The use of augmented reality will be able to model these valuable manuscripts and rare books and appear as augmented reality to ensure that the collection can be better maintained. Users will be able to open the augmented rare book, and flip the pages, as well as read the contents of the rare books and manuscripts using the peripheral equipment such as the HMD or the Marker. The AR Rare-BM developed is modeled as an augmented reality that allows users to put the augmented rare book on his palm or table and manipulate it while reading. Users can also leave a bookmark in the AR Rare-BM after reading so that they can read their favourite sections again at a later date.

  16. In Vivo versus Augmented Reality Exposure in the Treatment of Small Animal Phobia: A Randomized Controlled Trial.

    PubMed

    Botella, Cristina; Pérez-Ara, M Ángeles; Bretón-López, Juana; Quero, Soledad; García-Palacios, Azucena; Baños, Rosa María

    2016-01-01

    Although in vivo exposure is the treatment of choice for specific phobias, some acceptability problems have been associated with it. Virtual Reality exposure has been shown to be as effective as in vivo exposure, and it is widely accepted for the treatment of specific phobias, but only preliminary data are available in the literature about the efficacy of Augmented Reality. The purpose of the present study was to examine the efficacy and acceptance of two treatment conditions for specific phobias in which the exposure component was applied in different ways: In vivo exposure (N = 31) versus an Augmented Reality system (N = 32) in a randomized controlled trial. "One-session treatment" guidelines were followed. Participants in the Augmented Reality condition significantly improved on all the outcome measures at post-treatment and follow-ups. When the two treatment conditions were compared, some differences were found at post-treatment, favoring the participants who received in vivo exposure. However, these differences disappeared at the 3- and 6-month follow-ups. Regarding participants' expectations and satisfaction with the treatment, very positive ratings were reported in both conditions. In addition, participants from in vivo exposure condition considered the treatment more useful for their problem whereas participants from Augmented Reality exposure considered the treatment less aversive. Results obtained in this study indicate that Augmented Reality exposure is an effective treatment for specific phobias and well accepted by the participants.

  17. In Vivo versus Augmented Reality Exposure in the Treatment of Small Animal Phobia: A Randomized Controlled Trial

    PubMed Central

    Botella, Cristina; Pérez-Ara, M. Ángeles; Bretón-López, Juana; Quero, Soledad; García-Palacios, Azucena; Baños, Rosa María

    2016-01-01

    Although in vivo exposure is the treatment of choice for specific phobias, some acceptability problems have been associated with it. Virtual Reality exposure has been shown to be as effective as in vivo exposure, and it is widely accepted for the treatment of specific phobias, but only preliminary data are available in the literature about the efficacy of Augmented Reality. The purpose of the present study was to examine the efficacy and acceptance of two treatment conditions for specific phobias in which the exposure component was applied in different ways: In vivo exposure (N = 31) versus an Augmented Reality system (N = 32) in a randomized controlled trial. “One-session treatment” guidelines were followed. Participants in the Augmented Reality condition significantly improved on all the outcome measures at post-treatment and follow-ups. When the two treatment conditions were compared, some differences were found at post-treatment, favoring the participants who received in vivo exposure. However, these differences disappeared at the 3- and 6-month follow-ups. Regarding participants’ expectations and satisfaction with the treatment, very positive ratings were reported in both conditions. In addition, participants from in vivo exposure condition considered the treatment more useful for their problem whereas participants from Augmented Reality exposure considered the treatment less aversive. Results obtained in this study indicate that Augmented Reality exposure is an effective treatment for specific phobias and well accepted by the participants. PMID:26886423

  18. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study.

    PubMed

    Fallavollita, Pascal; Brand, Alexander; Wang, Lejing; Euler, Ekkehard; Thaller, Peter; Navab, Nassir; Weidert, Simon

    2016-11-01

    Determination of lower limb alignment is a prerequisite for successful orthopedic surgical treatment. Traditional methods include the electrocautery cord, alignment rod, or axis board which rely solely on C-arm fluoroscopy navigation and are radiation intensive. To assess a new augmented reality technology in determining lower limb alignment. A camera-augmented mobile C-arm (CamC) technology was used to create a panorama image consisting of hip, knee, and ankle X-rays. Twenty-five human cadaver legs were used for validation with random varus or valgus deformations. Five clinicians performed experiments that consisted in achieving acceptable mechanical axis deviation. The applicability of the CamC technology was assessed with direct comparison to ground-truth CT. A t test, Pearson's correlation, and ANOVA were used to determine statistical significance. The value of Pearson's correlation coefficient R was 0.979 which demonstrates a strong positive correlation between the CamC and ground-truth CT data. The analysis of variance produced a p value equal to 0.911 signifying that clinician expertise differences were not significant with regard to the type of system used to assess mechanical axis deviation. All described measurements demonstrated valid measurement of lower limb alignment. With minimal effort, clinicians required only 3 X-ray image acquisitions using the augmented reality technology to achieve reliable mechanical axis deviation.

  19. Handling topological changes during elastic registration : Application to augmented reality in laparoscopic surgery.

    PubMed

    Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane

    2017-03-01

    Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.

  20. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  1. Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings

    PubMed Central

    Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146

  2. Augmented reality on poster presentations, in the field and in the classroom

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Kolawole, Folarin

    2017-04-01

    Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.

  3. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  4. Augmented reality for the assessment of children's spatial memory in real settings.

    PubMed

    Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement.

  5. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy.

    PubMed

    Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiaofei; Gan, Jiliang

    2011-09-01

    An augmented reality tool allows for visual tracking of real anatomic structures in superposition with volume-rendered computed tomographic or magnetic resonance imaging scans and thus can be used for navigated translocation of important structures during operation. In this feasibility study, ARToolKit was used in mandibular angle oblique split osteotomy to define the cutting planes according to an operative plan. We overlay the operative plan on the model of a mandible made by rapid prototyping technology, and the technology was successfully used in 15 patients. Before the operation, all patients underwent computed tomographic scan, and dental casts were prepared by surgeons. Then, surgeons make the occlusal splint according to a dental cast to fix the marker, which can be recognized by the ARToolKit. The occlusal splint and marker were transformed to three-dimensional data using a laser scanner, and a programmer that runs on a personal computer named Rapidform matches the marker and the mandible image to generate the virtual image. By this step, the virtual image describing the marker, occlusal splint, and the mandible image of the patient are integrated. During the operation, the operative plan was overlaid on the rapid prototyping model of the mandible as soon as the ARToolKit recognized the marker. The technology was successfully used in 15 patients; the virtual image of the mandible and the cutting-plane both overlaid the real model of the mandible. This study has reported a new and effective way for mandibular angle oblique split osteotomy, and using occlusal splint might be a powerful option for the registration of augmented reality. Augmented reality tools like ARToolKit may be helpful for control of maxillary translocation in orthognathic surgery.

  6. Real-time self-calibration of a tracked augmented reality display

    NASA Astrophysics Data System (ADS)

    Baum, Zachary; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Augmented reality systems have been proposed for image-guided needle interventions but they have not become widely used in clinical practice due to restrictions such as limited portability, low display refresh rates, and tedious calibration procedures. We propose a handheld tablet-based self-calibrating image overlay system. METHODS: A modular handheld augmented reality viewbox was constructed from a tablet computer and a semi-transparent mirror. A consistent and precise self-calibration method, without the use of any temporary markers, was designed to achieve an accurate calibration of the system. Markers attached to the viewbox and patient are simultaneously tracked using an optical pose tracker to report the position of the patient with respect to a displayed image plane that is visualized in real-time. The software was built using the open-source 3D Slicer application platform's SlicerIGT extension and the PLUS toolkit. RESULTS: The accuracy of the image overlay with image-guided needle interventions yielded a mean absolute position error of 0.99 mm (95th percentile 1.93 mm) in-plane of the overlay and a mean absolute position error of 0.61 mm (95th percentile 1.19 mm) out-of-plane. This accuracy is clinically acceptable for tool guidance during various procedures, such as musculoskeletal injections. CONCLUSION: A self-calibration method was developed and evaluated for a tracked augmented reality display. The results show potential for the use of handheld image overlays in clinical studies with image-guided needle interventions.

  7. Preclinical usability study of multiple augmented reality concepts for K-wire placement.

    PubMed

    Fischer, Marius; Fuerst, Bernhard; Lee, Sing Chun; Fotouhi, Javad; Habert, Severine; Weidert, Simon; Euler, Ekkehard; Osgood, Greg; Navab, Nassir

    2016-06-01

    In many orthopedic surgeries, there is a demand for correctly placing medical instruments (e.g., K-wire or drill) to perform bone fracture repairs. The main challenge is the mental alignment of X-ray images acquired using a C-arm, the medical instruments, and the patient, which dramatically increases in complexity during pelvic surgeries. Current solutions include the continuous acquisition of many intra-operative X-ray images from various views, which will result in high radiation exposure, long surgical durations, and significant effort and frustration for the surgical staff. This work conducts a preclinical usability study to test and evaluate mixed reality visualization techniques using intra-operative X-ray, optical, and RGBD imaging to augment the surgeon's view to assist accurate placement of tools. We design and perform a usability study to compare the performance of surgeons and their task load using three different mixed reality systems during K-wire placements. The three systems are interventional X-ray imaging, X-ray augmentation on 2D video, and 3D surface reconstruction augmented by digitally reconstructed radiographs and live tool visualization. The evaluation criteria include duration, number of X-ray images acquired, placement accuracy, and the surgical task load, which are observed during 21 clinically relevant interventions performed by surgeons on phantoms. Finally, we test for statistically significant improvements and show that the mixed reality visualization leads to a significantly improved efficiency. The 3D visualization of patient, tool, and DRR shows clear advantages over the conventional X-ray imaging and provides intuitive feedback to place the medical tools correctly and efficiently.

  8. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  9. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    PubMed

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-04

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

  10. An effective visualization technique for depth perception in augmented reality-based surgical navigation.

    PubMed

    Choi, Hyunseok; Cho, Byunghyun; Masamune, Ken; Hashizume, Makoto; Hong, Jaesung

    2016-03-01

    Depth perception is a major issue in augmented reality (AR)-based surgical navigation. We propose an AR and virtual reality (VR) switchable visualization system with distance information, and evaluate its performance in a surgical navigation set-up. To improve depth perception, seamless switching from AR to VR was implemented. In addition, the minimum distance between the tip of the surgical tool and the nearest organ was provided in real time. To evaluate the proposed techniques, five physicians and 20 non-medical volunteers participated in experiments. Targeting error, time taken, and numbers of collisions were measured in simulation experiments. There was a statistically significant difference between a simple AR technique and the proposed technique. We confirmed that depth perception in AR could be improved by the proposed seamless switching between AR and VR, and providing an indication of the minimum distance also facilitated the surgical tasks. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality

    NASA Astrophysics Data System (ADS)

    Hua, Hong

    2017-05-01

    Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).

  12. Building a hybrid patient's model for augmented reality in surgery: a registration problem.

    PubMed

    Lavallée, S; Cinquin, P; Szeliski, R; Peria, O; Hamadeh, A; Champleboux, G; Troccaz, J

    1995-03-01

    In the field of Augmented Reality in Surgery, building a hybrid patient's model, i.e. merging all the data and systems available for a given application, is a difficult but crucial technical problem. The purpose is to merge all the data that constitute the patient model with the reality of the surgery, i.e. the surgical tools and feedback devices. In this paper, we first develop this concept, we show that this construction comes to a problem of registration between various sensor data, and we detail a general framework of registration. The state of the art in this domain is presented. Finally, we show results that we have obtained using a method which is based on the use of anatomical reference surfaces. We show that in many clinical cases, registration is only possible through the use of internal patient structures.

  13. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    NASA Astrophysics Data System (ADS)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  14. Low cost augmented reality for training of MRI-guided needle biopsy of the spine.

    PubMed

    George, Sandeep; Kesavadas, Thenkurussi

    2008-01-01

    In needle biopsy of the spine, an Augmented Reality (AR) image guidance system can be very effective in ensuring that while targeting the lesion with the biopsy needle, vital organs near the spine are not damaged and that the approach path is accurate. This procedure requires skill that is hard to master on patients. In this paper, we present a low cost AR based training set-up which consists of a software that uses one static single-camera tracking mechanism to locate the biopsy needle in the patient and which then augments the camera feed of the patient with virtual data providing real-time guidance to the surgeon for insertion of the biopsy needle. The setup is implemented using a phantom model consisting of a set of carefully modeled holes to simulate the needle insertion task. The lack of requirement of elaborate infrared tracking systems and high computing power makes this system very effective for educational and training purposes.

  15. Creating a Vision Channel for Observing Deep-Seated Anatomy in Medical Augmented Reality

    NASA Astrophysics Data System (ADS)

    Wimmer, Felix; Bichlmeier, Christoph; Heining, Sandro M.; Navab, Nassir

    The intent of medical Augmented Reality (AR) is to augment the surgeon's real view on the patient with the patient's interior anatomy resulting from a suitable visualization of medical imaging data. This paper presents a fast and user-defined clipping technique for medical AR allowing for cutting away any parts of the virtual anatomy and images of the real part of the AR scene hindering the surgeon's view onto the deepseated region of interest. Modeled on cut-away techniques from scientific illustrations and computer graphics, the method creates a fixed vision channel to the inside of the patient. It enables a clear view on the focussed virtual anatomy and moreover improves the perception of spatial depth.

  16. Acceptable distortion and magnification of images on reflective surfaces in an augmented reality system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi

    2016-12-01

    In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.

  17. Telemedicine supported by Augmented Reality: an interactive guide for untrained people in performing an ECG test.

    PubMed

    Bifulco, Paolo; Narducci, Fabio; Vertucci, Raffaele; Ambruosi, Pasquale; Cesarelli, Mario; Romano, Maria

    2014-11-21

    In many telemedicine applications, the correct use of medical device at the point of need is essential to provide an appropriate service. Some applications may require untrained people to interact with medical devices and patients: care delivery in transportation, military actions, home care and telemedicine training.Appropriate operation of medical device and correct connection with patient's body are crucial. In these scenarios, tailored applications of Augmented Reality can offer a valid support by guiding untrained people at the point of need. This study aims to explore the feasibility of using Augmented Reality in telemedicine applications, by facilitating an acceptable use of biomedical equipment by any unskilled person. In particular, a prototype system was built in order to estimate how untrained users, with limited or no knowledge, can effectively interact with an ECG device and properly placing ECG electrodes on patient's chest. An Augmented Reality application was built to support untrained users in performing an ECG test. Simple markers attached to the ECG device and onto patient's thorax allow camera calibration. Once objects and their pose in the space are recognized, the video of the current scene is enriched, in real-time, with additional pointers, text boxes and audio that help the untrained operator to perform the appropriate sequence of operations. All the buttons, switches, ports of the ECG device together with the location of precordial leads were coded and indicated. Some user's voice commands were also included to improve usability. Ten untrained volunteers, supported by the augmented reality, were able to carry out a complete ECG test first on a mannequin and then on a real patient in a reasonable time (about 8 minutes on average). Average positioning errors of precordial electrodes resulted less than 3 mm for the mannequin and less than 7 mm for the real patient. These preliminary findings suggest the effectiveness of the developed

  18. Recent advances in head-mounted light field displays for virtual and augmented reality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hua, Hong

    2017-02-01

    Head-mounted light field displays render a true 3D scene by sampling either the projections of the 3D scene at different depths or the directions of the light rays apparently emitted by the 3D scene and viewed from different eye positions. They are capable of rendering correct or nearly correct focus cues and addressing the very well-known vergence-accommodation mismatch problem in conventional virtual and augmented reality displays. In this talk, I will focus on reviewing recent advancements of head-mounted light field displays for VR and AR applications. I will demonstrate examples of HMD systems developed in my group.

  19. An augmented reality (AR)-based vocational task prompting system for people with cognitive impairments.

    PubMed

    Chang, Yao-Jen; Kang, Ya-Shu; Huang, Po-Chiao

    2013-10-01

    This study assessed the possibility of training three people with cognitive impairments using an augmented reality (AR)-based task prompting system. Using AR technology, the system provided picture cues, identified incorrect task steps on the fly, and helped users make corrections. Based on a multiple baseline design, the data showed that the three participants considerably increased their target response, which improved their vocational job skills during the intervention phases and enabled them to maintain the acquired job skills after intervention. The practical and developmental implications of the results are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation.

    PubMed

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; Cramer, Steven C; Lopes, Cristina Videira

    2013-01-01

    This paper features a Spatial Augmented Reality system for rehabilitation of hand and arm movement. The table-top home-based system tracks a subject's hand and creates a virtual audio-visual interface for performing rehabilitation-related tasks that involve wrist, elbow, and shoulder movements. It measures range, speed, and smoothness of movements locally and can send the real-time photos and data to the clinic for further assessment. To evaluate the system, it was tested on two normal subjects and proved functional.

  1. Conceiving a specific holographic combiner for an augmented reality HMD dedicated to surgical applications

    NASA Astrophysics Data System (ADS)

    Sittler, Gilles; Twardowski, Patrice; Fasquel, Jean-Baptiste; Fontaine, Joël

    2006-04-01

    In this paper, we present the conception of a holographic combiner for an augmented reality Head Mounted Display (HMD) dedicated to surgical applications. The recording of this holographic component has been performed at the Laboratoire des Systemes Photoniques (LSP) in Strasbourg, France. We present in this paper two different approaches for the recording of such a component: one using plane waves, and the other using spherical waves. The setup linked to the first approach has been developed and built, so that measurments of the diffraction efficiency can be shown. For the other way of recording the holographic combiner, we have performed numerical simulations to find the best recording setup to fit our specifications.

  2. GyroWand: An Approach to IMU-Based Raycasting for Augmented Reality.

    PubMed

    Hincapié-Ramos, Juan David; Özacar, Kasim; Irani, Pourang P; Kitamura, Yoshifumi

    2016-01-01

    Optical see-through head-mounted displays enable augmented reality (AR) applications that display virtual objects overlaid on the real world. At the core of this new generation of devices are low-cost tracking technologies that allow us to interpret users' motion in the real world in relation to the virtual content for the purposes of navigation and interaction. The advantages of pervasive tracking come at the cost of limiting interaction possibilities, however. To address these challenges the authors introduce GyroWand, a raycasting technique for AR HMDs using inertial measurement unit (IMU) rotational data from a handheld controller.

  3. AUVA - Augmented Reality Empowers Visual Analytics to explore Medical Curriculum Data.

    PubMed

    Nifakos, Sokratis; Vaitsis, Christos; Zary, Nabil

    2015-01-01

    Medical curriculum data play a key role in the structure and the organization of medical programs in Universities around the world. The effective processing and usage of these data may improve the educational environment of medical students. As a consequence, the new generation of health professionals would have improved skills from the previous ones. This study introduces the process of enhancing curriculum data by the use of augmented reality technology as a management and presentation tool. The final goal is to enrich the information presented from a visual analytics approach applied on medical curriculum data and to sustain low levels of complexity of understanding these data.

  4. Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach

    PubMed Central

    Tian, Yuan; Guan, Tao; Wang, Cheng

    2010-01-01

    To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278

  5. Using augmented reality as a clinical support tool to assist combat medics in the treatment of tension pneumothoraces.

    PubMed

    Wilson, Kenneth L; Doswell, Jayfus T; Fashola, Olatokunbo S; Debeatham, Wayne; Darko, Nii; Walker, Travelyan M; Danner, Omar K; Matthews, Leslie R; Weaver, William L

    2013-09-01

    This study was to extrapolate potential roles of augmented reality goggles as a clinical support tool assisting in the reduction of preventable causes of death on the battlefield. Our pilot study was designed to improve medic performance in accurately placing a large bore catheter to release tension pneumothorax (prehospital setting) while using augmented reality goggles. Thirty-four preclinical medical students recruited from Morehouse School of Medicine performed needle decompressions on human cadaver models after hearing a brief training lecture on tension pneumothorax management. Clinical vignettes identifying cadavers as having life-threatening tension pneumothoraces as a consequence of improvised explosive device attacks were used. Study group (n = 13) performed needle decompression using augmented reality goggles whereas the control group (n = 21) relied solely on memory from the lecture. The two groups were compared according to their ability to accurately complete the steps required to decompress a tension pneumothorax. The medical students using augmented reality goggle support were able to treat the tension pneumothorax on the human cadaver models more accurately than the students relying on their memory (p < 0.008). Although the augmented reality group required more time to complete the needle decompression intervention (p = 0.0684), this did not reach statistical significance. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  6. The Effects of Augmented Reality-based Otago Exercise on Balance, Gait, and Falls Efficacy of Elderly Women.

    PubMed

    Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.

  7. Injected Water Augments Cooling In Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1989-01-01

    Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.

  8. Injected Water Augments Cooling In Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1989-01-01

    Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.

  9. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.

    PubMed

    Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio

    2014-12-01

    We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference

  10. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  11. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.

    PubMed

    Comport, Andrew I; Marchand, Eric; Pressigout, Muriel; Chaumette, François

    2006-01-01

    Tracking is a very important research subject in a real-time augmented reality context. The main requirements for trackers are high accuracy and little latency at a reasonable cost. In order to address these issues, a real-time, robust, and efficient 3D model-based tracking algorithm is proposed for a "video see through" monocular vision system. The tracking of objects in the scene amounts to calculating the pose between the camera and the objects. Virtual objects can then be projected into the scene using the pose. Here, nonlinear pose estimation is formulated by means of a virtual visual servoing approach. In this context, the derivation of point-to-curves interaction matrices are given for different 3D geometrical primitives including straight lines, circles, cylinders, and spheres. A local moving edges tracker is used in order to provide real-time tracking of points normal to the object contours. Robustness is obtained by integrating an M-estimator into the visual control law via an iteratively reweighted least squares implementation. This approach is then extended to address the 3D model-free augmented reality problem. The method presented in this paper has been validated on several complex image sequences including outdoor environments. Results show the method to be robust to occlusion, changes in illumination, and mistracking.

  12. Integrating Haptics with Augmented Reality in a Femoral Palpation and Needle Insertion Training Simulation.

    PubMed

    Coles, T R; John, N W; Gould, Derek A; Caldwell, D G

    2011-01-01

    This paper presents a virtual environment for training femoral palpation and needle insertion, the opening steps of many interventional radiology procedures. A novel augmented reality simulation called PalpSim has been developed that allows the trainees to feel a virtual patient using their own hands. The palpation step requires both force and tactile feedback. For the palpation haptics effect, two off-the-shelf force feedback devices have been linked together to provide a hybrid device that gives five degrees of force feedback. This is combined with a custom built hydraulic interface to provide a pulse like tactile effect. The needle interface is based on a modified PHANTOM Omni end effector that allows a real interventional radiology needle to be mounted and used during simulation. While using the virtual environment, the haptics hardware is masked from view using chroma-key techniques. The trainee sees a computer generated patient and needle, and interacts using their own hands. This simulation provides a high level of face validity and is one of the first medical simulation devices to integrate haptics with augmented reality.

  13. Using augmented reality in AIRBUS A400M shop floor assembly work instructions

    NASA Astrophysics Data System (ADS)

    Serván, J.; Mas, F.; Menéndez, J. L.; Ríos, J.

    2012-04-01

    The assembly of components in the aerospace industry is currently supported through procedures based on the generation of work instructions. This documentation describes both the sequence of operations to be performed by operators, and fundamental and critical parameters of operation (drawings of components, torques to be applied, sealing system characteristics or paste, etc.). Currently, workers use this information to ensure that the tasks are performed correctly. However, sometimes the documentation is difficult to manage, either by the difficulty of interpreting the drawings or because the process is too complex, for example in the installation of electrical harnesses. This document shows the results of the Project MOON (asseMbly Oriented authOring augmeNted reality) developed by AIRBUS Military in 2010. MOON uses 3D information from the iDMU (industrial Digital Mock-Up) to generate assembly instructions by applying Augmented Reality technology. A demonstrator was developed for the electrical harness routing in the frame 36 of the AIRBUS A400M. The techniques and methods here described are 'patent pending'.

  14. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    PubMed

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  15. [Identification of perforating vessels by augmented reality: Application for the deep inferior epigastric perforator flap].

    PubMed

    Bosc, R; Fitoussi, A; Pigneur, F; Tacher, V; Hersant, B; Meningaud, J-P

    2017-08-01

    The augmented reality on smart glasses allows the surgeon to visualize three-dimensional virtual objects during surgery, superimposed in real time to the anatomy of the patient. This makes it possible to preserve the vision of the surgical field and to dispose of added computerized information without the need to use a physical surgical guide or a deported screen. The three-dimensional objects that we used and visualized in augmented reality came from the reconstructions made from the CT-scans of the patients. These objects have been transferred through a dedicated application on stereoscopic smart glasses. The positioning and the stabilization of the virtual layers on the anatomy of the patients were obtained thanks to the recognition, by the glasses, of a tracker placed on the skin. We used this technology, in addition to the usual locating methods for preoperative planning and the selection of perforating vessels for 12 patients operated on a breast reconstruction, by perforating flap of deep lower epigastric artery. The "hands-free" smart glasses with two stereoscopic screens make it possible to provide the reconstructive surgeon with binocular visualization in the operative field of the vessels identified with the CT-scan. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Augmented reality warnings in vehicles: Effects of modality and specificity on effectiveness.

    PubMed

    Schwarz, Felix; Fastenmeier, Wolfgang

    2017-04-01

    In the future, vehicles will be able to warn drivers of hidden dangers before they are visible. Specific warning information about these hazards could improve drivers' reactions and the warning effectiveness, but could also impair them, for example, by additional cognitive-processing costs. In a driving simulator study with 88 participants, we investigated the effects of modality (auditory vs. visual) and specificity (low vs. high) on warning effectiveness. For the specific warnings, we used augmented reality as an advanced technology to display the additional auditory or visual warning information. Part one of the study concentrates on the effectiveness of necessary warnings and part two on the drivers' compliance despite false alarms. For the first warning scenario, we found several positive main effects of specificity. However, subsequent effects of specificity were moderated by the modality of the warnings. The specific visual warnings were observed to have advantages over the three other warning designs concerning gaze and braking reaction times, passing speeds and collision rates. Besides the true alarms, braking reaction times as well as subjective evaluation after these warnings were still improved despite false alarms. The specific auditory warnings were revealed to have only a few advantages, but also several disadvantages. The results further indicate that the exact coding of additional information, beyond its mere amount and modality, plays an important role. Moreover, the observed advantages of the specific visual warnings highlight the potential benefit of augmented reality coding to improve future collision warnings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A study of an assisting robot for mandible plastic surgery based on augmented reality.

    PubMed

    Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang

    2017-02-01

    Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.

  18. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia.

    PubMed

    Qu, Miao; Hou, Yikang; Xu, Yourong; Shen, Congcong; Zhu, Ming; Xie, Le; Wang, Hao; Zhang, Yan; Chai, Gang

    2015-01-01

    Through three-dimensional real time imaging, augmented reality (AR) can provide an overlay of the anatomical structure, or visual cues for specific landmarks. In this study, an AR Toolkit was used for distraction osteogenesis with hemifacial microsomia to define the mandibular osteotomy line and assist with intraoral distractor placement. 20 patients with hemifacial microsomia were studied and were randomly assigned to experimental and control groups. Pre-operative computed tomography was used in both groups, whereas AR was used in the experimental group. Afterwards, pre- and post-operative computed tomographic scans of both groups were superimposed, and several measurements were made and analysed. Both the conventional method and AR technique achieved proper positioning of the osteotomy planes, although the AR was more accurate. The difference in average vertical distance from the coronoid and condyle process to the pre- and post-operative cutting planes was significant (p < 0.01) between the two groups, whereas no significant difference (p > 0.05) was observed in the average angle between the two planes. The difference in deviations between the intersection points of the overlaid mandible across two cutting planes was also significant (p < 0.01). This study reports on an efficient approach for guiding intraoperative distraction osteogenesis. Augmented reality tools such as the AR Toolkit may be helpful for precise positioning of intraoral distractors in patients with hemifacial microsomia in craniofacial surgery. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections.

    PubMed

    Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor

    2011-07-01

    The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE

  20. Critical evaluation of the usability of augmented reality ophthalmoscopy for the training of inexperienced examiners.

    PubMed

    Leitritz, Martin A; Ziemssen, Focke; Suesskind, Daniela; Partsch, Michael; Voykov, Bogomil; Bartz-Schmidt, Karl U; Szurman, Gesine B

    2014-04-01

    To measure the value of augmented reality technology usage to teach the medical students performing binocular indirect ophthalmoscopy. Thirty-seven medical students were randomly assigned to the training of binocular indirect ophthalmoscopy either in the conventional way or with augmented reality ophthalmoscopy (ARO). For testing student's skills, they had to examine a real person using a conventional ophthalmoscopy system and draw the optic disk. They also had to fill out a questionnaire. Subjective and objective evaluations were performed. Thirty-seven students were randomly assigned to two groups. Eighteen students were trained with conventional ophthalmoscopy and 19 students with ARO. The questionnaires showed no differences. Performing an objective analysis, the median ophthalmoscopy training score for the conventional ophthalmoscopy group was 1.2 (range, 0.67-2) and showed a significant difference (P < 0.0033) to the ARO group (median 2; range, 0.67-2). The study provides evidence that a single ARO training is efficient to improve ophthalmoscopy skills. As the objective analysis showed, the ARO group had a significantly superior performance. Our study also indicates that subjective evaluation of the fundus drawings without systematic analysis is prone to errors.