Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.
Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene
2016-01-01
To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.
On the use of Augmented Reality techniques in learning and interpretation of cardiologic data.
Lamounier, Edgard; Bucioli, Arthur; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar
2010-01-01
Augmented Reality is a technology which provides people with more intuitive ways of interaction and visualization, close to those in real world. The amount of applications using Augmented Reality is growing every day, and results can be already seen in several fields such as Education, Training, Entertainment and Medicine. The system proposed in this article intends to provide a friendly and intuitive interface based on Augmented Reality for heart beating evaluation and visualization. Cardiologic data is loaded from several distinct sources: simple standards of heart beating frequencies (for example situations like running or sleeping), files of heart beating signals, scanned electrocardiographs and real time data acquisition of patient's heart beating. All this data is processed to produce visualization within Augmented Reality environments. The results obtained in this research have shown that the developed system is able to simplify the understanding of concepts about heart beating and its functioning. Furthermore, the system can help health professionals in the task of retrieving, processing and converting data from all the sources handled by the system, with the support of an edition and visualization mode.
Transduction between worlds: using virtual and mixed reality for earth and planetary science
NASA Astrophysics Data System (ADS)
Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.
2017-12-01
Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.
Piao, Jin-Chun; Kim, Shin-Dug
2017-11-07
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
2006-01-01
The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
NASA Astrophysics Data System (ADS)
Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid
2017-10-01
Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
2006-01-01
The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed wi th respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the use ful specifications of augmented reality displays, an optical see-thro ugh display was used in an ATC Tower simulation. Three different binocular fields of view (14 deg, 28 deg, and 47 deg) were examined to det ermine their effect on subjects# ability to detect aircraft maneuveri ng and landing. The results suggest that binocular fields of view much greater than 47 deg are unlikely to dramatically improve search perf ormance and that partial binocular overlap is a feasible display tech nique for augmented reality Tower applications.
PRISMA-MAR: An Architecture Model for Data Visualization in Augmented Reality Mobile Devices
ERIC Educational Resources Information Center
Gomes Costa, Mauro Alexandre Folha; Serique Meiguins, Bianchi; Carneiro, Nikolas S.; Gonçalves Meiguins, Aruanda Simões
2013-01-01
This paper proposes an extension to mobile augmented reality (MAR) environments--the addition of data charts to the more usual text, image and video components. To this purpose, we have designed a client-server architecture including the main necessary modules and services to provide an Information Visualization MAR experience. The server side…
Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display
ERIC Educational Resources Information Center
Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami
2016-01-01
Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…
Recent Development of Augmented Reality in Surgery: A Review.
Vávra, P; Roman, J; Zonča, P; Ihnát, P; Němec, M; Kumar, J; Habib, N; El-Gendi, A
2017-01-01
The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms "augmented reality" and "surgery." Results . The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.
Applied Augmented Reality for High Precision Maintenance
NASA Astrophysics Data System (ADS)
Dever, Clark
Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.
Augmented Reality as a Countermeasure for Sleep Deprivation.
Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H
2016-04-01
Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.
Applying Augmented Reality in practical classes for engineering students
NASA Astrophysics Data System (ADS)
Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.
2017-10-01
In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.
Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram
2016-01-15
An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.
Visual Environment for Designing Interactive Learning Scenarios with Augmented Reality
ERIC Educational Resources Information Center
Mota, José Miguel; Ruiz-Rube, Iván; Dodero, Juan Manuel; Figueiredo, Mauro
2016-01-01
Augmented Reality (AR) technology allows the inclusion of virtual elements on a vision of actual physical environment for the creation of a mixed reality in real time. This kind of technology can be used in educational settings. However, the current AR authoring tools present several drawbacks, such as, the lack of a mechanism for tracking the…
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2013-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ramachandran, R.; McEniry, M.; Maskey, M.
2011-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Hybrid Reality Lab Capabilities - Video 2
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
[Display technologies for augmented reality in medical applications].
Eck, Ulrich; Winkler, Alexander
2018-04-01
One of the main challenges for modern surgery is the effective use of the many available imaging modalities and diagnostic methods. Augmented reality systems can be used in the future to blend patient and planning information into the view of surgeons, which can improve the efficiency and safety of interventions. In this article we present five visualization methods to integrate augmented reality displays into medical procedures and the advantages and disadvantages are explained. Based on an extensive literature review the various existing approaches for integration of augmented reality displays into medical procedures are divided into five categories and the most important research results for each approach are presented. A large number of mixed and augmented reality solutions for medical interventions have been developed as research prototypes; however, only very few systems have been tested on patients. In order to integrate mixed and augmented reality displays into medical practice, highly specialized solutions need to be developed. Such systems must comply with the requirements with respect to accuracy, fidelity, ergonomics and seamless integration into the surgical workflow.
Recent Development of Augmented Reality in Surgery: A Review
Vávra, P.; Zonča, P.; Ihnát, P.; El-Gendi, A.
2017-01-01
Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice. PMID:29065604
Comparative evaluation of monocular augmented-reality display for surgical microscopes.
Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N
2012-01-01
Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
Besharati Tabrizi, Leila; Mahvash, Mehran
2015-07-01
An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.
Personalized augmented reality for anatomy education.
Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir
2016-05-01
Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.
Perform light and optic experiments in Augmented Reality
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai
2015-10-01
In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.
Advanced Visual and Instruction Systems for Maintenance Support (AVIS-MS)
2006-12-01
Hayashi , "Augmentable Reality: Situated Communication through Physical and Digital Spaces," Proc. 2nd Int’l Symp. Wearable Computers, IEEE CS Press...H. Ohno , "An Optical See-through Display for Mutual Occlusion of Real and Virtual Environments," Proc. Int’l Symp. Augmented Reality 2000 (ISARO0
Kiryu, Tohru; So, Richard H Y
2007-09-25
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.
Kiryu, Tohru; So, Richard HY
2007-01-01
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857
Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance. PMID:25548733
Nifakos, Sokratis; Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance.
Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges
NASA Astrophysics Data System (ADS)
Cherukuru, N. W.; Calhoun, R.
2016-06-01
Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.
Augmented reality in neurovascular surgery: feasibility and first uses in the operating room.
Kersten-Oertel, Marta; Gerard, Ian; Drouin, Simon; Mok, Kelvin; Sirhan, Denis; Sinclair, David S; Collins, D Louis
2015-11-01
The aim of this report is to present a prototype augmented reality (AR) intra-operative brain imaging system. We present our experience of using this new neuronavigation system in neurovascular surgery and discuss the feasibility of this technology for aneurysms, arteriovenous malformations (AVMs), and arteriovenous fistulae (AVFs). We developed an augmented reality system that uses an external camera to capture the live view of the patient on the operating room table and to merge this view with pre-operative volume-rendered vessels. We have extensively tested the system in the laboratory and have used the system in four surgical cases: one aneurysm, two AVMs and one AVF case. The developed AR neuronavigation system allows for precise patient-to-image registration and calibration of the camera, resulting in a well-aligned augmented reality view. Initial results suggest that augmented reality is useful for tailoring craniotomies, localizing vessels of interest, and planning resection corridors. Augmented reality is a promising technology for neurovascular surgery. However, for more complex anomalies such as AVMs and AVFs, better visualization techniques that allow one to distinguish between arteries and veins and determine the absolute depth of a vessel of interest are needed.
Real-time 3D image reconstruction guidance in liver resection surgery.
Soler, Luc; Nicolau, Stephane; Pessaux, Patrick; Mutter, Didier; Marescaux, Jacques
2014-04-01
Minimally invasive surgery represents one of the main evolutions of surgical techniques. However, minimally invasive surgery adds difficulty that can be reduced through computer technology. From a patient's medical image [US, computed tomography (CT) or MRI], we have developed an Augmented Reality (AR) system that increases the surgeon's intraoperative vision by providing a virtual transparency of the patient. AR is based on two major processes: 3D modeling and visualization of anatomical or pathological structures appearing in the medical image, and the registration of this visualization onto the real patient. We have thus developed a new online service, named Visible Patient, providing efficient 3D modeling of patients. We have then developed several 3D visualization and surgical planning software tools to combine direct volume rendering and surface rendering. Finally, we have developed two registration techniques, one interactive and one automatic providing intraoperative augmented reality view. From January 2009 to June 2013, 769 clinical cases have been modeled by the Visible Patient service. Moreover, three clinical validations have been realized demonstrating the accuracy of 3D models and their great benefit, potentially increasing surgical eligibility in liver surgery (20% of cases). From these 3D models, more than 50 interactive AR-assisted surgical procedures have been realized illustrating the potential clinical benefit of such assistance to gain safety, but also current limits that automatic augmented reality will overcome. Virtual patient modeling should be mandatory for certain interventions that have now to be defined, such as liver surgery. Augmented reality is clearly the next step of the new surgical instrumentation but remains currently limited due to the complexity of organ deformations during surgery. Intraoperative medical imaging used in new generation of automated augmented reality should solve this issue thanks to the development of Hybrid OR.
Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality
NASA Astrophysics Data System (ADS)
Hua, Hong
2017-05-01
Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).
Avoiding Focus Shifts in Surgical Telementoring Using an Augmented Reality Transparent Display.
Andersen, Daniel; Popescu, Voicu; Cabrera, Maria Eugenia; Shanghavi, Aditya; Gomez, Gerardo; Marley, Sherri; Mullis, Brian; Wachs, Juan
2016-01-01
Conventional surgical telementoring systems require the trainee to shift focus away from the operating field to a nearby monitor to receive mentor guidance. This paper presents the next generation of telementoring systems. Our system, STAR (System for Telementoring with Augmented Reality) avoids focus shifts by placing mentor annotations directly into the trainee's field of view using augmented reality transparent display technology. This prototype was tested with pre-medical and medical students. Experiments were conducted where participants were asked to identify precise operating field locations communicated to them using either STAR or a conventional telementoring system. STAR was shown to improve accuracy and to reduce focus shifts. The initial STAR prototype only provides an approximate transparent display effect, without visual continuity between the display and the surrounding area. The current version of our transparent display provides visual continuity by showing the geometry and color of the operating field from the trainee's viewpoint.
ERIC Educational Resources Information Center
Cheng, Kun-Hung; Tsai, Chin-Chung
2016-01-01
Following a previous study (Cheng & Tsai, 2014. "Computers & Education"), this study aimed to probe the interaction of child-parent shared reading with the augmented reality (AR) picture book in more depth. A series of sequential analyses were thus conducted to infer the behavioral transition diagrams and visualize the continuity…
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
NASA Astrophysics Data System (ADS)
Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi
2016-12-01
In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.
Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego
2014-03-01
To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.
Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion
Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer
2017-01-01
Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain. PMID:28243537
Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.
Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer
2017-01-01
Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain.
Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy
2014-01-01
Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.
ERIC Educational Resources Information Center
Giorgis, Scott; Mahlen, Nancy; Anne, Kirk
2017-01-01
The augmented reality (AR) sandbox bridges the gap between two-dimensional (2D) and three-dimensional (3D) visualization by projecting a digital topographic map onto a sandbox landscape. As the landscape is altered, the map dynamically adjusts, providing an opportunity to discover how to read topographic maps. We tested the hypothesis that the AR…
Piao, Jin-Chun; Kim, Shin-Dug
2017-01-01
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143
Real-time 3D image reconstruction guidance in liver resection surgery
Nicolau, Stephane; Pessaux, Patrick; Mutter, Didier; Marescaux, Jacques
2014-01-01
Background Minimally invasive surgery represents one of the main evolutions of surgical techniques. However, minimally invasive surgery adds difficulty that can be reduced through computer technology. Methods From a patient’s medical image [US, computed tomography (CT) or MRI], we have developed an Augmented Reality (AR) system that increases the surgeon’s intraoperative vision by providing a virtual transparency of the patient. AR is based on two major processes: 3D modeling and visualization of anatomical or pathological structures appearing in the medical image, and the registration of this visualization onto the real patient. We have thus developed a new online service, named Visible Patient, providing efficient 3D modeling of patients. We have then developed several 3D visualization and surgical planning software tools to combine direct volume rendering and surface rendering. Finally, we have developed two registration techniques, one interactive and one automatic providing intraoperative augmented reality view. Results From January 2009 to June 2013, 769 clinical cases have been modeled by the Visible Patient service. Moreover, three clinical validations have been realized demonstrating the accuracy of 3D models and their great benefit, potentially increasing surgical eligibility in liver surgery (20% of cases). From these 3D models, more than 50 interactive AR-assisted surgical procedures have been realized illustrating the potential clinical benefit of such assistance to gain safety, but also current limits that automatic augmented reality will overcome. Conclusions Virtual patient modeling should be mandatory for certain interventions that have now to be defined, such as liver surgery. Augmented reality is clearly the next step of the new surgical instrumentation but remains currently limited due to the complexity of organ deformations during surgery. Intraoperative medical imaging used in new generation of automated augmented reality should solve this issue thanks to the development of Hybrid OR. PMID:24812598
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
AUVA - Augmented Reality Empowers Visual Analytics to explore Medical Curriculum Data.
Nifakos, Sokratis; Vaitsis, Christos; Zary, Nabil
2015-01-01
Medical curriculum data play a key role in the structure and the organization of medical programs in Universities around the world. The effective processing and usage of these data may improve the educational environment of medical students. As a consequence, the new generation of health professionals would have improved skills from the previous ones. This study introduces the process of enhancing curriculum data by the use of augmented reality technology as a management and presentation tool. The final goal is to enrich the information presented from a visual analytics approach applied on medical curriculum data and to sustain low levels of complexity of understanding these data.
Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer
2005-01-01
Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.
Implementation of augmented reality to models sultan deli
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Lumbantobing, N. P.; Siregar, B.; Rahmat, R. F.; Andayani, U.
2018-03-01
Augmented reality is a technology that can provide visualization in the form of 3D virtual model. With the utilization of augmented reality technology hence image-based modeling to produce 3D model of Sultan Deli Istana Maimun can be applied to restore photo of Sultan of Deli into three dimension model. This is due to the Sultan of Deli which is one of the important figures in the history of the development of the city of Medan is less known by the public because the image of the Sultanate of Deli is less clear and has been very long. To achieve this goal, augmented reality applications are used with image processing methodologies into 3D models through several toolkits. The output generated from this method is the visitor’s photos Maimun Palace with 3D model of Sultan Deli with the detection of markers 20-60 cm apart so as to provide convenience for the public to recognize the Sultan Deli who had ruled in Maimun Palace.
Vision-based augmented reality system
NASA Astrophysics Data System (ADS)
Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan
2003-04-01
The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.
Nifakos, Sokratis; Zary, Nabil
2014-01-01
The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.
An augmented reality haptic training simulator for spinal needle procedures.
Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin
2013-11-01
This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.
FlyAR: augmented reality supported micro aerial vehicle navigation.
Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard
2014-04-01
Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicles position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the users view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.
Preliminary development of augmented reality systems for spinal surgery
NASA Astrophysics Data System (ADS)
Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.
2017-02-01
Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.
A novel augmented reality system of image projection for image-guided neurosurgery.
Mahvash, Mehran; Besharati Tabrizi, Leila
2013-05-01
Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.
Visualizing Sea Level Rise with Augmented Reality
NASA Astrophysics Data System (ADS)
Kintisch, E. S.
2013-12-01
Looking Glass is an application on the iPhone that visualizes in 3-D future scenarios of sea level rise, overlaid on live camera imagery in situ. Using a technology known as augmented reality, the app allows a layperson user to explore various scenarios of sea level rise using a visual interface. Then the user can see, in an immersive, dynamic way, how those scenarios would affect a real place. The first part of the experience activates users' cognitive, quantitative thinking process, teaching them how global sea level rise, tides and storm surge contribute to flooding; the second allows an emotional response to a striking visual depiction of possible future catastrophe. This project represents a partnership between a science journalist, MIT, and the Rhode Island School of Design, and the talk will touch on lessons this projects provides on structuring and executing such multidisciplinary efforts on future design projects.
Distributed augmented reality with 3-D lung dynamics--a planning tool concept.
Hamza-Lup, Felix G; Santhanam, Anand P; Imielińska, Celina; Meeks, Sanford L; Rolland, Jannick P
2007-01-01
Augmented reality (AR) systems add visual information to the world by using advanced display techniques. The advances in miniaturization and reduced hardware costs make some of these systems feasible for applications in a wide set of fields. We present a potential component of the cyber infrastructure for the operating room of the future: a distributed AR-based software-hardware system that allows real-time visualization of three-dimensional (3-D) lung dynamics superimposed directly on the patient's body. Several emergency events (e.g., closed and tension pneumothorax) and surgical procedures related to lung (e.g., lung transplantation, lung volume reduction surgery, surgical treatment of lung infections, lung cancer surgery) could benefit from the proposed prototype.
Using augmented reality to teach and learn biochemistry.
Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo
2017-09-01
Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract concepts because students can manipulate 3D molecules in real time. Here we describe an application named Augmented Reality Metabolic Pathways (ARMET), which allowed students to visualize the 3D molecular structure of substrates and products, thus perceiving changes in each molecule. The structural modification of molecules shows students the flow and exchange of compounds and energy through metabolism. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):417-420, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
3D animation model with augmented reality for natural science learning in elementary school
NASA Astrophysics Data System (ADS)
Hendajani, F.; Hakim, A.; Lusita, M. D.; Saputra, G. E.; Ramadhana, A. P.
2018-05-01
Many opinions from primary school students' on Natural Science are a difficult lesson. Many subjects are not easily understood by students, especially on materials that teach some theories about natural processes. Such as rain process, condensation and many other processes. The difficulty that students experience in understanding it is that students cannot imagine the things that have been taught in the material. Although there is material to practice some theories but is actually quite limited. There is also a video or simulation material in the form of 2D animated images. Understanding concepts in natural science lessons are also poorly understood by students. Natural Science learning media uses 3-dimensional animation models (3D) with augmented reality technology, which offers some visualization of science lessons. This application was created to visualize a process in Natural Science subject matter. The hope of making this application is to improve student's concept. This app is made to run on a personal computer that comes with a webcam with augmented reality. The app will display a 3D animation if the camera can recognize the marker.
How to reduce workload--augmented reality to ease the work of air traffic controllers.
Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg
2012-01-01
In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.
Bosc, R; Fitoussi, A; Pigneur, F; Tacher, V; Hersant, B; Meningaud, J-P
2017-08-01
The augmented reality on smart glasses allows the surgeon to visualize three-dimensional virtual objects during surgery, superimposed in real time to the anatomy of the patient. This makes it possible to preserve the vision of the surgical field and to dispose of added computerized information without the need to use a physical surgical guide or a deported screen. The three-dimensional objects that we used and visualized in augmented reality came from the reconstructions made from the CT-scans of the patients. These objects have been transferred through a dedicated application on stereoscopic smart glasses. The positioning and the stabilization of the virtual layers on the anatomy of the patients were obtained thanks to the recognition, by the glasses, of a tracker placed on the skin. We used this technology, in addition to the usual locating methods for preoperative planning and the selection of perforating vessels for 12 patients operated on a breast reconstruction, by perforating flap of deep lower epigastric artery. The "hands-free" smart glasses with two stereoscopic screens make it possible to provide the reconstructive surgeon with binocular visualization in the operative field of the vessels identified with the CT-scan. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Choi, Hyunseok; Cho, Byunghyun; Masamune, Ken; Hashizume, Makoto; Hong, Jaesung
2016-03-01
Depth perception is a major issue in augmented reality (AR)-based surgical navigation. We propose an AR and virtual reality (VR) switchable visualization system with distance information, and evaluate its performance in a surgical navigation set-up. To improve depth perception, seamless switching from AR to VR was implemented. In addition, the minimum distance between the tip of the surgical tool and the nearest organ was provided in real time. To evaluate the proposed techniques, five physicians and 20 non-medical volunteers participated in experiments. Targeting error, time taken, and numbers of collisions were measured in simulation experiments. There was a statistically significant difference between a simple AR technique and the proposed technique. We confirmed that depth perception in AR could be improved by the proposed seamless switching between AR and VR, and providing an indication of the minimum distance also facilitated the surgical tasks. Copyright © 2015 John Wiley & Sons, Ltd.
A telescope with augmented reality functions
NASA Astrophysics Data System (ADS)
Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian
2016-10-01
This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.
Augmented reality based real-time subcutaneous vein imaging system
Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian
2016-01-01
A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690
Augmented reality based real-time subcutaneous vein imaging system.
Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian
2016-07-01
A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.
An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study.
Assis, Gilda Aparecida de; Corrêa, Ana Grasielle Dionísio; Martins, Maria Bernardete Rodrigues; Pedrozo, Wendel Goes; Lopes, Roseli de Deus
2016-08-01
To determine the clinical feasibility of a system based on augmented reality for upper-limb (UL) motor rehabilitation of stroke participants. A physiotherapist instructed the participants to accomplish tasks in augmented reality environment, where they could see themselves and their surroundings, as in a mirror. Two case studies were conducted. Participants were evaluated pre- and post-intervention. The first study evaluated the UL motor function using Fugl-Meyer scale. Data were compared using non-parametric sign tests and effect size. The second study used the gain of motion range of shoulder flexion and abduction assessed by computerized biophotogrammetry. At a significance level of 5%, Fugl-Meyer scores suggested a trend for greater UL motor improvement in the augmented reality group than in the other. Moreover, effect size value 0.86 suggested high practical significance for UL motor rehabilitation using the augmented reality system. System provided promising results for UL motor rehabilitation, since enhancements have been observed in the shoulder range of motion and speed. Implications for Rehabilitation Gain of range of motion of flexion and abduction of the shoulder of post-stroke patients can be achieved through an augmented reality system containing exercises to promote the mental practice. NeuroR system provides a mental practice method combined with visual feedback for motor rehabilitation of chronic stroke patients, giving the illusion of injured upper-limb (UL) movements while the affected UL is resting. Its application is feasible and safe. This system can be used to improve UL rehabilitation, an additional treatment past the traditional period of the stroke patient hospitalization and rehabilitation.
Soldier-worn augmented reality system for tactical icon visualization
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared
2012-06-01
This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
Visualizing UAS-collected imagery using augmented reality
NASA Astrophysics Data System (ADS)
Conover, Damon M.; Beidleman, Brittany; McAlinden, Ryan; Borel-Donohue, Christoph C.
2017-05-01
One of the areas where augmented reality will have an impact is in the visualization of 3-D data. 3-D data has traditionally been viewed on a 2-D screen, which has limited its utility. Augmented reality head-mounted displays, such as the Microsoft HoloLens, make it possible to view 3-D data overlaid on the real world. This allows a user to view and interact with the data in ways similar to how they would interact with a physical 3-D object, such as moving, rotating, or walking around it. A type of 3-D data that is particularly useful for military applications is geo-specific 3-D terrain data, and the visualization of this data is critical for training, mission planning, intelligence, and improved situational awareness. Advances in Unmanned Aerial Systems (UAS), photogrammetry software, and rendering hardware have drastically reduced the technological and financial obstacles in collecting aerial imagery and in generating 3-D terrain maps from that imagery. Because of this, there is an increased need to develop new tools for the exploitation of 3-D data. We will demonstrate how the HoloLens can be used as a tool for visualizing 3-D terrain data. We will describe: 1) how UAScollected imagery is used to create 3-D terrain maps, 2) how those maps are deployed to the HoloLens, 3) how a user can view and manipulate the maps, and 4) how multiple users can view the same virtual 3-D object at the same time.
Augmented reality warnings in vehicles: Effects of modality and specificity on effectiveness.
Schwarz, Felix; Fastenmeier, Wolfgang
2017-04-01
In the future, vehicles will be able to warn drivers of hidden dangers before they are visible. Specific warning information about these hazards could improve drivers' reactions and the warning effectiveness, but could also impair them, for example, by additional cognitive-processing costs. In a driving simulator study with 88 participants, we investigated the effects of modality (auditory vs. visual) and specificity (low vs. high) on warning effectiveness. For the specific warnings, we used augmented reality as an advanced technology to display the additional auditory or visual warning information. Part one of the study concentrates on the effectiveness of necessary warnings and part two on the drivers' compliance despite false alarms. For the first warning scenario, we found several positive main effects of specificity. However, subsequent effects of specificity were moderated by the modality of the warnings. The specific visual warnings were observed to have advantages over the three other warning designs concerning gaze and braking reaction times, passing speeds and collision rates. Besides the true alarms, braking reaction times as well as subjective evaluation after these warnings were still improved despite false alarms. The specific auditory warnings were revealed to have only a few advantages, but also several disadvantages. The results further indicate that the exact coding of additional information, beyond its mere amount and modality, plays an important role. Moreover, the observed advantages of the specific visual warnings highlight the potential benefit of augmented reality coding to improve future collision warnings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Simonetto, E.; Froment, C.; Labergerie, E.; Ferré, G.; Séchet, B.; Chédorge, H.; Cali, J.; Polidori, L.
2013-07-01
Terrestrial Laser Scanning (TLS), 3-D modeling and its Web visualization are the three key steps needed to perform storage and grant-free and wide access to cultural heritage, as highlighted in many recent examples. The goal of this study is to set up 3-D Web resources for "virtually" visiting the exterior of the Abbaye de l'Epau, an old French abbey which has both a rich history and delicate architecture. The virtuality is considered in two ways: the flowing navigation in a virtual reality environment around the abbey and a game activity using augmented reality. First of all, the data acquisition consists in GPS and tacheometry survey, terrestrial laser scanning and photography acquisition. After data pre-processing, the meshed and textured 3-D model is generated using 3-D Reshaper commercial software. The virtual reality visit and augmented reality animation are then created using Unity software. This work shows the interest of such tools in bringing out the regional cultural heritage and making it attractive to the public.
ERIC Educational Resources Information Center
Duncan, Mike R.; Birrell, Bob; Williams, Toni
2005-01-01
Virtual Reality (VR) is primarily a visual technology. Elements such as haptics (touch feedback) and sound can augment an experience, but the visual cues are the prime driver of what an audience will experience from a VR presentation. At its inception in 2001 the Centre for Advanced Visualization (CFAV) at Niagara College of Arts and Technology…
Visual error augmentation enhances learning in three dimensions.
Sharp, Ian; Huang, Felix; Patton, James
2011-09-02
Because recent preliminary evidence points to the use of Error augmentation (EA) for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed). Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation) when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.
An acceptance model for smart glasses based tourism augmented reality
NASA Astrophysics Data System (ADS)
Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao
2017-10-01
Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.
Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)
2002-01-01
An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.
Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan
2016-12-01
The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Augmented reality for breast imaging.
Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio
2018-06-01
Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. Gadolinium was injected as a contrast agent (0.1 mmol/kg at 2 mL/s) using a programmable power injector. Dicom formatted images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into augmented reality images. ABI demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. ABI can improve clinical outcomes, providing an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.
Creating a Vision Channel for Observing Deep-Seated Anatomy in Medical Augmented Reality
NASA Astrophysics Data System (ADS)
Wimmer, Felix; Bichlmeier, Christoph; Heining, Sandro M.; Navab, Nassir
The intent of medical Augmented Reality (AR) is to augment the surgeon's real view on the patient with the patient's interior anatomy resulting from a suitable visualization of medical imaging data. This paper presents a fast and user-defined clipping technique for medical AR allowing for cutting away any parts of the virtual anatomy and images of the real part of the AR scene hindering the surgeon's view onto the deepseated region of interest. Modeled on cut-away techniques from scientific illustrations and computer graphics, the method creates a fixed vision channel to the inside of the patient. It enables a clear view on the focussed virtual anatomy and moreover improves the perception of spatial depth.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
Flexible augmented reality architecture applied to environmental management
NASA Astrophysics Data System (ADS)
Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo
2003-05-01
Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.
Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments
NASA Astrophysics Data System (ADS)
Portalés, Cristina; Lerma, José Luis; Navarro, Santiago
2010-01-01
Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
Graphical user interface concepts for tactical augmented reality
NASA Astrophysics Data System (ADS)
Argenta, Chris; Murphy, Anne; Hinton, Jeremy; Cook, James; Sherrill, Todd; Snarski, Steve
2010-04-01
Applied Research Associates and BAE Systems are working together to develop a wearable augmented reality system under the DARPA ULTRA-Vis program†. Our approach to achieve the objectives of ULTRAVis, called iLeader, incorporates a full color 40° field of view (FOV) see-thru holographic waveguide integrated with sensors for full position and head tracking to provide an unobtrusive information system for operational maneuvers. iLeader will enable warfighters to mark-up the 3D battle-space with symbologic identification of graphical control measures, friendly force positions and enemy/target locations. Our augmented reality display provides dynamic real-time painting of symbols on real objects, a pose-sensitive 360° representation of relevant object positions, and visual feedback for a variety of system activities. The iLeader user interface and situational awareness graphical representations are highly intuitive, nondisruptive, and always tactically relevant. We used best human-factors practices, system engineering expertise, and cognitive task analysis to design effective strategies for presenting real-time situational awareness to the military user without distorting their natural senses and perception. We present requirements identified for presenting information within a see-through display in combat environments, challenges in designing suitable visualization capabilities, and solutions that enable us to bring real-time iconic command and control to the tactical user community.
NASA Astrophysics Data System (ADS)
Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong
2015-03-01
Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.
Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger
2017-06-01
Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.
Learning Science Using AR Book: A Preliminary Study on Visual Needs of Deaf Learners
NASA Astrophysics Data System (ADS)
Megat Mohd. Zainuddin, Norziha; Badioze Zaman, Halimah; Ahmad, Azlina
Augmented Reality (AR) is a technology that is projected to have more significant role in teaching and learning, particularly in visualising abstract concepts in the learning process. AR is a technology is based on visually oriented technique. Thus, it is suitable for deaf learners since they are generally classified as visual learners. Realising the importance of visual learning style for deaf learners in learning Science, this paper reports on a preliminary study of on an ongoing research on problems faced by deaf learners in learning the topic on Microorganisms. Being visual learners, they have problems with current text books that are more text-based that graphic based. In this preliminary study, a qualitative approach using the ethnographic observational technique was used so that interaction with three deaf learners who are participants throughout this study (they are also involved actively in the design and development of the AR Book). An interview with their teacher and doctor were also conducted to identify their learning and medical problems respectively. Preliminary findings have confirmed the need to design and develop a special Augmented Reality Book called AR-Science for Deaf Learners (AR-SiD).
Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?
Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming
2017-01-01
A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males' mental workloads were significantly higher than females'. For males, high-value products' mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio-visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio-visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference.
Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?
Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming
2017-01-01
A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males’ mental workloads were significantly higher than females’. For males, high-value products’ mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio–visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio–visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference. PMID:28184207
Wolle, Patrik; Müller, Matthias P; Rauh, Daniel
2018-03-16
The examination of three-dimensional structural models in scientific publications allows the reader to validate or invalidate conclusions drawn by the authors. However, either due to a (temporary) lack of access to proper visualization software or a lack of proficiency, this information is not necessarily available to every reader. As the digital revolution is quickly progressing, technologies have become widely available that overcome the limitations and offer to all the opportunity to appreciate models not only in 2D, but also in 3D. Additionally, mobile devices such as smartphones and tablets allow access to this information almost anywhere, at any time. Since access to such information has only recently become standard practice, we want to outline straightforward ways to incorporate 3D models in augmented reality into scientific publications, books, posters, and presentations and suggest that this should become general practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Birchard P; Michel, Kelly D; Few, Douglas A
From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less
Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.
Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir
2016-06-01
This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections
Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan
2017-01-01
PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.
Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
2017-01-01
The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.
Projector-Based Augmented Reality for Quality Inspection of Scanned Objects
NASA Astrophysics Data System (ADS)
Kern, J.; Weinmann, M.; Wursthorn, S.
2017-09-01
After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.
Stereoscopic augmented reality for laparoscopic surgery.
Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj
2014-07-01
Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.
Using Augmented Reality and Virtual Environments in Historic Places to Scaffold Historical Empathy
ERIC Educational Resources Information Center
Sweeney, Sara K.; Newbill, Phyllis; Ogle, Todd; Terry, Krista
2018-01-01
The authors explore how 3D visualizations of historical sites can be used as pedagogical tools to support historical empathy. They provide three visualizations created by a team at Virginia Tech as examples. They discuss virtual environments and how the digital restoration process is applied. They also define historical empathy, explain why it is…
On-patient see-through augmented reality based on visual SLAM.
Mahmoud, Nader; Grasa, Óscar G; Nicolau, Stéphane A; Doignon, Christophe; Soler, Luc; Marescaux, Jacques; Montiel, J M M
2017-01-01
An augmented reality system to visualize a 3D preoperative anatomical model on intra-operative patient is proposed. The hardware requirement is commercial tablet-PC equipped with a camera. Thus, no external tracking device nor artificial landmarks on the patient are required. We resort to visual SLAM to provide markerless real-time tablet-PC camera location with respect to the patient. The preoperative model is registered with respect to the patient through 4-6 anchor points. The anchors correspond to anatomical references selected on the tablet-PC screen at the beginning of the procedure. Accurate and real-time preoperative model alignment (approximately 5-mm mean FRE and TRE) was achieved, even when anchors were not visible in the current field of view. The system has been experimentally validated on human volunteers, in vivo pigs and a phantom. The proposed system can be smoothly integrated into the surgical workflow because it: (1) operates in real time, (2) requires minimal additional hardware only a tablet-PC with camera, (3) is robust to occlusion, (4) requires minimal interaction from the medical staff.
ERIC Educational Resources Information Center
Squires, David R.
2017-01-01
The structure of the literature review features the current trajectory of Augmented Reality in the field including the current literature detailing how Augmented Reality has been applied in educational environments; how Augmented Reality has been applied in training environments; how Augmented Reality has been used to measure cognition and the…
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
2006-06-01
allowing substantial see-around capability. Regions of visual suppression due to binocular rivalry ( luning ) are shown along the shaded flanks of...that the visual suppression of binocular rivalry, luning , (Velger, 1998, p.56-58) associated with the partial overlap conditions did not materially...tags were displayed. Thus, the frequency of conflicting binocular contours was reduced. In any case, luning does not seem to introduce major
Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R
1996-04-01
Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.
Weidert, S; Wang, L; von der Heide, A; Navab, N; Euler, E
2012-03-01
The intraoperative application of augmented reality (AR) has so far mainly taken place in the field of endoscopy. Here, the camera image of the endoscope was augmented by computer graphics derived mostly from preoperative imaging. Due to the complex setup and operation of the devices, they have not yet become part of routine clinical practice. The Camera Augmented Mobile C-arm (CamC) that extends a classic C-arm by a video camera and mirror construction is characterized by its uncomplicated handling. It combines its video live stream geometrically correct with the acquired X-ray. The clinical application of the device in 43 cases showed the strengths of the device in positioning for X-ray acquisition, incision placement, K-wire placement, and instrument guidance. With its new function and the easy integration into the OR workflow of any procedure that requires X-ray imaging, the CamC has the potential to become the first widely used AR technology for orthopedic and trauma surgery.
Marescaux, Jacques; Solerc, Luc
2004-06-01
Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.
Boosting physics education through mobile augmented reality
NASA Astrophysics Data System (ADS)
Crǎciun, Dana; Bunoiu, Mǎdǎlin
2017-12-01
The integration of collaborative applications, based on modern learning technologies and the Internet, of various visualization techniques and digital strategies in open, flexible modern learning environments which facilitate access to resources, represents a challenge for physics teachers in Romania in general, and for novice teachers in particular. Although large efforts have been made worldwide to invest in educational technologies, their impact on the students' learning outcomes is quite modest. In this paper, we describe and analyze various curricular and extracurricular activities specifically designed for and undertaken by pre-service physics teachers. These activities employ new educational technologies, mobile augmented reality (MAR) and are based on modern teaching and learning theories. MAR is an extension for mobile devices of augmented reality, an interactive and in real time combination, of real and virtual objects overlaid in the real environment. The obtained results show that pre-service physics teachers are confident in using MAR in their teaching and learning activities, and consider that the activities performed helped them develop the skills necessary for science teachers in a technology-based society and to reflect upon the role of technology in the current Romanian educational context.
Augmented reality in medical education?
Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor
2014-09-01
Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality.
Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.
Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L
2011-03-01
Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.
Testing and evaluation of a wearable augmented reality system for natural outdoor environments
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg
2013-05-01
This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.
Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment
NASA Astrophysics Data System (ADS)
Singh Sidhu, Manjit
2013-06-01
Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.
Real-time augmented reality overlay for an energy-efficient car study
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Javahiraly, Nicolas; Curticapean, Dan
2017-06-01
Our university carries out various research projects. Among others, the project Schluckspecht is an interdisciplinary work on different ultra-efficient car concepts for international contests. Besides the engineering work, one part of the project deals with real-time data visualization. In order to increase the efficiency of the vehicle, an online monitoring of the runtime parameters is necessary. The driving parameters of the vehicle are transmitted to a processing station via a wireless network connection. We plan to use an augmented reality (AR) application to visualize different data on top of the view of the real car. By utilizing a mobile Android or iOS device a user can interactively view various real-time and statistical data. The car and its components are meant to be augmented by various additional information, whereby that information should appear at the correct position of the components. An engine e.g. could show the current rpm and consumption values. A battery on the other hand could show the current charge level. The goal of this paper is to evaluate different possible approaches, their suitability and to expand our application to other projects at our university.
Visual Stability of Objects and Environments Viewed through Head-Mounted Displays
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.
2015-01-01
Virtual Environments (aka Virtual Reality) is again catching the public imagination and a number of startups (e.g. Oculus) and even not-so-startup companies (e.g. Microsoft) are trying to develop display systems to capitalize on this renewed interest. All acknowledge that this time they will get it right by providing the required dynamic fidelity, visual quality, and interesting content for the concept of VR to take off and change the world in ways it failed to do so in past incarnations. Some of the surprisingly long historical background of the technology that the form of direct simulation that underlies virtual environment and augmented reality displays will be briefly reviewed. An example of a mid 1990's augmented reality display system with good dynamic performance from our lab will be used to illustrate some of the underlying phenomena and technology concerning visual stability of virtual environments and objects during movement. In conclusion some idealized performance characteristics for a reference system will be proposed. Interestingly, many systems more or less on the market now may actually meet many of these proposed technical requirements. This observation leads to the conclusion that the current success of the IT firms trying to commercialize the technology will depend on the hidden costs of using the systems as well as the development of interesting and compelling content.
NASA Astrophysics Data System (ADS)
Tucker, Emerson; Fotouhi, Javad; Unberath, Mathias; Lee, Sing Chun; Fuerst, Bernhard; Johnson, Alex; Armand, Mehran; Osgood, Greg M.; Navab, Nassir
2018-03-01
Pre-operative CT data is available for several orthopedic and trauma interventions, and is mainly used to identify injuries and plan the surgical procedure. In this work we propose an intuitive augmented reality environment allowing visualization of pre-operative data during the intervention, with an overlay of the optical information from the surgical site. The pre-operative CT volume is first registered to the patient by acquiring a single C-arm X-ray image and using 3D/2D intensity-based registration. Next, we use an RGBD sensor on the C-arm to fuse the optical information of the surgical site with patient pre-operative medical data and provide an augmented reality environment. The 3D/2D registration of the pre- and intra-operative data allows us to maintain a correct visualization each time the C-arm is repositioned or the patient moves. An overall mean target registration error (mTRE) and standard deviation of 5.24 +/- 3.09 mm was measured averaged over 19 C-arm poses. The proposed solution enables the surgeon to visualize pre-operative data overlaid with information from the surgical site (e.g. surgeon's hands, surgical tools, etc.) for any C-arm pose, and negates issues of line-of-sight and long setup times, which are present in commercially available systems.
The Perception and Estimation of Egocentric Distance in Real and Augmented Reality Environments
2008-05-01
MICHELLE SAMS, PhD. Research Program Manager Director Training and Leader Development Technical review by Jennifer L. Solberg, U.S. Army Research...with augmented reality technology that are essential for determining the usefulness of current augmented reality (AR) for training and performance...determine perceived distance. 15. SUBJECT TERMS Augmented Environments, Augmented Reality, Dismounted Infantry, Training , Presence, distance perception
A Context-Aware Method for Authentically Simulating Outdoors Shadows for Mobile Augmented Reality.
Barreira, Joao; Bessa, Maximino; Barbosa, Luis; Magalhaes, Luis
2018-03-01
Visual coherence between virtual and real objects is a major issue in creating convincing augmented reality (AR) applications. To achieve this seamless integration, actual light conditions must be determined in real time to ensure that virtual objects are correctly illuminated and cast consistent shadows. In this paper, we propose a novel method to estimate daylight illumination and use this information in outdoor AR applications to render virtual objects with coherent shadows. The illumination parameters are acquired in real time from context-aware live sensor data. The method works under unprepared natural conditions. We also present a novel and rapid implementation of a state-of-the-art skylight model, from which the illumination parameters are derived. The Sun's position is calculated based on the user location and time of day, with the relative rotational differences estimated from a gyroscope, compass and accelerometer. The results illustrated that our method can generate visually credible AR scenes with consistent shadows rendered from recovered illumination.
Online tracking of outdoor lighting variations for augmented reality with moving cameras.
Liu, Yanli; Granier, Xavier
2012-04-01
In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.
Kim, Hyungil; Gabbard, Joseph L; Anon, Alexandre Miranda; Misu, Teruhisa
2018-04-01
This article investigates the effects of visual warning presentation methods on human performance in augmented reality (AR) driving. An experimental user study was conducted in a parking lot where participants drove a test vehicle while braking for any cross traffic with assistance from AR visual warnings presented on a monoscopic and volumetric head-up display (HUD). Results showed that monoscopic displays can be as effective as volumetric displays for human performance in AR braking tasks. The experiment also demonstrated the benefits of conformal graphics, which are tightly integrated into the real world, such as their ability to guide drivers' attention and their positive consequences on driver behavior and performance. These findings suggest that conformal graphics presented via monoscopic HUDs can enhance driver performance by leveraging the effectiveness of monocular depth cues. The proposed approaches and methods can be used and further developed by future researchers and practitioners to better understand driver performance in AR as well as inform usability evaluation of future automotive AR applications.
Augmented reality visualization of deformable tubular structures for surgical simulation.
Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro
2016-06-01
Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Mobile markerless augmented reality and its application in forensic medicine.
Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena
2015-05-01
During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.
Implementation of augmented reality to train focus on children with s pecial needs
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Sari, P. P.; Arisandi, D.; Abdullah, D.; Napitupulu, D.; Setiawan, M. I.; Albra, W.; Asnawi; Andayani, U.
2018-03-01
Differences possessed by children with special needs such as differences in mental traits, sensory abilities, social and emotional behavior etc. of normal children causing learning and developmental barriers on children, so that requiring more specific services. Autism is one category of children with special needs who experience delays in responding to the things around him that caused by chaos in the brain work system. The tendency of autistic children who only focus on themselves makes it difficult to concentrate on one thing and easily switch when being talked. Training focus of the child can be done by giving them basic commands presented with visually appealing from the utilization of augmented reality and leap motion controller.
McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan
2016-01-01
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.
McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan
2016-01-01
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design. PMID:27242480
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
NASA Astrophysics Data System (ADS)
Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.
2001-05-01
We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.
Augmented Reality-Guided Lumbar Facet Joint Injections.
Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda
2018-05-08
The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.
Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders
Chicchi Giglioli, Irene Alice; Pedroli, Elisa
2015-01-01
Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology. PMID:26339283
Chicchi Giglioli, Irene Alice; Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Riva, Giuseppe
2015-01-01
Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.
Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-01-01
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time. PMID:28475145
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-05-05
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.
Mobile device geo-localization and object visualization in sensor networks
NASA Astrophysics Data System (ADS)
Lemaire, Simon; Bodensteiner, Christoph; Arens, Michael
2014-10-01
In this paper we present a method to visualize geo-referenced objects on modern smartphones using a multi- functional application design. The application applies different localization and visualization methods including the smartphone camera image. The presented application copes well with different scenarios. A generic application work flow and augmented reality visualization techniques are described. The feasibility of the approach is experimentally validated using an online desktop selection application in a network with a modern of-the-shelf smartphone. Applications are widespread and include for instance crisis and disaster management or military applications.
Augmented Reality Implementation in Watch Catalog as e-Marketing Based on Mobile Aplication
NASA Astrophysics Data System (ADS)
Adrianto, D.; Luwinda, F. A.; Yesmaya, V.
2017-01-01
Augmented Reality is one of important methods to provide user with a better interactive user interface. In this research, Augmented Reality in Mobile Application will be applied to provide user with useful information related with Watch Catalogue. This research will be focused on design and implementation an application using Augmented Reality. The process model used in this research is Extreme Programming. Extreme Programming have a several steps which are planning, design, coding, and testing. The result of this research is Augmented Reality application based on Android. This research will be conclude that implementation of Augmented Reality based on Android in Watch Catalogue will help customer to collect the useful information related to the specific object of watch.
Augmented reality in intraventricular neuroendoscopy.
Finger, T; Schaumann, A; Schulz, M; Thomale, Ulrich-W
2017-06-01
Individual planning of the entry point and the use of navigation has become more relevant in intraventricular neuroendoscopy. Navigated neuroendoscopic solutions are continuously improving. We describe experimentally measured accuracy and our first experience with augmented reality-enhanced navigated neuroendoscopy for intraventricular pathologies. Augmented reality-enhanced navigated endoscopy was tested for accuracy in an experimental setting. Therefore, a 3D-printed head model with a right parietal lesion was scanned with a thin-sliced computer tomography. Segmentation of the tumor lesion was performed using Scopis NovaPlan navigation software. An optical reference matrix is used to register the neuroendoscope's geometry and its field of view. The pre-planned ROI and trajectory are superimposed in the endoscopic image. The accuracy of the superimposed contour fitting on endoscopically visualized lesion was acquired by measuring the deviation of both midpoints to one another. The technique was subsequently used in 29 cases with CSF circulation pathologies. Navigation planning included defining the entry points, regions of interests and trajectories, superimposed as augmented reality on the endoscopic video screen during intervention. Patients were evaluated for postoperative imaging, reoperations, and possible complications. The experimental setup revealed a deviation of the ROI's midpoint from the real target by 1.2 ± 0.4 mm. The clinical study included 18 cyst fenestrations, ten biopsies, seven endoscopic third ventriculostomies, six stent placements, and two shunt implantations, being eventually combined in some patients. In cases of cyst fenestrations postoperatively, the cyst volume was significantly reduced in all patients by mean of 47%. In biopsies, the diagnostic yield was 100%. Reoperations during a follow-up period of 11.4 ± 10.2 months were necessary in two cases. Complications included one postoperative hygroma and one insufficient fenestration. Augmented reality-navigated neuroendoscopy is accurate and feasible to use in clinical application. By integrating relevant planning information directly into the endoscope's field of view, safety and efficacy for intraventricular neuroendoscopic surgery may be improved.
NASA Astrophysics Data System (ADS)
Halik, Łukasz
2012-11-01
The objective of the present deliberations was to systematise our knowledge of static visual variables used to create cartographic symbols, and also to analyse the possibility of their utilisation in the Augmented Reality (AR) applications on smartphone-type mobile devices. This was accomplished by combining the visual variables listed over the years by different researchers. Research approach was to determine the level of usefulness of particular characteristics of visual variables such as selective, associative, quantitative and order. An attempt was made to provide an overview of static visual variables and to describe the AR system which is a new paradigm of the user interface. Changing the approach to the presentation of point objects is caused by applying different perspective in the observation of objects (egocentric view) than it is done on traditional analogue maps (geocentric view). Presented topics will refer to the fast-developing field of cartography, namely mobile cartography. Particular emphasis will be put on smartphone-type mobile devices and their applicability in the process of designing cartographic symbols. Celem artykułu było usystematyzowanie wiedzy na temat statycznych zmiennych wizualnych, które sa kluczowymi składnikami budujacymi sygnatury kartograficzne. Podjeto próbe zestawienia zmiennych wizualnych wyodrebnionych przez kartografów na przestrzeni ostatnich piecdziesieciu lat, zaczynajac od klasyfikacji przedstawionej przez J. Bertin’a. Dokonano analizy stopnia uzytecznosci poszczególnych zmiennych graficznych w aspekcie ich wykorzystania w projektowaniu znaków punktowych dla mobilnych aplikacji tworzonych w technologii Rzeczywistosci Rozszerzonej (Augmented Reality). Zmienne poddano analizie pod wzgledem czterech charakterystyk: selektywnosci, skojarzeniowosci, odzwierciedlenia ilosci oraz porzadku. W artykule zwrócono uwage na odmienne zastosowanie perspektywy pomiedzy tradycyjnymi analogowymi mapami (geocentrycznosc) a aplikacjami tworzonymi w technologii Rozszerzonej Rzeczywistosci (egocentrycznosc). Tresci prezentowane w pracy dotycza szybko rozwijajacej sie gałezi kartografii - kartografii mobilnej. Dodatkowy nacisk połozony został na próbe implementacji załozen projektowania punktowych znaków kartograficznych na urzadzenia mobilne typu smartphone.
How Augmented Reality Enables Conceptual Understanding of Challenging Science Content
ERIC Educational Resources Information Center
Yoon, Susan; Anderson, Emma; Lin, Joyce; Elinich, Karen
2017-01-01
Research on learning about science has revealed that students often hold robust misconceptions about a number of scientific ideas. Digital simulation and dynamic visualization tools have helped to ameliorate these learning challenges by providing scaffolding to understand various aspects of the phenomenon. In this study we hypothesize that…
Augmented Reality as a Visual and Spatial Learning Tool in Technology Education
ERIC Educational Resources Information Center
Thornton, Timothy; Ernst, Jeremy V.; Clark, Aaron C.
2012-01-01
Improvement in instructional practices through dynamic means of delivery remains a central consideration to technology educators. To help accomplish this, one must constantly utilize contemporary and cutting-edge technological applications in attempts to provide a more beneficial learning experience for students. These technologies must…
Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory
2012-03-26
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.
The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation
ERIC Educational Resources Information Center
Estapa, Anne; Nadolny, Larysa
2015-01-01
The purpose of the study was to assess student achievement and motivation during a high school augmented reality mathematics activity focused on dimensional analysis. Included in this article is a review of the literature on the use of augmented reality in mathematics and the combination of print with augmented reality, also known as interactive…
An Analysis of Engagement in a Combination Indoor/Outdoor Augmented Reality Educational Game
ERIC Educational Resources Information Center
Folkestad, James; O'Shea, Patrick
2011-01-01
This paper describes the results of a qualitative analysis of video captured during a dual indoor/outdoor Augmented Reality experience. Augmented Reality is the layering of virtual information on top of the physical world. This Augmented Reality experience asked students to interact with the San Diego Museum of Art and the Botanical Gardens in San…
Evaluating Augmented Reality to Complete a Chain Task for Elementary Students with Autism
ERIC Educational Resources Information Center
Cihak, David F.; Moore, Eric J.; Wright, Rachel E.; McMahon, Don D.; Gibbons, Melinda M.; Smith, Cate
2016-01-01
The purpose of this study was to examine the effects of augmented reality to teach a chain task to three elementary-age students with autism spectrum disorders (ASDs). Augmented reality blends digital information within the real world. This study used a marker-based augmented reality picture prompt to trigger a video model clip of a student…
ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field
ERIC Educational Resources Information Center
El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.
2011-01-01
Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…
Adaptive multimodal interaction in mobile augmented reality: A conceptual framework
NASA Astrophysics Data System (ADS)
Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad
2017-10-01
Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.
Berryman, Donna R
2012-01-01
Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.
Advanced helmet mounted display (AHMD)
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag
2007-04-01
Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency
2016-03-03
Functional reflective polarizer for augmented reality and color vision deficiency Ruidong Zhu, Guanjun Tan, Jiamin Yuan, and Shin-Tson Wu* College...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and...augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective
An augmented-reality edge enhancement application for Google Glass.
Hwang, Alex D; Peli, Eli
2014-08-01
Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.
NASA Astrophysics Data System (ADS)
Sudra, Gunther; Speidel, Stefanie; Fritz, Dominik; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2007-03-01
Minimally invasive surgery is a highly complex medical discipline with various risks for surgeon and patient, but has also numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate with these new problems, we propose to support the surgeon's spatial cognition by using augmented reality (AR) techniques to directly visualize virtual objects in the surgical site. In order to generate an intelligent support, it is necessary to have an intraoperative assistance system that recognizes the surgical skills during the intervention and provides context-aware assistance surgeon using AR techniques. With MEDIASSIST we bundle our research activities in the field of intraoperative intelligent support and visualization. Our experimental setup consists of a stereo endoscope, an optical tracking system and a head-mounted-display for 3D visualization. The framework will be used as platform for the development and evaluation of our research in the field of skill recognition and context-aware assistance generation. This includes methods for surgical skill analysis, skill classification, context interpretation as well as assistive visualization and interaction techniques. In this paper we present the objectives of MEDIASSIST and first results in the fields of skill analysis, visualization and multi-modal interaction. In detail we present a markerless instrument tracking for surgical skill analysis as well as visualization techniques and recognition of interaction gestures in an AR environment.
Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2014-06-05
Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.
Borrel, Alexandre; Fourches, Denis
2017-12-01
There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Real-time self-calibration of a tracked augmented reality display
NASA Astrophysics Data System (ADS)
Baum, Zachary; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: Augmented reality systems have been proposed for image-guided needle interventions but they have not become widely used in clinical practice due to restrictions such as limited portability, low display refresh rates, and tedious calibration procedures. We propose a handheld tablet-based self-calibrating image overlay system. METHODS: A modular handheld augmented reality viewbox was constructed from a tablet computer and a semi-transparent mirror. A consistent and precise self-calibration method, without the use of any temporary markers, was designed to achieve an accurate calibration of the system. Markers attached to the viewbox and patient are simultaneously tracked using an optical pose tracker to report the position of the patient with respect to a displayed image plane that is visualized in real-time. The software was built using the open-source 3D Slicer application platform's SlicerIGT extension and the PLUS toolkit. RESULTS: The accuracy of the image overlay with image-guided needle interventions yielded a mean absolute position error of 0.99 mm (95th percentile 1.93 mm) in-plane of the overlay and a mean absolute position error of 0.61 mm (95th percentile 1.19 mm) out-of-plane. This accuracy is clinically acceptable for tool guidance during various procedures, such as musculoskeletal injections. CONCLUSION: A self-calibration method was developed and evaluated for a tracked augmented reality display. The results show potential for the use of handheld image overlays in clinical studies with image-guided needle interventions.
The virtual mirror: a new interaction paradigm for augmented reality environments.
Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir
2009-09-01
Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.
Chow, Joyce A.; Törnros, Martin E.; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F.; Kurti, Arianit
2017-01-01
Context: Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Aims: Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. Settings and Design: The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Subjects and Methods: Our research institute focused on an experimental and “designerly” approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Statistical Analysis Used: Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as “rapid ethnography” and “conversation with materials”. Results: We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked information. Conclusions: The augmented reality magnetically tracked scalpel reduces tool switching though limitations in today's augmented reality technology fall short of creating an ideal immersive workflow by requiring the use of a monitor. While this technology catches up, we recommend focusing efforts on enabling the easy creation of layered, complex reports, linking, and viewing information across systems. Reflecting upon our results, we argue for digitalization to focus not only on how to record increasing amounts of data but also how these data can be accessed in a more thoughtful way that draws upon the expertise and creativity of pathology professionals using the systems. PMID:28966831
Chow, Joyce A; Törnros, Martin E; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F; Kurti, Arianit
2017-01-01
Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Our research institute focused on an experimental and "designerly" approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as " rapid ethnography " and " conversation with materials ". We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked information. The augmented reality magnetically tracked scalpel reduces tool switching though limitations in today's augmented reality technology fall short of creating an ideal immersive workflow by requiring the use of a monitor. While this technology catches up, we recommend focusing efforts on enabling the easy creation of layered, complex reports, linking, and viewing information across systems. Reflecting upon our results, we argue for digitalization to focus not only on how to record increasing amounts of data but also how these data can be accessed in a more thoughtful way that draws upon the expertise and creativity of pathology professionals using the systems.
Confronting an Augmented Reality
ERIC Educational Resources Information Center
Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert
2012-01-01
How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…
The status of augmented reality in laparoscopic surgery as of 2016.
Bernhardt, Sylvain; Nicolau, Stéphane A; Soler, Luc; Doignon, Christophe
2017-04-01
This article establishes a comprehensive review of all the different methods proposed by the literature concerning augmented reality in intra-abdominal minimally invasive surgery (also known as laparoscopic surgery). A solid background of surgical augmented reality is first provided in order to support the survey. Then, the various methods of laparoscopic augmented reality as well as their key tasks are categorized in order to better grasp the current landscape of the field. Finally, the various issues gathered from these reviewed approaches are organized in order to outline the remaining challenges of augmented reality in laparoscopic surgery. Copyright © 2017 Elsevier B.V. All rights reserved.
Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.
Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S
2017-11-01
Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.
Augmented reality-based electrode guidance system for reliable electroencephalography.
Song, Chanho; Jeon, Sangseo; Lee, Seongpung; Ha, Ho-Gun; Kim, Jonghyun; Hong, Jaesung
2018-05-24
In longitudinal electroencephalography (EEG) studies, repeatable electrode positioning is essential for reliable EEG assessment. Conventional methods use anatomical landmarks as fiducial locations for the electrode placement. Since the landmarks are manually identified, the EEG assessment is inevitably unreliable because of individual variations among the subjects and the examiners. To overcome this unreliability, an augmented reality (AR) visualization-based electrode guidance system was proposed. The proposed electrode guidance system is based on AR visualization to replace the manual electrode positioning. After scanning and registration of the facial surface of a subject by an RGB-D camera, the AR of the initial electrode positions as reference positions is overlapped with the current electrode positions in real time. Thus, it can guide the position of the subsequently placed electrodes with high repeatability. The experimental results with the phantom show that the repeatability of the electrode positioning was improved compared to that of the conventional 10-20 positioning system. The proposed AR guidance system improves the electrode positioning performance with a cost-effective system, which uses only RGB-D camera. This system can be used as an alternative to the international 10-20 system.
Potential perils of peri-Pokémon perambulation: the dark reality of augmented reality?
Joseph, Bellal; Armstrong, David G.
2016-01-01
Recently, the layering of augmented reality information on top of smartphone applications has created unprecedented user engagement and popularity. One augmented reality-based entertainment application, Pokémon Go (Pokémon Company, Tokyo, Japan) has become the most rapidly downloaded in history. This technology holds tremendous promise to promote ambulatory activity. However, there exists the obvious potential for distraction-related morbidity. We report two cases, presenting simultaneously to our trauma center, with injuries sustained secondary to gameplay with this augmented reality-based application. PMID:27713831
Potential perils of peri-Pokémon perambulation: the dark reality of augmented reality?
Joseph, Bellal; Armstrong, David G
2016-10-01
Recently, the layering of augmented reality information on top of smartphone applications has created unprecedented user engagement and popularity. One augmented reality-based entertainment application, Pokémon Go (Pokémon Company, Tokyo, Japan) has become the most rapidly downloaded in history. This technology holds tremendous promise to promote ambulatory activity. However, there exists the obvious potential for distraction-related morbidity. We report two cases, presenting simultaneously to our trauma center, with injuries sustained secondary to gameplay with this augmented reality-based application.
D3D augmented reality imaging system: proof of concept in mammography.
Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene
2016-01-01
The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.
Utilization of the Space Vision System as an Augmented Reality System For Mission Operations
NASA Technical Reports Server (NTRS)
Maida, James C.; Bowen, Charles
2003-01-01
Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to flight hardware capable of utilizing this technology. This is the basis for this proposed Space Human Factors Engineering project, the determination of the display symbology within the performance limits of the Space Vision System that will objectively improve human performance. This utilization of existing flight hardware will greatly reduce the costs of implementation for flight. Besides being used onboard shuttle and space station and as a ground-based system for mission operational support, it also has great potential for science and medical training and diagnostics, remote learning, team learning, video/media conferencing, and educational outreach.
ERIC Educational Resources Information Center
Martín Gutiérrez, Jorge; Meneses Fernández, María Dolores
2014-01-01
This paper explores educational and professional uses of augmented learning environment concerned with issues of training and entertainment. We analyze the state-of-art research of some scenarios based on augmented reality. Some examples for the purpose of education and simulation are described. These applications show that augmented reality can…
NASA Astrophysics Data System (ADS)
Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho
As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.
Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts
NASA Astrophysics Data System (ADS)
hong, Zhou; Wenhua, Lu
2017-01-01
Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.
Augmented reality in neurosurgery
Tagaytayan, Raniel; Kelemen, Arpad
2016-01-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting. PMID:29765445
Augmented reality in neurosurgery.
Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia
2018-04-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.
Augmented reality in dentistry: a current perspective.
Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk
2018-02-21
Augmentation reality technology offers virtual information in addition to that of the real environment and thus opens new possibilities in various fields. The medical applications of augmentation reality are generally concentrated on surgery types, including neurosurgery, laparoscopic surgery and plastic surgery. Augmentation reality technology is also widely used in medical education and training. In dentistry, oral and maxillofacial surgery is the primary area of use, where dental implant placement and orthognathic surgery are the most frequent applications. Recent technological advancements are enabling new applications of restorative dentistry, orthodontics and endodontics. This review briefly summarizes the history, definitions, features, and components of augmented reality technology and discusses its applications and future perspectives in dentistry.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Reality Check: Basics of Augmented, Virtual, and Mixed Reality.
Brigham, Tara J
2017-01-01
Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L
2018-01-01
Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients' de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based "blind insertion" invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner's AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.
Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.
2018-01-01
Introduction Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Methods Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. Results The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients’ de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based “blind insertion” invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner’s AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Conclusion Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074
Bach, Benjamin; Sicat, Ronell; Beyer, Johanna; Cordeil, Maxime; Pfister, Hanspeter
2018-01-01
We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.
Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications.
Guha, Daipayan; Alotaibi, Naif M; Nguyen, Nhu; Gupta, Shaurya; McFaul, Christopher; Yang, Victor X D
2017-05-01
Augmented reality (AR) superimposes computer-generated virtual objects onto the user's view of the real world. Among medical disciplines, neurosurgery has long been at the forefront of image-guided surgery, and it continues to push the frontiers of AR technology in the operating room. In this systematic review, we explore the history of AR in neurosurgery and examine the literature on current neurosurgical applications of AR. Significant challenges to surgical AR exist, including compounded sources of registration error, impaired depth perception, visual and tactile temporal asynchrony, and operator inattentional blindness. Nevertheless, the ability to accurately display multiple three-dimensional datasets congruently over the area where they are most useful, coupled with future advances in imaging, registration, display technology, and robotic actuation, portend a promising role for AR in the neurosurgical operating room.
Disaster medicine through Google Glass.
Carenzo, Luca; Barra, Federico Lorenzo; Ingrassia, Pier Luigi; Colombo, Davide; Costa, Alessandro; Della Corte, Francesco
2015-06-01
Nontechnical skills can make a difference in the management of disasters and mass casualty incidents and any tool helping providers in action might improve their ability to respond to such events. Google Glass, released by Google as a new personal communication device, could play a role in this field. We recently tested Google Glass during a full-scale exercise to perform visually guided augmented-reality Simple Triage and Rapid Treatment triage using a custom-made application and to identify casualties and collect georeferenced notes, photos, and videos to be incorporated into the debriefing. Despite some limitations (battery life and privacy concerns), Glass is a promising technology both for telemedicine applications and augmented-reality disaster response support to increase operators' performance, helping them to make better choices on the field; to optimize timings; and finally represents an excellent option to take professional education to a higher level.
SmartG: Spontaneous Malaysian Augmented Reality Tourist Guide
NASA Astrophysics Data System (ADS)
Kasinathan, Vinothini; Mustapha, Aida; Subramaniam, Tanabalan
2016-11-01
In effort to attract higher tourist expenditure along with higher tourist arrivals, this paper proposes a travel application called the SmartG, acronym for Spontaneous Malaysian Augmented Reality Tourist Guide, which operates by making recommendations to user based on the travel objective and individual budget constraints. The applications relies on augmented reality technology, whereby a three dimensional model is presented to the user based on input from real world environment. User testing returned a favorable feedback on the concept of using augmented reality in promoting Malaysian tourism.
Augmented reality on poster presentations, in the field and in the classroom
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Kolawole, Folarin
2017-04-01
Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.
NASA Astrophysics Data System (ADS)
Abercrombie, S. P.; Menzies, A.; Goddard, C.
2017-12-01
Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.
What is going on in augmented reality simulation in laparoscopic surgery?
Botden, Sanne M B I; Jakimowicz, Jack J
2009-08-01
To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.
Visualization Improves Supraclavicular Access to the Subclavian Vein in a Mixed Reality Simulator.
Sappenfield, Joshua Warren; Smith, William Brit; Cooper, Lou Ann; Lizdas, David; Gonsalves, Drew B; Gravenstein, Nikolaus; Lampotang, Samsun; Robinson, Albert R
2018-07-01
We investigated whether visual augmentation (3D, real-time, color visualization) of a procedural simulator improved performance during training in the supraclavicular approach to the subclavian vein, not as widely known or used as its infraclavicular counterpart. To train anesthesiology residents to access a central vein, a mixed reality simulator with emulated ultrasound imaging was created using an anatomically authentic, 3D-printed, physical mannequin based on a computed tomographic scan of an actual human. The simulator has a corresponding 3D virtual model of the neck and upper chest anatomy. Hand-held instruments such as a needle, an ultrasound probe, and a virtual camera controller are directly manipulated by the trainee and tracked and recorded with submillimeter resolution via miniature, 6 degrees of freedom magnetic sensors. After Institutional Review Board approval, 69 anesthesiology residents and faculty were enrolled and received scripted instructions on how to perform subclavian venous access using the supraclavicular approach based on anatomic landmarks. The volunteers were randomized into 2 cohorts. The first used real-time 3D visualization concurrently with trial 1, but not during trial 2. The second did not use real-time 3D visualization concurrently with trial 1 or 2. However, after trial 2, they observed a 3D visualization playback of trial 2 before performing trial 3 without visualization. An automated scoring system based on time, success, and errors/complications generated objective performance scores. Nonparametric statistical methods were used to compare the scores between subsequent trials, differences between groups (real-time visualization versus no visualization versus delayed visualization), and improvement in scores between trials within groups. Although the real-time visualization group demonstrated significantly better performance than the delayed visualization group on trial 1 (P = .01), there was no difference in gain scores, between performance on the first trial and performance on the final trial, that were dependent on group (P = .13). In the delayed visualization group, the difference in performance between trial 1 and trial 2 was not significant (P = .09); reviewing performance on trial 2 before trial 3 resulted in improved performance when compared to trial 1 (P < .0001). There was no significant difference in median scores (P = .13) between the real-time visualization and delayed visualization groups for the last trial after both groups had received visualization. Participants reported a significant improvement in confidence in performing supraclavicular access to the subclavian vein. Standard deviations of scores, a measure of performance variability, decreased in the delayed visualization group after viewing the visualization. Real-time visual augmentation (3D visualization) in the mixed reality simulator improved performance during supraclavicular access to the subclavian vein. No difference was seen in the final trial of the group that received real-time visualization compared to the group that had delayed visualization playback of their prior attempt. Training with the mixed reality simulator improved participant confidence in performing an unfamiliar technique.
An Augmented-Reality Edge Enhancement Application for Google Glass
Hwang, Alex D.; Peli, Eli
2014-01-01
Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871
Interacting with Visual Poems through AR-Based Digital Artwork
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen
2012-01-01
In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…
Learning Protein Structure with Peers in an AR-Enhanced Learning Environment
ERIC Educational Resources Information Center
Chen, Yu-Chien
2013-01-01
Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…
Evaluating the use of augmented reality to support undergraduate student learning in geomorphology
NASA Astrophysics Data System (ADS)
Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.
2016-12-01
Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.
Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane
2017-03-01
Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.
Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M
2010-01-01
Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.
ERIC Educational Resources Information Center
Montoya, Mauricio Hincapié; Díaz, Christian Andrés; Moreno, Gustavo Adolfo
2017-01-01
Nowadays, the use of technology to improve teaching and learning experiences in the classroom has been promoted. One of these technologies is augmented reality, which allows overlaying layers of virtual information on real scene with the aim of increasing the perception that user has of reality. Augmented reality has proved to offer several…
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
The Local Games Lab ABQ: Homegrown Augmented Reality
ERIC Educational Resources Information Center
Holden, Christopher
2014-01-01
Experiments in the use of augmented reality games formerly required extensive material resources and expertise to implement above and beyond what might be possible within the usual educational contexts. Currently, the more common availability of hardware in these contexts and the existence of easy-to-use, general purpose augmented reality design…
Augmented reality environment for temporomandibular joint motion analysis.
Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R
1996-01-01
The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.
2014-01-01
Background Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. Methods In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. Results The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider’s lower extremities. Conclusions The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders. PMID:24902780
Augmented Citizen Science for Environmental Monitoring and Education
NASA Astrophysics Data System (ADS)
Albers, B.; de Lange, N.; Xu, S.
2017-09-01
Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI) with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.
On Location Learning: Authentic Applied Science with Networked Augmented Realities
ERIC Educational Resources Information Center
Rosenbaum, Eric; Klopfer, Eric; Perry, Judy
2007-01-01
The learning of science can be made more like the practice of science through authentic simulated experiences. We have created a networked handheld Augmented Reality environment that combines the authentic role-playing of Augmented Realities and the underlying models of Participatory Simulations. This game, known as Outbreak @ The Institute, is…
Social Augmented Reality: Enhancing Context-Dependent Communication and Informal Learning at Work
ERIC Educational Resources Information Center
Pejoska, Jana; Bauters, Merja; Purma, Jukka; Leinonen, Teemu
2016-01-01
Our design proposal of social augmented reality (SoAR) grows from the observed difficulties of practical applications of augmented reality (AR) in workplace learning. In our research we investigated construction workers doing physical work in the field and analyzed the data using qualitative methods in various workshops. The challenges related to…
The Effect of Augmented Reality Applications in the Learning Process: A Meta-Analysis Study
ERIC Educational Resources Information Center
Ozdemir, Muzaffer; Sahin, Cavus; Arcagok, Serdar; Demir, M. Kaan
2018-01-01
Purpose: The aim of this research is to investigate the effect of Augmented Reality (AR) applications in the learning process. Problem: Research that determines the effectiveness of Augmented Reality (AR) applications in the learning process with different variables has not been encountered in national or international literature. Research…
Augmenting a Child's Reality: Using Educational Tablet Technology
ERIC Educational Resources Information Center
Tanner, Patricia; Karas, Carly; Schofield, Damian
2014-01-01
This study investigates the classroom integration of an innovative technology, augmented reality. Although the process of adding new technologies into a classroom setting can be daunting, the concept of augmented reality has demonstrated the ability to educate students and to assist with their comprehension of a procedural task. One half of the…
Augmented Reality Learning Experiences: Survey of Prototype Design and Evaluation
ERIC Educational Resources Information Center
Santos, Marc Ericson C.; Chen, Angie; Taketomi, Takafumi; Yamamoto, Goshiro; Miyazaki, Jun; Kato, Hirokazu
2014-01-01
Augmented reality (AR) technology is mature for creating learning experiences for K-12 (pre-school, grade school, and high school) educational settings. We reviewed the applications intended to complement traditional curriculum materials for K-12. We found 87 research articles on augmented reality learning experiences (ARLEs) in the IEEE Xplore…
Augmented Reality Trends in Education: A Systematic Review of Research and Applications
ERIC Educational Resources Information Center
Bacca, Jorge; Baldiris, Silvia; Fabregat, Ramon; Graf, Sabine; Kinshuk
2014-01-01
In recent years, there has been an increasing interest in applying Augmented Reality (AR) to create unique educational settings. So far, however, there is a lack of review studies with focus on investigating factors such as: the uses, advantages, limitations, effectiveness, challenges and features of augmented reality in educational settings.…
Enhancing Education through Mobile Augmented Reality
ERIC Educational Resources Information Center
Joan, D. R. Robert
2015-01-01
In this article, the author has discussed about the Mobile Augmented Reality and enhancing education through it. The aim of the present study was to give some general information about mobile augmented reality which helps to boost education. Purpose of the current study reveals the mobile networks which are used in the institution campus as well…
ERIC Educational Resources Information Center
Lan, Chung-Hsien; Chao, Stefan; Kinshuk; Chao, Kuo-Hung
2013-01-01
This study presents a conceptual framework for supporting mobile peer assessment by incorporating augmented reality technology to eliminate limitation of reviewing and assessing. According to the characteristics of mobile technology and augmented reality, students' work can be shown in various ways by considering the locations and situations. This…
ERIC Educational Resources Information Center
Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul
2014-01-01
This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…
Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee
2013-07-01
[Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.
Telemedicine with mobile devices and augmented reality for early postoperative care.
Ponce, Brent A; Brabston, Eugene W; Shin Zu; Watson, Shawna L; Baker, Dustin; Winn, Dennis; Guthrie, Barton L; Shenai, Mahesh B
2016-08-01
Advanced features are being added to telemedicine paradigms to enhance usability and usefulness. Virtual Interactive Presence (VIP) is a technology that allows a surgeon and patient to interact in a "merged reality" space, to facilitate both verbal, visual, and manual interaction. In this clinical study, a mobile VIP iOS application was introduced into routine post-operative orthopedic and neurosurgical care. Survey responses endorse the usefulness of this tool, as it relates to The virtual interaction provides needed virtual follow-up in instances where in-person follow-up may be limited, and enhances the subjective patient experience.
NASA Astrophysics Data System (ADS)
Oh, Jihun; Kang, Xin; Wilson, Emmanuel; Peters, Craig A.; Kane, Timothy D.; Shekhar, Raj
2014-03-01
In laparoscopic surgery, live video provides visualization of the exposed organ surfaces in the surgical field, but is unable to show internal structures beneath those surfaces. The laparoscopic ultrasound is often used to visualize the internal structures, but its use is limited to intermittent confirmation because of the need for an extra hand to maneuver the ultrasound probe. Other limitations of using ultrasound are the difficulty of interpretation and the need for an extra port. The size of the ultrasound transducer may also be too large for its usage in small children. In this paper, we report on an augmented reality (AR) visualization system that features continuous hands-free volumetric ultrasound scanning of the surgical anatomy and video imaging from a stereoscopic laparoscope. The acquisition of volumetric ultrasound image is realized by precisely controlling a back-and-forth movement of an ultrasound transducer mounted on a linear slider. Furthermore, the ultrasound volume is refreshed several times per minute. This scanner will sit outside of the body in the envisioned use scenario and could be even integrated into the operating table. An overlay of the maximum intensity projection (MIP) of ultrasound volume on the laparoscopic stereo video through geometric transformations features an AR visualization system particularly suitable for children, because ultrasound is radiation-free and provides higher-quality images in small patients. The proposed AR representation promises to be better than the AR representation using ultrasound slice data.
Augmented reality user interface for mobile ground robots with manipulator arms
NASA Astrophysics Data System (ADS)
Vozar, Steven; Tilbury, Dawn M.
2011-01-01
Augmented Reality (AR) is a technology in which real-world visual data is combined with an overlay of computer graphics, enhancing the original feed. AR is an attractive tool for teleoperated UGV UIs as it can improve communication between robots and users via an intuitive spatial and visual dialogue, thereby increasing operator situational awareness. The successful operation of UGVs often relies upon both chassis navigation and manipulator arm control, and since existing literature usually focuses on one task or the other, there is a gap in mobile robot UIs that take advantage of AR for both applications. This work describes the development and analysis of an AR UI system for a UGV with an attached manipulator arm. The system supplements a video feed shown to an operator with information about geometric relationships within the robot task space to improve the operator's situational awareness. Previous studies on AR systems and preliminary analyses indicate that such an implementation of AR for a mobile robot with a manipulator arm is anticipated to improve operator performance. A full user-study can determine if this hypothesis is supported by performing an analysis of variance on common test metrics associated with UGV teleoperation.
3D augmented reality with integral imaging display
NASA Astrophysics Data System (ADS)
Shen, Xin; Hua, Hong; Javidi, Bahram
2016-06-01
In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.
Augmented Reality in Architecture: Rebuilding Archeological Heritage
NASA Astrophysics Data System (ADS)
de la Fuente Prieto, J.; Castaño Perea, E.; Labrador Arroyo, F.
2017-02-01
With the development in recent years of augmented reality and the appearance of new mobile terminals and storage bases on-line, we find the possibility of using a powerful tool for transmitting architecture. This paper analyzes the relationship between Augmented Reality and Architecture. Firstly, connects the theoretical framework of both disciplines through the Representation concept. Secondly, describes the milestones and possibilities of Augmented Reality in the particular field of archaeological reconstruction. And lastly, once recognized the technology developed, we face the same analysis from a critical point of view, assessing their suitability to the discipline that concerns us is the architecture and within archeology.
Augmented Reality for Close Quarters Combat
None
2018-01-16
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games
ERIC Educational Resources Information Center
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…
Potential Use of Augmented Reality in LIS Education
ERIC Educational Resources Information Center
Wójcik, Magdalena
2016-01-01
The subject of this article is the use of augmented reality technology in library and information science education. The aim is to determine the scope and potential uses of augmented reality in the education of information professionals. In order to determine the scope and forms of potential use of AR technology in LIS education a two-step…
Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load
ERIC Educational Resources Information Center
Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel
2016-01-01
Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…
ERIC Educational Resources Information Center
Önal, Nezih; Ibili, Emin; Çaliskan, Erkan
2017-01-01
The purpose of this research is to determine the impact of augmented reality technology and geometry teaching on elementary school mathematics teacher candidates' technology acceptance and to examine participants' views on augmented reality. The sample of the research was composed of 40 elementary school mathematics teacher candidates who were…
Indoor vs. Outdoor Depth Perception for Mobile Augmented Reality
2009-03-01
International Symposium on Mixed and Augmented Reality, pages 77–86, Sept. 2008. [12] M. A. Livingston, J. E. Swan II, J. L. Gabbard , T. H. Höllerer, D. Hix...D. Brown, Y. Baillot, J. L. Gabbard , and D. Hix. A perceptual matching technique for depth judgments in optical, see-through augmented reality. In
Vroom: designing an augmented environment for remote collaboration in digital cinema production
NASA Astrophysics Data System (ADS)
Margolis, Todd; Cornish, Tracy
2013-03-01
As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.
NASA Astrophysics Data System (ADS)
Jenkins, H. S.; Gant, R.; Hopkins, D.
2014-12-01
Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology, geography and hydrology, and enabled our undergraduate students to understand topography intuitively. We therefore find the AR Sandbox to be a novel teaching tool and an effective demonstration of the capabilities of 3D visualization and real-time augmented user interfaces that enable students to better understand environmental processes.
An indoor augmented reality mobile application for simulation of building evacuation
NASA Astrophysics Data System (ADS)
Sharma, Sharad; Jerripothula, Shanmukha
2015-03-01
Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.
Lee, Byoung-Hee
2016-04-01
[Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-09-01
Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.
ERIC Educational Resources Information Center
Cheng, Kun-Hung
2017-01-01
With the increasing attention to the role of parents in children's learning, what issues parents consider and how they behave when learning with their children when confronted with the emerging augmented reality (AR) technology may be worth exploring. This study was therefore conducted to qualitatively understand parents' conceptions of AR…
Augmented reality-assisted skull base surgery.
Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K
2014-12-01
Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
CityGuideTour Toruń - tourist application using augmented reality
NASA Astrophysics Data System (ADS)
Węgrzyn, Magdalena; Mościcka, Albina
2017-12-01
The aim of the article is to show the possibilities of augmented reality in the fi eld of geodesy and cartography. It discusses the concept of augmented reality, its origins and development, as well as areas of the existing applications. The practical functioning of augmented reality in the area of geodesy and cartography is presented on the example of an application developed for the tourist city of Toruń, created with the use of CityGuideTour software. The principles of developing an application and the way it operates are also discussed. As a result, a fully operational bilingual application is available free of charge on the Web.
Gunner Goggles: Implementing Augmented Reality into Medical Education.
Wang, Leo L; Wu, Hao-Hua; Bilici, Nadir; Tenney-Soeiro, Rebecca
2016-01-01
There is evidence that both smartphone and tablet integration into medical education has been lacking. At the same time, there is a niche for augmented reality (AR) to improve this process through the enhancement of textbook learning. Gunner Goggles is an attempt to enhance textbook learning in shelf exam preparatory review with augmented reality. Here we describe our initial prototype and detail the process by which augmented reality was implemented into our textbook through Layar. We describe the unique functionalities of our textbook pages upon augmented reality implementation, which includes links, videos and 3D figures, and surveyed 24 third year medical students for their impression of the technology. Upon demonstrating an initial prototype textbook chapter, 100% (24/24) of students felt that augmented reality improved the quality of our textbook chapter as a learning tool. Of these students, 92% (22/24) agreed that their shelf exam review was inadequate and 19/24 (79%) felt that a completed Gunner Goggles product would have been a viable alternative to their shelf exam review. Thus, while students report interest in the integration of AR into medical education test prep, future investigation into how the use of AR can improve performance on exams is warranted.
NASA Astrophysics Data System (ADS)
Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar
2002-05-01
Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.
Virtual reality, augmented reality…I call it i-Reality.
Grossmann, Rafael J
2015-01-01
The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.
AR4VI: AR as an Accessibility Tool for People with Visual Impairments
Coughlan, James M.; Miele, Joshua
2017-01-01
Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163
AR4VI: AR as an Accessibility Tool for People with Visual Impairments.
Coughlan, James M; Miele, Joshua
2017-10-01
Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.
NASA Astrophysics Data System (ADS)
Reed, S. E.; Kreylos, O.; Hsi, S.; Kellogg, L. H.; Schladow, G.; Yikilmaz, M. B.; Segale, H.; Silverman, J.; Yalowitz, S.; Sato, E.
2014-12-01
One of the challenges involved in learning earth science is the visualization of processes which occur over large spatial and temporal scales. Shaping Watersheds is an interactive 3D exhibit developed with support from the National Science Foundation by a team of scientists, science educators, exhibit designers, and evaluation professionals, in an effort to improve public understanding and stewardship of freshwater ecosystems. The hands-on augmented reality sandbox allows users to create topographic models by shaping real "kinetic" sand. The exhibit is augmented in real time by the projection of a color elevation map and contour lines which exactly match the sand topography, using a closed loop of a Microsoft Kinect 3D camera, simulation and visualization software, and a data projector. When an object (such as a hand) is sensed at a particular height above the sand surface, virtual rain appears as a blue visualization on the surface and a flow simulation (based on a depth-integrated version of the Navier-Stokes equations) moves the water across the landscape. The blueprints and software to build the sandbox are freely available online (http://3dh2o.org/71/) under the GNU General Public License, together with a facilitator's guide and a public forum (with how-to documents and FAQs). Using these resources, many institutions (20 and counting) have built their own exhibits to teach a wide variety of topics (ranging from watershed stewardship, hydrology, geology, topographic map reading, and planetary science) in a variety of venues (such as traveling science exhibits, K-12 schools, university earth science departments, and museums). Additional exhibit extensions and learning modules are planned such as tsunami modeling and prediction. Moreover, a study is underway at the Lawrence Hall of Science to assess how various aspects of the sandbox (such as visualization color scheme and level of interactivity) affect understanding of earth science concepts.
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
Augmented REality Sandtables (ARESs) Impact on Learning
2016-07-01
Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...The use of augmented reality ( AR ) to supplement training tools, specifically sand tables, can produce highly effective systems at relatively low...engagement and enhanced-scenario customization. The Augmented REality Sandtable ( ARES ) is projected to enhance training and retention of spatial
Evaluation of Augmented REality Sandtable (ARES) during Sand Table Construction
2018-01-01
ARL-TR-8278 ● JAN 2018 US Army Research Laboratory Evaluation of Augmented REality Sandtable ( ARES ) during Sand Table...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by...Evaluation of Augmented REality Sandtable ( ARES ) during Sand Table Construction by Kelly S Hale and Jennifer M Riley Design Interactive
Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory
ERIC Educational Resources Information Center
Andujar, J. M.; Mejias, A.; Marquez, M. A.
2011-01-01
Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…
Deutsch, Judith E
2009-01-01
Improving walking for individuals with musculoskeletal and neuromuscular conditions is an important aspect of rehabilitation. The capabilities of clinicians who address these rehabilitation issues could be augmented with innovations such as virtual reality gaming based technologies. The chapter provides an overview of virtual reality gaming based technologies currently being developed and tested to improve motor and cognitive elements required for ambulation and mobility in different patient populations. Included as well is a detailed description of a single VR system, consisting of the rationale for development and iterative refinement of the system based on clinical science. These concepts include: neural plasticity, part-task training, whole task training, task specific training, principles of exercise and motor learning, sensorimotor integration, and visual spatial processing.
Virtual Rehabilitation with Children: Challenges for Clinical Adoption [From the Field].
Glegg, Stephanie
2017-01-01
Virtual, augmented, and mixed reality environments are increasingly being developed and used to address functional rehabilitation goals related to physical, cognitive, social, and psychological impairments. For example, a child with an acquired brain injury may participate in virtual rehabilitation to address impairments in balance, attention, turn taking, and engagement in therapy. The trend toward virtual rehabilitation first gained momentum with the adoption of commercial off-the-shelf active video gaming consoles (e.g., Nintendo Wii and XBox). Now, we are seeing the rapid emergence of customized rehabilitation-specific systems that integrate technological advances in virtual reality, visual effects, motion tracking, physiological monitoring, and robotics.
Lin, Yen-Kun; Yau, Hong-Tzong; Wang, I-Chung; Zheng, Cheng; Chung, Kwok-Hung
2015-06-01
Stereoscopic visualization concept combined with head-mounted displays may increase the accuracy of computer-aided implant surgery. The aim of this study was to develop an augmented reality-based dental implant placement system and evaluate the accuracy of the virtually planned versus the actual prepared implant site created in vitro. Four fully edentulous mandibular and four partially edentulous maxillary duplicated casts were used. Six implants were planned in the mandibular and four in the maxillary casts. A total of 40 osteotomy sites were prepared in the casts using stereolithographic template integrated with augmented reality-based surgical simulation. During the surgery, the dentist could be guided accurately through a head-mounted display by superimposing the virtual auxiliary line and the drill stop. The deviation between planned and prepared positions of the implants was measured via postoperative computer tomography generated scan images. Mean and standard deviation of the discrepancy between planned and prepared sites at the entry point, apex, angle, depth, and lateral locations were 0.50 ± 0.33 mm, 0.96 ± 0.36 mm, 2.70 ± 1.55°, 0.33 ± 0.27 mm, and 0.86 ± 0.34 mm, respectively, for the fully edentulous mandible, and 0.46 ± 0.20 mm, 1.23 ± 0.42 mm, 3.33 ± 1.42°, 0.48 ± 0.37 mm, and 1.1 ± 0.39 mm, respectively, for the partially edentulous maxilla. There was a statistically significant difference in the apical deviation between maxilla and mandible in this surgical simulation (p < .05). Deviation of implant placement from planned position was significantly reduced by integrating surgical template and augmented reality technology. © 2013 Wiley Periodicals, Inc.
Lee, Byoung-Hee
2016-01-01
[Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489
NASA Astrophysics Data System (ADS)
Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.
2012-02-01
Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.
Telescopic multi-resolution augmented reality
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold
2014-05-01
To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.
Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio
2014-12-01
We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference in terms of error was noticed among operators, despite variations in surgical experience. Feedback from surgeons was acceptable; all tests were completed within 15 min and the tool was considered to be both comfortable and usable in practice. We used a new localiser-free, head-mounted, wearable, stereoscopic, video see-through display to develop a useful strategy affording surgeons access to augmented reality information. Our device appears to be accurate when used to assist in waferless maxillary repositioning. Our results suggest that the method can potentially be extended for use with many surgical procedures on the facial skeleton. Further, our positive results suggest that it would be appropriate to proceed to in vivo testing to assess surgical accuracy under real clinical conditions. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-01-01
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-02-15
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.
ERIC Educational Resources Information Center
Akgün, Özcan Erkan; Istanbullu, Aslihan; Avci, Sirin Küçük
2017-01-01
Augmented reality (AR) is a technology to supplement existing reality with additional information, descriptions and helpful images with the help of technology and therefore ensure the reality to be perceived more qualified and well-rounded. In this study, views and comments about problems, solutions and suggestions on using AR were gathered from…
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
ERIC Educational Resources Information Center
Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco
2015-01-01
The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…
Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi
2017-08-01
Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.
Invisible marker based augmented reality system
NASA Astrophysics Data System (ADS)
Park, Hanhoon; Park, Jong-Il
2005-07-01
Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.
A brief review of augmented reality science learning
NASA Astrophysics Data System (ADS)
Gopalan, Valarmathie; Bakar, Juliana Aida Abu; Zulkifli, Abdul Nasir
2017-10-01
This paper reviews several literatures concerning the theories and model that could be applied for science motivation for upper secondary school learners (16-17 years old) in order to make the learning experience more amazing and useful. The embedment of AR in science could bring an awe-inspiring transformation on learners' viewpoint towards the respective subject matters. Augmented Reality is able to present the real and virtual learning experience with the addition of multiple media without replacing the real environment. Due to the unique feature of AR, it attracts the mass attention of researchers to implement AR in science learning. This impressive technology offers learners with the ultimate visualization and provides an astonishing and transparent learning experience by bringing to light the unseen perspective of the learning content. This paper will attract the attention of researchers in the related field as well as academicians in the related discipline. This paper aims to propose several related theoretical guidance that could be applied in science motivation to transform the learning in an effective way.
Invisible Light: a global infotainment community based on augmented reality technologies
NASA Astrophysics Data System (ADS)
Israel, Kai; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan
2015-10-01
Theoretical details about optics and photonics are not common knowledge nowadays. Physicists are keen to scientifically explain `light,' which has a huge impact on our lives. It is necessary to examine it from multiple perspectives and to make the knowledge accessible to the public in an interdisciplinary, scientifically well-grounded and appealing medial way. To allow an information exchange on a global scale, our project "Invisible Light" establishes a worldwide accessible platform. Its contents will not be created by a single instance, but user-generated, with the help of the global community. The article describes the infotainment portal "Invisible Light," which stores scientific articles about light and photonics and makes them accessible worldwide. All articles are tagged with geo-coordinates, so they can be clearly identified and localized. A smartphone application is used for visualization, transmitting the information to users in real time by means of an augmented reality application. Scientific information is made accessible for a broad audience and in an attractive manner.
A Protein in the palm of your hand through augmented reality.
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Lee, Wendy
The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Klein, P.; Lukowicz, P.; Knierim, P.; Schmidt, A.; Kuhn, J.
2018-05-01
Fundamental concepts of thermodynamics rely on abstract physical quantities such as energy, heat and entropy, which play an important role in the process of interpreting thermal phenomena and statistical mechanics. However, these quantities are not covered by human visual perception, and since heat sensation is purely qualitative and easy to deceive, an intuitive understanding often is lacking. Today immersive technologies like head-mounted displays of the newest generation, especially HoloLens, allow for high-quality augmented reality learning experiences, which can overcome this gap in human perception by presenting different representations of otherwise invisible quantities directly in the field of view of the user on the experimental apparatus, which simultaneously avoids a split-attention effect. In a mixed reality (MR) scenario as presented in this paper—which we call a holo.lab—human perception can be extended to the thermal regime by presenting false-color representations of the temperature of objects as a virtual augmentation directly on the real object itself in real-time. Direct feedback to experimental actions of the users in the form of different representations allows for immediate comparison to theoretical principles and predictions and therefore is supposed to intensify the theory–experiment interactions and to increase students’ conceptual understanding. We tested this technology for an experiment on thermal conduction of metals in the framework of undergraduate laboratories. A pilot study with treatment and control groups (N = 59) showed a small positive effect of MR on students’ performance measured with a standardized concept test for thermodynamics, pointing to an improvement of the understanding of the underlying physical concepts. These findings indicate that complex experiments could benefit even more from augmentation. This motivates us to enrich further experiments with MR.
My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
Kansaku, Kenji; Hata, Naoki; Takano, Kouji
2010-02-01
A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.
Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality
NASA Astrophysics Data System (ADS)
Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas
Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.
Shen, Xin; Javidi, Bahram
2018-03-01
We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.
Qu, Miao; Hou, Yikang; Xu, Yourong; Shen, Congcong; Zhu, Ming; Xie, Le; Wang, Hao; Zhang, Yan; Chai, Gang
2015-01-01
Through three-dimensional real time imaging, augmented reality (AR) can provide an overlay of the anatomical structure, or visual cues for specific landmarks. In this study, an AR Toolkit was used for distraction osteogenesis with hemifacial microsomia to define the mandibular osteotomy line and assist with intraoral distractor placement. 20 patients with hemifacial microsomia were studied and were randomly assigned to experimental and control groups. Pre-operative computed tomography was used in both groups, whereas AR was used in the experimental group. Afterwards, pre- and post-operative computed tomographic scans of both groups were superimposed, and several measurements were made and analysed. Both the conventional method and AR technique achieved proper positioning of the osteotomy planes, although the AR was more accurate. The difference in average vertical distance from the coronoid and condyle process to the pre- and post-operative cutting planes was significant (p < 0.01) between the two groups, whereas no significant difference (p > 0.05) was observed in the average angle between the two planes. The difference in deviations between the intersection points of the overlaid mandible across two cutting planes was also significant (p < 0.01). This study reports on an efficient approach for guiding intraoperative distraction osteogenesis. Augmented reality tools such as the AR Toolkit may be helpful for precise positioning of intraoral distractors in patients with hemifacial microsomia in craniofacial surgery. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Botella, Cristina; Pérez-Ara, M Ángeles; Bretón-López, Juana; Quero, Soledad; García-Palacios, Azucena; Baños, Rosa María
2016-01-01
Although in vivo exposure is the treatment of choice for specific phobias, some acceptability problems have been associated with it. Virtual Reality exposure has been shown to be as effective as in vivo exposure, and it is widely accepted for the treatment of specific phobias, but only preliminary data are available in the literature about the efficacy of Augmented Reality. The purpose of the present study was to examine the efficacy and acceptance of two treatment conditions for specific phobias in which the exposure component was applied in different ways: In vivo exposure (N = 31) versus an Augmented Reality system (N = 32) in a randomized controlled trial. "One-session treatment" guidelines were followed. Participants in the Augmented Reality condition significantly improved on all the outcome measures at post-treatment and follow-ups. When the two treatment conditions were compared, some differences were found at post-treatment, favoring the participants who received in vivo exposure. However, these differences disappeared at the 3- and 6-month follow-ups. Regarding participants' expectations and satisfaction with the treatment, very positive ratings were reported in both conditions. In addition, participants from in vivo exposure condition considered the treatment more useful for their problem whereas participants from Augmented Reality exposure considered the treatment less aversive. Results obtained in this study indicate that Augmented Reality exposure is an effective treatment for specific phobias and well accepted by the participants.
Botella, Cristina; Pérez-Ara, M. Ángeles; Bretón-López, Juana; Quero, Soledad; García-Palacios, Azucena; Baños, Rosa María
2016-01-01
Although in vivo exposure is the treatment of choice for specific phobias, some acceptability problems have been associated with it. Virtual Reality exposure has been shown to be as effective as in vivo exposure, and it is widely accepted for the treatment of specific phobias, but only preliminary data are available in the literature about the efficacy of Augmented Reality. The purpose of the present study was to examine the efficacy and acceptance of two treatment conditions for specific phobias in which the exposure component was applied in different ways: In vivo exposure (N = 31) versus an Augmented Reality system (N = 32) in a randomized controlled trial. “One-session treatment” guidelines were followed. Participants in the Augmented Reality condition significantly improved on all the outcome measures at post-treatment and follow-ups. When the two treatment conditions were compared, some differences were found at post-treatment, favoring the participants who received in vivo exposure. However, these differences disappeared at the 3- and 6-month follow-ups. Regarding participants’ expectations and satisfaction with the treatment, very positive ratings were reported in both conditions. In addition, participants from in vivo exposure condition considered the treatment more useful for their problem whereas participants from Augmented Reality exposure considered the treatment less aversive. Results obtained in this study indicate that Augmented Reality exposure is an effective treatment for specific phobias and well accepted by the participants. PMID:26886423
Usability engineering: domain analysis activities for augmented-reality systems
NASA Astrophysics Data System (ADS)
Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.
2002-05-01
This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.
Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also gave clear indications of the best design choices in producing the hazard visual cues.
Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds.
Wright, W Geoffrey
2014-01-01
Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed.
Location-Based Learning through Augmented Reality
ERIC Educational Resources Information Center
Chou, Te-Lien; Chanlin, Lih-Juan
2014-01-01
A context-aware and mixed-reality exploring tool cannot only effectively provide an information-rich environment to users, but also allows them to quickly utilize useful resources and enhance environment awareness. This study integrates Augmented Reality (AR) technology into smartphones to create a stimulating learning experience at a university…
Anesthesiology training using 3D imaging and virtual reality
NASA Astrophysics Data System (ADS)
Blezek, Daniel J.; Robb, Richard A.; Camp, Jon J.; Nauss, Lee A.
1996-04-01
Current training for regional nerve block procedures by anesthesiology residents requires expert supervision and the use of cadavers; both of which are relatively expensive commodities in today's cost-conscious medical environment. We are developing methods to augment and eventually replace these training procedures with real-time and realistic computer visualizations and manipulations of the anatomical structures involved in anesthesiology procedures, such as nerve plexus injections (e.g., celiac blocks). The initial work is focused on visualizations: both static images and rotational renderings. From the initial results, a coherent paradigm for virtual patient and scene representation will be developed.
Augmented Reality Comes to Physics
NASA Astrophysics Data System (ADS)
Buesing, Mark; Cook, Michael
2013-04-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.
Basic Perception in Head-worn Augmented Reality Displays
2012-01-01
Basic Perception in Head-worn Augmented Reality Displays Mark A. Livingston, Joseph L. Gabbard , J. Edward Swan II, Ciara M. Sibley, and Jane H...mark.livingston@nrl.navy.mil Joseph L. Gabbard Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA e-mail: jgabbard@vt.edu J...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Livingston, Gabbard , et al. 1 Introduction For many first-time users of augmented reality
Wilson, Kenneth L; Doswell, Jayfus T; Fashola, Olatokunbo S; Debeatham, Wayne; Darko, Nii; Walker, Travelyan M; Danner, Omar K; Matthews, Leslie R; Weaver, William L
2013-09-01
This study was to extrapolate potential roles of augmented reality goggles as a clinical support tool assisting in the reduction of preventable causes of death on the battlefield. Our pilot study was designed to improve medic performance in accurately placing a large bore catheter to release tension pneumothorax (prehospital setting) while using augmented reality goggles. Thirty-four preclinical medical students recruited from Morehouse School of Medicine performed needle decompressions on human cadaver models after hearing a brief training lecture on tension pneumothorax management. Clinical vignettes identifying cadavers as having life-threatening tension pneumothoraces as a consequence of improvised explosive device attacks were used. Study group (n = 13) performed needle decompression using augmented reality goggles whereas the control group (n = 21) relied solely on memory from the lecture. The two groups were compared according to their ability to accurately complete the steps required to decompress a tension pneumothorax. The medical students using augmented reality goggle support were able to treat the tension pneumothorax on the human cadaver models more accurately than the students relying on their memory (p < 0.008). Although the augmented reality group required more time to complete the needle decompression intervention (p = 0.0684), this did not reach statistical significance. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
ERIC Educational Resources Information Center
Chen, Yu-Hsuan; Wang, Chang-Hwa
2018-01-01
Although research has indicated that augmented reality (AR)-facilitated instruction improves learning performance, further investigation of the usefulness of AR from a psychological perspective has been recommended. Researchers consider presence a major psychological effect when users are immersed in virtual reality environments. However, most…
Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.
Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian
2017-01-01
Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.
NASA Astrophysics Data System (ADS)
Schiavottiello, N.
2009-08-01
The study and practice of archaeo-astronomy comprehend disciplines such as archaeology, positional astronomy, history and the studies of locals mythology as well as technical survey theory and practice. The research often start with an archaeological survey in order to record possible structural orientation of a particular monument towards specific cardinal directions. In a second stage theories about the visible orientations and possible alignments of a specific structure or part of a structure are drawn; often achieved with the use of some in house tools. These tools sometimes remain too ``esoteric'' and not always user friendly, especially if later they would have to be used for education purposes. Moreover they are borrowed from tools used in other disciplines such us astronomical, image processing and architectural software, thus resulting in a complicate process of trying to merge data that should instead be born in the same environment at the first place. Virtual realities have long entered our daily life in research, education and entertainment; those can represent natural models because of their 3D nature of representing data. However on an visual interpretation level what they often represent are displaced models of the reality, whatever viewed on personal computers or with ``immersive'' techniques. These can result very useful at a research stage or in order to show concepts that requires specific point of view, however they often struggle to explore all our senses to the mere detriment of our vision. A possible solution could be achieved by simply visiting the studied site, however when visiting a particular place it is hard to visualize in one simple application environment, all previously pursued analysis. This is necessary in order to discover the meaning of a specific structure and to propose new theories. Augmented reality in this sense could bridge the gap that exist when looking at this particular problem. This can be achieved with the creation of a visual tool that will serve archaeo-astronomers and modern cosmologists as an aid deployed on site during their research stage, and for the final dissemination of their results to the non-specialist audience.
Augmented Reality Tower Technology Assessment
NASA Technical Reports Server (NTRS)
Reisman, Ronald J.; Brown, David M.
2009-01-01
Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
NASA Astrophysics Data System (ADS)
De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco
2013-03-01
Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.
Cranial implant design using augmented reality immersive system.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2007-01-01
Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.
Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment
ERIC Educational Resources Information Center
Enyedy, Noel; Danish, Joshua A.; DeLiema, David
2015-01-01
In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…
NASA Astrophysics Data System (ADS)
Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.
2015-03-01
In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.
Hoermann, Simon; Ferreira Dos Santos, Luara; Morkisch, Nadine; Jettkowski, Katrin; Sillis, Moran; Devan, Hemakumar; Kanagasabai, Parimala S; Schmidt, Henning; Krüger, Jörg; Dohle, Christian; Regenbrecht, Holger; Hale, Leigh; Cutfield, Nicholas J
2017-07-01
New rehabilitation strategies for post-stroke upper limb rehabilitation employing visual stimulation show promising results, however, cost-efficient and clinically feasible ways to provide these interventions are still lacking. An integral step is to translate recent technological advances, such as in virtual and augmented reality, into therapeutic practice to improve outcomes for patients. This requires research on the adaptation of the technology for clinical use as well as on the appropriate guidelines and protocols for sustainable integration into therapeutic routines. Here, we present and evaluate a novel and affordable augmented reality system (Augmented Reflection Technology, ART) in combination with a validated mirror therapy protocol for upper limb rehabilitation after stroke. We evaluated components of the therapeutic intervention, from the patients' and the therapists' points of view in a clinical feasibility study at a rehabilitation centre. We also assessed the integration of ART as an adjunct therapy for the clinical rehabilitation of subacute patients at two different hospitals. The results showed that the combination and application of the Berlin Protocol for Mirror Therapy together with ART was feasible for clinical use. This combination was integrated into the therapeutic plan of subacute stroke patients at the two clinical locations where the second part of this research was conducted. Our findings pave the way for using technology to provide mirror therapy in clinical settings and show potential for the more effective use of inpatient time and enhanced recoveries for patients. Implications for Rehabilitation Computerised Mirror Therapy is feasible for clinical use Augmented Reflection Technology can be integrated as an adjunctive therapeutic intervention for subacute stroke patients in an inpatient setting Virtual Rehabilitation devices such as Augmented Reflection Technology have considerable potential to enhance stroke rehabilitation.
Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.
Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan
2016-03-07
Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.
Markerless client-server augmented reality system with natural features
NASA Astrophysics Data System (ADS)
Ning, Shuangning; Sang, Xinzhu; Chen, Duo
2017-10-01
A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.
Invisible waves and hidden realms: augmented reality and experimental art
NASA Astrophysics Data System (ADS)
Ruzanka, Silvia
2012-03-01
Augmented reality is way of both altering the visible and revealing the invisible. It offers new opportunities for artistic exploration through virtual interventions in real space. In this paper, the author describes the implementation of two art installations using different AR technologies, one using optical marker tracking on mobile devices and one integrating stereoscopic projections into the physical environment. The first artwork, De Ondas y Abejas (The Waves and the Bees), is based on the widely publicized (but unproven) hypothesis of a link between cellphone radiation and the phenomenon of bee colony collapse disorder. Using an Android tablet, viewers search out small fiducial markers in the shape of electromagnetic waves hidden throughout the gallery, which reveal swarms of bees scattered on the floor. The piece also creates a generative soundscape based on electromagnetic fields. The second artwork, Urban Fauna, is a series of animations in which features of the urban landscape become plants and animals. Surveillance cameras become flocks of birds while miniature cellphone towers, lampposts, and telephone poles grow like small seedlings in time-lapse animation. The animations are presented as small stereoscopic projections, integrated into the physical space of the gallery. These two pieces explore the relationship between nature and technology through the visualization of invisible forces and hidden alternate realities.
Augmented reality system for CT-guided interventions: system description and initial phantom trials
NASA Astrophysics Data System (ADS)
Sauer, Frank; Schoepf, Uwe J.; Khamene, Ali; Vogt, Sebastian; Das, Marco; Silverman, Stuart G.
2003-05-01
We are developing an augmented reality (AR) image guidance system, in which information derived from medical images is overlaid onto a video view of the patient. The interventionalist wears a head-mounted display (HMD) that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture the stereo view of the scene. A third video camera, operating in the near IR, is also attached to the HMD and is used for head tracking. The system achieves real-time performance of 30 frames per second. The graphics appears firmly anchored in the scne, without any noticeable swimming or jitter or time lag. For the application of CT-guided interventions, we extended our original prototype system to include tracking of a biopsy needle to which we attached a set of optical markers. The AR visualization provides very intuitive guidance for planning and placement of the needle and reduces radiation to patient and radiologist. We used an interventional abdominal phantom with simulated liver lesions to perform an inital set of experiments. The users were consistently able to locate the target lesion with the first needle pass. These results provide encouragement to move the system towards clinical trials.
Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.
Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid
2015-12-01
Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.
Integration of real-time 3D capture, reconstruction, and light-field display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
ERIC Educational Resources Information Center
Menorath, Darren; Antonczak, Laurent
2017-01-01
This paper examines the state of the art of mobile Augmented Reality (AR) and mobile Virtual Reality (VR) in relation to collaboration and professional practices in a creative digital environment and higher education. To support their discussion, the authors use a recent design-based research project named "Juxtapose," which explores…
Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions
ERIC Educational Resources Information Center
Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.
2015-01-01
Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…
Pursuit of X-ray Vision for Augmented Reality
2012-01-01
applications. Virtual Reality 15(2–3), 175–184 (2011) 29. Livingston, M.A., Swan II, J.E., Gabbard , J.L., Höllerer, T.H., Hix, D., Julier, S.J., Baillot, Y...Brown, D., Baillot, Y., Gabbard , J.L., Hix, D.: A perceptual matching technique for depth judgments in optical, see-through augmented reality. In: IEEE
Sejunaite, K; Lanza, C; Ganders, S; Iljaitsch, A; Riepe, M W
2017-01-01
Impairment of autonomous way-finding subsequent to a multitude of neurodegenerative and other diseases impedes independence of older persons and their everyday activities. It was the goal to use augmented reality to aid autonomous way-finding in a community setting. A spatial map and directional information were shown via head-up display to guide patients from the start zone on the hospital campus to a bakery in the nearby community. Hospital campus and nearby community. Patients with mild cognitive impairment (age 63 to 89). A head-up display was used to help patients find their way. Time needed to reach goal and number of assists needed. With use of augmented reality device, patients preceded along the correct path in 113 out of 120 intersections. Intermittent reassurance was needed for most patients. Patients affirmed willingness to use such an augmented reality device in everyday life if needed or even pay for it. Augmented reality guided navigation is a promising means to sustain autonomous way-finding as a prerequisite for autonomy of older persons in everyday activities. Thus, this study lays ground for a field trial in the community using assistive technology for older persons with cognitive impairment.
Performance Of The IEEE 802.15.4 Protocol As The Marker Of Augmented Reality In Museum
NASA Astrophysics Data System (ADS)
Kurniawan Saputro, Adi; Sumpeno, Surya; Hariadi, Mochamad
2018-04-01
Museum is a place to keep the historic objects and historical education center to introduce the nation’s culture. Utilizing technology in a museum to become a smart city is a challenge. Internet of thing (IOT) is a technological advance in Information and communication (ICT) that can be applied in the museum The current ICT development is not only a transmission medium, but Augmented Reality technology is also being developed. Currently, Augmented Reality technology creates virtual objects into the real world using markers or images. In this study, researcher used signals to make virtual objects appear in the real world using the IEEE 802.14.5 protocol replacing the Augmented Reality marker. RSSI and triangulation are used as a substitute microlocation for AR objects. The result is the performance of Wireless Sensor Network could be used for data transmission in the museum. LOS research at a distance of 15 meters with 1000 ms delay found 1.4% error rate and NLOS with 2.3% error rate. So it can be concluded that utilization technology (IOT) using signal wireless sensor network as a replace for marker augmented reality can be used in museum
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
ERIC Educational Resources Information Center
Wu, Po-Han; Hwang, Gwo-Jen; Yang, Mei-Ling; Chen, Chih-Hung
2018-01-01
Augmented reality (AR) offers potential advantages for intensifying environmental context awareness and augmenting students' experiences in real-world environments by dynamically overlapping digital materials with a real-world environment. However, some challenges to AR learning environments have been described, such as participants' cognitive…
Augmented Reality, the Future of Contextual Mobile Learning
ERIC Educational Resources Information Center
Sungkur, Roopesh Kevin; Panchoo, Akshay; Bhoyroo, Nitisha Kirtee
2016-01-01
Purpose: This study aims to show the relevance of augmented reality (AR) in mobile learning for the 21st century. With AR, any real-world environment can be augmented by providing users with accurate digital overlays. AR is a promising technology that has the potential to encourage learners to explore learning materials from a totally new…
Augmented Reality Comes to Physics
ERIC Educational Resources Information Center
Buesing, Mark; Cook, Michael
2013-01-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…
Kenngott, Hannes Götz; Preukschas, Anas Amin; Wagner, Martin; Nickel, Felix; Müller, Michael; Bellemann, Nadine; Stock, Christian; Fangerau, Markus; Radeleff, Boris; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter; Maier-Hein, Lena; Müller-Stich, Beat Peter
2018-06-01
Augmented reality (AR) systems are currently being explored by a broad spectrum of industries, mainly for improving point-of-care access to data and images. Especially in surgery and especially for timely decisions in emergency cases, a fast and comprehensive access to images at the patient bedside is mandatory. Currently, imaging data are accessed at a distance from the patient both in time and space, i.e., at a specific workstation. Mobile technology and 3-dimensional (3D) visualization of radiological imaging data promise to overcome these restrictions by making bedside AR feasible. In this project, AR was realized in a surgical setting by fusing a 3D-representation of structures of interest with live camera images on a tablet computer using marker-based registration. The intent of this study was to focus on a thorough evaluation of AR. Feasibility, robustness, and accuracy were thus evaluated consecutively in a phantom model and a porcine model. Additionally feasibility was evaluated in one male volunteer. In the phantom model (n = 10), AR visualization was feasible in 84% of the visualization space with high accuracy (mean reprojection error ± standard deviation (SD): 2.8 ± 2.7 mm; 95th percentile = 6.7 mm). In a porcine model (n = 5), AR visualization was feasible in 79% with high accuracy (mean reprojection error ± SD: 3.5 ± 3.0 mm; 95th percentile = 9.5 mm). Furthermore, AR was successfully used and proved feasible within a male volunteer. Mobile, real-time, and point-of-care AR for clinical purposes proved feasible, robust, and accurate in the phantom, animal, and single-trial human model shown in this study. Consequently, AR following similar implementation proved robust and accurate enough to be evaluated in clinical trials assessing accuracy, robustness in clinical reality, as well as integration into the clinical workflow. If these further studies prove successful, AR might revolutionize data access at patient bedside.
Gibby, Jacob T; Swenson, Samuel A; Cvetko, Steve; Rao, Raj; Javan, Ramin
2018-06-22
Augmented reality has potential to enhance surgical navigation and visualization. We determined whether head-mounted display augmented reality (HMD-AR) with superimposed computed tomography (CT) data could allow the wearer to percutaneously guide pedicle screw placement in an opaque lumbar model with no real-time fluoroscopic guidance. CT imaging was obtained of a phantom composed of L1-L3 Sawbones vertebrae in opaque silicone. Preprocedural planning was performed by creating virtual trajectories of appropriate angle and depth for ideal approach into the pedicle, and these data were integrated into the Microsoft HoloLens using the Novarad OpenSight application allowing the user to view the virtual trajectory guides and CT images superimposed on the phantom in two and three dimensions. Spinal needles were inserted following the virtual trajectories to the point of contact with bone. Repeat CT revealed actual needle trajectory, allowing comparison with the ideal preprocedural paths. Registration of AR to phantom showed a roughly circular deviation with maximum average radius of 2.5 mm. Users took an average of 200 s to place a needle. Extrapolation of needle trajectory into the pedicle showed that of 36 needles placed, 35 (97%) would have remained within the pedicles. Needles placed approximated a mean distance of 4.69 mm in the mediolateral direction and 4.48 mm in the craniocaudal direction from pedicle bone edge. To our knowledge, this is the first peer-reviewed report and evaluation of HMD-AR with superimposed 3D guidance utilizing CT for spinal pedicle guide placement for the purpose of cannulation without the use of fluoroscopy.
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. The study was conducted in tertiary-care urban teaching hospital. A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p =0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p =0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group ( p =0.003). AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education.
Augmented reality in neurosurgery: a systematic review.
Meola, Antonio; Cutolo, Fabrizio; Carbone, Marina; Cagnazzo, Federico; Ferrari, Mauro; Ferrari, Vincenzo
2017-10-01
Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms "Augmented reality" and "Neurosurgery." Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, display type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.
Krempien, Robert; Hoppe, Harald; Kahrs, Lüder; Daeuber, Sascha; Schorr, Oliver; Eggers, Georg; Bischof, Marc; Munter, Marc W; Debus, Juergen; Harms, Wolfgang
2008-03-01
The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.
Augmented reality application for industrial non-destructive inspection training
NASA Astrophysics Data System (ADS)
Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav
2018-02-01
Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.
Using an Augmented Reality Device as a Distance-based Vision Aid-Promise and Limitations.
Kinateder, Max; Gualtieri, Justin; Dunn, Matt J; Jarosz, Wojciech; Yang, Xing-Dong; Cooper, Emily A
2018-06-06
For people with limited vision, wearable displays hold the potential to digitally enhance visual function. As these display technologies advance, it is important to understand their promise and limitations as vision aids. The aim of this study was to test the potential of a consumer augmented reality (AR) device for improving the functional vision of people with near-complete vision loss. An AR application that translates spatial information into high-contrast visual patterns was developed. Two experiments assessed the efficacy of the application to improve vision: an exploratory study with four visually impaired participants and a main controlled study with participants with simulated vision loss (n = 48). In both studies, performance was tested on a range of visual tasks (identifying the location, pose and gesture of a person, identifying objects, and moving around in an unfamiliar space). Participants' accuracy and confidence were compared on these tasks with and without augmented vision, as well as their subjective responses about ease of mobility. In the main study, the AR application was associated with substantially improved accuracy and confidence in object recognition (all P < .001) and to a lesser degree in gesture recognition (P < .05). There was no significant change in performance on identifying body poses or in subjective assessments of mobility, as compared with a control group. Consumer AR devices may soon be able to support applications that improve the functional vision of users for some tasks. In our study, both artificially impaired participants and participants with near-complete vision loss performed tasks that they could not do without the AR system. Current limitations in system performance and form factor, as well as the risk of overconfidence, will need to be overcome.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao
2013-01-01
virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…
Augmented Reality Simulations on Handheld Computers
ERIC Educational Resources Information Center
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
Usability engineering for augmented reality: employing user-based studies to inform design.
Gabbard, Joseph L; Swan, J Edward
2008-01-01
A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.
Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K
2014-11-01
The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery. Copyright 2014, SLACK Incorporated.
A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training.
Wang, Peng; Wu, Peng; Wang, Jun; Chi, Hung-Lin; Wang, Xiangyu
2018-06-08
Virtual Reality (VR) has been rapidly recognized and implemented in construction engineering education and training (CEET) in recent years due to its benefits of providing an engaging and immersive environment. The objective of this review is to critically collect and analyze the VR applications in CEET, aiming at all VR-related journal papers published from 1997 to 2017. The review follows a three-stage analysis on VR technologies, applications and future directions through a systematic analysis. It is found that the VR technologies adopted for CEET evolve over time, from desktop-based VR, immersive VR, 3D game-based VR, to Building Information Modelling (BIM)-enabled VR. A sibling technology, Augmented Reality (AR), for CEET adoptions has also emerged in recent years. These technologies have been applied in architecture and design visualization, construction health and safety training, equipment and operational task training, as well as structural analysis. Future research directions, including the integration of VR with emerging education paradigms and visualization technologies, have also been provided. The findings are useful for both researchers and educators to usefully integrate VR in their education and training programs to improve the training performance.
Smart maintenance of riverbanks using a standard data layer and Augmented Reality
NASA Astrophysics Data System (ADS)
Pierdicca, Roberto; Frontoni, Emanuele; Zingaretti, Primo; Mancini, Adriano; Malinverni, Eva Savina; Tassetti, Anna Nora; Marcheggiani, Ernesto; Galli, Andrea
2016-10-01
Linear buffer strips (BS) along watercourses are commonly adopted to reduce run-off, accumulation of bank-top sediments and the leaking of pesticides into fresh-waters, which strongly increase water pollution. However, the monitoring of their conditions is a difficult task because they are scattered over wide rural areas. This work demonstrates the benefits of using a standard data layer and Augmented Reality (AR) in watershed control and outlines the guideline of a novel approach for the health-check of linear BS. We designed a mobile environmental monitoring system for smart maintenance of riverbanks by embedding the AR technology within a Geographical Information System (GIS). From the technological point of view, the system's architecture consists of a cloud-based service for data sharing, using a standard data layer, and of a mobile device provided with a GPS based AR engine for augmented data visualization. The proposed solution aims to ease the overall inspection process by reducing the time required to run a survey. Indeed, ordinary operational survey conditions are usually performed basing the fieldwork on just classical digitized maps. Our application proposes to enrich inspections by superimposing information on the device screen with the same point of view of the camera, providing an intuitive visualization of buffer strip location. This way, the inspection officer can quickly and dynamically access relevant information overlaying geographic features, comments and other contents in real time. The solution has been tested in fieldwork to prove at what extent this cutting-edge technology contributes to an effective monitoring over large territorial settings. The aim is to encourage officers, land managers and practitioners toward more effective monitoring and management practices.
ERIC Educational Resources Information Center
Ong, Alex
2010-01-01
The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…
Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens
ERIC Educational Resources Information Center
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-01-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…
ERIC Educational Resources Information Center
Özcan, Mehmet Fatih; Özkan, Âdem; Sahin, Nurullah
2017-01-01
The use of Augmented Reality Technologies, which has been developed in order to enrich the environment of education and training and provide permanent learning, has been increasing day by day. In this sense, it is important to analyze the use of augmented applications in education and training environments. In this study, we have aimed to…
Model-based registration of multi-rigid-body for augmented reality
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro
2009-02-01
Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.
A spatially augmented reality sketching interface for architectural daylighting design.
Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara
2011-01-01
We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society
Display technologies for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang
2018-02-01
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Augmented reality enabling intelligence exploitation at the edge
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Roy, Heather; Bowman, Elizabeth K.; Patton, Debra
2015-05-01
Today's Warfighters need to make quick decisions while interacting in densely populated environments comprised of friendly, hostile, and neutral host nation locals. However, there is a gap in the real-time processing of big data streams for edge intelligence. We introduce a big data processing pipeline called ARTEA that ingests, monitors, and performs a variety of analytics including noise reduction, pattern identification, and trend and event detection in the context of an area of operations (AOR). Results of the analytics are presented to the Soldier via an augmented reality (AR) device Google Glass (Glass). Non-intrusive AR devices such as Glass can visually communicate contextually relevant alerts to the Soldier based on the current mission objectives, time, location, and observed or sensed activities. This real-time processing and AR presentation approach to knowledge discovery flattens the intelligence hierarchy enabling the edge Soldier to act as a vital and active participant in the analysis process. We report preliminary observations testing ARTEA and Glass in a document exploitation and person of interest scenario simulating edge Soldier participation in the intelligence process in disconnected deployment conditions.
Hands in space: gesture interaction with augmented-reality interfaces.
Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai
2014-01-01
Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.
Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds
Wright, W. Geoffrey
2014-01-01
Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed. PMID:24782724
The development of augmented video system on postcards
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsu; Chou, Yin-Ju
2013-03-01
This study focuses on development of augmented video system on traditional picture postcards. The system will provide users to print out the augmented reality marker on the sticker to stick on the picture postcard, and it also allows users to record their real time image and video to augment on that stick marker. According dynamic image, users can share travel moods, greeting, and travel experience to their friends. Without changing in the traditional picture postcards, we develop augmented video system on them by augmented reality (AR) technology. It not only keeps the functions of traditional picture postcards, but also enhances user's experience to keep the user's memories and emotional expression by augmented digital media information on them.
Encarnação, L Miguel; Bimber, Oliver
2002-01-01
Collaborative virtual environments for diagnosis and treatment planning are increasingly gaining importance in our global society. Virtual and Augmented Reality approaches promised to provide valuable means for the involved interactive data analysis, but the underlying technologies still create a cumbersome work environment that is inadequate for clinical employment. This paper addresses two of the shortcomings of such technology: Intuitive interaction with multi-dimensional data in immersive and semi-immersive environments as well as stereoscopic multi-user displays combining the advantages of Virtual and Augmented Reality technology.
Augmented reality for anatomical education.
Thomas, Rhys Gethin; John, Nigel William; Delieu, John Michael
2010-03-01
The use of Virtual Environments has been widely reported as a method of teaching anatomy. Generally such environments only convey the shape of the anatomy to the student. We present the Bangor Augmented Reality Education Tool for Anatomy (BARETA), a system that combines Augmented Reality (AR) technology with models produced using Rapid Prototyping (RP) technology, to provide the student with stimulation for touch as well as sight. The principal aims of this work were to provide an interface more intuitive than a mouse and keyboard, and to evaluate such a system as a viable supplement to traditional cadaver based education.
Wearable computer for mobile augmented-reality-based controlling of an intelligent robot
NASA Astrophysics Data System (ADS)
Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino
2000-10-01
An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.
An Interactive Augmented Reality Implementation of Hijaiyah Alphabet for Children Education
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Akbar, F.; Syahputra, M. F.; Budiman, M. A.; Hizriadi, A.
2018-03-01
Hijaiyah alphabet is letters used in the Qur’an. An attractive and exciting learning process of Hijaiyah alphabet is necessary for the children. One of the alternatives to create attractive and interesting learning process of Hijaiyah alphabet is to develop it into a mobile application using augmented reality technology. Augmented reality is a technology that combines two-dimensional or three-dimensional virtual objects into actual three-dimensional circles and projects them in real time. The purpose of application aims to foster the children interest in learning Hijaiyah alphabet. This application is using Smartphone and marker as the medium. It was built using Unity and augmented reality library, namely Vuforia, then using Blender as the 3D object modeling software. The output generated from this research is the learning application of Hijaiyah letters using augmented reality. How to use it is as follows: first, place marker that has been registered and printed; second, the smartphone camera will track the marker. If the marker is invalid, the user should repeat the tracking process. If the marker is valid and identified, the marker will have projected the objects of Hijaiyah alphabet in three-dimensional form. Lastly, the user can learn and understand the shape and pronunciation of Hijaiyah alphabet by touching the virtual button on the marker
Tackling the challenges of fully immersive head-mounted AR devices
NASA Astrophysics Data System (ADS)
Singer, Wolfgang; Hillenbrand, Matthias; Münz, Holger
2017-11-01
The optical requirements of fully immersive head mounted AR devices are inherently determined by the human visual system. The etendue of the visual system is large. As a consequence, the requirements for fully immersive head-mounted AR devices exceeds almost any high end optical system. Two promising solutions to achieve the large etendue and their challenges are discussed. Head-mounted augmented reality devices have been developed for decades - mostly for application within aircrafts and in combination with a heavy and bulky helmet. The established head-up displays for applications within automotive vehicles typically utilize similar techniques. Recently, there is the vision of eyeglasses with included augmentation, offering a large field of view, and being unobtrusively all-day wearable. There seems to be no simple solution to reach the functional performance requirements. Known technical solutions paths seem to be a dead-end, and some seem to offer promising perspectives, however with severe limitations. As an alternative, unobtrusively all-day wearable devices with a significantly smaller field of view are already possible.
ERIC Educational Resources Information Center
Alizadeh, Mehrasa; Mehran, Parisa; Koguchi, Ichiro; Takemura, Haruo
2017-01-01
In recent years, there has been a burgeoning interest in Augmented Reality (AR) technologies, especially in educational settings to edutain (i.e. educate and entertain) students and engage them in their learning. This study reports the results of the use of an AR application called BlippAR to augment poster carousel tasks in a blended English…
ERIC Educational Resources Information Center
Huisinga, Laura Anne
2017-01-01
Technology has shown promise to aid struggling readers in higher education, particularly through new and emerging technologies. Augmented reality (AR) has been used successfully in the classroom to motivate and engage struggling learners, yet little research exists on how augmented print might help struggling readers. This study explores this gap,…
NASA Mars rover: a testbed for evaluating applications of covariance intersection
NASA Astrophysics Data System (ADS)
Uhlmann, Jeffrey K.; Julier, Simon J.; Kamgar-Parsi, Behzad; Lanzagorta, Marco O.; Shyu, Haw-Jye S.
1999-07-01
The Naval Research Laboratory (NRL) has spearheaded the development and application of Covariance Intersection (CI) for a variety of decentralized data fusion problems. Such problems include distributed control, onboard sensor fusion, and dynamic map building and localization. In this paper we describe NRL's development of a CI-based navigation system for the NASA Mars rover that stresses almost all aspects of decentralized data fusion. We also describe how this project relates to NRL's augmented reality, advanced visualization, and REBOT projects.
Augmented reality (AR) and virtual reality (VR) applied in dentistry.
Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng
2018-04-01
The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.
NASA Astrophysics Data System (ADS)
McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.
2017-12-01
Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R.; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J. A.
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson’s disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability. PMID:28659862
Design Principles for Augmented Reality Learning
ERIC Educational Resources Information Center
Dunleavy, Matt
2014-01-01
Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…
Mobile Technologies and Augmented Reality in Open Education
ERIC Educational Resources Information Center
Kurubacak, Gulsun, Ed.; Altinpulluk, Hakan, Ed.
2017-01-01
Novel trends and innovations have enhanced contemporary educational environments. When applied properly, these computing advances can create enriched learning opportunities for students. "Mobile Technologies and Augmented Reality in Open Education" is a pivotal reference source for the latest academic research on the integration of…
Effect on Academic Procrastination after Introducing Augmented Reality
ERIC Educational Resources Information Center
Bendicho, Peña Fabiani; Mora, Carlos Efren; Añorbe-Díaz, Beatriz; Rivero-Rodríguez, Pedro
2017-01-01
Students suffer academic procrastination while dealing with frequent deadlines and working under pressure. This causes to delay their coursework and may affect their academic progress, despite feeling worse. Triggering students' motivation, like introducing technologies, helps to reduce procrastination. In this context, Augmented Reality has been…
Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien
2018-01-03
Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
Objective The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. Design This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. Setting The study was conducted in tertiary-care urban teaching hospital. Subjects A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. Measurements and main results The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p=0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p=0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group (p=0.003). Conclusion AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education. PMID:29785148
Tang, Rui; Ma, Long-Fei; Rong, Zhi-Xia; Li, Mo-Dan; Zeng, Jian-Ping; Wang, Xue-Dong; Liao, Hong-En; Dong, Jia-Hong
2018-04-01
Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods. Copyright © 2018 First Affiliated Hospital, Zhejiang University School of Medicine in China. Published by Elsevier B.V. All rights reserved.
The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.
Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi
2016-03-01
The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan
2015-06-01
The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.
Training for planning tumour resection: augmented reality and human factors.
Abhari, Kamyar; Baxter, John S H; Chen, Elvis C S; Khan, Ali R; Peters, Terry M; de Ribaupierre, Sandrine; Eagleson, Roy
2015-06-01
Planning surgical interventions is a complex task, demanding a high degree of perceptual, cognitive, and sensorimotor skills to reduce intra- and post-operative complications. This process requires spatial reasoning to coordinate between the preoperatively acquired medical images and patient reference frames. In the case of neurosurgical interventions, traditional approaches to planning tend to focus on providing a means for visualizing medical images, but rarely support transformation between different spatial reference frames. Thus, surgeons often rely on their previous experience and intuition as their sole guide is to perform mental transformation. In case of junior residents, this may lead to longer operation times or increased chance of error under additional cognitive demands. In this paper, we introduce a mixed augmented-/virtual-reality system to facilitate training for planning a common neurosurgical procedure, brain tumour resection. The proposed system is designed and evaluated with human factors explicitly in mind, alleviating the difficulty of mental transformation. Our results indicate that, compared to conventional planning environments, the proposed system greatly improves the nonclinicians' performance, independent of the sensorimotor tasks performed ( ). Furthermore, the use of the proposed system by clinicians resulted in a significant reduction in time to perform clinically relevant tasks ( ). These results demonstrate the role of mixed-reality systems in assisting residents to develop necessary spatial reasoning skills needed for planning brain tumour resection, improving patient outcomes.
Ferrer-Torregrosa, Javier; Jiménez-Rodríguez, Miguel Ángel; Torralba-Estelles, Javier; Garzón-Farinós, Fernanda; Pérez-Bermejo, Marcelo; Fernández-Ehrling, Nadia
2016-09-01
The establishment of the ECTS (European Credit Transfer System) is one of the pillars of the European Space of Higher Education. This way of accounting for the time spent in training has two essential parts, classroom teaching (work with the professor) and distance learning (work without the professor, whether in an individual or collective way). Much has been published on the distance learning part, but less on the classroom teaching section. In this work, the authors investigate didactic strategies and associated aids for distance learning work in a concept based on flipped classroom where transmitting information is carried out with aids that the professor prepares, so that the student works in an independent way before the classes, thus being able to dedicate the classroom teaching time to more complex learning and being able to count on the professor's help. Three teaching aids applied to the study of anatomy have been compared: Notes with images, videos, and augmented reality. Four dimensions have been compared: the time spent, the acquired learnings, the metacognitive perception, and the prospects of the use of augmented reality for study. The results show the effectiveness, in all aspects, of augmented reality when compared with the rest of aids. The questionnaire assessed the acquired knowledge through a course exam, where 5.60 points were obtained for the notes group, 6.54 for the video group, and 7.19 for the augmented reality group. That is 0.94 more points for the video group compared with the notes and 1.59 more points for the augmented reality group compared with the notes group. This research demonstrates that, although technology has not been sufficiently developed for education, it is expected that it can be improved in both the autonomous work of the student and the academic training of health science students and that we can teach how to learn. Moreover, one can see how the grades of the students who studied with augmented reality are more grouped and that there is less dispersion in the marks compared with other materials.
Systematic review on the effectiveness of augmented reality applications in medical training.
Barsom, E Z; Graafland, M; Schijven, M P
2016-10-01
Computer-based applications are increasingly used to support the training of medical professionals. Augmented reality applications (ARAs) render an interactive virtual layer on top of reality. The use of ARAs is of real interest to medical education because they blend digital elements with the physical learning environment. This will result in new educational opportunities. The aim of this systematic review is to investigate to which extent augmented reality applications are currently used to validly support medical professionals training. PubMed, Embase, INSPEC and PsychInfo were searched using predefined inclusion criteria for relevant articles up to August 2015. All study types were considered eligible. Articles concerning AR applications used to train or educate medical professionals were evaluated. Twenty-seven studies were found relevant, describing a total of seven augmented reality applications. Applications were assigned to three different categories. The first category is directed toward laparoscopic surgical training, the second category toward mixed reality training of neurosurgical procedures and the third category toward training echocardiography. Statistical pooling of data could not be performed due to heterogeneity of study designs. Face-, construct- and concurrent validity was proven for two applications directed at laparoscopic training, face- and construct validity for neurosurgical procedures and face-, content- and construct validity in echocardiography training. In the literature, none of the ARAs completed a full validation process for the purpose of use. Augmented reality applications that support blended learning in medical training have gained public and scientific interest. In order to be of value, applications must be able to transfer information to the user. Although promising, the literature to date is lacking to support such evidence.
A survey of telerobotic surface finishing
NASA Astrophysics Data System (ADS)
Höglund, Thomas; Alander, Jarmo; Mantere, Timo
2018-05-01
This is a survey of research published on the subjects of telerobotics, haptic feedback, and mixed reality applied to surface finishing. The survey especially focuses on how visuo-haptic feedback can be used to improve a grinding process using a remote manipulator or robot. The benefits of teleoperation and reasons for using haptic feedback are presented. The use of genetic algorithms for optimizing haptic sensing is briefly discussed. Ways of augmenting the operator's vision are described. Visual feedback can be used to find defects and analyze the quality of the surface resulting from the surface finishing process. Visual cues can also be used to aid a human operator in manipulating a robot precisely and avoiding collisions.
A Multimedia, Augmented Reality Interactive System for the Application of a Guided School Tour
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Huang, Sheng-Wen; Chu, Sheng-Kai; Su, Ming-Wei; Chen, Chia-Yen; Chen, Chi-Fa
The paper describes an implementation of a multimedia, augmented reality system used for a guided school tour. The aim of this work is to improve the level of interactions between a viewer and the system by means of augmented reality. In the implemented system, hand motions are captured via computer vision based approaches and analyzed to extract representative actions which are used to interact with the system. In this manner, tactile peripheral hardware such as keyboard and mouse can be eliminated. In addition, the proposed system also aims to reduce hardware related costs and avoid health risks associated with contaminations by contact in public areas.
Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng
2017-01-01
Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123
Mouraux, Dominique; Brassinne, Eric; Sobczak, Stéphane; Nonclercq, Antoine; Warzée, Nadine; Sizer, Phillip S; Tuna, Turgay; Penelle, Benoît
2017-07-01
Objective: We assessed whether or not pain relief could be achieved with a new system that combines 3D augmented reality system (3DARS) and the principles of mirror visual feedback. Methods: Twenty-two patients between 18 and 75 years of age who suffered of chronic neuropathic pain. Each patient performed five 3DARS sessions treatment of 20 mins spread over a period of one week. The following pain parameters were assessed: (1) visual analogic scale after each treatment session (2) McGill pain scale and DN4 questionnaire were completed before the first session and 24 h after the last session. Results: The mean improvement of VAS per session was 29% ( p < 0.001). There was an immediate session effect demonstrating a systematic improvement in pain between the beginning and the end of each session. We noted that this pain reduction was partially preserved until the next session. If we compare the pain level at baseline and 24 h after the last session, there was a significant decrease ( p < 0.001) of pain of 37%. There was a significant decrease ( p < 0.001) on the McGill Pain Questionnaire and DN4 questionnaire ( p < 0.01). Conclusion: Our results indicate that 3DARS induced a significant pain decrease for patients who presented chronic neuropathic pain in a unilateral upper extremity. While further research is necessary before definitive conclusions can be drawn, clinicians could implement the approach as a preparatory adjunct for providing temporary pain relief aimed at enhancing chronic pain patients' tolerance of manual therapy and exercise intervention. Level of Evidence: 4.
Augmented Virtual Reality: How to Improve Education Systems
ERIC Educational Resources Information Center
Fernandez, Manuel
2017-01-01
This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…
Using Augmented Reality to Teach and Learn Biochemistry
ERIC Educational Resources Information Center
Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo
2017-01-01
Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract…
Augmented Visual Experience of Simulated Solar Phenomena
NASA Astrophysics Data System (ADS)
Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.
2017-12-01
The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
NASA Astrophysics Data System (ADS)
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery. PMID:28943703
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Use of augmented reality in laparoscopic gynecology to visualize myomas.
Bourdel, Nicolas; Collins, Toby; Pizarro, Daniel; Debize, Clement; Grémeau, Anne-Sophie; Bartoli, Adrien; Canis, Michel
2017-03-01
To report the use of augmented reality (AR) in gynecology. AR is a surgical guidance technology that enables important hidden surface structures to be visualized in endoscopic images. AR has been used for other organs, but never in gynecology and never with a very mobile organ like the uterus. We have developed a new AR approach specifically for uterine surgery and demonstrated its use for myomectomy. Tertiary university hospital. Three patients with one, two, and multiple myomas, respectively. AR was used during laparoscopy to localize the myomas. Three-dimensional (3D) models of the patient's uterus and myomas were constructed before surgery from T2-weighted magnetic resonance imaging. The intraoperative 3D shape of the uterus was determined. These models were automatically aligned and "fused" with the laparoscopic video in real time. The live fused video made the uterus appear semitransparent, and the surgeon can see the location of the myoma in real time while moving the laparoscope and the uterus. With this information, the surgeon can easily and quickly decide on how best to access the myoma. We developed an AR system for gynecologic surgery and have used it to improve laparoscopic myomectomy. Technically, the software we developed is very different to approaches tried for other organs, and it can handle significant challenges, including image blur, fast motion, and partial views of the organ. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Image-guided techniques in renal and hepatic interventions.
Najmaei, Nima; Mostafavi, Kamal; Shahbazi, Sahar; Azizian, Mahdi
2013-12-01
Development of new imaging technologies and advances in computing power have enabled the physicians to perform medical interventions on the basis of high-quality 3D and/or 4D visualization of the patient's organs. Preoperative imaging has been used for planning the surgery, whereas intraoperative imaging has been widely employed to provide visual feedback to a clinician when he or she is performing the procedure. In the past decade, such systems demonstrated great potential in image-guided minimally invasive procedures on different organs, such as brain, heart, liver and kidneys. This article focuses on image-guided interventions and surgery in renal and hepatic surgeries. A comprehensive search of existing electronic databases was completed for the period of 2000-2011. Each contribution was assessed by the authors for relevance and inclusion. The contributions were categorized on the basis of the type of operation/intervention, imaging modality and specific techniques such as image fusion and augmented reality, and organ motion tracking. As a result, detailed classification and comparative study of various contributions in image-guided renal and hepatic interventions are provided. In addition, the potential future directions have been sketched. With a detailed review of the literature, potential future trends in development of image-guided abdominal interventions are identified, namely, growing use of image fusion and augmented reality, computer-assisted and/or robot-assisted interventions, development of more accurate registration and navigation techniques, and growing applications of intraoperative magnetic resonance imaging. Copyright © 2012 John Wiley & Sons, Ltd.
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note
2017-01-01
Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics. PMID:28879340
Application of augmented reality for inferior alveolar nerve block anesthesia: A technical note.
Won, Yu-Jin; Kang, Sang-Hoon
2017-06-01
Efforts to apply augmented reality (AR) technology in the medical field include the introduction of AR techniques into dental practice. The present report introduces a simple method of applying AR during an inferior alveolar nerve block, a procedure commonly performed in dental clinics.
Leveraging Mobile Games for Place-Based Language Learning
ERIC Educational Resources Information Center
Holden, Christopher L.; Sykes, Julie M.
2011-01-01
This paper builds on the emerging body of research aimed at exploring the educational potential of mobile technologies, specifically, how to leverage place-based, augmented reality mobile games for language learning. Mentira is the first place-based, augmented reality mobile game for learning Spanish in a local neighborhood in the Southwestern…
Frames of Reference in Mobile Augmented Reality Displays
ERIC Educational Resources Information Center
Mou, Weimin; Biocca, Frank; Owen, Charles B.; Tang, Arthur; Xiao, Fan; Lim, Lynette
2004-01-01
In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the…
Applications of Augmented Reality-Based Natural Interactive Learning in Magnetic Field Instruction
ERIC Educational Resources Information Center
Cai, Su; Chiang, Feng-Kuang; Sun, Yuchen; Lin, Chenglong; Lee, Joey J.
2017-01-01
Educators must address several challenges inherent to the instruction of scientific disciplines such as physics -- expensive or insufficient laboratory equipment, equipment error, difficulty in simulating certain experimental conditions. Augmented reality (AR) can be a promising approach to address these challenges. In this paper, we discuss the…
Intelligent Augmented Reality Training for Motherboard Assembly
ERIC Educational Resources Information Center
Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark
2015-01-01
We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…
Examining Young Children's Perception toward Augmented Reality-Infused Dramatic Play
ERIC Educational Resources Information Center
Han, Jeonghye; Jo, Miheon; Hyun, Eunja; So, Hyo-jeong
2015-01-01
Amid the increasing interest in applying augmented reality (AR) in educational settings, this study explores the design and enactment of an AR-infused robot system to enhance children's satisfaction and sensory engagement with dramatic play activities. In particular, we conducted an exploratory study to empirically examine children's perceptions…
An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science
ERIC Educational Resources Information Center
Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen
2016-01-01
Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…
Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill
ERIC Educational Resources Information Center
Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.
2017-01-01
Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…
Determination of Student Opinions in Augmented Reality
ERIC Educational Resources Information Center
Bicen, Huseyin; Bal, Erkan
2016-01-01
The rapid development of the new technology has changed classroom teaching methods and tools in a positive way. This study investigated the classroom learning with augmented reality and the impact of student opinions. 97 volunteer undergraduate students took part in this study. Results included data in the form of frequencies, percentages and…
CARE: Creating Augmented Reality in Education
ERIC Educational Resources Information Center
Latif, Farzana
2012-01-01
This paper explores how Augmented Reality using mobile phones can enhance teaching and learning in education. It specifically examines its application in two cases, where it is identified that the agility of mobile devices and the ability to overlay context specific resources offers opportunities to enhance learning that would not otherwise exist.…
Integrating Augmented Reality Technology to Enhance Children's Learning in Marine Education
ERIC Educational Resources Information Center
Lu, Su-Ju; Liu, Ying-Chieh
2015-01-01
Marine education comprises rich and multifaceted issues. Raising general awareness of marine environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative marine learning program integrating augmented reality (AR) technology for lower grade primary…
Learning Molecular Structures in a Tangible Augmented Reality Environment
ERIC Educational Resources Information Center
Asai, Kikuo; Takase, Norio
2011-01-01
This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…
A 3-D mixed-reality system for stereoscopic visualization of medical dataset.
Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco
2009-11-01
We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Applied virtual reality at the Research Triangle Institute
NASA Technical Reports Server (NTRS)
Montoya, R. Jorge
1994-01-01
Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.
a Generic Augmented Reality Telescope for Heritage Valorization
NASA Astrophysics Data System (ADS)
Chendeb, S.; Ridene, T.; Leroy, L.
2013-08-01
Heritage valorisation is one of the greatest challenges that face countries in preserving their own identity from the globalization process. One of those scientific areas which allow this valorisation to be more attractive and at its bravest is the augmented reality. In this paper, we present an innovative augmented reality telescope used by tourists to explore a panoramic view with optional zooming facility, allowing thereby an accurate access to heritage information. The telescope we produced is generic, ergonomic, extensible, and modular by nature. It is designed to be conveniently set up anywhere in the world. We improve the practical use of our system by testing it right in the heart of Paris within a specific use case.
Fourier holographic display for augmented reality using holographic optical element
NASA Astrophysics Data System (ADS)
Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho
2016-03-01
A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting
2018-02-12
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.
Navigation surgery using an augmented reality for pancreatectomy.
Okamoto, Tomoyoshi; Onda, Shinji; Yasuda, Jungo; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki
2015-01-01
The aim of this study was to evaluate the utility of navigation surgery using augmented reality technology (AR-based NS) for pancreatectomy. The 3D reconstructed images from CT were created by segmentation. The initial registration was performed by using the optical location sensor. The reconstructed images were superimposed onto the real organs in the monitor display. Of the 19 patients who had undergone hepatobiliary and pancreatic surgery using AR-based NS, the accuracy, visualization ability, and utility of our system were assessed in five cases with pancreatectomy. The position of each organ in the surface-rendering image corresponded almost to that of the actual organ. Reference to the display image allowed for safe dissection while preserving the adjacent vessels or organs. The locations of the lesions and resection line on the targeted organ were overlaid on the operating field. The initial mean registration error was improved to approximately 5 mm by our refinements. However, several problems such as registration accuracy, portability and cost still remain. AR-based NS contributed to accurate and effective surgical resection in pancreatectomy. The pancreas appears to be a suitable organ for further investigations. This technology is promising to improve surgical quality, training, and education. © 2015 S. Karger AG, Basel.
Integrated Authoring Tool for Mobile Augmented Reality-Based E-Learning Applications
ERIC Educational Resources Information Center
Lobo, Marcos Fermin; Álvarez García, Víctor Manuel; del Puerto Paule Ruiz, María
2013-01-01
Learning management systems are increasingly being used to complement classroom teaching and learning and in some instances even replace traditional classroom settings with online educational tools. Mobile augmented reality is an innovative trend in e-learning that is creating new opportunities for teaching and learning. This article proposes a…
ERIC Educational Resources Information Center
Orman, Evelyn K.; Price, Harry E.; Russell, Christine R.
2017-01-01
Acquiring nonverbal skills necessary to appropriately communicate and educate members of performing ensembles is essential for wind band conductors. Virtual reality learning environments (VRLEs) provide a unique setting for developing these proficiencies. For this feasibility study, we used an augmented immersive VRLE to enhance eye contact, torso…
Developing and Demonstrating an Augmented Reality Colorimetric Titration Tool
ERIC Educational Resources Information Center
Tee, Nicholas Yee Kwang; Gan, Hong Seng; Li, Jonathan; Cheong, Brandon Huey-Ping; Tan, Han Yen; Liew, Oi Wah; Ng, Tuck Wah
2018-01-01
The handling of chemicals in the laboratory presents a challenge in instructing large class sizes and when students are relatively new to the laboratory environment. In this work, we describe and demonstrate an augmented reality colorimetric titration tool that operates out of the smartphone or tablet of students. It allows multiple students to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Trends in Educational Augmented Reality Studies: A Systematic Review
ERIC Educational Resources Information Center
Sirakaya, Mustafa; Alsancak Sirakaya, Didem
2018-01-01
This study aimed to identify the trends in the studies conducted on Educational Augmented Reality (AR). 105 articles found in ERIC, EBSCOhost and ScienceDirect databases were reviewed with this purpose in mind. Analyses displayed that the number of educational AR studies has increased over the years. Quantitative methods were mostly preferred in…
ERIC Educational Resources Information Center
Solak, Ekrem; Cakir, Recep
2015-01-01
The purpose of this study was to determine the motivational level of the participants in a language classroom towards course materials designed in accordance with augmented reality technology and to identify the correlation between academic achievement and motivational level. 130 undergraduate students from a state-run university in Turkey…
Using Augmented Reality Tools to Enhance Children's Library Services
ERIC Educational Resources Information Center
Meredith, Tamara R.
2015-01-01
Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…
ARTutor--An Augmented Reality Platform for Interactive Distance Learning
ERIC Educational Resources Information Center
Lytridis, Chris; Tsinakos, Avgoustos; Kazanidis, Ioannis
2018-01-01
Augmented Reality (AR) has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of…
The Design of Immersive English Learning Environment Using Augmented Reality
ERIC Educational Resources Information Center
Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei
2016-01-01
The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…
Affordances of Augmented Reality in Science Learning: Suggestions for Future Research
ERIC Educational Resources Information Center
Cheng, Kun-Hung; Tsai, Chin-Chung
2013-01-01
Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…
Get Real: Augmented Reality for the Classroom
ERIC Educational Resources Information Center
Mitchell, Rebecca; DeBay, Dennis
2012-01-01
Kids love augmented reality (AR) simulations because they are like real-life video games. AR simulations allow students to learn content while collaborating face to face and interacting with a multimedia-enhanced version of the world around them. Although the technology may seem advanced, AR software makes it easy to develop content-based…
ERIC Educational Resources Information Center
Cheng, Kun-Hung
2017-01-01
Since augmented reality (AR) has been increasingly applied in education recently, the investigation of students' learning experiences with AR could be helpful for educators to implement AR learning. With a quantitative survey using three questionnaires, this study explored the relationships among 153 students' perceived cognitive load, motivation,…
Using Augmented Reality to Support a Software Editing Course for College Students
ERIC Educational Resources Information Center
Wang, Y.-H.
2017-01-01
This study aimed to explore whether integrating augmented reality (AR) techniques could support a software editing course and to examine the different learning effects for students using online-based and AR-based blended learning strategies. The researcher adopted a comparative research approach with a total of 103 college students participating…
Enhancing and Transforming Global Learning Communities with Augmented Reality
ERIC Educational Resources Information Center
Frydenberg, Mark; Andone, Diana
2018-01-01
Augmented and virtual reality applications bring new insights to real world objects and scenarios. This paper shares research results of the TalkTech project, an ongoing study investigating the impact of learning about new technologies as members of global communities. This study shares results of a collaborative learning project about augmented…
The Educational Possibilities of Augmented Reality
ERIC Educational Resources Information Center
Cabero, Julio; Barroso, Julio
2016-01-01
A large number of emergent technologies have been acquiring a strong impulse in recent years. One of these emergent technologies is Augmented Reality (RA), which will surely have a high level of penetration into all our educational centers, including universities, in the next 3 to 5 years, as a number of different reports have already highlighted.…
Augmented Reality Games: Using Technology on a Budget
ERIC Educational Resources Information Center
Annetta, Leonard; Burton, Erin Peters; Frazier, Wendy; Cheng, Rebecca; Chmiel, Margaret
2012-01-01
As smartphones become more ubiquitous among adolescents, there is increasing potential for these as a tool to engage students in science instruction through innovative learning environments such as augmented reality (AR). Aligned with the National Science Education Standards (NRC 1996) and integrating the three dimensions of "A Framework for K-12…
Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork
ERIC Educational Resources Information Center
Chujitarom, Wannaporn; Piriyasurawong, Pallop
2017-01-01
This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai
2015-01-01
This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…
What Teachers Need to Know about Augmented Reality Enhanced Learning Environments
ERIC Educational Resources Information Center
Wasko, Christopher
2013-01-01
Augmented reality (AR) enhanced learning environments have been designed to teach a variety of subjects by having learners act like professionals in the field as opposed to students in a classroom. The environments, grounded in constructivist and situated learning theories, place students in a meaningful, non-classroom environment and force them…
Understanding the Conics through Augmented Reality
ERIC Educational Resources Information Center
Salinas, Patricia; Pulido, Ricardo
2017-01-01
This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
NASA Astrophysics Data System (ADS)
Jumarlis, Mila; Mirfan, Mirfan
2018-05-01
Local language learning had been leaving by people especially young people had affected technology advances so that involved lack of interest to learn culture especially local language. So required interactive and interest learning media for introduction Lontara. This research aims to design and implement augmented reality on introduction Lontara on mobile device especially android. Application of introduction Lontara based on Android was designed by Vuforia and Unity. Data collection method were observation, interview, and literature review. That data was analysed for being information. The system was designed by Unified Modeling Language (UML). The method used is a marker. The test result found that application of Augmented Reality on introduction Lontara based on Android could improve public interest for introducing local language particularly young people in learning about Lontara because of using technology. Application of introduction of Lontara based on Android used augmented reality occurred sound and how to write Lontara with animation. This application could be running without an internet connection, so that its used more efficient and could maximize from user.
Volonté, Francesco; Pugin, François; Bucher, Pascal; Sugimoto, Maki; Ratib, Osman; Morel, Philippe
2011-07-01
New technologies can considerably improve preoperative planning, enhance the surgeon's skill and simplify the approach to complex procedures. Augmented reality techniques, robot assisted operations and computer assisted navigation tools will become increasingly important in surgery and in residents' education. We obtained 3D reconstructions from simple spiral computed tomography (CT) slides using OsiriX, an open source processing software package dedicated to DICOM images. These images were then projected on the patient's body with a beamer fixed to the operating table to enhance spatial perception during surgical intervention (augmented reality). Changing a window's deepness level allowed the surgeon to navigate through the patient's anatomy, highlighting regions of interest and marked pathologies. We used image overlay navigation for laparoscopic operations such cholecystectomy, abdominal exploration, distal pancreas resection and robotic liver resection. Augmented reality techniques will transform the behaviour of surgeons, making surgical interventions easier, faster and probably safer. These new techniques will also renew methods of surgical teaching, facilitating transmission of knowledge and skill to young surgeons.
The nature of the (visualization) game: Challenges and opportunities from computational geophysics
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2016-12-01
As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.
Augmented reality assisted surgery: a urologic training tool
Dickey, Ryan M; Srikishen, Neel; Lipshultz, Larry I; Spiess, Philippe E; Carrion, Rafael E; Hakky, Tariq S
2016-01-01
Augmented reality is widely used in aeronautics and is a developing concept within surgery. In this pilot study, we developed an application for use on Google Glass® optical head-mounted display to train urology residents in how to place an inflatable penile prosthesis. We use the phrase Augmented Reality Assisted Surgery to describe this novel application of augmented reality in the setting of surgery. The application demonstrates the steps of the surgical procedure of inflatable penile prosthesis placement. It also contains software that allows for detection of interest points using a camera feed from the optical head-mounted display to enable faculty to interact with residents during placement of the penile prosthesis. Urology trainees and faculty who volunteered to take part in the study were given time to experience the technology in the operative or perioperative setting and asked to complete a feedback survey. From 30 total participants using a 10-point scale, educational usefulness was rated 8.6, ease of navigation was rated 7.6, likelihood to use was rated 7.4, and distraction in operating room was rated 4.9. When stratified between trainees and faculty, trainees found the technology more educationally useful, and less distracting. Overall, 81% of the participants want this technology in their residency program, and 93% see this technology in the operating room in the future. Further development of this technology is warranted before full release, and further studies are necessary to better characterize the effectiveness of Augmented Reality Assisted Surgery in urologic surgical training. PMID:26620455
Augmented reality assisted surgery: a urologic training tool.
Dickey, Ryan M; Srikishen, Neel; Lipshultz, Larry I; Spiess, Philippe E; Carrion, Rafael E; Hakky, Tariq S
2016-01-01
Augmented reality is widely used in aeronautics and is a developing concept within surgery. In this pilot study, we developed an application for use on Google Glass ® optical head-mounted display to train urology residents in how to place an inflatable penile prosthesis. We use the phrase Augmented Reality Assisted Surgery to describe this novel application of augmented reality in the setting of surgery. The application demonstrates the steps of the surgical procedure of inflatable penile prosthesis placement. It also contains software that allows for detection of interest points using a camera feed from the optical head-mounted display to enable faculty to interact with residents during placement of the penile prosthesis. Urology trainees and faculty who volunteered to take part in the study were given time to experience the technology in the operative or perioperative setting and asked to complete a feedback survey. From 30 total participants using a 10-point scale, educational usefulness was rated 8.6, ease of navigation was rated 7.6, likelihood to use was rated 7.4, and distraction in operating room was rated 4.9. When stratified between trainees and faculty, trainees found the technology more educationally useful, and less distracting. Overall, 81% of the participants want this technology in their residency program, and 93% see this technology in the operating room in the future. Further development of this technology is warranted before full release, and further studies are necessary to better characterize the effectiveness of Augmented Reality Assisted Surgery in urologic surgical training.
NASA Astrophysics Data System (ADS)
Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi
2014-09-01
Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.
2016-09-01
Generalized Intelligent Framework for Tutoring (GIFT) and Augmented REality Sandtable ( ARES ) by Michael W Boyce, Ramsamooj J Reyes, Deeja E Cruz, Charles...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by...REality Sandtable ( ARES ) by Michael W Boyce Oak Ridge Associated Universities, Oak Ridge, TN LT COL Ramsamooj J Reyes Air Force Institute of
Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.
Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac
2017-01-01
Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruzanka, Silvia; Chang, Ben; Behar, Katherine
2013-03-01
In this paper we present appARel, a creative research project at the intersection of augmented reality, fashion, and performance art. appARel is a mobile augmented reality application that transforms otherwise ordinary garments with 3D animations and modifications. With appARel, entire fashion collections can be uploaded in a smartphone application, and "new looks" can be downloaded in a software update. The project will culminate in a performance art fashion show, scheduled for March 2013. appARel includes textile designs incorporating fiducial markers, garment designs that incorporate multiple markers with the human body, and iOS and Android apps that apply different augments, or "looks", to a garment. We discuss our philosophy for combining computer-generated and physical objects; and share the challenges we encountered in applying fiduciary markers to the 3D curvatures of the human body.
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.
Augmented reality in surgical procedures
NASA Astrophysics Data System (ADS)
Samset, E.; Schmalstieg, D.; Vander Sloten, J.; Freudenthal, A.; Declerck, J.; Casciaro, S.; Rideng, Ø.; Gersak, B.
2008-02-01
Minimally invasive therapy (MIT) is one of the most important trends in modern medicine. It includes a wide range of therapies in videoscopic surgery and interventional radiology and is performed through small incisions. It reduces hospital stay-time by allowing faster recovery and offers substantially improved cost-effectiveness for the hospital and the society. However, the introduction of MIT has also led to new problems. The manipulation of structures within the body through small incisions reduces dexterity and tactile feedback. It requires a different approach than conventional surgical procedures, since eye-hand co-ordination is not based on direct vision, but more predominantly on image guidance via endoscopes or radiological imaging modalities. ARIS*ER is a multidisciplinary consortium developing a new generation of decision support tools for MIT by augmenting visual and sensorial feedback. We will present tools based on novel concepts in visualization, robotics and haptics providing tailored solutions for a range of clinical applications. Examples from radio-frequency ablation of liver-tumors, laparoscopic liver surgery and minimally invasive cardiac surgery will be presented. Demonstrators were developed with the aim to provide a seamless workflow for the clinical user conducting image-guided therapy.
Virtual reality for health care: a survey.
Moline, J
1997-01-01
This report surveys the state of the art in applications of virtual environments and related technologies for health care. Applications of these technologies are being developed for health care in the following areas: surgical procedures (remote surgery or telepresence, augmented or enhanced surgery, and planning and simulation of procedures before surgery); medical therapy; preventive medicine and patient education; medical education and training; visualization of massive medical databases; skill enhancement and rehabilitation; and architectural design for health-care facilities. To date, such applications have improved the quality of health care, and in the future they will result in substantial cost savings. Tools that respond to the needs of present virtual environment systems are being refined or developed. However, additional large-scale research is necessary in the following areas: user studies, use of robots for telepresence procedures, enhanced system reality, and improved system functionality.
Kamel Boulos, Maged N; Lu, Zhihan; Guerrero, Paul; Jennett, Charlene; Steed, Anthony
2017-02-20
The latest generation of virtual and mixed reality hardware has rekindled interest in virtual reality GIS (VRGIS) and augmented reality GIS (ARGIS) applications in health, and opened up new and exciting opportunities and possibilities for using these technologies in the personal and public health arenas. From smart urban planning and emergency training to Pokémon Go, this article offers a snapshot of some of the most remarkable VRGIS and ARGIS solutions for tackling public and environmental health problems, and bringing about safer and healthier living options to individuals and communities. The article also covers the main technical foundations and issues underpinning these solutions.
Augmenting Reality and Formality of Informal and Non-Formal Settings to Enhance Blended Learning
ERIC Educational Resources Information Center
Pérez-Sanagustin, Mar; Hernández-Leo, Davinia; Santos, Patricia; Kloos, Carlos Delgado; Blat, Josep
2014-01-01
Visits to museums and city tours have been part of higher and secondary education curriculum activities for many years. However these activities are typically considered "less formal" when compared to those carried out in the classroom, mainly because they take place in informal or non-formal settings. Augmented Reality (AR) technologies…
Mobile Augmented Reality as Usability to Enhance Nurse Prevent Violence Learning Satisfaction.
Hsu, Han-Jen; Weng, Wei-Kai; Chou, Yung-Lang; Huang, Pin-Wei
2018-01-01
Violence in hospitals, nurses are at high risk of patient's aggression in the workplace. This learning course application Mobile Augmented Reality to enhance nurse to prevent violence skill. Increasingly, mobile technologies introduced and integrated into classroom teaching and clinical applications. Improving the quality of learning course and providing new experiences for nurses.
Modeling Augmented Reality Games with Preservice Elementary and Secondary Science Teachers
ERIC Educational Resources Information Center
Burton, Erin Peters; Frazier, Wendy; Annetta, Leonard; Lamb, Richard; Cheng, Rebecca; Chmiel, Margaret
2011-01-01
Cell phones are ever-present in daily life, yet vastly underused in the formal science classroom. The purpose of this study was to implement a novel learning tool on cell phones, Augmented Reality Games, and determine how the interaction influenced preservice teachers' content knowledge and self-efficacy of cell phone use in schools. Results show…
ERIC Educational Resources Information Center
Smith, Cate C.; Cihak, David F.; Kim, Byungkeon; McMahon, Don D.; Wright, Rachel
2017-01-01
The purpose of this study was to examine the effects of using mobile technology to improve navigation skills in three students with intellectual disability (ID) in a postsecondary education program. Navigation skills included using an augmented reality iPhone app to make correct "waypoint" decisions when traveling by foot on a university…
ERIC Educational Resources Information Center
Sirakaya, Mustafa; Cakmak, Ebru Kilic
2018-01-01
This study aimed to test the impact of augmented reality (AR) use on student achievement and self-efficacy in vocational education and training. For this purpose, a marker-based AR application, called HardwareAR, was developed. HardwareAR provides information about characteristics of hardware components, ports and assembly. The research design was…
ERIC Educational Resources Information Center
Efstathiou, Irene; Kyza, Eleni A.; Georgiou, Yiannis
2018-01-01
This study investigated the contribution of a location-based augmented reality (AR) inquiry-learning environment in developing 3rd grade students' historical empathy and conceptual understanding. Historical empathy is an important element of historical thinking, which is considered to improve conceptual understanding and support the development of…
Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors
ERIC Educational Resources Information Center
Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor
2016-01-01
Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…
ERIC Educational Resources Information Center
Harley, Jason M.; Poitras, Eric G.; Jarrell, Amanda; Duffy, Melissa C.; Lajoie, Susanne P.
2016-01-01
Research on the effectiveness of augmented reality (AR) on learning exists, but there is a paucity of empirical work that explores the role that positive emotions play in supporting learning in such settings. To address this gap, this study compared undergraduate students' emotions and learning outcomes during a guided historical tour using mobile…
Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study
ERIC Educational Resources Information Center
Ibáñez, María-Blanca; Di-Serio, Ángela; Villarán-Molina, Diego; Delgado-Kloos, Carlos
2015-01-01
This paper reports empirical evidence on having students use AR-SaBEr, a simulation tool based on augmented reality (AR), to discover the basic principles of electricity through a series of experiments. AR-SaBEr was enhanced with knowledge-based support and inquiry-based scaffolding mechanisms, which proved useful for discovery learning in…
A Mobile Augmented Reality System for the Learning of Dental Morphology
ERIC Educational Resources Information Center
Juan, M.-Carmen; Alexandrescu, Lucian; Folguera, Fernando; García-García, Inmaculada
2016-01-01
Three-dimensional models are important when the learning content is difficult to acquire from 2D images or other traditional methods. This is the case for learning dental morphology. In this paper, we present a mobile augmented reality (AR) system for learning dental morphology. A study with students was carried out to determine whether learning…
ERIC Educational Resources Information Center
Oh, Seungjae; So, Hyo-Jeong; Gaydos, Matthew
2018-01-01
The goal for this research is to articulate and test a new hybrid Augmented Reality (AR) environment for conceptual understanding. From the theoretical lens of embodied interaction, we have designed a multi-user participatory simulation called ARfract where visitors in a science museum can learn about complex scientific concepts on the refraction…
Current Status, Opportunities and Challenges of Augmented Reality in Education
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Liang, Jyh-Chong
2013-01-01
Although augmented reality (AR) has gained much research attention in recent years, the term AR was given different meanings by varying researchers. In this article, we first provide an overview of definitions, taxonomies, and technologies of AR. We argue that viewing AR as a concept rather than a type of technology would be more productive for…
Applying Augmented Reality to Enhance Learning: A Study of Different Teaching Materials
ERIC Educational Resources Information Center
Hung, Y.-H.; Chen, C.-H.; Huang, S.-W.
2017-01-01
The objective of this study was to determine the usefulness of augmented reality (AR) in teaching. An experiment was conducted to examine children's learning performances, which included the number of errors they made, their ability to remember the content of what they had read and their satisfaction with the three types of teaching materials,…
Making the Invisible Visible in Science Museums through Augmented Reality Devices
ERIC Educational Resources Information Center
Yoon, Susan A.; Wang, Joyce
2014-01-01
Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields.…
Making the Invisible Observable by Augmented Reality in Informal Science Education Context
ERIC Educational Resources Information Center
Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina
2017-01-01
The aim of the study was to analyse learning using Augmented Reality (AR) technology and the motivational and cognitive aspects related to it in an informal learning context. The 146 participants were 11- to 13-year-old Finnish pupils visiting a science centre exhibition. The data, which consisted of both cognitive tasks and self-report…
Are Augmented Reality Picture Books Magic or Real for Preschool Children Aged Five to Six?
ERIC Educational Resources Information Center
Yilmaz, Rabia M.; Kucuk, Sevda; Goktas, Yuksel
2017-01-01
The aim of this study is to determine preschool children's attitudes towards augmented reality picture books (ARPB), their story comprehension performance (SCP) and the relationships between these variables. The sample consisted of 92 five- and six-year-olds (49 boys, 43 girls). An attitude form, story comprehension test and interview form were…
Interactive Print: The Design of Cognitive Tasks in Blended Augmented Reality and Print Documents
ERIC Educational Resources Information Center
Nadolny, Larysa
2017-01-01
The combination of print materials and augmented reality in education is increasingly accessible due to advances in mobile technologies. Using familiar paper-based activities overlaid with digital items, also known as interactive print, educators can create a custom learning experience for students. There is very little guidance on the design of…
ERIC Educational Resources Information Center
Bressler, D. M.; Bodzin, A. M.
2013-01-01
Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…
Augmented Reality in Education--Cases, Places and Potentials
ERIC Educational Resources Information Center
Bower, Matt; Howe, Cathie; McCredie, Nerida; Robinson, Austin; Grover, David
2014-01-01
Augmented Reality is poised to profoundly transform Education as we know it. The capacity to overlay rich media onto the real world for viewing through web-enabled devices such as phones and tablet devices means that information can be made available to students at the exact time and place of need. This has the potential to reduce cognitive…
Learning Physics through Play in an Augmented Reality Environment
ERIC Educational Resources Information Center
Enyedy, Noel; Danish, Joshua A.; Delacruz, Girlie; Kumar, Melissa
2012-01-01
The Learning Physics through Play Project (LPP) engaged 6-8-year old students (n = 43) in a series of scientific investigations of Newtonian force and motion including a series of augmented reality activities. We outline the two design principles behind the LPP curriculum: 1) the use of socio-dramatic, embodied play in the form of participatory…
ERIC Educational Resources Information Center
Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca
2009-01-01
The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative…
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
Augmented Reality as a Telemedicine Platform for Remote Procedural Training.
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-10-10
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.
Augmented Reality as a Telemedicine Platform for Remote Procedural Training
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-01-01
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform. PMID:28994720
Virtual Reality and Augmented Reality in Plastic Surgery: A Review.
Kim, Youngjun; Kim, Hannah; Kim, Yong Oock
2017-05-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.
Virtual Reality and Augmented Reality in Plastic Surgery: A Review
Kim, Youngjun; Kim, Hannah
2017-01-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091
Cutolo, Fabrizio; Meola, Antonio; Carbone, Marina; Sinceri, Sara; Cagnazzo, Federico; Denaro, Ennio; Esposito, Nicola; Ferrari, Mauro; Ferrari, Vincenzo
2017-12-01
Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Broca's area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures.
Virtual Reconstruction of Lost Architectures: from the Tls Survey to AR Visualization
NASA Astrophysics Data System (ADS)
Quattrini, R.; Pierdicca, R.; Frontoni, E.; Barcaglioni, R.
2016-06-01
The exploitation of high quality 3D models for dissemination of archaeological heritage is currently an investigated topic, although Mobile Augmented Reality platforms for historical architecture are not available, allowing to develop low-cost pipelines for effective contents. The paper presents a virtual anastylosis, starting from historical sources and from 3D model based on TLS survey. Several efforts and outputs in augmented or immersive environments, exploiting this reconstruction, are discussed. The work demonstrates the feasibility of a 3D reconstruction approach for complex architectural shapes starting from point clouds and its AR/VR exploitation, allowing the superimposition with archaeological evidences. Major contributions consist in the presentation and the discussion of a pipeline starting from the virtual model, to its simplification showing several outcomes, comparing also the supported data qualities and advantages/disadvantages due to MAR and VR limitations.
Augmenting the access grid using augmented reality
NASA Astrophysics Data System (ADS)
Li, Ying
2012-01-01
The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.
Loy Rodas, Nicolas; Barrera, Fernando; Padoy, Nicolas
2017-02-01
We present an approach to provide awareness to the harmful ionizing radiation generated during X-ray-guided minimally invasive procedures. A hand-held screen is used to display directly in the user's view information related to radiation safety in a mobile augmented reality (AR) manner. Instead of using markers, we propose a method to track the observer's viewpoint, which relies on the use of multiple RGB-D sensors and combines equipment detection for tracking initialization with a KinectFusion-like approach for frame-to-frame tracking. Two of the sensors are ceiling-mounted and a third one is attached to the hand-held screen. The ceiling cameras keep an updated model of the room's layout, which is used to exploit context information and improve the relocalization procedure. The system is evaluated on a multicamera dataset generated inside an operating room (OR) and containing ground-truth poses of the AR display. This dataset includes a wide variety of sequences with different scene configurations, occlusions, motion in the scene, and abrupt viewpoint changes. Qualitative results illustrating the different AR visualization modes for radiation awareness provided by the system are also presented. Our approach allows the user to benefit from a large AR visualization area and permits to recover from tracking failure caused by vast motion or changes in the scene just by looking at a piece of equipment. The system enables the user to see the 3-D propagation of radiation, the medical staff's exposure, and/or the doses deposited on the patient's surface as seen through his own eyes.
NASA Astrophysics Data System (ADS)
Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.
2007-03-01
We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.
NASA Astrophysics Data System (ADS)
Lan, Lu; Liu, Kaiming; Xia, Yan; Wu, Jiayingzi; Li, Rui; Wang, Pu; Han, Linda K.; Cheng, Ji-Xin
2017-02-01
Breast-conserving surgery is a well-accepted breast cancer treatment. However, it is still challenging for the surgeon to accurately localize the tumor during the surgery. Also, the guidance provided by current methods is 1 dimensional distance information, which is indirect and not intuitive. Therefore, it creates problems on a large re-excision rate, and a prolonged surgical time. To solve these problems, we have developed a fiber-delivered optoacoustic guide (OG), which mimics the traditional localization guide wire and is preoperatively placed into tumor mass, and an augmented reality (AR) system to provide real-time visualization on the location of the tumor with sub-millimeter variance. By a nano-composite light diffusion sphere and light absorbing layer formed on the tip of an optical fiber, the OG creates an omnidirectional acoustic source inside tumor mass under pulsed laser excitation. The optoacoustic signal generated has a high dynamic range ( 58dB) and spreads in a large apex angle of 320 degrees. Then, an acoustic radar with three ultrasound transducers is attached to the breast skin, and triangulates the location of the OG tip. With an AR system to sense the location of the acoustic radar, the relative position of the OG tip inside the tumor to the AR display is calculated and rendered. This provides direct visual feedback of the tumor location to surgeons, which will greatly ease the surgical planning during the operation and save surgical time. A proof-of-concept experiment using a tablet and a stereo-vision camera is demonstrated and 0.25 mm tracking variance is achieved.
A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note.
Abe, Yuichiro; Sato, Shigenobu; Kato, Koji; Hyakumachi, Takahiko; Yanagibashi, Yasushi; Ito, Manabu; Abumi, Kuniyoshi
2013-10-01
Augmented reality (AR) is an imaging technology by which virtual objects are overlaid onto images of real objects captured in real time by a tracking camera. This study aimed to introduce a novel AR guidance system called virtual protractor with augmented reality (VIPAR) to visualize a needle trajectory in 3D space during percutaneous vertebroplasty (PVP). The AR system used for this study comprised a head-mount display (HMD) with a tracking camera and a marker sheet. An augmented scene was created by overlaying the preoperatively generated needle trajectory path onto a marker detected on the patient using AR software, thereby providing the surgeon with augmented views in real time through the HMD. The accuracy of the system was evaluated by using a computer-generated simulation model in a spine phantom and also evaluated clinically in 5 patients. In the 40 spine phantom trials, the error of the insertion angle (EIA), defined as the difference between the attempted angle and the insertion angle, was evaluated using 3D CT scanning. Computed tomography analysis of the 40 spine phantom trials showed that the EIA in the axial plane significantly improved when VIPAR was used compared with when it was not used (0.96° ± 0.61° vs 4.34° ± 2.36°, respectively). The same held true for EIA in the sagittal plane (0.61° ± 0.70° vs 2.55° ± 1.93°, respectively). In the clinical evaluation of the AR system, 5 patients with osteoporotic vertebral fractures underwent VIPAR-guided PVP from October 2011 to May 2012. The postoperative EIA was evaluated using CT. The clinical results of the 5 patients showed that the EIA in all 10 needle insertions was 2.09° ± 1.3° in the axial plane and 1.98° ± 1.8° in the sagittal plane. There was no pedicle breach or leakage of polymethylmethacrylate. VIPAR was successfully used to assist in needle insertion during PVP by providing the surgeon with an ideal insertion point and needle trajectory through the HMD. The findings indicate that AR guidance technology can become a useful assistive device during spine surgeries requiring percutaneous procedures.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng
2012-12-01
Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.
NASA Astrophysics Data System (ADS)
Canciani, M.; Conigliaro, E.; Del Grasso, M.; Papalini, P.; Saccone, M.
2016-06-01
The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented "Augment") it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.
ERIC Educational Resources Information Center
Clarkson, Jessica
2014-01-01
This paper presents the development process and framework used to construct a transportation app that uses situated learning, augmented reality, and communities of practice. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause social impairments as well as the limit the potential for the individual to achieve independence…
The Use of Augmented Reality Games in Education: A Review of the Literature
ERIC Educational Resources Information Center
Koutromanos, George; Sofos, Alivisos; Avraamidou, Lucy
2015-01-01
This paper provides a review of the literature about the use of augmented reality in education and specifically in the context of formal and informal environments. It examines the research that has been conducted up to date on the use of those games through mobile technology devices such as mobile phones and tablets, both in primary and secondary…
ERIC Educational Resources Information Center
McMahon, Don D.; Cihak, David F.; Wright, Rachel E.; Bell, Sherry Mee
2016-01-01
The purpose of this study was to examine the use of an emerging technology called augmented reality to teach science vocabulary words to college students with intellectual disability and autism spectrum disorders. One student with autism and three students with an intellectual disability participated in a multiple probe across behaviors (i.e.,…
Exploring the Potential of a Location Based Augmented Reality Game for Language Learning
ERIC Educational Resources Information Center
Richardson, Donald
2016-01-01
This paper adds to the small but growing body of research into the potential of augmented reality games for teaching and learning English as a foreign language (EFL). It explores the extent to which such games enhance the language learning experience of advanced level EFL learners. The author draws on his work developing "Mission not really…
M-Learning and Augmented Reality: A Review of the Scientific Literature on the WoS Repository
ERIC Educational Resources Information Center
Fombona, Javier; Pascual-Sevillano, Maria-Angeles; González-Videgara, MariCarmen
2017-01-01
Augmented reality emerges as a tool, on which it is necessary to examine its real educational value. This paper shows the results of a bibliometric analysis performed on documents collected from the Web of Science repository, an Internet service that concentrates bibliographic information from more than 7,000 institutions. Our analysis included an…
Examining the Effectiveness of Augmented Reality Applications in Education: A Meta-Analysis
ERIC Educational Resources Information Center
Tekedere, Hakan; Göke, Hanife
2016-01-01
In this study, the purpose is examining the reviews released on augmented reality applications in education, merging the results obtained in the studies that are independent from each other, and providing a new viewpoint for the studies that will be conducted in the future. The meta-analysis method has been used in the study. 15 out of 171…
Augmented Reality M-Learning to Enhance Nursing Skills Acquisition in the Clinical Skills Laboratory
ERIC Educational Resources Information Center
Garrett, Bernard M.; Jackson, Cathryn; Wilson, Brian
2015-01-01
Purpose: This paper aims to report on a pilot research project designed to explore if new mobile augmented reality (AR) technologies have the potential to enhance the learning of clinical skills in the lab. Design/methodology/approach: An exploratory action-research-based pilot study was undertaken to explore an initial proof-of-concept design in…
Augmented Reality and Mobile Learning: The State of the Art
ERIC Educational Resources Information Center
FitzGerald, Elizabeth; Ferguson, Rebecca; Adams, Anne; Gaved, Mark; Mor, Yishay; Thomas, Rhodri
2013-01-01
In this paper, the authors examine the state of the art in augmented reality (AR) for mobile learning. Previous work in the field of mobile learning has included AR as a component of a wider toolkit but little has been done to discuss the phenomenon in detail or to examine in a balanced fashion its potential for learning, identifying both positive…
Using Augmented Reality in Early Art Education: A Case Study in Hong Kong Kindergarten
ERIC Educational Resources Information Center
Huang, Yujia; Li, Hui; Fong, Ricci
2016-01-01
Innovation in pedagogy by technology integration in kindergarten classroom has always been a challenge for most teachers. This design-based research aimed to explore the feasibility of using Augmented Reality (AR) technology in early art education with a focus on the gains and pains of this innovation. A case study was conducted in a typical…
The Use of Augmented Reality in Formal Education: A Scoping Review
ERIC Educational Resources Information Center
Saltan, Fatih; Arslan, Ömer
2017-01-01
Augmented Reality (AR) is recognized as one of the most important developments in educational technology for both higher and K-12 education as emphasized in Horizon report (Johnson et al., 2016, 2015). Furthermore, AR is expected to achieve widespread adoption that will take two to three years in higher education and four to five years in K-12…
ERIC Educational Resources Information Center
Conley, Quincy
2013-01-01
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile…
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
ERIC Educational Resources Information Center
Woods, Terri L.; Reed, Sarah; Hsi, Sherry; Woods, John A.; Woods, Michael R.
2016-01-01
Spatial thinking is often challenging for introductory geology students. A pilot study using the Augmented Reality sandbox (AR sandbox) suggests it can be a powerful tool for bridging the gap between two-dimensional (2D) representations and real landscapes, as well as enhancing the spatial thinking and modeling abilities of students. The AR…
Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places
ERIC Educational Resources Information Center
Chang, Yu-Lien; Hou, Huei-Tse; Pan, Chao-Yang; Sung, Yao-Ting; Chang, Kuo-En
2015-01-01
Based on the sense of place theory and the design principles of guidance and interpretation, this study developed an augmented reality mobile guidance system that used a historical geo-context-embedded visiting strategy. This tool for heritage guidance and educational activities enhanced visitor sense of place. This study consisted of 3 visitor…
Investigating the Role of Augmented Reality Technology in the Language Classroom
ERIC Educational Resources Information Center
Solak, Ekrem; Cakir, Recep
2016-01-01
The purpose of this study was to inform about some of the current applications and literature on Augmented Reality (AR) technology in education and to present experimental data about the effectiveness of AR application in a language classroom at the elementary level in Turkey. The research design of the study was quasi-experimental. Sixty-one 5th…
ERIC Educational Resources Information Center
Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng
2016-01-01
This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…
ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy
ERIC Educational Resources Information Center
Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M. A.; García, S.; Barcia, J. M.
2015-01-01
The evolution of technologies and the development of new tools with educational purposes are growing up. This work presents the experience of a new tool based on augmented reality (AR) focusing on the anatomy of the lower limb. ARBOOK was constructed and developed based on TC and MRN images, dissections and drawings. For ARBOOK evaluation, a…
ERIC Educational Resources Information Center
McMahon, Don; Cihak, David F.; Wright, Rachel
2015-01-01
The purpose of this study was to examine the effects of location-based augmented reality navigation compared to Google Maps and paper maps as navigation aids for students with disabilities. The participants in this single subject study were three college students with intellectual disability and one college student with autism spectrum disorder.…
Enhancing The Army Operations Process Through The Incorportation of Holography
2017-06-09
the process and gives the user the sense of a noninvasive enhancement to quickly make decisions . Processes and information no longer create...mentally overlaying it onto the process . Data now augments reality and is a noninvasive process to decision making . v ACKNOWLEDGMENTS This paper...environment, augmented on top of reality decreases the amount of time needed to make decisions
The Viability and Value of Student- and Teacher-Created Augmented Reality Experiences
ERIC Educational Resources Information Center
O'Shea, Patrick; Curry-Corcoran, Daniel
2013-01-01
This paper describes the process and results of a project to incorporate Augmented Reality (AR) technologies and pedagogical approaches into a Virginian elementary school. The process involved training 5th grade teachers on the design and production of narrative-based AR games in order to give them the skills that they could then pass on to their…
ERIC Educational Resources Information Center
Wang, Hung-Yuan; Duh, Henry Been-Lirn; Li, Nai; Lin, Tzung-Jin; Tsai, Chin-Chung
2014-01-01
The purpose of this study is to investigate and compare students' collaborative inquiry learning behaviors and their behavior patterns in an augmented reality (AR) simulation system and a traditional 2D simulation system. Their inquiry and discussion processes were analyzed by content analysis and lag sequential analysis (LSA). Forty…
ERIC Educational Resources Information Center
Drljevic, Neven; Wong, Lung Hsiang; Boticki, Ivica
2017-01-01
The paper provides a high-level review of the current state of techno-pedagogical design in Augmented Reality Learning Experiences (ARLEs). The review is based on a rubric constructed from the Meaningful Learning with ICT framework and the Orchestration Load reduction framework, providing, respectively, a view of primarily student- and primarily…
ERIC Educational Resources Information Center
Chen, Cheng-ping; Wang, Chang-Hwa
2015-01-01
Studies have proven that merging hands-on and online learning can result in an enhanced experience in learning science. In contrast to traditional online learning, multiple in-classroom activities may be involved in an augmented-reality (AR)-embedded e-learning process and thus could reduce the effects of individual differences. Using a…
See-through 3D technology for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young
2017-06-01
Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.
Image-guided laparoscopic surgery in an open MRI operating theater.
Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto
2013-06-01
The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.
AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole
2017-11-01
Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-01-01
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439
NASA Astrophysics Data System (ADS)
Schmalstieg, Dieter; Langlotz, Tobias; Billinghurst, Mark
Augmented Reality (AR) was first demonstrated in the 1960s, but only recently have technologies emerged that can be used to easily deploy AR applications to many users. Camera-equipped cell phones with significant processing power and graphics abilities provide an inexpensive and versatile platform for AR applications, while the social networking technology of Web 2.0 provides a large-scale infrastructure for collaboratively producing and distributing geo-referenced AR content. This combination of widely used mobile hardware and Web 2.0 software allows the development of a new type of AR platform that can be used on a global scale. In this paper we describe the Augmented Reality 2.0 concept and present existing work on mobile AR and web technologies that could be used to create AR 2.0 applications.
NASA Astrophysics Data System (ADS)
Taryadi; Kurniawan, I.
2018-01-01
This research was done to examine the usage of PECS method (Picture Exchange Communication System) multimedia augmented reality based as a learning alternative in training the communication of autism childen. The aim of this research were developing an approach to improve the communication ability before and after an intervension with PECS multimedia augmented reality method. The subject of this research were 12 autism children in Inclusion school in Pekalongan region. The experiment method was used with the single subject research approach. The research resulted that the average ability level in communication before and after the treatment has shown 47% while during the treatment the average level is 65%. Whereas there is an improvement after intervension stage with the average of 76%..
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-12-10
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.
Use of display technologies for augmented reality enhancement
NASA Astrophysics Data System (ADS)
Harding, Kevin
2016-06-01
Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.
Grooms, Dustin R; Kiefer, Adam W; Riley, Michael A; Ellis, Jonathan D; Thomas, Staci; Kitchen, Katie; DiCesare, Christopher; Bonnette, Scott; Gadd, Brooke; Barber Foss, Kim D; Yuan, Weihong; Silva, Paula; Galloway, Ryan; Diekfuss, Jed; Leach, James; Berz, Kate; Myer, Gregory D
2018-03-27
A limiting factor for reducing anterior cruciate ligament (ACL) injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. To determine the neural mechanisms for injury risk reducing biomechanics transfer to sport after ACL injury prevention training. Cohort study Setting: Research laboratory Participants: Four healthy high school soccer athletes. Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg-press task was completed with neuroimaging before and after training. A virtual reality soccer specific landing task was also competed following training to assess transfer of movement mechanics. Landing mechanics during the virtual reality soccer task and blood oxygen level dependent signal change during neuroimaging. Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg-press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Changes in brain activity may underlie adaptation and transfer of injury risk reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.
Augmented assessment as a means to augmented reality.
Bergeron, Bryan
2006-01-01
Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.
Incorporating Technology in Teaching Musical Instruments
ERIC Educational Resources Information Center
Prodan, Angelica
2017-01-01
After discussing some of the drawbacks of using Skype for long distance music lessons, Angelica Prodan describes three different types of Artificial Reality (Virtual Reality, Augmented Reality and Mixed or Merged Reality). She goes on to describe the beneficial applications of technology, with results otherwise impossible to achieve in areas such…
ERIC Educational Resources Information Center
Safar, Ammar H.; Al-Jafar, Ali A.; Al-Yousefi, Zainab H.
2017-01-01
This experimental research study scrutinized the effectiveness of using augmented reality (AR) applications (apps) as a teaching and learning tool when instructing kindergarten children in the English alphabet in the State of Kuwait. The study compared two groups: (a) experimental, taught using AR apps, and (b) control, taught using traditional…
ERIC Educational Resources Information Center
Perez-Lopez, David; Contero, Manuel
2013-01-01
This paper presents a study to analyze the use of augmented reality (AR) for delivering multimedia content to support the teaching and learning process of the digestive and circulatory systems at the primary school level, and its impact on knowledge retention. Our AR application combines oral explanations and 3D models and animations of anatomical…
Realistic Reflections for Marine Environments in Augmented Reality Training Systems
2009-09-01
Static Backgrounds. Top: Agua Background. Bottom: Blue Background.............48 Figure 27. Ship Textures Used to Generate Reflections. In Order from...Like virtual simulations, augmented reality trainers can be configured to meet specific training needs and can be restarted and reused to train...Wave Distortion, Blurring and Shadow Many of the same methods outlined in Full Reflection shader were reused for the Physics shader. The same
ERIC Educational Resources Information Center
Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen
2014-01-01
In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…
ERIC Educational Resources Information Center
Elford, Martha Denton
2013-01-01
This study analyzes the effects of real-time feedback on teacher behavior in an augmented reality simulation environment. Real-time feedback prompts teachers to deliver behavior-specific praise to students in the TeachLivE KU Lab as an evidence-based practice known to decrease disruptive behavior in inclusive classrooms. All educators face the…
ERIC Educational Resources Information Center
Bidarra, José; Rothschild, Meagan; Squire, Kurt; Figueiredo, Mauro
2013-01-01
Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for…
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.
Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch
2010-12-01
We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p<0.05). The apparent differences among feedback groups were not significant in Day 2 of the acquisition session (ANOVA, p>0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.
Interactive projection for aerial dance using depth sensing camera
NASA Astrophysics Data System (ADS)
Dubnov, Tammuz; Seldess, Zachary; Dubnov, Shlomo
2014-02-01
This paper describes an interactive performance system for oor and Aerial Dance that controls visual and sonic aspects of the presentation via a depth sensing camera (MS Kinect). In order to detect, measure and track free movement in space, 3 degree of freedom (3-DOF) tracking in space (on the ground and in the air) is performed using IR markers. Gesture tracking and recognition is performed using a simpli ed HMM model that allows robust mapping of the actor's actions to graphics and sound. Additional visual e ects are achieved by segmentation of the actor body based on depth information, allowing projection of separate imagery on the performer and the backdrop. Artistic use of augmented reality performance relative to more traditional concepts of stage design and dramaturgy are discussed.
Reducing the Schizophrenia Stigma: A New Approach Based on Augmented Reality
Silva, Rafael D. de C.; Albuquerque, Saulo G. C.; Muniz, Artur de V.; Filho, Pedro P. Rebouças; Ribeiro, Sidarta
2017-01-01
Schizophrenia is a chronic mental disease that usually manifests psychotic symptoms and affects an individual's functionality. The stigma related to this disease is a serious obstacle for an adequate approach to its treatment. Stigma can, for example, delay the start of treatment, and it creates difficulties in interpersonal and professional relationships. This work proposes a new tool based on augmented reality to reduce the stigma related to schizophrenia. The tool is capable of simulating the psychotic symptoms typical of schizophrenia and simulates sense perception changes in order to create an immersive experience capable of generating pathological experiences of a patient with schizophrenia. The integration into the proposed environment occurs through immersion glasses and an embedded camera. Audio and visual effects can also be applied in real time. To validate the proposed environment, medical students experienced the virtual environment and then answered three questionnaires to assess (i) stigmas related to schizophrenia, (ii) the efficiency and effectiveness of the tool, and, finally (iii) stigma after simulation. The analysis of the questionnaires showed that the proposed model is a robust tool and quite realistic and, thus, very promising in reducing stigma associated with schizophrenia by instilling in the observer a greater comprehension of any person during an schizophrenic outbreak, whether a patient or a family member. PMID:29317860
Computer-Based Technologies in Dentistry: Types and Applications
Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh
2016-01-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819
Computer-Based Technologies in Dentistry: Types and Applications.
Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh
2016-06-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.
Machine learning-based augmented reality for improved surgical scene understanding.
Pauly, Olivier; Diotte, Benoit; Fallavollita, Pascal; Weidert, Simon; Euler, Ekkehard; Navab, Nassir
2015-04-01
In orthopedic and trauma surgery, AR technology can support surgeons in the challenging task of understanding the spatial relationships between the anatomy, the implants and their tools. In this context, we propose a novel augmented visualization of the surgical scene that mixes intelligently the different sources of information provided by a mobile C-arm combined with a Kinect RGB-Depth sensor. Therefore, we introduce a learning-based paradigm that aims at (1) identifying the relevant objects or anatomy in both Kinect and X-ray data, and (2) creating an object-specific pixel-wise alpha map that permits relevance-based fusion of the video and the X-ray images within one single view. In 12 simulated surgeries, we show very promising results aiming at providing for surgeons a better surgical scene understanding as well as an improved depth perception. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.
2017-11-01
In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang; Tu, Nien-Ting
2016-01-01
Augmented reality (AR) has been recognized as a potential technology to help students link what they are observing in the real world to their prior knowledge. One of the most challenging issues of AR-based learning is the provision of effective strategy to help students focus on what they need to observe in the field. In this study, a competitive…
ERIC Educational Resources Information Center
Tsai, Chia-Wen; Shen, Pei-Di; Fan, Ya-Ting
2014-01-01
In this paper, the authors reviewed the empirical augmented reality (AR) and online education studies, and those focused on designing or development of AR to help students learn, published in SSCI, SCI-EXPANDED, and A&HCI journals from 2003 to 2012. The authors in this study found that the number of AR and online education studies has…
ERIC Educational Resources Information Center
Fecich, Samantha J.
2014-01-01
During this collective case study, I explored the use of augmented reality books on an iPad 2 with students diagnosed with disabilities. Students in this study attended a high school life skills class in a rural school district during the fall 2013 semester. Four students participated in this study, two males and two females. Specifically, the…
ERIC Educational Resources Information Center
Hsu, Wen-Chun; Shih, Ju-Ling
2016-01-01
In this study, to learn the routine of Tantui, a branch of martial arts was taken as an object of research. Fitts' stages of motor learning and augmented reality (AR) were applied to a 3D mobile-assisted learning system for martial arts, which was characterized by free viewing angles. With the new system, learners could rotate the viewing angle of…
ERIC Educational Resources Information Center
Chang, Rong-Chi; Chung, Liang-Yi; Huang, Yong-Ming
2016-01-01
The learning of plants has garnered considerable attention in recent years, but students often lack the motivation to learn about the process of plant growth. Also, students are not able to apply what they have learned in class in the form of observation, since plant growth takes a long time. In this study, we use augmented reality (AR) technology…
ERIC Educational Resources Information Center
Atwood-Blaine, Dana; Huffman, Douglas
2017-01-01
This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…
Christ, Roxie; Guevar, Julien; Poyade, Matthieu; Rea, Paul M
2018-01-01
Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond.
Christ, Roxie; Guevar, Julien; Poyade, Matthieu
2018-01-01
Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond. PMID:29698413
Does Augmented Reality Affect High School Students' Learning Outcomes in Chemistry?
NASA Astrophysics Data System (ADS)
Renner, Jonathan Christopher
Some teens may prefer using a self-directed, constructivist, and technologic approach to learning rather than traditional classroom instruction. If it can be demonstrated, educators may adjust their teaching methodology. The guiding research question for this study focused on how augmented reality affects high school students' learning outcomes in chemistry, as measured by a pretest and posttest methodology when ensuring that the individual outcomes were not the result of group collaboration. This study employed a quantitative, quasi-experimental study design that used a comparison and experimental group. Inferential statistical analysis was employed. The study was conducted at a high school in southwest Colorado. Eighty-nine respondents returned completed and signed consent forms, and 78 participants completed the study. Results demonstrated that augmented reality instruction caused posttest scores to significantly increase, as compared to pretest scores, but it was not as effective as traditional classroom instruction. Scores did improve under both types of instruction; therefore, more research is needed in this area. The present study was the first quantitative experiment controlling for individual learning to validate augmented reality using mobile handheld digital devices that affected individual students' learning outcomes without group collaboration. This topic was important to the field of education as it may help educators understand how students learn and it may also change the way students are taught.