Science.gov

Sample records for augments nmda receptor

  1. Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons

    PubMed Central

    George, Joju; Dravid, Shashank M.; Prakash, Anand; Xie, Jun; Peterson, Jennifer; Jabba, Sairam V.; Baden, Daniel G.; Murray, Thomas F.

    2009-01-01

    A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca2+ and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca2+/calmodulin-dependent protein kinase signaling cascades has moreover been demonstrated to regulate neurite/axonal outgrowth (Wayman et al., 2004). We used a sodium channel activator, brevetoxin (PbTx-2), to explore the relationship between intracellular [Na+] and NMDAR-dependent development. PbTx-2 alone, at a concentration of 30 nM, did not affect Ca2+ dynamics in DIV-2 cerebrocortical neurons; however, this treatment robustly potentiated NMDA-induced Ca2+ influx. The 30 nM PbTx-2 treatment produced a maximum [Na+]i of 16.9 ± 1.5 mM representing an increment of 8.8 ± 1.8 mM over basal. The corresponding membrane potential change produced by 30 nM PbTx-2 was modest and therefore insufficient to relieve the voltage-dependent Mg2+ block of NMDARs. To unambiguously demonstrate the enhancement of NMDA receptor function by PbTx-2, we recorded single-channel currents from cell-attached patches. PbTx-2 treatment was found to increase both the mean open time and open probability of NMDA receptors. These effects of PbTx-2 on NMDA receptor function were dependent on extracellular Na+ and activation of Src kinase. The functional consequences of PbTx-2-induced enhancement of NMDAR function were evaluated in immature cerebrocortical neurons. PbTx-2 concentrations between 3 and 300 nM enhanced neurite outgrowth. Voltage-gated sodium channel activators may accordingly represent a novel pharmacologic strategy to regulate neuronal plasticity through an NMDA receptor and Src family kinase-dependent mechanism. PMID:19279266

  2. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  3. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  4. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission.

    PubMed

    Hampson, A J; Bornheim, L M; Scanziani, M; Yost, C S; Gray, A T; Hansen, B M; Leonoudakis, D J; Bickler, P E

    1998-02-01

    Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as delta9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (deltaCa2+NMDA) in rat brain slices. The presence of anandamide reduced deltaCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting deltaCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences deltaCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated deltaCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.

  5. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition.

  6. Autoimmune NMDA receptor encephalitis.

    PubMed

    Lazar-Molnar, Eszter; Tebo, Anne E

    2015-01-01

    Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is a treatable autoimmune disease of the central nervous system (CNS) with prominent neurologic and psychiatric features at disease onset. The disease is associated with the production of autoantibodies to NMDAR, a protein involved in memory function and synaptic plasticity. Affected patients develop a multistage progressive illness with symptoms ranging from memory deficits, seizures and psychosis, to potentially lethal catatonia, and autonomic and breathing instability. The outcome can be much improved with accurate diagnosis and early treatment using adequate immunosuppressive therapy. However, since the neurological and psychiatric symptoms as well as the clinical examination results can be non-specific, the disease is probably under-recognized. Reliable and accurate clinical testing for the identification of NMDAR autoantibodies is crucial for diagnosis, timely treatment selection, and monitoring. Recently, a cell-based indirect immunofluorescent antibody test for the detection of IgG antibodies to NMDAR has become available for diagnostic use. This review highlights the progress and challenges of laboratory testing in the evaluation and management anti-NMDAR encephalitis, and perspectives for the future.

  7. NMDA receptor and schizophrenia: a brief history.

    PubMed

    Coyle, Joseph T

    2012-09-01

    Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.

  8. Triheteromeric NMDA Receptors at Hippocampal Synapses

    PubMed Central

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  9. Novel NMDA Receptor Modulators: An Update

    PubMed Central

    Santangelo, Rose M.; Acker, Timothy M.; Zimmerman, Sommer S.; Katzman, Brooke M.; Strong, Katie L.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Summary Introduction The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer’s disease, Parkinson’s disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. Areas Covered The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. Expert Opinion The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties. PMID:23009122

  10. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  11. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  12. Anti-NMDA Receptor Encephalitis and Vaccination

    PubMed Central

    Wang, Hsiuying

    2017-01-01

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint. PMID:28106787

  13. Anti-NMDA Receptor Encephalitis and Vaccination.

    PubMed

    Wang, Hsiuying

    2017-01-18

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.

  14. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  15. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  16. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  17. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  18. Anti-NMDA Receptor Encephalitis in a Pregnant Woman.

    PubMed

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-06-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation.

  19. NMDA receptor modulators: an updated patent review (2013 – 2014)

    PubMed Central

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2016-01-01

    Introduction The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are able to regulate the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA inter-subunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. Areas covered This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. Expert Opinion The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics. PMID:25351527

  20. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  1. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  2. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  3. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  4. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  5. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  6. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  7. Peripheral NMDA and non-NMDA receptors contribute to nociception: an electrophysiological study.

    PubMed

    Wang, C; Wang, Y; Zhao, Z

    2000-05-01

    The present study investigated the effects of peripheral administration of N-methy-D-aspartate (NMDA) and non-NMDA receptor antagonists on C-fiber evoked responses of the spinal dorsal horn neurons in the spinalized rats. When DL-2-amino-5-phosphonovaleric acid (AP5) (10 mM, 1 mM, 0.1 mM, 20 microl) or 6, 7-dinitroquinoxaline-2, 3-dione (DNQX) (1 mM, 0.1 mM, 0.01 mM, 20 microl) was subcutaneously injected into the receptive field on the hindplantar region, C-fiber evoked responses of the dorsal horn neurons were profoundly inhibited in a dose-dependent manner. Three hours after subcutaneous injection of carrageenan into the ipsilateral hindpaw, NMDA and non-NMDA antagonist-induced inhibition of C-fiber evoked responses was more potent than that in the normal rat (Student's t-test, p < 0.05). In the carragenan-treated rats, DNQX-induced inhibition was stronger than AP-5-induced one (Student's t-test, p < 0.05). The results suggest that peripheral NMDA and non-NMDA receptors are involved in mediating excitation of nociceptors.

  8. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  9. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  10. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  11. Cortical hypometabolism demonstrated by PET in relapsing NMDA receptor encephalitis.

    PubMed

    Pillai, Sekhar C; Gill, Deepak; Webster, Richard; Howman-Giles, Robert; Dale, Russell C

    2010-09-01

    N-methyl-d-aspartate (NMDA) receptor encephalitis is a newly defined type of autoimmune encephalitis. Two girls (age 3 years, case 1, and 7 years, case 2) with relapsing NMDA receptor encephalitis each had the classic clinical features of encephalopathy, movement disorders, psychiatric symptoms, seizures, insomnia, and mild autonomic dysfunction. Both patients had persistent neuropsychiatric disability, despite immune therapies. Positron emission tomography (PET) scans were performed during clinical relapse at 6 weeks (case 1) and 5 months (case 2). In both cases, the scans demonstrated reduced fluorodeoxyglucose metabolism in the cerebral cortex, with the temporal regions being most affected. PET imaging was more sensitive than magnetic resonance imaging in these patients. In contrast, the one previous report of acute NMDA receptor encephalitis indicated cortical hypermetabolism. Thus, NMDA receptor encephalitis may be associated with variable PET findings, possibly dependent upon the timing of the study, or other factors. Future studies should investigate whether cortical hypometabolism is associated with a relapsing course, and whether it is predictive of a poorer outcome in NMDA receptor encephalitis.

  12. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  13. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond

    PubMed Central

    Balu, Darrick T; Coyle, Joseph T

    2016-01-01

    Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-d-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments. PMID:25540902

  14. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  15. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  16. Adult forebrain NMDA receptors gate social motivation and social memory.

    PubMed

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.

  17. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  18. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors.

    PubMed

    Gray, John A; Nicoll, Roger A

    2012-08-03

    In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

  19. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  20. [Two cases of anti-NMDA receptor encephalitis].

    PubMed

    Nakamura, Kazue; Takahashi, Tsutomu; Matsuoka, Tadasu; Kido, Mikio; Uehara, Takashi; Suzuki, Michio

    2011-01-01

    Anti-NMDA receptor encephalitis, reported by Dalmau et al., is a paraneoplastic encephalitis frequently associated with ovarian teratoma. After the manifestation of schizophrenia-like psychotic symptoms in the initial stage, serious neurological symptoms such as convulsions and central hypoventilation develop. We report two cases of 17-year-old girls with anti-NMDA receptor encephalitis who exhibited different clinical courses. Case 1 showed a typical course of anti-NMDA receptor encephalitis associated with sustained consciousness disturbance requiring long-term artificial respiration. Case 2 underwent surgery for an ovarian teratoma in the early stages of the disorder, did not show convulsions or central hypoventilation, and recovered without any sequelae. Early resection of the ovarian teratoma and the immune suppression therapy may have contributed to the rapid recovery and favorable outcome in case 2. Psychiatrists are the first to see a majority of patients with anti-NMDA receptor encephalitis because of psychiatric symptoms and behavioral changes observed in the initial stage. For successful treatment, psychiatrists need to cooperate with neurologists and gynecologists early in the course of this disorder. Psychiatrists' knowledge of the symptoms and clinical course of this form of encephalitis is essential for early detection and adequate treatment, which may be life-saving and contribute to good functional outcomes.

  1. [Anti-NMDA-receptor encephalitis. An interdisciplinary clinical picture].

    PubMed

    Prüss, H; Dalmau, J; Arolt, V; Wandinger, K-P

    2010-04-01

    Anti-NMDA-receptor encephalitis is a severe and considerably underdiagnosed form of encephalitis with characteristic clinical features including psychiatric symptoms, decreased levels of consciousness, hypoventilation, epileptic seizures, autonomic dysfunction and dyskinesias. Most patients are primarily seen by psychiatrists, often on the assumption of a drug-induced psychosis. Anti-NMDA-receptor encephalitis had initially been described in young women with ovarian teratoma, but is also common in women without tumour, in men and in children. The diagnosis is based on the characteristic clinical picture, supporting findings of brain MRI, electroencephalogram and cerebrospinal fluid (CSF), and the presence of highly specific autoantibodies directed against the NR1 subunit of NMDA-type glutamate receptors in the serum or CSF. In particular, anti-NMDA-receptor encephalitis must be excluded in patients with 'encephalitis of unknown cause'. In principle, the prognosis is favourable and recovery from symptoms can be expected even after prolonged intensive care treatment and mechanical ventilation. However, improvement correlates with prompt identification of the disorder, early immunotherapy and - in the case of a malignancy - with complete tumour removal. Patient care requires an interdisciplinary approach including neurologists, psychiatrists, paediatricians, oncologists and gynaecologists.

  2. Glutamatergic NMDA Receptor as Therapeutic Target for Depression.

    PubMed

    Réus, Gislaine Z; Abelaira, Helena M; Tuon, Talita; Titus, Stephanie E; Ignácio, Zuleide M; Rodrigues, Ana Lúcia S; Quevedo, João

    2016-01-01

    Major depressive disorder (MDD) affects approximately 121 million individuals globally and poses a significant burden to the healthcare system. Around 50-60% of patients with MDD respond adequately to existing treatments that are primarily based on a monoaminergic system. However, the neurobiology of MDD has not been fully elucidated; therefore, it is possible that other biochemical alterations are involved. The glutamatergic system and its associated receptors have been implicated in the pathophysiology of MDD. In fact, the N-methyl-d-aspartate (NMDA) receptor, a glutamate receptor, is a binding or modulation site for both classical antidepressants and new fast-acting antidepressants. Thus, this review aims to present evidence describing the effect of antidepressants that modulate NMDA receptors and the mechanisms that contribute to the antidepressant response.

  3. Lead inhibition of NMDA channels in native and recombinant receptors.

    PubMed

    Gavazzo, P; Gazzoli, A; Mazzolini, M; Marchetti, C

    2001-10-08

    NMDA channels are key targets for lead (Pb2+) neurotoxicity and Pb2+-induced inhibition of NMDA current is age- and subunit-dependent. In rat cerebellar granule cells maintained in high KCl, glycine affinity as well as sensitivity to ifenprodil change significantly with the days in vitro, indicating a reduction of NR2B subunit expression. Pb2+ blocked NMDA current with IC50 approximately 4 microM and this effect decreased significantly during the second week in vitro. In Xenopus laevis oocytes expressing recombinant NR1-NR2A, NR1-NR2B or NR1-NR2C receptors, Pb2+ inhibited glutamate-activated currents with IC50 of 3.3, 2.5 and 4.7 microM respectively. These data indicate that Pb2+ action is dependent on subunit composition and suggest that down-regulation of the NR2B subunit is correlated to a diminished sensitivity to Pb2+ inhibition.

  4. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.

    PubMed

    Gee, Christine E; Benquet, Pascal; Raineteau, Olivier; Rietschin, Lotty; Kirbach, Sebastian W; Gerber, Urs

    2006-05-01

    Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramidal cells and transiently depressed in the resistant CA3 pyramidal cells. The long-lasting potentiation of NMDA responses in CA1 cells was associated with delayed cell death and was prevented by blocking tyrosine kinase-dependent up-regulation of NMDA receptor function. In CA3 cells, the energy deprivation-induced transient depression of NMDA responses was converted to potentiation by blocking protein phosphatase signalling. These results suggest that energy deprivation differentially shifts the intracellular equilibrium between the tyrosine kinase and phosphatase activities that modulate NMDA responses in CA1 and CA3 pyramidal cells. Therapeutic modulation of tyrosine phosphorylation may thus prove beneficial in mitigating ischemia-induced neuronal death in vulnerable brain areas.

  5. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  6. NMDA receptor modulation of incidental learning in Pavlovian context conditioning.

    PubMed

    Stote, Deborah L; Fanselow, Michael S

    2004-02-01

    Rats exposed to a footshock show conditional fear when reexposed to the shock context. Immediate presentation of shock after placement in the context significantly reduces this fear. Preexposure to the context in the absence of shock, coupled with a minimum preshock interval during training, overcomes this immediate shock deficit. Because rats learn about the context during preexposure and express that learning after being reinforced, the context preexposure effect is an aversive analogue of latent learning. The authors examined the effect of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphovalerate (APV) on the facilitatory effect of context preexposure. Rats were preexposed to a chamber after APV administration. The next day they were placed in the same chamber without drug and received shock 35 s later. APV blocked the facilitatory effect of preexposure. Therefore NMDA receptors are important for contextual latent learning.

  7. Efficacies of treatments for anti-NMDA receptor encephalitis.

    PubMed

    Wang, Hsiuying

    2016-01-01

    Treatments for anti-N-methyl-D-aspartate (NMDA) receptor encephalitis include immunotherapy with steroids, intravenous immunoglobulin, plasma exchange, or plasmapheresis as first-line treatments, immunotherapy with rituximab or cyclophosphamide as second-line treatments, and tumor removal. In this systematic review, we evaluated previous studies and examined the association between certain microRNAs and anti-NMDA receptor encephalitis to investigate the performance of different treatment combinations. The efficacies of different combinations of treatments classified into the following four categories were compared: (I) intravenous immunoglobulin administration, (II) plasmapheresis or plasma exchange, (III) treatment with rituximab or cyclophosphamide and (IV) tumor removal. Statistical analyses showed that treatment combinations including at least two of these categories resulted in higher efficacy rates than treatment with a single form of therapy. These findings suggest that if a patient is not recovering, converting to other therapies is more likely to result in early recovery than continuing on the original therapy.

  8. Subunit-dependent effects of nickel on NMDA receptor channels.

    PubMed

    Marchetti, Carla; Gavazzo, Paola

    2003-10-07

    Nickel (Ni2+) is a transition metal that affects different neuronal ionic channels. We investigated its effects on glutamate channels of the NMDA-type in the presence of saturating concentration of glutamate or NMDA (50 microM), in 0 external Mg and in the continuous presence of saturating glycine (30 microM). In neonatal rat cerebellar granule cells, Ni2+ inhibited the current evoked by NMDA at -60 mV with an IC50 close to 40 microM. The inhibition was weakly voltage-dependent and the current at +40 mV was inhibited with IC50=86 microM. Wash out of the metal unmasked a stimulatory effect which persisted for a few seconds. In HEK293 cells transiently transfected with recombinant NR1a-NR2A receptors, Ni2+ inhibited the current elicited by glutamate with an IC50=52 microM at -60 mV and 90 microM at +40 mV. In HEK293 expressing NR1a-NR2B receptors, 0.1-100 microM Ni2+ caused a potentiation of the current, with EC50=4 microM, while with 300 microM, a voltage-dependent block became apparent (IC50=170 microM). As previously reported, the current through both classes of recombinant receptors was steeply dependent on external pH, and in both cases the protonic block had an IC50 close to pH 7.2. Application of Ni2+ showed that stimulation of NR1a-NR2B receptor channels was dependent on external pH, while voltage-independent inhibition of NR1a-NR2A was less sensitive to pH change. These results indicate that Ni2+ has multiple and complex effects on NMDA channels, which are largely dependent on the NR2 subunit.

  9. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder.

    PubMed

    Fountoulakis, Konstantinos N

    2012-01-01

    Glutamate is the most abundant excitatory neurotransmitter in the brain and the ionotropic NMDA receptor is one of the major classes of its receptors, thought to play an important role in schizophrenia and mood disorders. The current systematic review summarized the evidence concerning the involvement of NMDA receptors in the pathophysiology of bipolar disorder. Genetic studies point to the genes encoding the NMDA 1, 2A and 2B subunits while neuropathological studies suggest a possible region specific decrease in the density of NMDA receptor and more consistently a reduced NMDA-mediated glutamatergic activity in patients with bipolar disorder in the frame of slower NMDA kinetics because of lower contribution of NR2A subunits. However the literature is poor and incomplete; future research is necessary to elucidate the mechanisms underlying bipolar disorder and its specific relationship to a possible NMDA malfunction and to explore the possibility of developing novel therapeutic agents.

  10. Alcohol and NMDA receptor: current research and future direction.

    PubMed

    Chandrasekar, Raman

    2013-01-01

    The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.

  11. Alcohol and NMDA receptor: current research and future direction

    PubMed Central

    Chandrasekar, Raman

    2013-01-01

    The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism. PMID:23754976

  12. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis.

    PubMed

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers' critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position.

  13. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis

    PubMed Central

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers’ critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  14. Anti-NMDA Receptor antibody encephalitis with concomitant detection of Varicella zoster virus.

    PubMed

    Solís, Natalia; Salazar, Lucrecia; Hasbun, Rodrigo

    2016-10-01

    The typical presentation of anti-NMDA (N-Methyl-d-Aspartate) receptor encephalitis involves young women with psychiatric, neurologic and autonomic symptoms; it is often associated with mature ovarian teratomas. NMDA receptor encephalitis has been described following Herpes simplex virus (HSV) encephalitis. This case describes a classic presentation of anti-NMDA receptor encephalitis with the concomitant presence of Varicella zoster virus in the cerebrospinal fluid.

  15. NMDA receptors and fear extinction: implications for cognitive behavioral therapy.

    PubMed

    Davis, Michael

    2011-01-01

    Based primarily on studies that employ Pavlovian fear conditioning, extinction of conditioned fear has been found to be mediated by N-methyi-D-aspartate (NMDA) receptors in the amygdala and medial prefrontal cortex. This led to the discovery that an NMDA partial agonist, D-cycloserine, could facilitate fear extinction when given systemically or locally into the amygdala. Because many forms of cognitive behavioral therapy depend on fear extinction, this led to the successful use of D-cycloserine as an adjunct to psychotherapy in patients with so-called simple phobias (fear of heights), social phobia, obsessive-compulsive behavior, and panic disorder. Data in support of these conclusions are reviewed, along with some of the possible limitations of D-cycloserine as an adjunct to psychotherapy.

  16. Anti-NMDA-receptor encephalitis: a severe, multistage, treatable disorder presenting with psychosis.

    PubMed

    Wandinger, Klaus-Peter; Saschenbrecker, Sandra; Stoecker, Winfried; Dalmau, Josep

    2011-02-01

    Anti-NMDA-receptor encephalitis is a severe, treatable and potentially reversible disorder presenting with memory deficits, psychiatric symptoms and seizures. Initially described in young patients with ovarian teratoma, the disease is meanwhile increasingly recognized also in women without tumours, in men and in children. The presence of anti-glutamate receptor (type NMDA) autoantibodies in serum or cerebrospinal fluid is specific for this novel and widely underdiagnosed disorder. Early recognition is crucial since prognosis largely depends on adequate immunotherapy and, in paraneoplastic cases, complete tumour removal. Indirect immunofluorescence using NMDA-type glutamate receptors recombinantly expressed in human cells is a highly competent method for diagnosing anti-NMDA-receptor encephalitis.

  17. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  18. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function.

    PubMed

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-08-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.

  19. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  20. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  1. Anti-NMDA Receptor Encephalitis During Pregnancy

    PubMed Central

    Mathis, Stéphane; Pin, Jean-Christophe; Pierre, Fabrice; Ciron, Jonathan; Iljicsov, Anna; Lamy, Matthias; Neau, Jean-Philippe

    2015-01-01

    Abstract Anti-N-methyl-D-aspartate receptor (anti-MMDAR) encephalitis is an immune-mediated encephalitis mainly affecting young women. We describe the case of a 21-year-old woman who developed a classical form of anti-NMDAR encephalitis during the 10th week of gestation. The patient had been treated with methylpredinsolone and intravenous immunoglobulins. Birth history of the child was normal, with normal APGAR score. The clinical symptoms of the patient have improved after a few months. This rare occurrence during pregnancy (only 9 other cases described) presents an opportunity to highlight the importance of making the earliest possible diagnosis of this treatable and potentially reversible encephalitis, and to educate gynecologists, psychiatrists, anesthetists, and neurologists on this potential cause of psychiatric and neurological manifestations during pregnancy. PMID:26131809

  2. Roles of presynaptic NMDA receptors in neurotransmission and plasticity

    PubMed Central

    Banerjee, Abhishek; Larsen, Rylan S.; Philpot, Benjamin D.; Paulsen, Ole

    2015-01-01

    Presynaptic NMDA receptors (preNMDARs) play pivotal roles in excitatory neurotransmission and synaptic plasticity. They facilitate presynaptic neurotransmitter release and modulate mechanisms controlling synaptic maturation and plasticity during formative periods of brain development. There is an increasing understanding of the roles of preNMDARs in experience-dependent synaptic and circuit-specific computation. In this review, we summarize the latest understanding of compartment-specific expression and function of preNMDARs, and how they contribute to synapse-specific and circuit-level information processing. PMID:26726120

  3. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    PubMed

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH.

  4. Contribution of NMDA and non-NMDA receptors to in vivo glutamate-induced calpain activation in the rat striatum. Relation to neuronal damage.

    PubMed

    Del Río, Perla; Montiel, Teresa; Massieu, Lourdes

    2008-08-01

    Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, alpha-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.

  5. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings.

    PubMed

    Di Prisco, Silvia; Olivero, Guendalina; Merega, Elisa; Bonfiglio, Tommaso; Marchi, Mario; Pittaluga, Anna

    2016-12-01

    Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [(3)H]noradrenaline ([(3)H]NA) or [(3)H]D-aspartate ([(3)H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca(2+) from intraterminal IP3-sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [(3)H]NA and [(3)H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.

  6. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  7. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.

    PubMed

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-26

    In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  8. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  9. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  10. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  11. Lack of NMDA-AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test.

    PubMed

    Dybała, Małgorzata; Siwek, Agata; Poleszak, Ewa; Pilc, Andrzej; Nowak, Gabriel

    2008-11-01

    The NMDA receptor antagonist, CGP 37849-induced reduction in immobility time in the forced swim test in mice was not antagonized by pre-treatment with the AMPA receptor antagonist NBQX. This is the first demonstration of the antidepressant effect of the NMDA antagonist not being dependent on the AMPA transmission.

  12. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  13. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  14. Extrasynaptic glutamate NMDA receptors: key players in striatal function.

    PubMed

    Garcia-Munoz, Marianela; Lopez-Huerta, Violeta G; Carrillo-Reid, Luis; Arbuthnott, Gordon W

    2015-02-01

    N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.

  15. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  16. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  17. The NMDA receptor as a target for cognitive enhancement

    PubMed Central

    Collingridge, Graham L.; Volianskis, Arturas; Bannister, Neil; France, Grace; Hanna, Lydia; Mercier, Marion; Tidball, Patrick; Fang, Guangyu; Irvine, Mark W.; Costa, Blaise M.; Monaghan, Daniel T.; Bortolotto, Zuner A.; Molnár, Elek; Lodge, David; Jane, David E.

    2015-01-01

    NMDA receptors (NMDAR) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. PMID:22796429

  18. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs.

    PubMed

    Sanderson, Thomas M; Collingridge, Graham L; Fitzjohn, Stephen M

    2011-07-27

    The removal of AMPA receptors from synapses is a major component of long-term depression (LTD). How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2) expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses). In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP) inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  19. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  20. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    PubMed Central

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors. PMID:28378791

  1. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice.

    PubMed

    Blue, Mary E; Kaufmann, Walter E; Bressler, Joseph; Eyring, Charlotte; O'driscoll, Cliona; Naidu, Sakkubai; Johnston, Michael V

    2011-10-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of N-Methyl-D-aspartate (NMDA) receptors in the prefrontal cortex of 2-8-year-old girls, whereas girls older than 10 years had reductions in NMDA receptors compared with age-matched controls (Blue et al., Ann Neurol 1999b;45:541-545). Using [(3)H]-CGP to label NMDA-type glutamate receptors in 2- and 7-week old wild-type (WT), Mecp2-null, and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at 2 weeks of age but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice.

  2. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  3. Ethanol inhibits epileptiform activity and NMDA receptor-mediated synaptic transmission in rat amygdaloid slices

    SciTech Connect

    Gean, P.W. )

    1992-02-26

    The effect of ethanol on the epileptiform activity induced by Mg{sup ++}-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg{sup ++}-free medium. Superfusion with ethanol reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg{sup ++}-free solution or in the presence of 50 {mu}M bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation.

  4. [Clinical diagnosis and treatment of anti-NMDA (N-methyl-D-aspartate) receptor encephalitis].

    PubMed

    Kamei, Satoshi

    2013-05-01

    Recent clinical management of anti-NMDA receptor encephalitis is reviewed. This illness is required the management of the neurological emergency. Typical symptoms of anti-NMDA receptor encephalitis develop in several stages that progresses from psychosis, memory deficits, seizures, and language disintegration into a state of unresponsiveness with catatonic features often associated with abnormal movements, and autonomic and respiratory instability. The diagnosis is depended on the detection of the NMDA receptor antibody in CSF or serum under the above characteristic symptoms of encephalitis. The disorder predominantly affects children and young adults, occurs with or without tumor association. The presence of a tumor (usually an ovarian teratoma) is dependent on age and sex, being more frequent in women older than 18 years. Anti-NMDA receptor encephalitis should be treated with tumor resection and immunotherapy (corticosteroids, intravenous immunoglobulin, or plasma exchange) responded faster to treatment and less frequently needed second-line immunotherapy (cyclophosphamide or rituximab, or both).

  5. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    PubMed

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-08-27

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed.

  6. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut

    PubMed Central

    Prüss, H.; Leubner, J.; Wenke, N. K.; Czirják, G. Á.; Szentiks, C. A.; Greenwood, A. D.

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut’s encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut’s cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  7. DOPAMINE RECEPTOR ACTIVATION REVEALS A NOVEL, KYNURENATE-SENSITIVE COMPONENT OF STRIATAL NMDA NEUROTOXICITY

    PubMed Central

    Poeggeler, Burkhard; Rassoulpour, Arash; Wu, Hui-Qiu; Guidetti, Paolo; Roberts, Rosalinda C.; Schwarcz, Robert

    2007-01-01

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in 2-3-fold increases in excitotoxic lesion size. Pre-treatment with kynurenine 3-hydroxylase inhibitors or dopamine receptor antagonists, two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum. PMID:17629627

  8. EXTREME DELTA BRUSH EEG PATTERN IN A CASE WITH ANTI-NMDA RECEPTOR ENCEPHALITIS.

    PubMed

    Söylemez, Elif; Güveli, Betül Tekin; Atakli, Dilek; Yatmazoğlu, Merve; Atay, Turan; Dayan, Cengiz

    2015-09-30

    Anti-N-methyl-D-aspartate receptor NMDA-R encephalitis is caused by antibodies against the NMDA-R and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. This disorder is often accompanied with malignancies, especially ovarian teratoma. Some patients' EEGs show a different pattern similar to the waveforms of premature infants and this pattern is specifically named as extreme delta brush (EDB). We report a 24-year-old female having anti-NMDA receptor encephalitis and EDB patern.

  9. CGX-1007 prevents excitotoxic cell death via actions at multiple types of NMDA receptors.

    PubMed

    Alex, Anitha B; Saunders, Gerald W; Dalpé-Charron, Alexandre; Reilly, Christopher A; Wilcox, Karen S

    2011-08-01

    Glutamate induced excitotoxic injury through over-activation of N-methyl-D-aspartate receptors (NMDARs) plays a critical role in the development of many neurodegenerative diseases. The present study was undertaken to evaluate the role of CGX-1007 (Conantokin G) as a neuroprotective agent against NMDA-induced excitotoxicity. Conantokin G, a cone snail peptide isolated from Conus geographus is reported to selectively inhibit NR2B containing NMDARs with high specificity and is shown to have potent anticonvulsant and antinociceptive effects. CGX-1007 significantly reduced the excitotoxic cell death induced by NMDA in organotypic hippocampal brain slice cultures in a concentration-dependent manner. In contrast, ifenprodil, another NR2B specific antagonist failed to offer neuroprotection against NMDA-induced excitotoxicity. We further determined that the neuroprotection observed is likely due to the action of CGX-1007 at multiple NMDA receptor subtypes. In a series of electrophysiology experiments, CGX-1007 inhibited NMDA-gated currents in human embryonic kidney (HEK) 293 cells expressing NMDA receptors containing either NR1a/NR2B or NR1a/NR2A subunit combinations. CGX-1007 produced a weak inhibition at NR1a/NR2C receptors, whereas it had no effect on NR1a/NR2D receptors. Further, the inhibition of NMDA receptors by CGX-1007 was voltage-dependent with greater inhibition seen at hyperpolarized membrane potentials. The voltage-dependence of CGX-1007 activity was also observed in recordings of NMDA-gated currents evoked in native receptors expressed in cortical neurons in culture. Based on our results, we conclude that CGX-1007 is a potent neuroprotective agent that acts as an antagonist at both NR2A and NR2B containing receptors.

  10. Neuroprotection Profile of the High Affinity NMDA Receptor Antagonist Conantokin-G

    DTIC Science & Technology

    2002-01-01

    ABSTRACT Conantokin-G (Con-G or CGX-1007), a potent NR2B subunit selective NMDA receptor antagonist, was evaluated for its neuroprotective properties...protection against staurosporine-induced apoptotic injury (Pɘ.01, n = 12/group), which was linked to the NR2B subunit. For in vivo brain injury...CGX-1007), a potent NR2B subunit selective NMDA receptor antagonist, was evaluated for its neuroprotective properties in experimental models of

  11. Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling.

    PubMed

    Wang, Wen-Yuan; Jia, Li-Jie; Luo, Yan; Zhang, Hong-Hai; Cai, Fang; Mao, Hui; Xu, Wei-Cai; Fang, Jun-Biao; Peng, Zhi-You; Ma, Zheng-Wen; Chen, Yan-Hong; Zhang, Juan; Wei, Zhen; Yu, Bu-Wei; Hu, Shuang-Fei

    2016-01-01

    It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors

  12. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  13. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning.

  14. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  15. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia.

    PubMed

    Gunduz-Bruce, Handan; Kenney, Joshua; Changlani, Suravi; Peixoto, Aldo; Gueorguieva, Ralitza; Leone, Cheryl; Stachenfeld, Nina

    2017-03-13

    Altered N-methyl-D-aspartate (NMDA) receptor activity and glutamate signaling may underlie the pathogenesis of both schizophrenia and depression in subgroups of patients. In schizophrenia, pharmacologic modeling, postmortem and imaging data suggest reduced NMDA signaling. In contrast, recent clinical trials demonstrating the efficacy of the NMDA antagonist ketamine in severely depressed patients suggest increased NMDA receptor signaling. We conducted a proof of concept study to assess whether there is any in vivo evidence for an inverse association in depression and schizophrenia with respect to the NMDA receptor function. For this purpose we used a translational approach, based on findings from animal studies that NMDA receptor is a key mediator of arginine-vasopressin (AVP) release into the bloodstream. Using hypertonic saline to induce AVP release, as done in animal studies, we found that in depressed patients, NMDA receptor mediated AVP release induced by hypertonic saline infusion was significantly increased 0.24 (0.15) pg/ml P[AVP] /mOsmol POsm , P< 0.05 compared to schizophrenia patients 0.07 (0.07) pg/ml P[AVP] /mOsmol POsm , in whom same response was abnormally low. Slopes for healthy control were 0.11 (0.09) pg/ml P[AVP] /mOsmol POsm , and not different than either group. These findings are consistent with implicated NMDA receptor related abnormalities in depression and schizophrenia in subgroups of patients, and provide the first in vivo evidence towards this dichotomy. This article is protected by copyright. All rights reserved.

  16. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects.

    PubMed

    Guilarte, Tomás R; Chen, Ming-Kai

    2007-11-01

    Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2

  17. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  18. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  19. Cardiac sympathetic dysfunction in anti-NMDA receptor encephalitis.

    PubMed

    Byun, Jung-Ick; Lee, Soon-Tae; Moon, Jangsup; Jung, Keun-Hwa; Shin, Jung-Won; Sunwoo, Jun-Sang; Lim, Jung-Ah; Shin, Yong-Won; Kim, Tae-Joon; Lee, Keon-Joo; Park, Kyung-Il; Jung, Ki-Young; Lee, Sang Kun; Chu, Kon

    2015-12-01

    Patients with anti-NMDA receptor (anti-NMDAR) encephalitis frequently suffer from autonomic dysfunctions, which can cause substantial morbidity. This study assessed cardiac autonomic functions in patients with anti-NMDAR encephalitis using heart rate variability (HRV) analysis. This was a retrospective single-center case-control study. Eleven patients with anti-NMDAR encephalitis and 15 age- and sex-matched controls were included in this study. To ensure that autonomic dysfunction does not occur in any encephalitis, we additionally analyzed HRV of 9 patients with herpes encephalitis (HSE) and compared with that of NMDAR encephalitis patients and controls. Five minute resting stationary electrocardiogram was collected from each subject, and HRV was analyzed. Total power and low frequency (LF) power were lower in anti-NMDAR encephalitis patients than those in controls (p=0.005, 0.001 respectively), indicating cardiac autonomic dysfunction especially in sympathetic system. Patients with HSE showed no significant difference in HRV parameters compared with that of controls. Cardiac autonomic dysfunction was associated with 3 month functional outcome in anti-NMDAR encephalitis patients.

  20. Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia

    PubMed Central

    Jones, Kevin S.; Corbin, Joshua G.; Huntsman, Molly M.

    2014-01-01

    The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model. PMID:25290690

  1. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  2. Reconsolidation of Reminder-Induced Amnesia: Role of NMDA and AMPA Glutamate Receptors.

    PubMed

    Nikitin, V P; Kozyrev, S A; Solntseva, S V

    2015-11-01

    We studied the role of glutamate receptors and reminder in the mechanisms of amnesia maintenance caused by disruption of conditioned food aversion reconsolidation with an antagonist of NMDA glutamate receptor in snails. At the early stage of amnesia (day 3 after induction), injection or NMDA of AMPA glutamate receptor antagonists prior to reminder (presentation of the conditioned food stimulus) led to memory recovery. Reminder alone or injection of antagonists without reminder or after reminder was ineffective. At the late stage of amnesia (day 10), antagonists/reminder had no effect on amnesia maintenance. It was hypothesized that reminder at the early stage of amnesia led to reactivation and reconsolidation of the molecular processes of amnesia including activation NMDA and AMPA glutamate receptors. Injection of antagonists of these receptors prior to reminder led to disruption of reactivation/reconsolidation of amnesia and recovery of the conditioned food aversion memory.

  3. Synthesis of C5-tetrazole derivatives of 2-amino-adipic acid displaying NMDA glutamate receptor antagonism.

    PubMed

    Lenda, Fatimazohra; Crouzin, Nadine; Cavalier, Mélanie; Guiramand, Janique; Lanté, Fabien; Barbanel, Gérard; Cohen-Solal, Catherine; Martinez, Jean; Guenoun, Farhate; Lamaty, Frédéric; Vignes, Michel

    2011-03-01

    Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-D: -aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.

  4. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists.

    PubMed

    Jackisch, R; Kruchen, A; Sauermann, W; Hertting, G; Feuerstein, T J

    1994-10-24

    N-Methyl-D-aspartate- (NMDA-) evoked [3H]acetylcholine release in rabbit caudate nucleus slices was inhibited by the antiparkinsonian drugs budipine (1-tert-butyl-4,4-diphenylpiperidine) and biperiden (1-bicyclo[2.2.1.]hept-5-en-2-yl-1-phenyl-3-piperidino propanol) yielding functional Ki values of 4.6 and 8.8 microM. In contrast to the competitive antagonist 2-amino-5-phosphonopentaonate, budipine and biperidene significantly reduced both the apparent KD and the Emax value of NMDA. Moreover, they displaced [3H]MK-801 specifically bound to membranes of the same tissue, although with low affinity (IC50: 38 and 92 microM). It is concluded that budipine and biperiden are use-dependent (uncompetitive) antagonists at the NMDA receptor, binding to the receptor-linked ion channel, but probably not to the MK-801 binding site. NMDA antagonism may contribute to the antiparkinsonian effects of budipine.

  5. Differential modulation of GABAA and NMDA receptors by α7-nicotinic receptor desensitization in cultured rat hippocampal neurons

    PubMed Central

    Shen, Lei; Cui, Wen-yu; Chen, Ru-zhu; Wang, Hai

    2016-01-01

    Aim: To explore the modulatory effect of desensitized α7-containing nicotinic receptors (α7-nAChRs) on excitatory and inhibitory amino acid receptors in cultured hippocampal neurons and to identify the mechanism underlying this effect. Methods: Whole-cell patch-clamp recordings were performed on cultured rat hippocampal neurons to measure α7-nAChR currents and to determine the role of desensitized α7-nAChRs on brain amino acid receptor activity. Results: Pulse and perfusion applications of the α7-nAChR agonist choline were applied to induce different types of α7-nAChR desensitization in cultured hippocampal neurons. After a brief choline pulse, α7-nAChR was desensitized as a result of receptor activation, which reduced the response of the A type γ-aminobutyric acid (GABAA) receptor to its agonist, muscimol, and enhanced the response of the NMDA receptor to its agonist NMDA. By contrast, the responses of glycine or AMPA receptors to their agonists, glycine or AMPA, respectively, were not affected. Pretreatment with the α7-nAChR antagonist methyllycaconitine (MLA, 10 nmol/L) blocked the choline-induced negative modulation of the GABAA receptor and the positive modulation of the NMDA receptor. The regulation of the GABAA and NMDA receptors was confirmed using another type of α7-nAChR desensitization, which was produced by a low concentration of choline perfusion. The negative modulation of the GABAA receptor was characterized by choline-duration dependency and intracellular calcium dependency, but the positive modulation of the NMDA receptor was not associated with cytoplasmic calcium. Conclusion: Brain GABAA and NMDA receptors are modulated negatively and positively, respectively, by desensitized α7-nAChR as a result of choline pretreatment in cultured hippocampal neurons. PMID:26806304

  6. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking.

    PubMed

    Lopez, Joëlle; Gamache, Karine; Schneider, Rilla; Nader, Karim

    2015-02-11

    Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.

  7. Control of Proton Sensitivity of the NMDA Receptor by RNA Splicing and Polyamines

    NASA Astrophysics Data System (ADS)

    Traynelis, Stephen F.; Hartley, Melissa; Heinemann, Stephen F.

    1995-05-01

    The function of the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor can be regulated by extracellular pH, a process that may be important during ischemia in the brain or during seizures. Protons inhibit NMDA receptor function by 50 percent at pH 7.3 through interactions with the NR1 subunit, and both polyamines and NR1 exon 5 potentiate receptor function through relief of the tonic proton inhibition present at physiological pH. A single amino acid (lysine 211) was identified that mediates the effects of exon 5 in the rat brain. Electroneutral substitutions at this position restored pH sensitivity and, consequently, polyamine relief of tonic inhibition. This effect, together with the structural similarities between polyamines and the surface loop encoded by exon 5, suggest that exon 5 may act as a tethered pH-sensitive constitutive modulator of NMDA receptor function.

  8. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  9. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    PubMed

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  10. Underlying mechanism for NMDA receptor antagonism by the anti-inflammatory drug, sulfasalazine, in mouse cortical neurons.

    PubMed

    Noh, Ji-Hyun; Gwag, Byoung-Joo; Chung, Jun-Mo

    2006-01-01

    Sulfasalazine (SULFA), of anti-inflammatory drugs, shows a protective action against NMDA-induced neuronal toxicity. Here, we used an electrophysiological study of the pharmacological effects of SULFA on NMDA receptors to examine the molecular mechanisms underlying the neuroprotective role of SULFA. The drug acted as a typical noncompetitive inhibitor with neither agonist- nor use-dependency, and antagonized NMDA-evoked responses in a voltage-independent manner, suggesting that SULFA is not an open channel blocker. Noise and single channel analyses showed that SULFA-blocked NMDA responses by reducing the number of NMDA channels available for activation, and also reduced the channel open probability without changing single channel conductance. Moreover, SULFA accelerated NMDA desensitization without affecting the affinity of the receptor for NMDA or glutamate. Taken together, these data indicate that SULFA blocks the NMDA response by reducing the number of NMDA channels available for activation. This appears to occur via a SULFA-induced decrease in the channel open probability, and a concomitant acceleration of the desensitization response, which is likely associated with a reduced affinity for glycine. SULFA indeed decreased the glycine-potentiated NMDA response without binding directly to the glycine site. Our results suggest that SULFA acts as a noncompetitive NMDA receptor antagonist with an allosteric glycine modulation.

  11. Role of ventral hippocampal NMDA receptors in anxiolytic-like effect of morphine.

    PubMed

    Motevasseli, Tahmineh; Rezayof, Ameneh; Zarrindast, Mohammad-Reza; Nayer-Nouri, Touraj

    2010-12-02

    The possible role of ventral hippocampal N-methyl-d-aspartate (NMDA) receptors on morphine-induced anxiolytic-like behavior in an elevated plus maze (EPM) task was investigated in the present study. Adult male mice (7 per group) with cannulas aimed at the ventral hippocampus (VH) received NMDA or a competitive NMDA receptor antagonist D-AP5 with or without morphine and 30min later were subjected to an EPM task. Intraperitoneal injection (i.p.) of morphine (3-9mg/kg) increased the percentage of open arm time (%OAT) and open arm entries (%OAE), which suggested an anxiolytic-like effect. Intra-VH microinjection of NMDA (0.5-1μg/mouse) with an ineffective dose of morphine (3mg/kg, i.p.) significantly increased %OAT and %OAE. However, microinjections of the same doses of NMDA into the VH in the absence of morphine had no effect on %OAT and %OAE. Intra-VH microinjection of D-AP5 (0.5-2μg/mouse) decreased the anxiolytic-like effect of morphine, while intra-VH microinjection of the same doses of D-AP5 alone increased %OAT and %OAE, which indicated an anxiolytic response. Furthermore, intra-VH microinjection of D-AP5 reversed the effect of NMDA response to the administration of a lower morphine dose as seen in the EPM task. It should be noted that intra-VH microinjection of D-AP5 plus NMDA, 5min before morphine increased locomotor activity, while other treatments had no effect on this parameter. The results suggest that VH-NMDA receptors participate in the mediation of morphine-induced anxiolytic-like behavior.

  12. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  13. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors

    PubMed Central

    Farina, Anthony N.; Blain, Katherine Y.; Maruo, Tomohiko; Kwiatkowski, Witek; Choe, Senyon; Nakagawa, Terunaga

    2011-01-01

    The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits co-assemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and X-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors. PMID:21389213

  14. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis.

    PubMed

    Sühs, Kurt-Wolfram; Wegner, Florian; Skripuletz, Thomas; Trebst, Corinna; Tayeb, Said Ben; Raab, Peter; Stangel, Martin

    2015-10-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis.

  15. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo

    PubMed Central

    Ultanir, Sila K.; Kim, Ji-Eun; Hall, Benjamin J.; Deerinck, Thomas; Ellisman, Mark; Ghosh, Anirvan

    2007-01-01

    Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex. PMID:18048342

  16. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo.

    PubMed

    Ultanir, Sila K; Kim, Ji-Eun; Hall, Benjamin J; Deerinck, Thomas; Ellisman, Mark; Ghosh, Anirvan

    2007-12-04

    Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex.

  17. Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report.

    PubMed

    Mechelhoff, David; van Noort, Betteke Maria; Weschke, Bernhard; Bachmann, Christian J; Wagner, Christiane; Pfeiffer, Ernst; Winter, Sibylle

    2015-11-01

    Since 2007, more than 600 patients have been diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, with almost 40 % of those affected being children or adolescents. In early phases of the illness, this life-threatening disease is characterized by psychiatric symptoms, such as depression, anxiety, obsessions, hallucinations or delusions. Consequently, a high percentage of patients receive psychiatric diagnoses at first, hindering the crucial early diagnosis and treatment of the anti-NMDA receptor encephalitis. We report on a 15-year-old girl initially presenting with pathological eating behaviour and significant weight loss resulting in an (atypical) anorexia nervosa (AN) diagnosis. Her early course of illness, diagnostic process, treatment and short-term outcome are described. This case report aims to raise awareness about the association between anorectic behaviour and anti-NMDA receptor encephalitis and highlight the importance of multidisciplinary teams in child and adolescent services.

  18. A Case of Anti-NMDA Receptor Encephalitis Treated with ECT.

    PubMed

    Jones, Kristin C; Schwartz, Ann C; Hermida, Adriana P; Kahn, David A

    2015-09-01

    We describe the case of a 17-year-old male who presented with acute onset of seizures and malignant catatonia with psychosis, agitation, and hypermetabolism, who responded to electroconvulsive therapy (ECT). Soon after he began to respond, he was diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis and then given immunosuppressive therapy. Anti-NMDA receptor encephalitis is an increasingly recognized autoimmune disorder that often presents with neuropsychiatric symptoms. The mainstays for treatment have been early diagnosis, tumor work-up and removal if found, and initiation of immunosuppressive therapy. Treatment response is often slow and residual symptoms common. In this case, ECT produced clinical stabilization before the underlying diagnosis of anti-NMDA receptor encephalitis was made and standard treatment initiated. We suggest that ECT may be highly beneficial for stabilizing life-threatening neuropsychiatric symptoms in this syndrome and should be considered as a potentially additive treatment to immunotherapy when rapid relief is sought.

  19. The Rehabilitation of Children with Anti-NMDA-Receptor Encephalitis: A Case Series

    PubMed Central

    Houtrow, Amy J.; Bhandal, Manjit; Pratini, Napala R.; Davidson, Loren; Neufeld, Jacob A.

    2012-01-01

    Anti-N-methyl-D-aspartate (NMDA)-receptor encephalitis is a serious, complex, and potentially fatal disease in children. Children with this condition frequently present with altered mental status, rapid functional deterioration, and seizures. Despite aggressive treatment with immune therapy such as corticosteroids, intravenous immunoglobin (IVIG), and plasmapheresis, children often need extensive rehabilitative services and can be left with lasting deficits. In this case series we report on six known consecutive pediatric cases of NMDA-receptor antibody encephalitis in Northern California requiring comprehensive inpatient rehabilitation. The children presented with a variety of symptoms and had waxing and waning clinical courses. All children progressed well through their rehabilitation programs, but were discharged home with persistent functional deficits. At follow-up, all but one child had lasting deficits. Because of the complicated management and extensive rehabilitation needs of children with anti-NMDA-receptor encephalitis, physiatrists and other rehabilitation providers should be knowledgeable about this complex condition. PMID:22415341

  20. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  1. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    PubMed Central

    Mantuano, Elisabetta; Lam, Michael S.; Shibayama, Masataka; Campana, W. Marie; Gonias, Steven L.

    2015-01-01

    ABSTRACT NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  2. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  3. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  4. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex.

    PubMed

    De-May, C L; Ali, A B

    2013-01-03

    To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings - combined with biocytin labelling - were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II-V of rat (postnatal days 17-22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (d-AP5) (50μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow.

  5. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies

    PubMed Central

    Dalmau, Josep; Gleichman, Amy J; Hughes, Ethan G; Rossi, Jeffrey E; Peng, Xiaoyu; Lai, Meizan; Dessain, Scott K; Rosenfeld, Myrna R; Balice-Gordon, Rita; Lynch, David R

    2008-01-01

    Summary Background A severe form of encephalitis associated with antibodies against NR1–NR2 heteromers of the NMDA receptor was recently identified. We aimed to analyse the clinical and immunological features of patients with the disorder and examine the effects of antibodies against NMDA receptors in neuronal cultures. Methods We describe the clinical characteristics of 100 patients with encephalitis and NR1–NR2 antibodies. HEK293 cells ectopically expressing single or assembled NR1–NR2 subunits were used to determine the epitope targeted by the antibodies. Antibody titres were measured with ELISA. The effect of antibodies on neuronal cultures was determined by quantitative analysis of NMDA-receptor clusters. Findings Median age of patients was 23 years (range 5–76 years); 91 were women. All patients presented with psychiatric symptoms or memory problems; 76 had seizures, 88 unresponsiveness (decreased conciousness), 86 dyskinesias, 69 autonomic instability, and 66 hypoventilation. 58 (59%) of 98 patients for whom results of oncological assessments were available had tumours, most commonly ovarian teratoma. Patients who received early tumour treatment (usually with immunotherapy) had better outcome (p=0.004) and fewer neurological relapses (p=0.009) than the rest of the patients. 75 patients recovered or had mild deficits and 25 had severe deficits or died. Improvement was associated with a decrease of serum antibody titres. The main epitope targeted by the antibodies is in the extracellular N-terminal domain of the NR1 subunit. Patients’ antibodies decreased the numbers of cell-surface NMDA receptors and NMDA-receptor clusters in postsynaptic dendrites, an effect that could be reversed by antibody removal. Interpretation A well-defined set of clinical characteristics are associated with anti-NMDA-receptor encephalitis. The pathogenesis of the disorder seems to be mediated by antibodies. PMID:18851928

  6. Unilateral predominance of abnormal movements: A characteristic feature of the pediatric anti-NMDA receptor encephalitis?

    PubMed

    Benjumea-Cuartas, Vanessa; Eisermann, Monika; Simonnet, Hina; Hully, Marie; Nabbout, Rima; Desguerre, Isabelle; Kaminska, Anna

    2017-01-01

    Anti-NMDA receptor encephalitis is a treatable autoimmune disease characterized by cognitive, motor and psychiatric features that primarily affects young adults and children. We present a case of a 7-year-old boy with asymmetrical (mainly right hemibody) and abnormal polymorphic movements without concomitant scalpictal EEG changes but had background slowing predominating over the left hemisphere. This report illustrates previous descriptions of asymmetric presentation of abnormal movements in pediatric anti-NMDA receptor encephalitis and emphasizes the importance of video-EEG interpreted within the overall clinical context, to differentiate epileptic from non-epileptic abnormal movements in patients with autoimmune encephalitis.

  7. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis in a young Lebanese girl.

    PubMed

    Safadieh, Layal; Dabbagh, Omar

    2013-10-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a recently recognized autoimmune neurologic disorder that presents with severe neuropsychiatric symptoms in previously healthy children. A 4-year-old Lebanese girl presented with new-onset behavioral changes, orofacial dyskinesias, fluctuation in consciousness, inability to walk, and mutism. Antibodies directed against NMDA receptors were detected in the patient's serum and cerebrospinal fluid. Prompt treatment with a single course of intravenous immunoglobulin resulted in early complete recovery. This is the first case report of a Middle Eastern child affected with this condition.

  8. Anti-NMDA receptor encephalitis: a neurological disease in psychiatric disguise.

    PubMed

    Sharma, Bhawna; Handa, Rahul; Prakash, Swayam; Nagpal, Kadam; Gupta, Pankaj

    2014-02-01

    Anti-NMDA receptor encephalitis was first described in 2005 when psychiatric features, memory loss and altered consciousness were found in four women with ovarian teratoma. We report a case of anti-NMDA receptor encephalitis in a 16-year-old female who presented with psychiatric features followed by autonomic dysfunction and orofacial dyskinesias that showed drastic improvement to intravenous immunoglobulin. As many patients of anti-NMDAR encephalitis initially present with psychiatric features, it is important for psychiatrists to have high index of suspicion for this disease and thus avoid the delay in diagnosing this treatable condition which may be otherwise fatal.

  9. Anti-NMDA receptor encephalitis: psychiatric presentation and diagnostic challenges from psychosomatic medicine perspective.

    PubMed

    Gulyayeva, Nataliya A; Massie, Mary Jane; Duhamel, Katherine N

    2014-04-01

    We describe two cases of confirmed anti-NMDA receptor encephalitis; one patient initially presented with a clinical picture that resembled delirium and later appeared to present with a conversion reaction and the second patient presented with a first psychotic break followed by the clinical picture of neuroleptic malignant syndrome with catatonia. Neither patient had a previous history of psychiatric illness or recreational drug use. These cases illustrate the diagnostic and treatment challenges associated with this neuropsychiatric condition and underscore the role of psychosomatic medicine psychiatrists in diagnosing anti-NMDA receptor encephalitis.

  10. [Anti-NMDA receptor encephalitis: two paediatric cases].

    PubMed

    González-Toro, M Cristina; Jadraque-Rodríguez, Rocío; Sempere-Pérez, Ángela; Martínez-Pastor, Pedro; Jover-Cerdá, Jenaro; Gómez-Gosálvez, Francisco

    2013-12-01

    Introduccion. La encefalitis asociada a anticuerpos antirreceptores de N-metil-D-aspartato (NMDA) es una patologia neurologica autoinmune documentada en la poblacion pediatrica de manera creciente en los ultimos años. Se presentan dos casos de nuestra experiencia con clinica similar. Casos clinicos. Caso 1: niña de 5 años que inicia un cuadro de convulsiones y alteracion de conciencia, asociando trastornos del movimiento y regresion de habilidades previamente adquiridas que evoluciona a autismo. Caso 2: niña de 13 años que presenta hemiparesia izquierda, movimientos anomalos, trastorno de conducta y disautonomia. En ambos casos se obtienen anticuerpos antirreceptores de NMDA positivos en el liquido cefalorraquideo y se diagnostican de encefalitis antirreceptor de NMDA. En el primer caso se inicia el tratamiento con perfusion intravenosa de corticoides e inmunoglobulinas y es necesario asociar rituximab. En el segundo, corticoides e inmunoglobulinas. La evolucion fue favorable en ambas pacientes, con una leve alteracion del lenguaje como secuela en el primer caso y una recaida en el segundo caso, con resolucion completa. Conclusion. La encefalitis antirreceptor de NMDA es un trastorno tratable y es importante el diagnostico y tratamiento precoz, ya que mejora el pronostico y disminuye las recaidas.

  11. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning.

    PubMed

    Parkes, Shauna L; De la Cruz, Vanesa; Bermúdez-Rattoni, Federico; Coutureau, Etienne; Ferreira, Guillaume

    2014-12-01

    Our current understanding of the neurobiology of taste learning and memory has been greatly facilitated by the use of a reliable behavioural model, conditioned taste aversion (CTA). This model has revealed that the insular cortex (IC), specifically muscarinic and N-methyl-d-aspartate (NMDA) receptor activation in the IC, is critical for the formation of aversive taste memories. In contrast, current models of appetitive taste learning are less adequate, relying on the use of neophobic tastes (attenuation of neophobia) or on the integration of appetitive and aversive taste memories (latent inhibition of CTA). While these models have implicated IC muscarinic receptors, the involvement of NMDA receptors in the IC remains unclear. Here, we examined the role of both muscarinic and NMDA receptors in appetitive taste learning using a simple paradigm that is independent of neophobic and aversive components. First, we demonstrated that a single exposure to a novel taste, saccharin 0.1%, is sufficient to promote an appetitive taste memory as revealed by an increase in saccharin consumption during the second presentation. This increase was blocked by bilateral infusion in the IC of the muscarinic receptor antagonist, scopolamine. In contrast, infusion of the NMDA receptor antagonist, AP5, did not block appetitive taste learning but did abolish CTA. Therefore, common and distinct molecular substrates within the IC mediate appetitive versus aversive learning about the same taste.

  12. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors

    PubMed Central

    Lambot, Laurie; Chaves Rodriguez, Elena; Houtteman, Delphine; Li, Yuquing; Schiffmann, Serge N.; Gall, David

    2016-01-01

    The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic

  13. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  14. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  15. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  16. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  17. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  18. The NMDA receptor complex: a long and winding road to therapeutics.

    PubMed

    Wood, Paul L

    2005-03-01

    Advances in our basic understanding of inhibitory and excitatory amino acid neurotransmission have provided the foundation for directed drug discovery programs to modulate inhibitory GABAergic and excitatory N-methyl-D-aspartate (NMDA) receptor-mediated synapses. Gamma-Amino butyric acid (GABA(A)) and NMDA receptors are complex ion channels formed by multiple protein subunits that act as binding sites for transmitter amino acids and as allosteric regulatory binding sites to regulate ion channel activity. In the case of the NMDA receptor complex, one such allosteric site binds the obligatory glycine and/or d-serine co-agonist. Historical data from preclinical and clinical studies of GABAergic agents have clearly demonstrated that direct receptor modulators lack sufficient therapeutic indices to warrant clinical utility. However, pharmacological modulation of allosteric sites of the GABA multimeric receptor has resulted in the clinical development of safe and efficacious agents, exemplified by the benzodiazepines. Research has also revealed a similar outcome for the NMDA receptor, with allosteric modulators demonstrating improved safety profiles in the modulation of excitatory amino acid (EAA) transmission compared with direct NMDA receptor antagonists. First-generation EAA drugs were low affinity channel blockers of the NMDA multimeric receptor complex and included the anesthetic agent ketamine and the Alzheimer's drug memantine. As predicted by preclinical studies, direct NMDA receptor antagonists (eg, selfotel (Novartis AG) and high-affinity channel blockers (eg, dizocilpine) failed in the clinic as a result of narrow therapeutic indices. More recent efforts have focused on glycine/d-serine co-agonist function. These approaches include partial glycine agonists, in their agonist dose-range, for cognitive improvement and for treating schizophrenia. Such partial glycine agonists are also being advanced for the treatment of neuropathic pain in the antagonist dose

  19. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors.

    PubMed

    Pawlak, Robert; Melchor, Jerry P; Matys, Tomasz; Skrzypiec, Anna E; Strickland, Sidney

    2005-01-11

    Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.

  20. NMDA receptor coagonist glycine site: evidence for a role in lateral hypothalamic stimulation of feeding.

    PubMed

    Stanley, B G; Butterfield, B S; Grewal, R S

    1997-08-01

    To investigate the role of the glycine coagonist binding site on the N-methyl-D-aspartate (NMDA) receptor in feeding control, we injected the glycine site antagonist 7-chlorokynurenic acid (7-CK) into the lateral hypothalamus (LH) of satiated rats before LH injection of NMDA, 7-CK (10-44 nmol) blocked the 6- to 10-g eating response elicited by NMDA. This block was reversed by LH pretreatment with glycine, arguing for a specific action at the glycine site. In contrast to the suppression produced by high doses, 7-CK at 0.1 nmol enhanced NMDA-elicited eating. For examination of behavioral specificity, 7-CK was injected into the LH before kainic acid (KA) or DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). 7-CK at a dose of 0.1 nmol suppressed feeding elicited by KA or AMPA, but at 10 nmol it suppressed eating elicited by AMPA while enhancing eating elicited by KA. Finally, bilateral LH injection of 7-CK effectively suppressed eating produced by fasting. These findings support a role for the NMDA receptor coagonist glycine site in LH regulation of eating behavior.

  1. Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors

    SciTech Connect

    Dhawan, J.; Biegon, A.; Dhawan, J.; Benveniste, H.; Nawrocky, M.; Smith, S.D.; Biegon, A.

    2010-03-04

    Stroke is accompanied by neuroinflammation in humans and animal models. To examine the temporal and anatomical profile of neuroinflammation and NMDA receptors (NMDAR) in a stroke model, rats (N = 17) were subjected to a 90 min occlusion of the middle cerebral artery (MCAO) and compared to sham (N = 5) and intact (N = 4) controls. Striatal and parietal cortical infarction was confirmed by MRI 24 h after reperfusion. Animals were killed 14 or 30-40 days later and consecutive coronal cryostat sections were processed for quantitative autoradiography with the neuroinflammation marker [{sup 3}H]PK11195 and the NMDAR antagonist [{sup 3}H]MK801. Significantly increased specific binding of [{sup 3}H]PK11195 relative to non-ischemic controls was observed in the ipsilateral striatum (> 3 fold, p < 0.0001), substantia innominata (> 2 fold) with smaller (20%-80%) but statistically significant (p = 0.002-0.04) ipsilateral increases in other regions partially involved in the infarct such as the parietal and piriform cortex, and in the lateral septum, which was not involved in the infarct. Trends for increases in PBR density were also observed in the contralateral hemisphere. In the same animals, NMDAR specific binding was significantly decreased bilaterally in the septum, substantia innominata and ventral pallidum. Significant decreases were also seen in the ipsilateral striatum, accumbens, frontal and parietal cortex. The different anatomical distribution of the two phenomena suggests that neuroinflammation does not cause the observed reduction in NMDAR, though loss of NMDAR may be locally augmented in ipsilateral regions with intense neuroinflammation. Persistent, bilateral loss of NMDAR, probably reflecting receptor down regulation and internalization, may be responsible for some of the effects of stroke on cognitive function which cannot be explained by infarction alone.

  2. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  3. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  4. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish.

    PubMed

    Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2015-04-01

    Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.

  5. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  6. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  7. Surface Expression of NMDA Receptor Changes during Memory Consolidation in the Crab "Neohelice granulata"

    ERIC Educational Resources Information Center

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab "Neohelice granulata". Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of…

  8. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  9. Reconsolidation after Remembering an Odor-Reward Association Requires NMDA Receptors

    ERIC Educational Resources Information Center

    Torras-Garcia, Meritxell; Tronel, Sophie; Sara, Susan J.; Lelong, Julien

    2005-01-01

    A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous…

  10. Anti-NMDA receptor encephalitis: an easily missed diagnosis in older patients.

    PubMed

    Rainey, Katie; Gholkar, Bethan; Cheesman, Mark

    2014-09-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an important, treatable cause of encephalitis which remains under-recognised despite a growing body of the literature [1]. It is an immune-mediated syndrome which presents with a variety of neurological symptoms including headache, fever, personality change and seizures. Most case reports to date are of young adults, it is much less frequently reported in older adults. The syndrome has been associated with ovarian teratomas. The prognosis is good with early recognition and treatment, though may relapse. We present a case of NMDA encephalitis in an elderly patient who responded well to immunosuppressive therapy.

  11. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    PubMed Central

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  12. [NMDA receptor encephalitis in the course of recurrent CNS demyelinating disorders: a case report].

    PubMed

    Yamamoto, Masanari; Kokubun, Norito; Watanabe, Yuka; Okabe, Ryuta; Nakamura, Toshiki; Hirata, Koichi

    2013-01-01

    We present the case of a 31-year-old woman who developed N-methyl-d-aspartate (NMDA) receptor encephalitis during the course of relapsing and remitting multiple brain lesions. The patient developed a tingling sensation in the left upper and lower extremities, and was first admitted to our hospital at age 27. She was tentatively diagnosed with multiple sclerosis on the basis of multiple lesions with Gd-enhancement in the brainstem, and 2 separate clinical relapses by age 28. At age 31, she developed a headache and pyrexia, followed by confusion and abnormal behavior. Her symptoms acutely progressed to stupor, and subsequently, she developed oral dyskinesia and athetosis-like involuntary movement of the left arm. The stupor state continued over 2 months. However, she had completely recovered by 3 months after the onset of psychiatric symptoms. Her serum and CSF samples tested positive for anti-NMDA receptor antibodies, and she was diagnosed with NMDA receptor encephalitis. Her serum was negative for anti-AQP4 antibody, but showed weak positivity for antinuclear antibody. Between ages 32 and 34, she experienced 2 clinical relapses, including right-hand clumsiness, confusion, aphasia, and dysphagia. FLAIR images showed a high-intensity area in the brain stem, thalamus, and subcortical white matter. No tumors were found throughout the course. A clinical entity of NMDA receptor encephalitis can include various neurologic disorders, such as the development of recurrent demyelinating brain lesions. Further investigation is required to clarify the pathophysiological role of anti-NMDA receptor antibody in our patient.

  13. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine

    PubMed Central

    Kloda, Anna; Adams, David J

    2005-01-01

    The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per ∼20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT=5-methyltryptamine>tryptamine>7-methyltryptamine>5-HT≫tryptophan=melatonin. Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration. PMID:15655527

  14. GHB-Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor.

    PubMed

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A K

    2011-03-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex.

  15. GHB–Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor

    PubMed Central

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A.K

    2011-01-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex. PMID:21886597

  16. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor.

    PubMed

    Kyuhou, Shin-ichi; Gemba, Hisae

    2007-04-27

    We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.

  17. NMDA receptors are the basis for persistent network activity in neocortex slices.

    PubMed

    Castro-Alamancos, Manuel A; Favero, Morgana

    2015-06-01

    During behavioral quiescence the neocortex generates spontaneous slow oscillations that consist of Up and Down states. Up states are short epochs of persistent activity, but their underlying source is unclear. In neocortex slices of adult mice, we monitored several cellular and network variables during the transition between a traditional buffer, which does not cause Up states, and a lower-divalent cation buffer, which leads to the generation of Up states. We found that the resting membrane potential and input resistance of cortical cells did not change with the development of Up states. The synaptic efficacy of excitatory postsynaptic potentials mediated by non-NMDA receptors was slightly reduced, but this is unlikely to facilitate the generation of Up states. On the other hand, we identified two variables that are associated with the generation of Up states: an enhancement of the intrinsic firing excitability of cortical cells and an enhancement of NMDA-mediated responses evoked by electrical or optogenetic stimulation. The fact that blocking NMDA receptors abolishes Up states indicates that the enhancement in intrinsic firing excitability alone is insufficient to generate Up states. NMDA receptors have a crucial role in the generation of Up states in neocortex slices.

  18. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex.

    PubMed

    Kharazia, V N; Phend, K D; Rustioni, A; Weinberg, R J

    1996-05-24

    Electrophysiology and light microscopy suggest that a single excitatory synapse may use both amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Using immunogold electron microscopy, we here provide direct evidence for colocalization at individual synapses in sensorimotor cortex of adult rats. Colocalization was most commonly observed on dendritic spines; subunits of the two classes of receptors seemed to be independently distributed within the synaptic active zone.

  19. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  20. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis

    PubMed Central

    SÜHS, KURT-WOLFRAM; WEGNER, FLORIAN; SKRIPULETZ, THOMAS; TREBST, CORINNA; TAYEB, SAID BEN; RAAB, PETER; STANGEL, MARTIN

    2015-01-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis. PMID:26622479

  1. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses.

    PubMed

    Lerma, J; Zukin, R S; Bennett, M V

    1990-03-01

    In Xenopus oocytes injected with rat brain mRNA, as in neurons, glycine greatly potentiated responses of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Injected oocytes generated a partially desensitizing inward current in response to NMDA with 30 nM added glycine. As the added glycine concentration was increased from 30 nM to 1 microM, the NMDA response was increased and exhibited less desensitization. The relationship between the NMDA peak response and added glycine concentration indicated a single component response with apparent affinity of 0.29 microM and a Hill coefficient of 0.77. The desensitized response was also fit by the Hill relation with a lower affinity but similar coefficient. The time course of desensitization at 500 microM NMDA was exponential with a time constant (350 msec) that was independent of glycine concentration between 0.03 and 0.3 microM. At higher glycine concentration a slower component of decay (tau = 1.4 sec) was observed. This component was enhanced by increasing the extracellular Ca2+. NMDA without added glycine evoked a small transient response. However this response was suppressed completely by prewashing with the glycine antagonist 7-chlorokynurenic acid, suggesting that it may have been due to glycine contamination. The dose-response relation for low concentrations of glycine indicated that the measured level of glycine contamination accounted for these responses. These results indicate that glycine has at least two actions at the NMDA receptor: it enables channel opening by the agonist and decreases desensitization.

  2. Presynaptic NMDA Receptors: Newly Appreciated Roles in Cortical Synaptic Function and Plasticity

    PubMed Central

    Corlew, Rebekah; Brasier, Daniel J.; Feldman, Daniel E.; Philpot, Benjamin D.

    2009-01-01

    Many aspects of synaptic development, plasticity, and neurotransmission are critically influenced by NMDA-type glutamate receptors (NMDARs). Moreover, dysfunction of NMDARs has been implicated in a broad array of neurological disorders, including schizophrenia, stroke, epilepsy, and neuropathic pain. Classically, NMDARs were thought to be exclusively postsynaptic. However, substantial evidence in the last 10 years demonstrates that NMDARs also exist presynaptically, and that presynaptic NMDA receptors (preNMDARs) modulate synapse function and have critical roles in plasticity at many synapses. Here we review current knowledge of the role of preNMDARs in synaptic transmission and plasticity, focusing on the neocortex. We discuss the prevalence, function, and development of these receptors, and their potential modification by experience and in brain pathology. PMID:19029059

  3. Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-02-01

    The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 microM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 microM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors.

  4. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  5. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  6. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse.

    PubMed

    Gocel, James; Larson, John

    2012-09-27

    Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.

  7. Rhythmic delta activity represents a form of nonconvulsive status epilepticus in anti-NMDA receptor antibody encephalitis.

    PubMed

    Kirkpatrick, McNeill P; Clarke, Charles D; Sonmezturk, Hasan H; Abou-Khalil, Bassel

    2011-02-01

    Anti-NMDA receptor antibody encephalitis is a limbic encephalitis with psychiatric manifestations, abnormal movements, coma, and seizures. The coma and abnormal movements are not typically attributed to seizure activity, and slow activity is the most common EEG finding. We report drug-resistant nonconvulsive status epilepticus as the basis for coma in a 19-year-old woman with anti-NMDA receptor antibodies and a mediastinal teratoma. The EEG showed generalized rhythmic delta activity, with evolution in morphology, frequency, and field typical of nonconvulsive status epilepticus. The status was refractory to antiepileptic drugs, repeated drug-induced coma, resection of the tumor, intravenous steroids, rituximab, and plasmapheresis. She awoke after the addition of felbamate, and the rhythmic delta activity ceased. The rhythmic delta activity described with coma in anti-NMDA receptor antibody encephalitis may represent a pattern of status epilepticus in some patients. Felbamate, which has NMDA receptor antagonist activity, should be studied as a therapeutic agent in this condition.

  8. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit

    PubMed Central

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196

  9. Protons trap NR1/NR2B NMDA receptors in a nonconducting state.

    PubMed

    Banke, Tue G; Dravid, Shashank M; Traynelis, Stephen F

    2005-01-05

    NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.

  10. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    PubMed Central

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  11. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    PubMed Central

    2011-01-01

    Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. PMID:22182308

  12. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    PubMed

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.

  13. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors.

    PubMed

    Zhou, X; Hollern, D; Liao, J; Andrechek, E; Wang, H

    2013-03-28

    N-methyl-D-aspartate receptors (NMDAR) overactivation is linked to neurodegeneration. The current prevailing theory suggests that synaptic and extrasynaptic NMDAR (syn- and ex-NMDAR) impose counteracting effects on cell fate, and neuronal cell death is mainly mediated by the activation of ex-NMDAR. However, several lines of evidence implicate the limitation of this theory. Here, we demonstrate that activation of NMDAR bi-directionally regulated cell fate through stimulating pro-survival or pro-death signaling. While low-dose NMDA preferentially activated syn-NMDAR and stimulated the extracellular signal-regulated kinase ½-cAMP responsive element-binding protein-brain-derived neurotrophic factor pro-survival signaling, higher doses progressively activated increasing amount of ex-NMDAR along with syn-NMDAR and triggered cell death program. Interestingly, the activation of syn- or ex-NMDAR alone did not cause measurable cell death. Consistently, activation of syn- or ex-NMDAR alone stimulated pro-survival but not pro-death signaling. Next, we found that memantine, which was previously identified as an ex-NMDAR blocker, inhibited intracellular signaling mediated by syn- or ex-NMDAR. Simultaneous blockade of syn- and ex-NMDAR by memantine dose-dependently attenuated NMDAR-mediated death. Moreover, long- but not short-term treatment with high-dose NMDA or oxygen-glucose deprivation triggered cell death and suppressed pro-survival signaling. These data implicate that activation of syn- or ex-NMDAR alone is not neurotoxic. The degree of excitotoxicity depends on the magnitude and duration of syn- and ex-NMDAR coactivation. Finally, genome-wide examination demonstrated that the activation of syn- and ex-NMDAR lead to significant overlapping rather than counteracting transcriptional responses.

  14. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.

  15. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting.

    PubMed

    Hama, A T; Unnerstall, J R; Siegan, J B; Sagen, J

    1995-07-31

    Excessive activation of N-methyl-D-aspartate (NMDA) receptors in the spinal cord consequent to peripheral injury has been implicated in the initiation of neuropathologic events leading to a state of chronic hyperexcitability and persistence of exaggerated sensory processing. In other CNS disease or injury states, NMDA-mediated neurotoxic damage is associated with a loss of NMDA receptors, and outcome may be improved by agents reducing NMDA activation. Previous findings in our laboratory have demonstrated that the transplantation of adrenal medullary tissue into the spinal subarachnoid space can alleviate sensory abnormalities and reduce the induction of a putative nitric oxide synthase consequent to peripheral nerve injury. In order to determine changes in NMDA receptor expression in the spinal cord following peripheral nerve injury and adrenal medullary grafting, NMDA receptor binding using a high-affinity competitive NMDA receptor antagonist, CGP-39653, and NMDAR1 subunit distribution using immunocytochemistry were investigated. Two weeks following peripheral nerve injury by loose ligation of the right sciatic nerve, either adrenal medullary or striated muscle (control) tissue pieces were implanted in the spinal subarachnoid space. Binding studies revealed a marked reduction in [3H]CGP-39653 binding at L4-L5 levels ipsilateral to peripheral nerve injury in control transplanted animals. In contrast, NMDA binding was normalized in adrenal medullary grafted animals. In addition, NMDAR1 immunoreactivity was reduced in both the dorsal horn neuropil and motor neurons of the ventral horn in animals with peripheral nerve injury, while levels in adrenal medullary grafted animals appeared similar to intact controls. These results suggest that adrenal medullary transplants reduce abnormal sensory processing resulting from peripheral injury by intervening in the spinal NMDA-excitotoxicity cascade.

  16. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors

    PubMed Central

    Gandolfi, Daniela; Vilella, Antonietta; Zoli, Michele; Bigiani, Albertino

    2016-01-01

    Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity. PMID:27531957

  17. Requirement for hippocampal CA3 NMDA receptors in associative memory recall.

    PubMed

    Nakazawa, Kazu; Quirk, Michael C; Chitwood, Raymond A; Watanabe, Masahiko; Yeckel, Mark F; Sun, Linus D; Kato, Akira; Carr, Candice A; Johnston, Daniel; Wilson, Matthew A; Tonegawa, Susumu

    2002-07-12

    Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.

  18. Increased phosphorylation of the NR1 subunit of the NMDA receptor following cerebral ischemia.

    PubMed

    Cheung, H H; Teves, L; Wallace, M C; Gurd, J W

    2001-09-01

    The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.

  19. The participation of NMDA receptors, PKC, and MAPK in Lymnaea memory extinction.

    PubMed

    Rosenegger, David; Lukowiak, Ken

    2013-02-01

    The aerial respiratory behavior of Lymnaea can be operantly conditioned to form a long-term memory (LTM) that will persist for >24h. LTM formation is dependent on altered gene activity and new protein synthesis, with the N-methyl-D-aspartate (NMDA) receptors, mitogen activated protein kinase (MAPK), and protein kinase C (PKC) pathways playing a critical role. LTM can also undergo extinction, whereby the original memory is temporarily masked by a new memory. Here we investigate if the formation of an extinction memory uses similar molecular pathways to those required for LTM formation. We find that the formation of the extinction memory can be blocked by inhibitors of NMDA receptors, PKC, and MAPK suggesting that extinction memory formation uses similar mechanisms to that of 'normal' memory formation.

  20. The Role of NMDA Receptors in the Development of Brain Resistance through Pre- and Postconditioning

    PubMed Central

    Celso Constantino, Leandra; Tasca, Carla Inês; Boeck, Carina Rodrigues

    2014-01-01

    Brain tolerance or resistance can be achieved by interventions before and after injury through potential toxic agents used in low stimulus or dose. For brain diseases, the neuroprotection paradigm desires an attenuation of the resulting motor, cognitive, emotional, or memory deficits following the insult. Preconditioning is a well-established experimental and clinical translational strategy with great beneficial effects, but limited applications. NMDA receptors have been reported as protagonists in the adjacent cellular mechanisms contributing to the development of brain tolerance. Postconditioning has recently emerged as a new neuroprotective strategy, which has shown interesting results when applied immediately, i.e. several hours to days, after a stroke event. Investigations using chemical postconditioning are still incipient, but nevertheless represent an interesting and promising clinical strategy. In the present review pre- and postconditioning are discussed as neuroprotective paradigms and the focus of our attention lies on the participation of NMDA receptors proteins in the processes related to neuroprotection. PMID:25489494

  1. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-.

    PubMed

    Kim, W K; Choi, Y B; Rayudu, P V; Das, P; Asaad, W; Arnelle, D R; Stamler, J S; Lipton, S A

    1999-10-01

    Recent evidence indicates that the NO-related species, nitroxyl anion (NO), is produced in physiological systems by several redox metal-containing proteins, including hemoglobin, nitric oxide synthase (NOS), superoxide dismutase, and S-nitrosothiols (SNOs), which have recently been identified in brain. However, the chemical biology of NO- remains largely unknown. Here, we show that NO- -unlike NO*, but reminiscent of NO+ transfer (or S-nitrosylation)- -reacts mainly with Cys-399 in the NR2A subunit of the N-methyl-D-aspartate (NMDA) receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults. This effect of NO- closely resembles that of NOS, which also downregulates NMDA receptor activity under similar conditions in culture.

  2. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  3. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  4. Role of NMDA receptors in the syndrome of behavioral changes produced by predator stress.

    PubMed

    Blundell, Jacqueline; Adamec, Robert; Burton, Paul

    2005-09-15

    Effects on behavioral response to predator stress of competitive block of NMDA receptors with doses of .1, 1.0 and 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. An affect test battery assessed behavioral response to stress and employed hole board, elevated plus maze, light/dark box, social interaction, social avoidance and response to acoustic startle tests. Doses of 1-10 mg/kg of CPP administered ip 30 min prior to predator stress blocked the effects of predator stress on some but not all behaviors measured 8-9 days later. Predator stress normally reduces open arm exploration and risk assessment in the plus maze, decreases entries into the lighted arm of the light dark box and delays habituation of the acoustic startle response. CPP blocked all of these effects of predator stress. A dose of 10 mg/kg of CPP was required for all behaviors except habituation to startle. Block of effects on habituation to startle occurred at 1 and 10 mg/kg. Behaviors in which effects of predator stress were not blocked by CPP included reduction in unprotected head dips in the elevated plus maze and reduced social interaction. In addition, predator stress was without effect on social avoidance measured with the Haller test. These findings extend previous work showing NMDA receptor dependence of effects of predator stress on behavior in the elevated plus maze and on amplitude of acoustic startle response. Novel findings include NMDA receptor dependence of predator stress effects on light dark box behavior and startle habituation. Taken together, the findings add to a body of evidence showing that a syndrome of behavioral changes follows predator stress. Components of this syndrome of behavioral changes likely depend on changes in separable neural substrates initiated in part by NMDA receptors as well as by other neurochemical means.

  5. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function

    PubMed Central

    Braun, Urs; Schäfer, Axel; Rausch, Franziska; Schweiger, Janina I.; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S.; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-01-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation–inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified “network flexibility,” a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia. PMID:27791105

  6. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.

    PubMed

    Braun, Urs; Schäfer, Axel; Bassett, Danielle S; Rausch, Franziska; Schweiger, Janina I; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-11-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.

  7. A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression.

    PubMed

    Jurado, Sandra; Biou, Virginie; Malenka, Robert C

    2010-09-01

    AKAP79/150 is a protein scaffold that is thought to position specific kinases (protein kinase A and C) and phosphatases (calcineurin) in appropriate synaptic domains so that their activities can regulate excitatory synaptic strength. Using a viral-mediated molecular replacement strategy in rat hippocampal slices, we found that AKAP is required for NMDA receptor-dependent long-term depression solely because of its interaction with calcineurin.

  8. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    PubMed

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-04-02

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder).

  9. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity

    PubMed Central

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-01-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments. PMID:23856634

  10. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.

    PubMed

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-12-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.

  11. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.

    PubMed

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-09-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.

  12. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  13. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors.

    PubMed

    Li, Yu-Jiao; Yang, Qi; Zhang, Kun; Guo, Yan-Yan; Li, Xu-Bo; Yang, Le; Zhao, Ming-Gao; Wu, Yu-Mei

    2013-01-01

    Cytisine (CYT), one of the principal bioactive components derived from the seeds of Cytisus laborinum L, has been widely used for central nervous system (CNS) diseases treatment. The present study investigated the protective effect of CYT on cultured cortical neural injury induced by N-methyl-d-aspartate (NMDA). Our data showed that CYT conferred protective effect against loss of cellular viability induced by brief exposure to 200 μM NMDA in a concentration-dependent manner. CYT significantly inhibited the neuronal apoptosis induced by NMDA exposure by reversing intracellular Ca(2+) overload and balancing Bcl-2 and Bax expression levels. Furthermore, CYT significantly reversed the up-regulation of GluN2B-containing NMDA receptors by exposure to NMDA, but it did not affect the level of GluN2A-containing NMDA receptors. These findings suggest that CYT protects cortical neurons, at least partially, by inhibiting the level of GluN2B-containing NMDA receptors and regulating Bcl-2 family.

  14. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice

    PubMed Central

    Jastrzębska, Kamila; Walczak, Magdalena; Cieślak, Przemysław Eligiusz; Szumiec, Łukasz; Turbasa, Mateusz; Engblom, David; Błasiak, Tomasz; Parkitna, Jan Rodriguez

    2016-01-01

    The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms. PMID:27853270

  15. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  16. NMDA receptor activity and the transmission of sensory input into motor output in introverts and extraverts.

    PubMed

    Rammsayer, Thomas H

    2003-05-01

    Recent research suggests that individual differences in brain dopamine functioning may be related to the personality dimension of extraversion. The major goal of the present study was to answer the question of whether a pharmacologically induced change in glutamatergic NMDA receptor activity would also differentially affect the transmission of sensory input into motor out-put in introverts and extraverts. Therefore, in a double-blind within-subjects design, either 30 mg of the NMDA receptor antagonist memantine or placebo were administered to 48 healthy male volunteers before performing a choice reaction-time task. In introverts, memantine caused a pronounced increase in lift-off time (i.e., the time required to lift the finger from a home button) compared to that in extraverts, whereas movement time (i.e., the time required to move the finger from the home button to a response button) was decreased in both groups. The pattern of results suggests that extraversion-related differential sensitivity to pharmacologically induced changes in NMDA receptor activity is limited to functions that involve an interaction between the glutamatergic and dopaminergic systems.

  17. Steroid unresponsive anti-NMDA receptor encephalitis during pregnancy successfully treated with plasmapheresis.

    PubMed

    Shahani, Lokesh

    2015-04-29

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is an autoimmune disorder resulting in neurological and psychiatric symptoms. It is rare during pregnancy and treatment is extremely challenging as little data exist to guide management. A 26-year-old woman presented at 22 weeks of gestation with intermittent headache and an acute episode of bizarre behaviour and grandiose delusions resulting in hospitalisation. The patient was worked up for encephalitis and was found to have anti-NMDA receptor antibody in cerebrospinal fluid as well as in serum. She was initially treated with high-dose steroids but failed to improve clinically and serologically. She was then treated with plasmapheresis and showed clinical and serological response. She had a successful delivery at 37 weeks and the baby did not show serological evidence of disease. This case adds to the sparse literature of anti-NMDA receptor encephalitis during pregnancy and adds to the differential diagnosis of new onset psychiatric symptoms during pregnancy.

  18. Non-tumor-Associated Anti-N-Methyl-D-Aspartate (NMDA) Receptor Encephalitis in Chinese Girls With Positive Anti-thyroid Antibodies.

    PubMed

    Guan, Wenjuan; Fu, Zhenqiang; Zhang, Hui; Jing, Lijun; Lu, Jingjing; Zhang, Jing; Lu, Hong; Teng, Junfang; Jia, Yanjie

    2015-10-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a new category of autoimmune encephalitis associated with anti-NMDA receptor antibodies. The disease was first described in 2007, and it predominantly affects young women with or without ovarian teratomas. Most patients typically present with seizures, a decreased consciousness level, dyskinesia, autonomic dysfunction, and psychiatric symptoms. The presence of anti-thyroid antibodies in non-tumor-associated anti-NMDA receptor encephalitis was first described in 2010. Additionally, anti-thyroid antibodies were found in teratoma-associated anti-NMDA receptor encephalitis. We report the cases of 3 Chinese girls with non-tumor-associated anti-NMDA receptor encephalitis with positive anti-thyroid antibodies. We followed up the details of their titers and suggest that anti-thyroid antibodies were an indicator of autoimmune predisposition in the development of non-tumor-associated anti-NMDA receptor encephalitis.

  19. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  20. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  1. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  2. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  3. Presynaptic NMDA receptors – dynamics and distribution in developing axons in vitro and in vivo

    PubMed Central

    Gill, Ishwar; Droubi, Sammy; Giovedi, Silvia; Fedder, Karlie N.; Bury, Luke A. D.; Bosco, Federica; Sceniak, Michael P.; Benfenati, Fabio; Sabo, Shasta L.

    2015-01-01

    ABSTRACT During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons – including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development. PMID:25526735

  4. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway.

  5. Organization, control and function of extrasynaptic NMDA receptors

    PubMed Central

    Papouin, Thomas; Oliet, Stéphane H. R.

    2014-01-01

    N-methyl d-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors. PMID:25225095

  6. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine

    PubMed Central

    Kargieman, Lucila; Santana, Noemí; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2007-01-01

    NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia models because of their ability to evoke positive and negative symptoms as well as cognitive deficits similar to those of the illness. Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. These deficits are of particular interest because an early improvement in cognitive performance predicts a better long-term clinical outcome. Here, we examined the effect of the noncompetitive NMDA-R antagonist phencyclidine (PCP) on PFC function to understand the cellular and network elements involved in its schizomimetic actions. PCP induces a marked disruption of the activity of the PFC in the rat, increasing and decreasing the activity of 45% and 33% of the pyramidal neurons recorded, respectively (22% of the neurons were unaffected). Concurrently, PCP markedly reduced cortical synchrony in the delta frequency range (0.3–4 Hz) as assessed by recording local field potentials. The subsequent administration of the antipsychotic drugs haloperidol and clozapine reversed PCP effects on pyramidal cell firing and cortical synchronization. PCP increased c-fos expression in PFC pyramidal neurons, an effect prevented by the administration of clozapine. PCP also enhanced c-fos expression in the centromedial and mediodorsal (but not reticular) nuclei of the thalamus, suggesting the participation of enhanced thalamocortical excitatory inputs. These results shed light on the involvement of PFC in the schizomimetic action of NMDA-R antagonists and show that antipsychotic drugs may partly exert their therapeutic effect by normalizing a disrupted PFC activity, an effect that may add to subcortical dopamine receptor blockade. PMID:17785415

  7. Hypersensitivity of dopamine transmission in the rat striatum after treatment with the NMDA receptor antagonist amantadine.

    PubMed

    Peeters, Magali; Page, Guylène; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2002-09-13

    Amantadine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist known to increase dopamine synthesis and release in the striatum, is frequently associated with L-DOPA in the treatment of Parkinson's disease. However, the biochemical mechanisms involved in the effect of amantadine and the consequences of its repetitive administration on the modulation of striatal dopamine transmission still need to be clarified. We have investigated the effects of short-term amantadine treatments on the expression of dopamine receptors and the functional coupling to G proteins in rat striatal membranes. Dopamine-induced stimulation of guanosine 5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding was significantly enhanced (40%) in striatum homogenates from rats treated for 4 days with amantadine (40 mg/kg, i.p.) compared to vehicle-treated animals. This effect was specific for dopamine receptors and was transient as no significant modifications were observed when animals were treated for either 2 or 7 days. Administration of amantadine did not directly affect the animal behaviour. However, treated animals exhibited hypersensitive dopamine transmission since rats treated for 4 days showed exacerbated responses to a single apomorphine administration (enhanced locomotor activity and reduced stereotypy). Since the effects of amantadine administration differ from those usually observed with direct dopamine receptor agonists or other NMDA receptor antagonists, we suggest that multiple biochemical mechanisms contribute to the modulation of dopamine transmission by amantadine.

  8. Receptor to glutamate NMDA-type: the functional diversity of the nr1 isoforms and pharmacological properties.

    PubMed

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Escoto-Delgadillo, Martha; Ureña-Guerrero, Mónica Elisa; Camins, Antoni; Beas-Zarate, Carlos

    2013-01-01

    Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca(2+) ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.

  9. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model.

    PubMed

    Hu, Rui; Wei, Pan; Jin, Lu; Zheng, Teng; Chen, Wen-Yu; Liu, Xiao-Ya; Shi, Xiao-Dong; Hao, Jing-Ru; Sun, Nan; Gao, Can

    2017-03-30

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which affects more and more people. But there is still no effective treatment for preventing or reversing the progression of the disease. Soluble amyloid-beta (Aβ) oligomers, also known as Aβ-derived diffusible ligands (ADDLs) play an important role in AD. Synaptic activity and cognition critically depend on the function of glutamate receptors. Targeting N-methyl-D-aspartic acid (NMDA) receptors trafficking and its regulation is a new strategy for AD early treatment. EphB2 is a key regulator of synaptic localization of NMDA receptors. Aβ oligomers could bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. Here we identified that overexpression of EphB2 with lentiviral vectors in dorsal hippocampus improved impaired memory deficits and anxiety or depression-like behaviors in APPswe/PS1-dE9 (APP/PS1) transgenic mice. Phosphorylation and surface expression of GluN2B-containing NMDA receptors were also improved. Overexpression of EphB2 also rescued the ADDLs-induced depletion of the expression of EphB2 and GluN2B-containing NMDA receptors trafficking in cultured hippocampal neurons. These results suggest that improving the decreased expression of EphB2 and subsequent GluN2B-containing NMDA receptors trafficking in hippocampus may be a promising strategy for AD treatment.

  10. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  11. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    SciTech Connect

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  12. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  13. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    PubMed

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  14. Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate.

    PubMed

    Hasanein, Parisa; Parviz, Mohsen; Keshavarz, Mansoor; Javanmardi, Kazem; Allahtavakoli, Mohammad; Ghaseminejad, Majid

    2007-01-12

    Acute cholestasis is associated with increased activity of the endogenous opioid system that results to changes including analgesia. N-methyl-d-aspartate (NMDA) receptors are involved in the nociceptive pathway and play a major role in the development of morphine induced analgesia. The magnesium acts as a non-competitive NMDA receptor antagonist by blocking the NMDA receptor channel. Considering the reported antinociceptive effect of magnesium sulfate as a NMDA receptor antagonist and the existence of close functional links between NMDA receptor antagonists and magnesium with the opioid system, we studied the effect of acute and chronic administration of MK-801 as a NMDA antagonist and magnesium sulfate on modulation of nociception in an experimental model of elevated endogenous opioid tone, acute cholestasis, using the tail-flick paradigm. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transsection of the duct at the midpoint between them. A significant increase (P<0.001) in nociception threshold was observed in bile duct ligated rats compared to unoperated and sham-operated animals. In acute treatment, MK-801 (0.1 mg/kg, b.i.d), but not magnesium (150 mg/kg magnesium sulfate, i.e. 30 mg/kg of Mg(+2), i.p., b.i.d.) increased antinociception in cholestatic rats compared to saline treated cholestatics (P<0.05). In chronic treatment, administration of MK-801 or magnesium sulfate for 7 consecutive days, increased tail-flick latency (P<0.05, P<0.01) in cholestatic animals compared to saline treated cholestatics. These data showed that NMDA receptor pathway is involved in modulation of cholestasis-induced antinociception in rats and that repeated dosages of magnesium sulfate similar to MK-801 is able to modulate nociception in cholestasis.

  15. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    PubMed Central

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  16. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  17. NMDA receptor is involved in neuroinflammation in intracerebroventricular colchicine-injected rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa

    2016-07-01

    The neurodegeneration in intracerebroventricular (icv) colchicine injected (ICIR) rats is linked with neuroinflammation. Glutamate excitotoxicity through NMDA receptors is involved with the neuroinflammation in some animal models of Alzheimer Disease (AD), but it has not been explored in ICIR rats. The aim of this study was to investigate the role of NMDA receptors (by blocking it's activity with memantine) in colchicine-induced neuroinflammation and neurodegeneration and impacts on peripheral immune parameters in ICIR rats. Levels of inflammatory markers (IL-1β, TNFα, ROS, nitrite) in the hippocampus and serum, histopathology of the hippocampus and select peripheral immune parameters were measured 14 and 21-days after icv colchicine injection in rats. These parameters were also measured in rats that received daily per os administration of memantine (20 mg/kg) in both study durations. Neuroinflammation in the hippocampus of ICIR rats was associated with neurodegeneration (chromatolysis, plaque formation), along with changes in inflammatory markers in the serum and alterations in peripheral immune parameters (phagocytic activity of WBC and splenic PMN, cytotoxic activity/leukocyte adhesion inhibition by splenic MNC). Administration of memantine to ICIR rats resulted in mitigation of colchicine-induced inflammation in the hippocampus, inflammatory markers in the serum and neurodegeneration and also led to recovery of the measured immune endpoints; most of these effects were greater with the longer duration of study. Phagocytic activity of WBC and splenic PMN cells appeared to correlate with levels of the measured central inflammatory markers. It appears from the results that neuroinflammation might be linked with the NMDA receptor activity in ICIR rats and that this receptor is involved in the process of progressive neuroinflammation and neurodegeneration in the hippocampus of ICIR and potentially in immunomodulation in these same hosts.

  18. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex

    PubMed Central

    Lalo, U.; Palygin, O.; Verkhratsky, A.; Grant, S. G. N.; Pankratov, Y.

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  19. Genetic Demonstration of a Role for Stathmin in Adult Hippocampal Neurogenesis, Spinogenesis, and NMDA Receptor-Dependent Memory

    PubMed Central

    Martel, Guillaume; Uchida, Shusaku; Hevi, Charles; Chévere-Torres, Itzamarie; Fuentes, Ileana; Park, Young Jin; Hafeez, Hannah; Yamagata, Hirotaka; Watanabe, Yoshifumi

    2016-01-01

    Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an

  20. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  1. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  2. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  3. Frequent rhabdomyolysis in anti-NMDA receptor encephalitis.

    PubMed

    Lim, Jung-Ah; Lee, Soon-Tae; Kim, Tae-Joon; Moon, Jangsup; Sunwoo, Jun-Sang; Byun, Jung-Ick; Jung, Keun-Hwa; Jung, Ki-Young; Chu, Kon; Lee, Sang Kun

    2016-09-15

    The aim of this study was to analyze the clinical presentation and provocation factors of rhabdomyolysis in anti-NMDAR encephalitis. Among the 16 patients with anti-NMDAR encephalitis in our institutional cohort, nine patients had elevated CK enzyme levels and clinical evidence of rhabdomyolysis. Rhabdomyolysis was more frequent after immunotherapy. The use of dopamine receptor blocker (DRB) increased the risk of rhabdomyolysis. None of the patients without rhabdomyolysis received DRBs. Rhabdomyolysis is a frequent complication in anti-NMDAR encephalitis and more common after immunotherapy and the use of DRBs increases the risk. Therefore, DRBs should be administered carefully in patients with anti-NMDAR encephalitis.

  4. Retinal NMDA receptor function and expression are altered in a mouse lacking d-amino acid oxidase

    PubMed Central

    Morgans, Catherine W.; Tekmen, Merve; Sullivan, Steven J.; Esguerra, Manuel; Konno, Ryuichi; Miller, Robert F.

    2013-01-01

    d-serine is present in the vertebrate retina and serves as a coagonist for the N-methyl-d-aspartate (NMDA) receptors of ganglion cells. Although the enzyme d-amino acid oxidase (DAO) has been implicated as a pathway for d-serine degradation, its role in the retina has not been established. In this study, we investigated the role of DAO in regulating d-serine levels using a mutant mouse line deficient in DAO (ddY/DAO−) and compared these results with their wild-type counterparts (ddY/DAO+). Our results show that DAO is functionally present in the mouse retina and normally serves to reduce the background levels of d-serine. The enzymatic activity of DAO was restricted to the inner plexiform layer as determined by histochemical analysis. Using capillary electrophoresis, we showed that mutant mice had much higher levels of d-serine. Whole cell recordings from identified retinal ganglion cells demonstrated that DAO-deficient animals had light-evoked synaptic activity strongly biased toward a high NMDA-to-AMPA receptor ratio. In contrast, recordings from wild-type ganglion cells showed a more balanced ratio between the two receptor subclasses. Immunostaining for AMPA and NMDA receptors was carried out to compare the two receptor ratios by quantitative immunofluorescence. These studies revealed that the mutant mouse had a significantly higher representation of NMDA receptors compared with the wild-type controls. We conclude that 1) DAO is an important regulatory enzyme and normally functions to reduce d-serine levels in the retina, and 2) d-serine levels play a role in the expression of NMDA receptors and the NMDA-to-AMPA receptor ratio. PMID:24068757

  5. NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light

    PubMed Central

    Webb, Ian C.; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    The “core” region of the suprachiasmatic nucleus (SCN), a central clock responsible for coordinating circadian rhythms, shows a daily rhythm in phosphorylation of extracellular regulated kinase (pERK). This cellular rhythm persists under constant darkness and, despite the absence of light, is dependent upon inputs from the eye. The neural signals driving this rhythmicity remain unknown and here the roles of glutamate and PACAP are examined. First, rhythmic phosphorylation of the NR1 NMDA receptor subunit (pNR1, a marker for receptor activation) was shown to coincide with SCN core pERK, with a peak at circadian time (CT) 16. Enucleation and intraocular TTX administration attenuated the peak in the pERK and pNR1 rhythms, demonstrating that activation of the NMDA receptor and ERK in the SCN core at CT16 are dependent on retinal inputs. In contrast, ERK and NR1 phosphorylation in the SCN shell region were unaffected by these treatments. Intraventricular administration of the NMDA receptor antagonist MK-801 also attenuated the peak in SCN core pERK, indicating that ERK phosphorylation in this region requires NMDA receptor activation. As PACAP is implicated in photic entrainment and is known to modulate glutamate signaling, the effects of a PAC1 receptor antagonist (PACAP 6-38) on SCN core pERK and pNR1 also were examined. PACAP 6-38 administration attenuated SCN core pERK and pNR1, suggesting that PACAP induces pERK directly, and indirectly via a modulation of NMDA receptor signaling. Together, these data indicate that, in the absence of light, retinal-mediated NMDA and PAC1 receptor activation interact to induce cellular rhythms in the SCN core. These results highlight a novel function for glutamate and PACAP release in the hamster SCN apart from their well-known roles in the induction of photic circadian clock resetting. PMID:24098484

  6. PDI regulates seizure activity via NMDA receptor redox in rats

    PubMed Central

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-01-01

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5–5′-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality. PMID:28198441

  7. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.

    PubMed

    Sengupta, Trina; Jaryal, Ashok Kumar; Mallick, Hruda Nanda

    2016-10-01

    Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (Tbr) and body temperature (Tb) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in Tbr and Tb in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record Tb and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess Tbr. Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased Tb and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (p<0.005). Pharmacological blockade of NMDA was able to lower Tbr only. Microinjection of kainic acid and its antagonist had no effect on the variables. The finding of the study suggests that activation of the AMPA receptors at the mPOA, leads to the rise in body temperature.

  8. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.

    PubMed

    Khakpai, Fatemeh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-04-01

    The glutamatergic neurons in the medial septal/diagonal band of broca (MS/DB) affect the hippocampal functions by modulating the septo-hippocampal neurons. Our study investigated the possible role of NMDA receptors of the medial septum nucleus (MS) and dorsal hippocampus (CA1) on memory acquisition in male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the MS and CA1. Rats were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. Our results indicated that pre-training intra-MS or intra-CA1 infusions of NMDA (0.125 μg/rat) and D-AP7 (0.012 μg/rat) increased and decreased memory acquisition, respectively when compared to saline control group. Also, pre-training intra-CA1 and intra-MS injection of an effect dose of D-AP7 (0.012 μg/rat) along with an effect dose of NMDA (0.125 μg/rat) impaired memory acquisition. Interestingly, pre-training intra-CA1/MS infusion of D-AP7 (0.012 μg/rat) diminished memory response produced by pre-training injection of NMDA (0.125 μg/rat) in the MS/CA1, respectively (cross injection or bilateral injection). Also, all above doses of drugs did not alter locomotor activity. These results suggest that the glutamatergic pathway between the MS and CA1 regions is involved in memory acquisition process.

  9. [Two pediatric cases of anti-NMDA receptor antibody encephalitis].

    PubMed

    Ben Azoun, M; Tatencloux, S; Deiva, K; Blanc, P

    2014-11-01

    Although less frequent than viral encephalitis, anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a frequent form of acute pediatric encephalitis. After a prodromal phase of flu-like symptoms, psychiatric symptoms predominate - agitation, anxiety, hallucinations - and can make correct diagnosis more difficult. Also noted are abnormal dyskinesia and dystonia-like movements, partial seizures, difficulties talking or memorizing, and autonomic manifestations. The presentation of two cases of anti-NMDAR encephalitis illustrates the symptoms of this disease. Although the CSF abnormalities are not highly specific of this disease, and MRI most often normal, EEG shows more specific signs. These observations enable us to discuss different treatment options and understand the progression of this disease.

  10. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia.

    PubMed

    Ivanova, S A; Loonen, A J M; Pechlivanoglou, P; Freidin, M B; Al Hadithy, A F Y; Rudikov, E V; Zhukova, I A; Govorin, N V; Sorokina, V A; Fedorenko, O Y; Alifirova, V M; Semke, A V; Brouwers, J R B J; Wilffert, B

    2012-01-10

    Dyskinesias are involuntary muscle movements that occur spontaneously in Huntington's disease (HD) and after long-term treatments for Parkinson's disease (levodopa-induced dyskinesia; LID) or for schizophrenia (tardive dyskinesia, TD). Previous studies suggested that dyskinesias in these three conditions originate from different neuronal pathways that converge on overstimulation of the motor cortex. We hypothesized that the same variants of the N-methyl-D-aspartate receptor gene that were previously associated with the age of dyskinesia onset in HD were also associated with the vulnerability for TD and not LID. Genotyping patients with LID and TD revealed, however, that these two variants were dose-dependently associated with susceptibility to LID, but not TD. This suggested that LID, TD and HD might arise from the same neuronal pathways, but TD results from a different mechanism.

  11. Optical control of NMDA receptors with a diffusible photoswitch

    PubMed Central

    Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A.; Trauner, Dirk

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca2+ imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery. PMID:26311290

  12. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus.

    PubMed

    Zhang, Xi; Zhang, Quanguang; Tu, Jingyi; Zhu, Ying; Yang, Fang; Liu, Bin; Brann, Darrell; Wang, Ruimin

    2015-03-01

    Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.

  13. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.

    PubMed

    Elvander-Tottie, Elin; Eriksson, Therese M; Sandin, Johan; Ogren, Sven Ove

    2009-12-01

    Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal-dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5-HT(1A) receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5-HT(1A) receptors are important for hippocampal-dependent long-term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal-dependent spatial memory. Intraseptal infusion of the 5-HT(1A) receptor agonist (R)-8-OH-DPAT (1 or 4 microg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 microg/rat). While intraseptal administration of (R)-8-OH-DPAT (4 microg) combined with a subthreshold dose of the NMDA receptor antagonist D-AP5 (1 microg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5-HT(1A) receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5-HT(1A) and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5-HT(1A) receptor activation on memory, which may be clinically relevant.

  14. In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction

    PubMed Central

    2010-01-01

    Background A severe encephalitis that associates with auto-antibodies to the NR1 subunit of the NMDA receptor (NMDA-R) was recently reported. Patients' antibodies cause a decrease of the density of NMDA-R and synaptic mediated currents, but the in vivo effects on the extracellular glutamate and glutamatergic transmission are unknown. Methods We investigated the acute metabolic effects of patients' CSF and purified IgG injected in vivo. Injections were performed in CA1 area of Ammon's horn and in premotor cortex in rats. Results Patient's CSF increased the concentrations of glutamate in the extracellular space. The increase was dose-dependent and was dramatic with purified IgG. Patients' CSF impaired both the NMDA- and the AMPA-mediated synaptic regulation of glutamate, and did not affect the glial transport of glutamate. Blockade of GABA-A receptors was associated with a marked elevation of extra-cellular levels of glutamate following a pretreatment with patients' CSF. Conclusion These results support a direct role of NMDA-R antibodies upon altering glutamatergic transmission. Furthermore, we provide additional evidence in vivo that NMDA-R antibodies deregulate the glutamatergic pathways and that the encephalitis associated with these antibodies is an auto-immune synaptic disorder. PMID:21110857

  15. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  16. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice

    PubMed Central

    Lo, Fu-Sun; Blue, Mary E.

    2015-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541–545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624–1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT. PMID:26683074

  17. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.

    PubMed

    Lo, Fu-Sun; Blue, Mary E; Erzurumlu, Reha S

    2016-03-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.

  18. The role of NMDA and GABAA receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2007-10-24

    Nitrogen pressure exposure, in rats, resulted in a decreased dopamine (DA) level by the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, due to the narcotic potency of nitrogen. In the SNc, the nigrostriatal pathway is under glutamatergic and GABAergic control mediated by ion-channel NMDA and GABA(A) receptors, main targets of volatile anesthetics. The aim of this study was to investigate the role of these receptors in the regulation of striatal dopamine level under nitrogen narcosis. Under general anesthesia, male Sprague-Dawley rats were bilaterally implanted in the striatum with dopamine-sensitive electrodes and, in the SNc, with guide cannulae for drug injections. After recovery from surgery, the striatal dopamine level was quantified using differential pulse voltammetric measurements in freely moving rats. Focal injections of agonists (NMDA/muscimol) and antagonists (AP7/gabazine) of NMDA/GABA(A) receptors were made within SNc. Both normobaric condition and 3 MPa nitrogen pressure were studied. Control experiments confirmed a direct glutamatergic control on the striatal DA level through NMDA receptors. Both direct and indirect GABAergic control through two different types of GABA(A) receptors located on GABAergic interneurons and on DA cells were indicated. Under nitrogen pressure, the decrease in dopamine level (20%) was suppressed by both NMDA and GABA(A) agonist infusion. There was an unexpected increasing DA level, induced by AP7 (about 10%) and gabazine (about 30%). These results indicate that NMDA receptors remain functional and suggest a decreased glutamate release. The findings also describe an increase of GABA(A) receptor-mediated inhibition on DA cells under nitrogen pressure exposure.

  19. Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities

    PubMed Central

    Torres, Eva; Duque, María D.; López-Querol, Marta; Taylor, Martin C.; Naesens, Lieve; Ma, Chunlong; Pinto, Lawrence H.; Sureda, Francesc X.; Kelly, John M.; Vázquez, Santiago

    2012-01-01

    The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein. PMID:22178660

  20. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2008-07-01

    Nitrogen pressure exposure in rats results in decreased dopamine (DA) release at the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, demonstrating the narcotic potency of nitrogen. This effect is attributed to decreased excitatory and increased inhibitory inputs to dopaminergic neurons, involving a change in NMDA and GABA(A) receptor function. We investigated whether repetitive exposures to nitrogen modify the excitatory and inhibitory control of the dopaminergic nigro-striatal pathway. We used voltammetry to measure dopamine levels in freely-moving rats, implanted with dopamine-sensitive electrodes in the striatum. NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) were administered through a guide-cannula into the SNc, and their effects on striatal dopamine levels were measured under normobaric conditions, before and after five repetitive exposures to 1 MPa nitrogen. NMDA-mediated dopamine release was greater following repetitive exposures, AP7-mediated inhibition of glutamatergic input was blocked, suggesting that NMDA receptor sensitivity was increased and glutamate release reduced. Muscimol did not modify dopamine levels following repetitive exposures, whereas the effect of gabazine was greater after exposures than before. This suggested that interneuronal GABA(A) receptors were desensitized, leading to an increased GABAergic input at dopaminergic cells. Thus, repetitive nitrogen exposure induced persistent changes in glutamatergic and GABAergic control of dopaminergic neurons, resulting in decreased activity of the nigrostriatal pathway.

  1. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  2. [Identification of NMDA receptor in normal bovine ovary and ovum].

    PubMed

    Tachibana, Naoko; Ikeda, Shu-ichi

    2014-01-01

    To clarify the pathogenesis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients without ovarian teratoma, we investigate normal human ovary, normal bovine ovary and bovine ova. On the basis of immunohistochemical studies, normal human ovary expressed NR2B epitope in primordial oocytes. The results of SDS-PAGE and immunoblotting using bovine ovarian tissues and ova, we identified two bands of NR1 and NR2B. Moreover, reverse phase liquid chromatography coupled to tandem mass spectrometry showed peptides fractions of NR1, NR2A, NR2B and NR2C. Immunocytochemical study disclosed that normal bovine oocyte has a strong affinity for a patient's disease-specific IgG. Anti-NMDAR encephalitis involves mainly young women who are in their reproductive age. Ovarian teratoma is important as simultaneous tumor, the percentage of patients with ovarian teratoma is less than 40%. It is obvious that the origin of ovarian teratoma is oocyte. So the existence of NMDAR in normal oocytes is very important to assert that ovary itself is the antigen presenting tissue. And also it is helpful to explain why young women are mainly affected from this disease. It seems to conclude that anti-NMDAR encephalitis is one form of autoimmune synaptic encephalitis and that the antigen presenting tissue is ovary itself.

  3. [Anti-NMDA Receptor Antibody-Related Encephalitis].

    PubMed

    Nagayama, Shigemi; Tanaka, Keiko

    2016-09-01

    Recently, the search for diagnostic antibody markers has drawn considerable attention in relation to autoimmune encephalitis. Among the antibody markers, the most frequently detected is the anti-N-methyl-D-aspartate receptor (NMDAR)antibody. Patients with this antibody develop characteristic clinical features. This disease tends to affect young women, and starts with psychiatric symptoms followed by seizures, involuntary movements, autonomic failure, and respiratory failure. Nearly half of these female patients have ovarian teratoma. Some of the patients with anti-NMDAR antibody show atypical clinical features. Approximately 4% show only psychiatric symptoms, which might lead to a diagnosis of malignant catatonia. Other reports describe patients experiencing refractory seizures to have the anti-NMDAR antibody. Some of the antibody-positive patients are associated with demyelinating disorders, and some develop anti-NMDAR encephalitis after recovery from herpes simplex encephalitis. It is important to test the anti-NMDAR antibody in these groups since immunotherapy ameliorates their symptoms. The anti-NMDAR antibody binds to the constitutional epitope at the extracellular domain of GluN1 and disrupts its function. Early introduction of immunotherapy together with tumor resection will results in improvement of neurological symptoms.

  4. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  5. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis mimicking a primary psychiatric disorder in an adolescent.

    PubMed

    Lebon, Sébastien; Mayor-Dubois, Claire; Popea, Irina; Poloni, Claudia; Selvadoray, Nalini; Gumy, Alain; Roulet-Perez, Eliane

    2012-12-01

    Anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis likely has a wider clinical spectrum than previously recognized. This article reports a previously healthy 16-year-old girl who was diagnosed with anti-NMDA receptor encephalitis 3 months after onset of severe depression with psychotic features. She had no neurological manifestations, and cerebral magnetic resonance imaging (MRI) was normal. Slow background on electroencephalogram and an oligoclonal band in the cerebrospinal fluid prompted the search for anti-NMDA receptor antibodies. She markedly improved over time but remained with mild neuropsychological sequelae after a trial of late immunotherapy. Only a high index of suspicion enables recognition of the milder forms of the disease masquerading as primary psychiatric disorders.

  6. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: an unusual cause of autistic regression in a toddler.

    PubMed

    Scott, Ori; Richer, Lawrence; Forbes, Karen; Sonnenberg, Lyn; Currie, Angela; Eliyashevska, Myroslava; Goez, Helly R

    2014-05-01

    Anti N-methyl-d-aspartate (NMDA) receptor encephalitis in children is associated with psychiatric changes, seizures, and dyskinesias. We present the first report of autistic regression in a toddler caused by this entity. A 33-month-old boy presented with decreased appetite, irritability, and insomnia following an upper respiratory tract infection. Over the next few weeks he lost language and social skills, and abnormal movements of his hand developed. Within a month, this patient came to fit the diagnostic criteria for autistic spectrum disorder. Upon investigation, anti-NMDA receptor antibodies were found in the boy's cerebrospinal fluid. He was treated with intravenous immunoglobulins and steroids, resulting in reacquisition of language and social skills and resolution of movements. Our case emphasizes the significance of suspecting anti-NMDA receptor encephalitis as the cause of autistic regression, even in an age group where the diagnosis of autistic spectrum disorder is typically made, and especially when presentation follows a febrile illness.

  7. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses.

    PubMed

    Lei, Saobo; McBain, Chris J

    2002-03-14

    Dentate gyrus granule cells innervate inhibitory interneurons via a continuum of synapses comprised of either Ca(2+)-impermeable (CI) or Ca(2+)-permeable (CP) AMPA receptors. Synapses at the extreme ends of this continuum engage distinct postsynaptic responses, with activity at CI synapses being strongly influenced by NMDA receptor activation. NMDARs at CI synapses have a lower NR2B subunit composition and a higher open probability, which generate larger amplitude and more rapid EPSCs than their CP counterparts. A novel form of NMDAR-dependent long-term depression (iLTD) is associated with CI-mossy fiber synapses, whereas iLTD at CP synapses is dependent on Ca(2+)-permeable AMPA receptor activation. Induction of both forms of iLTD required elevation of postsynaptic calcium. Thus mossy fibers engage CA3 interneurons via multiple synapse types that will act to expand the computational repertoire of the mossy fiber-CA3 network.

  8. Pharmacological Intervention of Hippocampal CA3 NMDA Receptors Impairs Acquisition and Long-Term Memory Retrieval of Spatial Pattern Completion Task

    ERIC Educational Resources Information Center

    Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal

    2009-01-01

    Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…

  9. The effects of isoniazid on hippocampal NMDA receptors: protective role of erdosteine.

    PubMed

    Cicek, Ekrem; Sutcu, Recep; Gokalp, Osman; Yilmaz, H Ramazan; Ozer, M Kaya; Uz, Efkan; Ozcelik, Nurten; Delibas, Namik

    2005-09-01

    Isoniazid (INH) has neurotoxic effects such as seizure, poor concentration, subtle reduction in memory, anxiety, depression and psychosis. INH-induced toxic effects are thought to be through increased oxidative stress, and these effects have been shown to be prevented by antioxidant therapies in various organs. Increased oxidative stress may be playing a role in these neurotoxic effects. N-methyl D-aspartat receptors (NMDA) are a member of the ionotropic group of glutamate receptors. These receptors are involved in a wide variety of processes in the central nervous system including synaptogenesis, synaptic plasticity, memory and learning. Erdosteine is a potent antioxidant and mucolytic agent. We aimed to investigate adverse effects of INH on rat hippocampal NMDAR receptors, and to elucidate whether erdosteine prevents possible adverse effects of INH. In the present study, compared to control group, NMDAR2A (NR2A) receptors were significantly decreased and malondialdehyde (MDA), end product of lipid peroxidation, production was significantly increased in INH-treated group. On the other hand, administration of erdosteine to INH-treated group significantly increased NR2A receptors and decreased MDA production. In conclusion, decreasing NR2A receptors in hippocampus and increasing lipid peroxidation correlates with the degree of oxidative effects of INH and erdosteine protects above effect of INH on NR2A receptors and membrane damage due to lipid peroxidation by its antioxidant properties.

  10. Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex

    PubMed Central

    Chan, Chun-Hung; Yeh, Hermes H

    2003-01-01

    Cajal-Retzius (CR) cells are among the earliest generated population of neurons in the developing neocortex and have been implicated in regulating cortical lamination. In rodents, CR cells are transient, being present only up to 2–3 weeks after birth. Although previous electrophysiological studies have demonstrated the presence of NMDA and GABAA receptors in CR cells, little is known about the functional properties of these receptors. Using whole-cell patch-clamp techniques in neocortical slices, we confirmed the presence of D-aminophosphonovaleric acid (APV)- and ifenprodil-sensitive NMDA receptors, and found that the functional expression of this receptor subtype is strain specific. The NMDA-induced response was consistently accompanied by overriding current transients that were blocked by APV and ifenprodil. In addition, bicuculline readily abolished these transients without affecting the NMDA-induced current response. The generation of these overriding current transients was dependent upon intracellular Ca2+ and was prevented by dialysis with the high-affinity Ca2+-chelator BAPTA. Overall, this study uncovered a synergistic interaction between these receptors, whereby activation of NMDA receptors leads to enhanced GABAA receptor-mediated activity through a Ca2+-dependent mechanism. PMID:12730335

  11. Role of Altered Structure and Function of NMDA Receptors in Development of Alcohol Dependence

    PubMed Central

    Nagy, József; Kolok, Sándor; Boros, András; Dezső, Péter

    2005-01-01

    Long-term alcohol exposure gives rise to development of physical dependence on alcohol in consequence of changes in certain neurotransmitter functions. Accumulating evidence suggests that the glutamatergic neurotransmitter system, especially the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol’s action, since ethanol is a potent inhibitor of the NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory “upregulation” of NMDAR mediated functions supposedly contributing to the occurrence of ethanol tolerance, dependence as well as the acute and delayed signs of ethanol withdrawal. Recently, expression of different types of NMDAR subunits was found altered after long-term ethanol exposure. Especially, the expression of the NR2B and certain splice variant forms of the NR1 subunits were increased in primary neuronal cultures treated intermittently with ethanol. Since NMDA ion channels with such an altered subunit composition have increased permeability for calcium ions, increased agonist sensitivity, and relatively slow closing kinetics, the abovementioned alterations may underlie the enhanced NMDAR activation observed after long-term ethanol exposure. In accordance with these changes, the inhibitory potential of NR2B subunit-selective NMDAR antagonists is also increased, demonstrating excellent potency against alcohol withdrawal-induced in vitro cytotoxicity. Although in vivo data are few with these compounds, according to the effectiveness of the classic NMDAR antagonists in attenuation, not only the physical symptoms, but also some affective and motivational components of alcohol withdrawal, novel NR2B subunit selective NMDAR antagonists may offer a preferable alternative in the pharmacotherapy of alcohol dependence. PMID:18369402

  12. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana

    2014-02-01

    Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance.

  13. Psychotic symptoms in anti-N-methyl-d-aspartate (NMDA) receptor encephalitis: A case report and challenges.

    PubMed

    Sharma, Pawan; Sagar, Rajesh; Patra, Bichitrananda; Saini, Lokesh; Gulati, Sheffali; Chakrabarty, Biswaroop

    2016-08-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis, only recently first described, is an increasingly well-recognized inflammatory encephalitis that is seen in children and adults. An 11-year old girl admitted to the psychiatry ward with a presentation of acute psychosis was diagnosed with NMDA receptor encephalitis following neurology referral and was treated accordingly. This case highlights psychiatric manifestations in encephalitis and the need for the psychiatrist to have high index of suspicion when atypical symptoms (e.g., dyskinesia, seizure, fever etc.) present in acutely psychotic patients.

  14. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function.

    PubMed

    Würdemann, Till; Kersten, Maxi; Tokay, Tursonjan; Guli, Xiati; Kober, Maria; Rohde, Marco; Porath, Katrin; Sellmann, Tina; Bien, Christian G; Köhling, Rüdiger; Kirschstein, Timo

    2016-02-15

    Autoimmune encephalitis is increasingly recognized in patients with otherwise unexplained encephalopathy with epilepsy. Among these, patients with anti-N-methyl D-aspartate receptor (NMDAR) encephalitis present epileptic seizures, memory deficits, and psychiatric symptoms. However, the functional consequences of such autoantibodies are poorly understood. In order to investigate the pathophysiology of this disease, we stereotactically injected either cerebrospinal fluid (CSF) from three anti-NMDAR encephalitis patients or commercially available anti-NMDAR1 into the dentate gyrus of adult female rats. Control animals were injected with either CSF obtained from three epilepsy patients (ganglioglioma, posttraumatic epilepsy, focal cortical dysplasia) lacking anti-NMDAR or saline. Intracellular recordings from dentate gyrus granule cells showed a significant reduction of the NMDAR-evoked excitatory postsynaptic potentials (NMDAR-EPSPs) in animals treated with anti-NMDAR. As a consequence of this, action potential firing in these cells by NMDAR-EPSPs was significantly impaired. Long-term potentiation in the dentate gyrus was also significantly reduced in rats injected with anti-NMDAR as compared to control animals. This was accompanied by a significantly impaired learning performance in the Morris water maze hidden platform task when the animals had been injected with anti-NMDAR antibody-containing CSF. Our findings suggest that anti-NMDAR lead to reduced NMDAR function in vivo which could contribute to the memory impairment found in patients with anti-NMDAR encephalitis.

  15. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.

    PubMed

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-05-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors.

  16. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61

    PubMed Central

    Won, Sehoon; Incontro, Salvatore; Nicoll, Roger A.; Roche, Katherine W.

    2016-01-01

    Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95–KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61. PMID:27457929

  17. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    PubMed

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  18. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Tomita, Jun; Ueno, Taro; Mitsuyoshi, Madoka; Kume, Shoen; Kume, Kazuhiko

    2015-01-01

    Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn), and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi) to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1) (also known as dNR1) reduced sleep. The NMDA receptor (NMDAR) plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila. PMID:26023770

  19. Molecular lock regulates binding of glycine to a primitive NMDA receptor

    PubMed Central

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L.; Lau, Albert Y.

    2016-01-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi. The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants. PMID:27791085

  20. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.

    PubMed

    Wu, Qi; Zheng, Ruimao; Srisai, Dollada; McKnight, G Stanley; Palmiter, Richard D

    2013-09-03

    Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.

  1. PACAP modulates the consolidation and extinction of the contextual fear conditioning through NMDA receptors.

    PubMed

    Schmidt, S D; Myskiw, J C; Furini, C R G; Schmidt, B E; Cavalcante, L E; Izquierdo, I

    2015-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has a broad spectrum of biological functions including neurotransmitter, neurotrophic and neuroprotective. Moreover, it has been suggested that PACAP plays a role in the modulation of learning and memory as well as on the modulation of glutamate signaling. Thus, in the current study we investigated in the CA1 region of hippocampus and in the basolateral amygdala (BLA) the role of PACAP in the consolidation and extinction of contextual fear conditioning (CFC) and the interaction between PACAP and NMDA receptors. Male rats with cannulae implanted in the CA1 region of the hippocampus or in the BLA received immediately after the training or extinction training of the CFC infusions of the Vehicle, PACAP-38 (40 pg/side), PACAP 6-38 (40 pg/side) or PACAP 6-38 plus D-serine (50 μg/side). After 24h, the animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of hippocampus, PACAP participates in the consolidation and extinction of the CFC, and in the BLA, PACAP participates only in the consolidation of the CFC. Additionally, the results suggest that the action of PACAP on the consolidation and extinction of the CFC is mediated by the glutamate NMDA receptors.

  2. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    PubMed

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high.

  3. Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors.

    PubMed

    Besnard, S; Machado, M L; Vignaux, G; Boulouard, M; Coquerel, A; Bouet, V; Freret, T; Denise, P; Lelong-Boulouard, V

    2012-04-01

    It has recently been shown that a lack of vestibular sensory information decreases spatial memory performance and induces biochemical changes in the hippocampus in rodents. After vestibular neurectomy, patients display spatial memory deficit and hippocampal atrophy. Our objectives were to explore: (a) spatial (Y maze, radial-arm maze), and non-spatial (object recognition) memory performance, (b) modulation of NMDA receptors within the hippocampus using radioligand binding, and (c) hippocampal atrophy, using MRI, in a rat model of bilateral labyrinthectomy realized in two operations. Chemical vestibular lesions (VLs) were induced in 24 animals by transtympanic injections of sodium arsanilate (30 mg/0.1 ml/ear), one side being lesioned 3 weeks after the other. The control group received transtympanic saline solution (0.1 ml/ear) (n = 24). Spatial memory performance (Y maze and radial maze) decreased after VL. Conversely, non-spatial memory performance (object recognition) was not affected by VL. No hippocampal atrophy was observed with MRI, but density of NMDA receptors were increased in the hippocampus after VL. These findings show that the lack of vestibular information induced specific deficits in spatial memory. Additionally, quantitative autoradiographic data suggest the involvement of the glutamatergic system in spatial memory processes related to vestibular information. When studying spatial memory performances in the presence of vestibular syndrome, two-step labyrinthectomy is a suitable procedure for distinguishing between the roles of the specific components of vestibular input loss and those of impaired locomotor activity.

  4. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  5. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior

    PubMed Central

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-01-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors. PMID:21468034

  6. Molecular lock regulates binding of glycine to a primitive NMDA receptor.

    PubMed

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L; Lau, Albert Y

    2016-11-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.

  7. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.

  8. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  9. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  10. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  11. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  12. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory.

    PubMed

    Korotkova, Tatiana; Fuchs, Elke C; Ponomarenko, Alexey; von Engelhardt, Jakob; Monyer, Hannah

    2010-11-04

    Activity of parvalbumin-positive hippocampal interneurons is critical for network synchronization but the receptors involved therein have remained largely unknown. Here we report network and behavioral deficits in mice with selective ablation of NMDA receptors in parvalbumin-positive interneurons (NR1(PVCre-/-)). Recordings of local field potentials and unitary neuronal activity in the hippocampal CA1 area revealed altered theta oscillations (5-10 Hz) in freely behaving NR1(PVCre-/-) mice. Moreover, in contrast to controls, in NR1(PVCre-/-) mice the remaining theta rhythm was abolished by the administration of atropine. Gamma oscillations (35-85 Hz) were increased and less modulated by the concurrent theta rhythm in the mutant. Positional firing of pyramidal cells in NR1(PVCre-/-) mice was less spatially and temporally precise. Finally, NR1(PVCre-/-) mice exhibited impaired spatial working as well as spatial short- and long-term recognition memory but showed no deficits in open field exploratory activity and spatial reference learning.

  13. Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors

    PubMed Central

    Zweifel, Larry S.; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D.

    2008-01-01

    Summary A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors. PMID:18701073

  14. The impact of NMDA Receptor hypofunction on GABAergic interneurons in the pathophysiology of schizophrenia

    PubMed Central

    Cohen, Samuel M.; Tsien, Richard W.; Goff, Donald C.; Halassa, Michael M.

    2016-01-01

    While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR) function. By highlighting post mortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics. PMID:25583246

  15. Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System.

    PubMed

    Mapelli, Lisa; Gagliano, Giuseppe; Soda, Teresa; Laforenza, Umberto; Moccia, Francesco; D'Angelo, Egidio U

    2017-02-01

    Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is therefore much more suitable for effective NVC. Here, we show, in the granular layer of acute rat cerebellar slices, that capillary diameter changes rapidly after mossy fiber stimulation. Vasodilation required neuronal NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pericytes. Vasoconstriction required metabotropic glutamate receptors and CYP ω-hydroxylase, the enzyme regulating 20-hydroxyeicosatetraenoic acid production. Therefore, granular layer capillaries are controlled by the balance between vasodilating and vasoconstricting systems that could finely tune local blood flow depending on neuronal activity changes at the cerebellar input stage.

  16. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  17. GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine

    PubMed Central

    Sibarov, Dmitry A.; Abushik, Polina A.; Giniatullin, Rashid; Antonov, Sergei M.

    2016-01-01

    Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors). We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine) considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the “synaptic type” GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to post-synaptic responses mediated

  18. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  19. Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2008-11-13

    The degree to which NMDA receptors contribute to hippocampal CA(1) stratum radiatum excitatory postsynaptic potentials (EPSP) is a matter of debate. This experiment was designed to resolve the issue by documenting and positively identifying the elements of the NMDA dependent component in the extracellularly recorded stratum radiatum CA(1) field potential under low stimulation conditions and in the presence of physiologic levels of Mg(2+). We show that EPSP generation consists of activation of both AMPA and NMDA receptor channels, which mediate distinct components of the recorded field potential. We propose that the EPSP is a combination of two waves rather than one, which sometimes has been attributed to the exclusive activation of AMPA channels. Our data suggest that the three recorded peaks signify different events. The first peak reflects the presynaptic volley while the other two represent the actual EPSP. The first peak of the EPSP is determined mainly by flow of ions through AMPA channels. The second peak most likely is determined by the concurrence of two phenomena: ionic flow through NMDA channels and the source corresponding to the sink generated at the cell bodies in the pyramidal layer. The NMDA dependent component was recorded when Mg(2+) was present in physiological concentrations. The presynaptic volley and second peak do not saturate over a 10-fold increase of the stimulation charge and their amplitudes are highly correlated. The first peak amplitude rapidly saturates. The sensitivity of the recorded signals is different, the first peak being the most sensitive (1.25-0.26 mV/nC). Isolation of NMDA dependent components under physiological conditions when using a single pulse low stimulation protocol would allow more precise investigations of the NMDA dependent forms of synaptic plasticity.

  20. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice.

    PubMed

    Chang, Chih-Hua; Hsiao, Ya-Hsin; Chen, Yu-Wen; Yu, Yang-Jung; Gean, Po-Wu

    2015-04-01

    Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.

  1. N-methyl-D-aspartate (NMDA)-stimulated noradrenaline (NA) release in rat brain cortex is modulated by presynaptic H3-receptors.

    PubMed

    Fink, K; Schlicker, E; Göthert, M

    1994-02-01

    In superfused rat brain cortex slices and synaptosomes preincubated with [3H]noradrenaline the effect of agonists or antagonists at presynaptic H3 receptors on NMDA-evoked [3H]noradrenaline release was investigated. In experiments on slices, histamine and the preferential H3 receptor agonist R-(-)-alpha-methylhistamine inhibited NMDA-evoked tritium overflow (IC20 values 0.27 mumol/l or 0.032 mumol/l, respectively); S-(+)-alpha-methylhistamine (up to 10 mumol/l) as well as the selective H1 receptor agonist (2-(2-thiazolyl)ethylamine and the selective H2 receptor agonist dimaprit (each up to 10 mumol/l) were ineffective. The H3 receptor antagonist thioperamide abolished the inhibitory effect of histamine whereas the preferential H1 receptor antagonist dimetindene and the preferential H2 receptor antagonist ranitidine were ineffective. In experiments on synaptosomes, histamine and R-(-)-alpha-methylhistamine inhibited NMDA-evoked tritium overflow, whereas 2-(2-thiazolyl)ethylamine or dimaprit had no effect. The inhibitory effect of histamine was abolished by thioperamide. When tritium overflow was stimulated by NMDA in the presence of omega-conotoxin GVIA (which by itself decreased the response to NMDA by about 55%), R-(-)-alpha-methylhistamine did not inhibit NMDA-evoked overflow. It is concluded that NMDA-evoked noradrenaline release in the cerebral cortex can be modulated by inhibitory H3 receptors. NMDA receptors and H3 receptors are both located presynaptically and may interact at the same noradrenergic varicosity. An unimpaired function of the N-type voltage-sensitive calcium channel probably is a prerequisite for the inhibition of NMDA-evoked noradrenaline release by H3 receptor stimulation.

  2. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  3. Red nucleus glutamate facilitates neuropathic allodynia induced by spared nerve injury through non-NMDA and metabotropic glutamate receptors.

    PubMed

    Yu, Jing; Ding, Cui-Ping; Wang, Jing; Wang, Ting; Zhang, Tao; Zeng, Xiao-Yan; Wang, Jun-Yang

    2015-12-01

    Previous studies have demonstrated that glutamate plays an important role in the development of pathological pain. This study investigates the expression changes of glutamate and the roles of different types of glutamate receptors in the red nucleus (RN) in the development of neuropathic allodynia induced by spared nerve injury (SNI). Immunohistochemistry indicated that glutamate was constitutively expressed in the RN of normal rats. After SNI, the expression levels of glutamate were significantly increased in the RN at 1 week and reached the highest level at 2 weeks postinjury compared with sham-operated and normal rats. The RN glutamate was colocalized with neurons, oligodendrocytes, and astrocytes but not microglia under physiological and neuropathic pain conditions. To elucidate further the roles of the RN glutamate and different types of glutamate receptors in the development of neuropathic allodynia, antagonists to N-methyl-D-aspartate (NMDA), non-NMDA, or metabotropic glutamate receptors (mGluRs) were microinjected into the RN contralateral to the nerve-injury side of rats with SNI, and the paw withdrawal threshold (PWT) was dynamically assessed with von Frey filaments. Microinjection of the NMDA receptor antagonist MK-801 into the RN did not show any effect on SNI-induced mechanical allodynia. However, microinjection of the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione or the mGluR antagonist (±)-α-methyl-(4-carboxyphenyl) glycine into the RN significantly increased the PWT and alleviated SNI-induced mechanical allodynia. These findings suggest that RN glutamate is involved in regulating neuropathic pain and facilitates the development of SNI-induced neuropathic allodynia. The algesic effect of glutamate is transmitted by the non-NMDA glutamate receptor and mGluRs.

  4. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    PubMed

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells.

  5. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.

  6. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    PubMed

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  7. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism.

    PubMed

    Kiani, Reza; Lawden, Mark; Eames, Penelope; Critchley, Peter; Bhaumik, Sabyasachi; Odedra, Sunita; Gumber, Rohit

    2015-02-01

    We report anti-N-methyl-d-aspartate (NMDA) receptor encephalitis in two patients with autism and intellectual disability presenting with neuropsychiatric symptoms of catatonia and neuroleptic malignant syndrome. Case reports such as these help raise awareness of this clinical issue. By paving the way for earlier diagnoses they ultimately maximise the potential for curative treatments and prevention of long-term complications.

  8. Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons

    PubMed Central

    Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1999-01-01

    Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission. PMID:10492007

  9. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  10. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  11. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  12. Anti-NMDA Receptor Encephalitis in a Patient with Previous Psychosis and Neurological Abnormalities: A Diagnostic Challenge

    PubMed Central

    Heekin, R. David; Catalano, Maria C.; Frontera, Alfred T.; Catalano, Glenn

    2015-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune disorder characterized by IgG autoantibodies directed against the NR1 subunit of the NMDA glutamate receptor. Psychiatric symptoms are common and include psychosis, mania, depressed mood, aggression, and speech abnormalities. Neurological symptoms such as seizures, decreased responsiveness, dyskinesias, and other movement abnormalities and/or autonomic instability are frequently seen as well. We present the case of a woman who was followed up at our facility for over 14 years for the treatment of multiple neuropsychiatric symptoms. Initially, she presented with paresthesias, memory loss, and manic symptoms. Nine years later, she presented to our facility again, this time with left sided numbness, left eyelid droop, and word finding difficulties. Finally, five years later, she presented with manic symptoms, hallucinations, and memory impairment. During her hospitalization, she subsequently developed catatonic symptoms and seizures. During her stay, it was discovered that she was positive for anti-NMDA receptor antibodies and her symptoms responded well to appropriate therapy. This case demonstrates that it may be useful for clinicians to consider screening for anti-NMDA receptor antibodies in long-term patients with neuropsychiatric symptoms that have not adequately responded to therapy. PMID:26199781

  13. Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus.

    PubMed

    Šlamberová, R; Vrajová, M; Schutová, B; Mertlová, M; Macúchová, E; Nohejlová, K; Hrubá, L; Puskarčíková, J; Bubeníková-Valešová, V; Yamamotová, A

    2014-01-01

    Since close relationship was shown between drug addiction and memory formation, the aim of the present study was to investigate the effects of interaction between prenatal methamphetamine (MA) exposure and MA treatment in adulthood on spatial and non-spatial memory and on the structure of the N-methyl-D-aspartate (NMDA) receptors in the hippocampus. Adult male rats prenatally exposed to MA (5 mg/kg) or saline were tested in adulthood. Non-spatial memory was examined in the Object Recognition Test (ORT) and spatial memory in the Object Location Test (OLT) and in the Memory Retention Test (MRT) conducted in the Morris Water Maze (MWM), respectively. Based on the type of the memory test animals were injected either acutely (ORT, OLT) or long-term (MWM) with MA (1 mg/kg). After each testing, animals were sacrificed and brains were removed. The hippocampus was then examined in Western Blot analysis for occurrence of different NMDA receptors' subtypes. Our results demonstrated that prenatal MA exposure affects the development of the NMDA receptors in the hippocampus that might correspond with improvement of spatial memory tested in adulthood in the MWM. On the other hand, the effect of prenatal MA exposure on non-spatial memory examined in the ORT was the opposite. In addition, we showed that the effect of MA administration in adulthood on NMDA receptors is influenced by prenatal MA exposure, which seems to correlate with the spatial memory examined in the OLT.

  14. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  15. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  16. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  17. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro.

    PubMed

    Murray, F; Kennedy, J; Hutson, P H; Elliot, J; Huscroft, I; Mohnen, K; Russell, M G; Grimwood, S

    2000-06-02

    [3H]MK-801 binding in vivo was used to determine the occupancy of NMDA receptor ligands shown to allosterically modulate binding in vitro. ED(50) values (mg/kg) were obtained for the channel blockers (+)-5-methyl-10,11-dihydro-5,4-dibenzo[a,d]cyclohepten-5,10-imine maleate ((+)-MK-801, 0.2), 1-(1-phenylcyclohexyl)piperidine (phencyclidine, PCP, 1.7) and ketamine (4.4). Antagonists at the glutamate (DL-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (DL-CPP, 5.7)) and glycine site (7-Chloro-4-hydroxy-3-(3-phenoxy)-phenyl-2(H)quinolinone (L-701,324, 14.1), 3R(+)cis-4-methyl-pyrrollid-2-one (L-687,414, 15.1)) inhibited [3H]MK-801 binding in vivo to varying maximum levels (69%, 103% and 45%, respectively). NR2B subunit-selective compounds acting at the ifenprodil site inhibited [3H]MK-801 in vivo by a maximum of 52-72% and gave ED(50) values (mg/kg) of: (+/-)-(1S*, 2S*)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol ((+/-)CP-101,606), 1.9; (+/-)-(3R, 4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol ((+/-)CP-283,097), 1.8; (+/-)-(R*, S*)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propanol ((+/-)Ro 25-6981), 1.0; ifenprodil, 6.0. The glycine site agonist D-serine stimulated binding to 151% of control with an ED(50) of 1.7 mg/kg. Results show that [3H]MK-801 binding in vivo may be used to measure receptor occupancy of ligands acting not only within the ion channel but also at modulatory sites on the NMDA receptor complex.

  18. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  19. Differential Regulation of GABAB Receptor Trafficking by Different Modes of N-methyl-d-aspartate (NMDA) Receptor Signaling*

    PubMed Central

    Kantamneni, Sriharsha; Gonzàlez-Gonzàlez, Immaculada M.; Luo, Jia; Cimarosti, Helena; Jacobs, Susan C.; Jaafari, Nadia; Henley, Jeremy M.

    2014-01-01

    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival. PMID:24425870

  20. Glutamate requires NMDA receptors to modulate alpha2 adrenoceptor in medulla oblongata cultured cells of newborn rats.

    PubMed

    Marinho da Silva, Sergio; Carrettiero, Daniel C; Chadi, Débora R F

    2014-04-03

    α2 Adrenoceptors (α2-ARs) are important in regulating the central control of blood pressure in medulla oblongata. However, it is unclear how this receptor is modulated by different receptors, especially the glutamatergic. In the present study, we studied the influence of ionotropic glutamatergic receptors over the α2-ARs in cultured cells of the medulla oblongata of newborn rats. For this purpose, the protein level of the α2-ARs was assessed after administration to the cultured cells of glutamate (glu), the agonists NMDA and kainate (KA), the NMDA receptor antagonist MK801 and the KA receptor antagonist DNQX. Results indicate that the α2-AR protein levels were increased after the treatments with glu and NMDA, and the addition of MK801 to this treatment thwarted this increase. Notwithstanding the fact that KA did not alter the receptor protein level, the combined treatment of DNQX with glu prevented the α2-AR protein modulation. In conclusion, the present study suggests that ionotropic glutamatergic receptors could be related to the α2-AR protein regulation in the medulla oblongata.

  1. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels.

    PubMed

    Coussens, C M; Kerr, D S; Abraham, W C

    1997-07-01

    The effects of the glucocorticoid receptor agonist RU-28362 on homosynaptic long-term depression (LTD) were examined in hippocampal slices obtained from adrenal-intact adult male rats. Field excitatory postsynaptic potentials were evoked by stimulation of the Schaffer collateral/commissural pathway and recorded in stratum radiatum of area CA1. Low-frequency stimulation (LFS) was delivered at LTD threshold (2 bouts of 600 pulses, 1 Hz, at baseline stimulation intensity). LFS of the Schaffer collaterals did not produce significant homosynaptic LTD in control slices. However, identical conditioning in the presence of the glucocorticoid receptor agonist RU-28362 (10 microM) produced a robust LTD, which was blocked by the selective glucocorticoid antagonist RU-38486. The LTD induced by glucocorticoid receptor activation was dependent on N-methyl-D-aspartate (NMDA) receptor activity, because the specific NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) blocked the facilitation. However, the facilitation of LTD was not due to a potentiation of the isolated NMDA receptor potential by RU-28362. The facilitation of LTD by RU-28362 was also blocked by coincubation of the L-type voltage-dependent calcium channel (VDCC) antagonist nimodipine. Selective activation of the L-type VDCCs by the agonist Bay K 8644 also facilitated LTD induction. Both nimodipine and D-AP5 were effective in blocking the facilitation of LTD by Bay K 8644. These results indicate that L-type VDCCs can contribute to NMDA-receptor-dependent LTD induction.

  2. Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex.

    PubMed

    Thomases, Daniel R; Cass, Daryn K; Tseng, Kuei Y

    2013-01-02

    A developmental disruption of prefrontal cortical inhibitory circuits is thought to contribute to the adolescent onset of cognitive deficits observed in schizophrenia. However, the developmental mechanisms underlying such a disruption remain elusive. The goal of this study is to examine how repeated exposure to the NMDA receptor antagonist dizocilpine maleate (MK-801) during periadolescence [from postnatal day 35 (P35) to P40] impacts the normative development of local prefrontal network response in rats. In vivo electrophysiological analyses revealed that MK-801 administration during periadolescence elicits an enduring disinhibited prefrontal local field potential (LFP) response to ventral hippocampal stimulation at 20 Hz (beta) and 40 Hz (gamma) in adulthood (P65-P85). Such a disinhibition was not observed when MK-801 was given during adulthood, indicating that the periadolescent transition is indeed a sensitive period for the functional maturation of prefrontal inhibitory control. Accordingly, the pattern of prefrontal LFP disinhibition induced by periadolescent MK-801 treatment resembles that observed in the normal P30-P40 prefrontal cortex (PFC). Additional pharmacological manipulations revealed that these developmentally immature prefrontal responses can be mimicked by single microinfusion of the GABA(A) receptor antagonist picrotoxin into the normal adult PFC. Importantly, acute administration of the GABA(A)-positive allosteric modulator Indiplon into the PFC reversed the prefrontal disinhibitory state induced by periadolescent MK-801 to normal levels. Together, these results indicate a critical role of NMDA receptors in regulating the periadolescent maturation of GABAergic networks in the PFC and that pharmacologically induced augmentation of local GABA(A)-receptor-mediated transmission is sufficient to overcome the disinhibitory prefrontal state associated with the periadolescent MK-801 exposure.

  3. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex

    PubMed Central

    Sidorov, Michael S.; Kaplan, Eitan S.; Osterweil, Emily K.; Lindemann, Lothar; Bear, Mark F.

    2015-01-01

    A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD. PMID:26417096

  4. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  5. Postsynaptic, not presynaptic NMDA receptors are required for spike timing dependent LTD induction

    PubMed Central

    Carter, Brett C.; Jahr, Craig E.

    2016-01-01

    Long-term depression (LTD) between cortical layer 4 spiny stellate cells and layer 2/3 pyramidal cells requires the activation of NMDA receptors (NMDARs). In young rodents, this form of LTD has been repeatedly reported to require presynaptic NMDARs for its induction. Here we show that at this synapse in the somatosensory cortex of 2 to 3 week old rats and mice, postsynaptic, not presynaptic NMDARs are required for LTD induction. First, we find no evidence for functional NMDARs in L4 neuron axons using 2 photon laser scanning microscopy and 2 photon glutamate uncaging. Second, we find that genetic deletion of postsynaptic, but not presynaptic NMDARs prevents LTD induction. Finally, the pharmacology of the NMDAR requirement is consistent with a non-ionic signaling mechanism. PMID:27399842

  6. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  7. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience.

    PubMed

    Nakazawa, Kazu; Sun, Linus D; Quirk, Michael C; Rondi-Reig, Laure; Wilson, Matthew A; Tonegawa, Susumu

    2003-04-24

    Lesion and pharmacological intervention studies have suggested that in both human patients and animals the hippocampus plays a crucial role in the rapid acquisition and storage of information from a novel one-time experience. However, how the hippocampus plays this role is poorly known. Here, we show that mice with NMDA receptor (NR) deletion restricted to CA3 pyramidal cells in adulthood are impaired in rapidly acquiring the memory of novel hidden platform locations in a delayed matching-to-place version of the Morris water maze task but are normal when tested with previously experienced platform locations. CA1 place cells in the mutant animals had place field sizes that were significantly larger in novel environments, but normal in familiar environments relative to those of control mice. These results suggest that CA3 NRs play a crucial role in rapid hippocampal encoding of novel information for fast learning of one-time experience.

  8. NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats.

    PubMed

    Zimmerman, Joshua M; Maren, Stephen

    2010-05-01

    Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long-term extinction memory to that CS. In contrast, infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long-term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor-dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.

  9. Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes.

    PubMed

    Saunders, John A; Tatard-Leitman, Valerie M; Suh, Jimmy; Billingslea, Eddie N; Roberts, Timothy P; Siegel, Steven J

    2013-04-01

    Autism is a disabling neurodevelopmental disorder characterized by social deficits, language impairment, and repetitive behaviors with few effective treatments. New evidence suggests that autism has reliable electrophysiological endophenotypes and that these measures may be caused by n-methyl-d-aspartic acid receptor (NMDAR) disruption on parvalbumin (PV)-containing interneurons. These findings could be used to create new translational biomarkers. Recent developments have allowed for cell-type selective knockout of NMDARs in order to examine the perturbations caused by disrupting specific circuits. This study examines several electrophysiological and behavioral measures disrupted in autism using a PV-selective reduction in NMDA R1 subunit. Mouse electroencephalograph (EEG) was recorded in response to auditory stimuli. Event-related potential (ERP) component amplitude and latency analysis, social testing, and premating ultrasonic vocalizations (USVs) recordings were performed. Correlations were examined between the ERP latency and behavioral measures. The N1 ERP latency was delayed, sociability was reduced, and mating USVs were impaired in PV-selective NMDA Receptor 1 Knockout (NR1 KO) as compared with wild-type mice. There was a significant correlation between N1 latency and sociability but not between N1 latency and premating USV power or T-maze performance. The increases in N1 latency, impaired sociability, and reduced vocalizations in PV-selective NR1 KO mice mimic similar changes found in autism. Electrophysiological changes correlate to reduced sociability, indicating that the local circuit mechanisms controlling N1 latency may be utilized in social function. Therefore, we propose that behavioral and electrophysiological alterations in PV-selective NR1 KO mice may serve as a useful model for therapeutic development in autism. Autism Res 2013, 6: 69-77. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Differences in treatment of anti-NMDA receptor encephalitis: results of a worldwide survey.

    PubMed

    Bartolini, Luca; Muscal, Eyal

    2017-02-02

    The objective of the study was to identify differences in treatment strategies for anti-NMDA receptor encephalitis based on specialty of treating physicians, geographic location, and years in practice. We conducted an anonymous worldwide electronic survey through the Practice Current section of Neurology(®) Clinical Practice to appraise differences in decisions about first- and second-line treatment and timing for initiation of second-line treatment for anti-NMDA receptor encephalitis. 399 participants answered all questions of the survey and were included in the analysis. 261 (65%) were adult neurologists, 86 (22%) were neurologists treating children, and 52 (13%) were pediatric rheumatologists. 179 (45%) responders practiced in the US. The majority agreed on the use of steroids and/or IVIg for first-line therapy and rituximab alone as second line. Differences in initial treatment regimen based on specialty included increased use of plasma exchange by adult neurologists (27%) and rituximab by pediatric rheumatologists (29%) (χ (2)(4) = 27.43, p < 0.001). Trainees opted for plasma exchange (35%) and junior faculty picked rituximab (15%) more as part of first line (χ (2)(4) = 13.37, p = 0.010). There was greater usage of anti-metabolites for second-line therapy outside of the US (15%) (χ (2)(4) = 11.67, p = 0.020). US physicians also utilized second-line treatment earlier than their mostly European counterparts (14 vs. 23% used later than 2 weeks; χ (2)(1) = 4.96, p = 0.026). Although treatment patterns were similar, differences observed across specialties and geographic locations may guide the development of consensus-driven guidelines by multi-disciplinary task forces. These guidelines may promote treatment trials of immunomodulators in autoimmune encephalitides.

  11. Diminution of the NMDA receptor NR2B subunit in cortical and subcortical areas of WAG/Rij rats.

    PubMed

    Karimzadeh, Fariba; Soleimani, Mansoureh; Mehdizadeh, Mehdi; Jafarian, Maryam; Mohamadpour, Maliheh; Kazemi, Hadi; Joghataei, Mohammad-Taghi; Gorji, Ali

    2013-12-01

    Modulation of glutamatergic NMDA receptors affects the synchronization of spike discharges in in WAG/Rij rats, a valid genetic animal model of absence epilepsy. In this study, we describe the alteration of NR2B subunit of NMDA receptors expression in WAG/Rij rats in different somatosensory cortical layers and in hippocampal CA1 area. Experimental groups were divided into four groups of six rats of both WAG/Rij and Wistar strains with 2 and 6 months of age. The distribution of NR2B receptors was assessed by immunohistochemical staining in WAG/Rij and compared with age-matched Wistar rats. The expression of NR2B subunit was significantly decreased in different somatosensory cortical layers in 2- and 6-month-old WAG/Rij rats. In addition, the distribution of NR2B in hippocampal CA1 area was lower in 6-month-old WAG/Rij compared with age-matched Wistar rats. The reduction of NR2B receptors in different brain areas points to disturbance of glutamate receptors expression in cortical and subcortical areas in WAG/Rij rats. An altered subunit assembly of NMDA receptors may underlie cortical hyperexcitability in absence epilepsy.

  12. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.

    PubMed

    Walker, Adam K; Budac, David P; Bisulco, Stephanie; Lee, Anna W; Smith, Robin A; Beenders, Brent; Kelley, Keith W; Dantzer, Robert

    2013-08-01

    We have previously demonstrated that lipopolysaccharide (LPS) induces depressive-like behavior by activating indoleamine 2,3 dioxygenase (IDO; O'Connor et al, 2009c). IDO degrades tryptophan along the kynurenine pathway. Using mass-spectrometry (LC-MS) analysis of kynurenine metabolites in the brain of mice injected at the periphery with 1 mg/kg LPS, we show that LPS activates the kynurenine 3-monooxygenase pathway that ultimately degrades kynurenine into quinolinic acid. As quinolinic acid acts as an N-methyl-D-aspartate (NMDA) receptor agonist, we used the NMDA receptor antagonist ketamine to assess the role of NMDA receptor activation in LPS-induced depressive-like behavior. Here, we report that a low dose of ketamine (6 mg/kg, intraperitoneally) immediately before administration of LPS (0.83 mg/kg, intraperitoneally) in C57Bl/6 J mice abrogated the development of LPS-induced depressive-like behavior, without altering LPS-induced sickness measured by body weight loss, decreased motor activity, and reduced food intake. Depressive-like behavior was measured 24 h after LPS by decreased sucrose preference and increased immobility in the forced swim test (FST). Ketamine had no effect on LPS-induced cytokine expression in the liver and brain, IDO activation, and brain-derived neurotrophic factor (BDNF) transcripts. The ability of ketamine to abrogate LPS-induced depressive-like behavior independently of a possible interference with LPS-induced inflammatory signaling was confirmed when ketamine was administered 10 h after LPS instead of immediately before LPS. In contrast, ketamine had no effect when administered 24 h before LPS. To confirm that NMDA receptor antagonism by ketamine mediates the antidepressant-like activity of this compound in LPS-treated mice, mice were pretreated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX) to block enhanced AMPA

  13. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures

    PubMed Central

    Hajjhussein, Hassan; Suvarna, Neesha U.; Gremillion, Carmen; Judson Chandler, L.; O’Donnell, James M.

    2007-01-01

    NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes. PMID:17407767

  14. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  15. Copper Inhibits NMDA Receptor-Independent LTP and Modulates the Paired-Pulse Ratio after LTP in Mouse Hippocampal Slices

    PubMed Central

    Salazar-Weber, Nina L.; Smith, Jeffrey P.

    2011-01-01

    Copper misregulation has been implicated in the pathological processes underlying deterioration of learning and memory in Alzheimer's disease and other neurodegenerative disorders. Supporting this, inhibition of long-term potentiation (LTP) by copper (II) has been well established, but the exact mechanism is poorly characterized. It is thought that an interaction between copper and postsynaptic NMDA receptors is a major part of the mechanism; however, in this study, we found that copper (II) inhibited NMDA receptor-independent LTP in the CA3 region of hippocampal slices. In addition, in the CA3 and CA1 regions, copper modulated the paired-pulse ratio (PPR) in an LTP-dependent manner. Combined, this suggests the involvement of a presynaptic mechanism in the modulation of synaptic plasticity by copper. Inhibition of the copper-dependent changes in the PPR with cyclothiazide suggested that this may involve an interaction with the presynaptic AMPA receptors that regulate neurotransmitter release. PMID:22028985

  16. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation

    PubMed Central

    Frank, René A. W.; Komiyama, Noboru H.; Ryan, Tomás J.; Zhu, Fei; O'Dell, Thomas J.; Grant, Seth G. N.

    2016-01-01

    How neuronal proteomes self-organize is poorly understood because of their inherent molecular and cellular complexity. Here, focusing on mammalian synapses we use blue-native PAGE and ‘gene-tagging' of GluN1 to report the first biochemical purification of endogenous NMDA receptors (NMDARs) directly from adult mouse brain. We show that NMDARs partition between two discrete populations of receptor complexes and ∼1.5 MDa supercomplexes. We tested the assembly mechanism with six mouse mutants, which indicates a tripartite requirement of GluN2B, PSD93 and PSD95 gate the incorporation of receptors into ∼1.5 MDa supercomplexes, independent of either canonical PDZ-ligands or GluN2A. Supporting the essential role of GluN2B, quantitative gene-tagging revealed a fourfold molar excess of GluN2B over GluN2A in adult forebrain. NMDAR supercomplexes are assembled late in postnatal development and triggered by synapse maturation involving epigenetic and activity-dependent mechanisms. Finally, screening the quaternary organization of 60 native proteins identified numerous discrete supercomplexes that populate the mammalian synapse. PMID:27117477

  17. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat.

    PubMed

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity.

  18. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice.

    PubMed

    Blokhina, Elena A; Kashkin, Vladimir A; Zvartau, Edwin E; Danysz, Wojciech; Bespalov, Anton Y

    2005-03-01

    Previous studies have indicated that blockade of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors prevents acquisition of instrumental behaviors reinforced by food and drugs such as morphine and cocaine. The present study aimed to extend this evidence by testing whether NMDA receptor channel blocker, memantine, would exert similar effects on acquisition of cocaine and nicotine self-administration in mice. Inasmuch as memantine also acts as nicotinic receptor channel blocker, this study assessed the effects of mecamylamine and MRZ 2/621 that are more selective nicotinic blockers. Adult male Swiss mice were allowed to self-administer cocaine (0.8-2.4 microg/infusion) or nicotine (0.08-0.32 microg/infusion) during the 30-min test. Pretreatment with memantine (0.1-10 mg/kg) prevented acquisition of nicotine but not cocaine self-administration. Pretreatment with mecamylamine (0.3-3 mg/kg) and MRZ 2/621 (0.3-10 mg/kg) produced dose-dependent suppression of both cocaine and nicotine self-administration. Taken together with the previous reports, these results indicate that nicotinic receptor blockers antagonize acute reinforcing effects of cocaine while NMDA receptor blockade may have limited effectiveness.

  19. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  20. GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro.

    PubMed

    Jacobsen, R B; Ulrich, D; Huguenard, J R

    2001-09-01

    Thalamic slice preparations, in which intrathalamic connectivity between the reticular nucleus and relay nuclei is maintained, are capable of sustaining rhythmic burst firing activity in rodents and ferret. These in vitro oscillations occur spontaneously in the ferret and have frequencies (6-10 Hz) within the range of sleep spindles observed in vivo. In the rat, mainly lower frequency (2-4 Hz) oscillations, evoked under conditions of low bath [Mg(2+)] and/or GABA(A) receptor blockade, have been described. Here we show that faster rhythms in the range of 4-9 Hz can be evoked in rat thalamic slices by electrical stimulation of the internal capsule and also occur spontaneously. When bath [Mg(2+)] was 2 mM, these spindle-like oscillations were most common in a brief developmental time window, peaking at postnatal day 12 (P12). The oscillations were almost completely blocked by the GABA(A) receptor antagonist picrotoxin, and, in some cases, the frequency of oscillations was increased by the GABA(B) receptor antagonist CGP-35348. The selective blockade of N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the antagonists 2-amino-5-phosphonovaleric acid or 1,2,3,4-Tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), respectively, significantly shortened oscillations but did not completely block them. A combination of the two drugs was necessary to abolish oscillatory activity. The barbituate pentobarbital, which enhances GABA(A)R responses, initially slowed and synchronized oscillations before completely blocking them. When bath [Mg(2+)] was reduced from 2 to 0.65 mM, evoked oscillations became more robust and were often accompanied by spontaneously arising oscillations. Under these conditions, GABA(A) receptor blockade no longer inhibited oscillations, but instead converted them into the slow, synchronous rhythms that have been observed in other studies. The effects of GABA(B) or NMDA receptor

  1. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation.

    PubMed

    Hernandez-Martinez, Juan-Manuel; Forrest, Caroline M; Darlington, L Gail; Smith, Robert A; Stone, Trevor W

    2017-03-01

    Glutamate and nicotinamide adenine dinucleotide (NAD(+) ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD(+) . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD(+) , independently of NMDA receptors.

  2. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata.

    PubMed

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-08-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation.

  3. Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.

    PubMed

    Atoji, Yasuro

    2015-07-01

    Glutamate is an excitatory neurotransmitter in the vertebrate retina. A previous study found vesicular glutamate transporter 2 (vGluT2) mRNA in the pigeon retina, suggesting that bipolar and ganglion cells are glutamatergic. The present study examined the localization of ionotropic glutamate receptors to identify receptor cells in the pigeon retina using in situ hybridization histochemistry. Nine subunits of AMPA receptor (GluA1, GluA2, GluA3, and GluA4), kainate receptor (GluK1, GluK2, and GluK4), and NMDA receptor (GluN1 and GluN2A) were found to be expressed in the inner nuclear layer (INL) and ganglion cell layers. GluA1, GluA2, GluA3, and GluA4 were primarily expressed in the inner half of INL, and the signal intensity was strong for GluA2, GluA3, and GluA4. GluK1 was intensely expressed in the outer half of INL, whereas GluK2 and GluK4 were mainly localized in the inner half of INL. GluN1 and GluN2A were moderately expressed in the inner half of INL. Horizontal cells expressed GluA3 and GluA4, and ganglion cells expressed all subunits examined. These results suggest that the glutamatergic neurotransmission in the pigeon retina is similar to that in mammals.

  4. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation

    PubMed Central

    Miranda, Adrian; Mickle, Aaron; Bruckert, Mitchell; Kannampalli, Pradeep; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD >20mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life. PMID:25281204

  5. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation.

    PubMed

    Miranda, Adrian; Mickle, Aaron; Bruckert, Mitchell; Kannampalli, Pradeep; Banerjee, Banani; Sengupta, Jyoti N

    2014-12-05

    NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH 4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD>20 mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH 4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life.

  6. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia

    PubMed Central

    Quillinan, Nidia; Grewal, Himmat; Deng, Guiying; Shimizu, Kaori; Yonchek, Joan C; Strnad, Frank; Traystman, Richard J; Herson, Paco S

    2014-01-01

    Motor deficits are present in cardiac arrest survivors and injury to cerebellar Purkinje cells (PCs) likely contribute to impairments in motor coordination and post-hypoxic myoclonus. NMDA receptor mediated excitotoxicity is a well-established mechanism of cell death in several brain regions, but the role of NMDA receptors in PC injury remains understudied. Emerging data in cortical and hippocampal neurons indicates that the GluN2A-containing NMDA receptors signal to improve cell survival and GluN2B-containing receptors contribute to neuronal injury. This study compared neuronal injury in the hippocampal CA1 region to that in PCs and investigated the role of NMDA receptors in PC injury in our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Analysis of cell density demonstrated a 24% loss of PCs within 24 hours after 8 min CA/CPR and injury stabilized to 33% by 7 days. The subunit promiscuous NMDA receptor antagonist MK-801 protected both CA1 neurons and PCs from ischemic injury following CA/CPR, demonstrating a role for NMDA receptor activation in injury to both brain regions. In contrast, the GluN2B antagonist, Co 101244, had no effect on Purkinje cell loss while protecting against injury in the CA1 region. These data indicate that ischemic injury to cerebellar PCs progresses via different cell death mechanisms compared to hippocampal CA1 neurons. PMID:25450957

  7. Spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the STAT3-NMDA receptor pathway in rats.

    PubMed

    Hu, Fen; Cui, Yu; Guo, Ruixian; Chen, Jingfu; Guo, Runming; Shen, Ning; Hua, Xiaoxiao; Mo, Liqiu; Feng, Jianqiang

    2014-08-01

    Leptin, an adipokine synthesized mainly by non‑neuronal tissues, has been reported to contribute to the pathogenesis of neuropathic pain. It has been hypothesized that morphine tolerance and neuropathic pain share some common pathological mechanisms. The present study was designed to examine whether spinal leptin is implicated in the development of morphine antinociceptive tolerance, and whether spinal leptin induces the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway and the NR1 subunit of N‑methyl‑D‑aspartate (NMDA) receptor, in morphine antinociceptive tolerance in rats. The results demonstrated that intrathecal (i.t.) administration of a leptin antagonist (LA) prevented the development of morphine antinociceptive tolerance in rats. Further studies revealed that the levels of the spinal leptin and the leptin receptor (Ob‑R) were time‑dependently increased following chronic morphine treatment. Mechanistic examination indicated that chronic morphine triggered activation of the STAT3 pathway and an increase in the expression of the NR1 subunit of the NMDA receptor, which was ameliorated by i.t. administration of AG490 [a Janus kinase (JAK)‑STAT inhibitor]. The increased activation of STAT3 and the NR1 subunit was markedly attenuated by i.t. treatment with LA. In addition, the spinal administration of AG490 or MK‑801 (a non‑competitive NMDA receptor inhibitor) blocked the development of morphine antinociceptive tolerance. Taken together, these results have demonstrated, for the first time, to the best of our knowledge, that spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the spinal STAT3‑NMDA receptor pathway.

  8. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.

    PubMed

    Sałat, Kinga; Siwek, Agata; Starowicz, Gabriela; Librowski, Tadeusz; Nowak, Gabriel; Drabik, Urszula; Gajdosz, Ryszard; Popik, Piotr

    2015-12-01

    Ketamine produces rapid and long-lasting antidepressant effects in patients. The involvement of ketamine metabolites in these actions has been proposed. The effects of ketamine and its metabolites norketamine and dehydronorketamine on ligand binding to 80 receptors, ion channels and transporters was investigated at a single concentration of 10 μM. The affinities of all three compounds were then assessed at NMDA receptors using [3H]MK-801 binding. The dose-response relationships of all 3 compounds in the forced swim test were also investigated in mice 30 min after IP administration. The effects of ketamine and norketamine (both 50 mg/kg) were then examined at 30 min, 3 days and 7 days post administration. Among the 80 potential targets examined, only NMDA receptors were affected with a magnitude of >50% by ketamine and norketamine at the concentration of 10 μM. The Ki values of ketamine, norketamine and dehydronorketamine at NMDA receptors were 0.119±0.01, 0.97±0.1 and 3.21±0.3 μM, respectively. Ketamine and norketamine reduced immobility with minimum effective doses (MEDs) of 10 and 50 mg/kg, respectively; dehydronorketamine did not affect immobility at doses of up to 50 mg/kg. Neither ketamine nor norketamine reduced immobility in the forced swim test 3 and 7 days following administration. Further, oral administration of ketamine (5-50 mg/kg) did not affect immobility. We demonstrate that ketamine and norketamine but not dehydronorketamine given acutely at subanesthetic doses reduced immobility in the forced swim test. These antidepressant-like effects appear attributable to NMDA receptor inhibition.

  9. Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine

    PubMed Central

    Sasaki, Tsutomu; Matsui, Sho; Kitamura, Tadahiro

    2016-01-01

    Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity. PMID:27399680

  10. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens

    PubMed Central

    Dalley, Jeffrey W.; Lääne, Kristjan; Theobald, David E. H.; Armstrong, Hannah C.; Corlett, Philip R.; Chudasama, Yogita; Robbins, Trevor W.

    2005-01-01

    Recent research has implicated the nucleus accumbens (NAc) in consolidating recently acquired goal-directed appetitive memories, including spatial learning and other instrumental processes. However, an important but unresolved issue is whether this forebrain structure also contributes to the consolidation of fundamental forms of appetitive learning acquired by Pavlovian associative processes. In addition, although dopaminergic and glutamatergic influences in the NAc have been implicated in instrumental learning, it is unclear whether similar mechanisms operate during Pavlovian conditioning. To evaluate these issues, the effects of posttraining intra-NAc infusions of D1, D2, and NMDA receptor antagonists, as well as d-amphetamine, were determined on Pavlovian autoshaping in rats, which assesses learning by discriminated approach behavior to a visual conditioned stimulus predictive of food reward. Intracerebral infusions were given either immediately after each conditioning session to disrupt early memory consolidation or after a delay of 24 h. Findings indicate that immediate, but not delayed, infusions of both D1 (SCH 23390) and NMDA (AP-5) receptor antagonists significantly impair learning on this task. By contrast, amphetamine and the D2 receptor antagonist sulpiride were without significant effect. These findings provide the most direct demonstration to date that D1 and NMDA receptors in the NAc contribute to, and are necessary for, the early consolidation of appetitive Pavlovian learning. PMID:15833811

  11. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    PubMed Central

    Chaieb, Leila; Antal, Andrea; Paulus, Walter

    2015-01-01

    Background: Application of transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz of the primary motor cortex (M1) for 10 min induces a persistent excitability increase lasting for at least 60 min. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1 mA for 10 min stimulation duration and a pharmacological agent (or sham) on eight healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency toward inhibiting MEPs 5–60 min poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0–20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS. Conclusions: In contrast to transcranial direct current stimulation (tDCS), aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms. PMID:25914617

  12. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor.

    PubMed

    Ng, Kay-Siong; Leung, How-Wing; Wong, Peter T-H; Low, Chian-Ming

    2012-07-20

    Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.

  13. Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens.

    PubMed

    Salamone, Alessia; Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Agostinho, Paula; Tomé, Angelo R; Chen, Jiayang; Pittaluga, Anna; Cunha, Rodrigo A; Marchi, Mario

    2014-04-01

    The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM). Nicotine and 5IA85380 pretreatment also inhibited the NMDA (100 μM)-evoked increase of calcium levels in single nerve terminals, an effect prevented by dihydro-β-erythroidine (1 μM). This supports a functional interaction between α4β2-containing nAChR and NMDA receptors within the same terminal, as supported by the immunocytochemical co-localization of α4 and GluN1 subunits in individual NAc dopaminergic terminals. The NMDA-evoked [(3)H]dopamine outflow was blocked by MK801 (1 μM) and inhibited by the selective GluN2B-selective antagonists ifenprodil (1 μM) and RO 25-6981 (1 μM), but not by the GluN2A-preferring antagonists CPP-19755 (1 μM) and ZnCl2 (1 nM). Notably, nicotine pretreatment significantly decreased the density of biotin-tagged GluN2B proteins in NAc synaptosomes. These results show that nAChRs dynamically and negatively regulate NMDA receptors in NAc dopaminergic terminals through the internalization of GluN2B receptors.

  14. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  15. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  16. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity.

    PubMed

    Matta, Jose A; Pelkey, Kenneth A; Craig, Michael T; Chittajallu, Ramesh; Jeffries, Brian W; McBain, Chris J

    2013-08-01

    Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit-containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence-dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells.

  17. Efficient Integration of Synaptic Events by NMDA Receptors in Three-Dimensional Neuropil

    PubMed Central

    Zheng, Kaiyu; Rusakov, Dmitri A.

    2015-01-01

    Sustained activation of NMDA receptors (NMDARs) plays an important role in controlling activity of neural circuits in the brain. However, whether this activation reflects the ambient level of excitatory neurotransmitter glutamate in brain tissue or whether it depends mainly on local synaptic discharges remains poorly understood. To shed light on the underlying biophysics here we developed and explored a detailed Monte Carlo model of a realistic three-dimensional neuropil fragment containing 54 excitatory synapses. To trace individual molecules and their individual receptor interactions on this scale, we have designed and implemented a dedicated computer cluster and the appropriate software environment. Our simulations have suggested that sparse synaptic discharges are 20–30 times more efficient than nonsynaptic (stationary, leaky) supply of glutamate in controlling sustained NMDAR occupancy in the brain. This mechanism could explain how the brain circuits provide substantial background activation of NMDARs while maintaining a negligible ambient glutamate level in the extracellular space. Thus the background NMDAR occupancy, rather than the background glutamate level, is likely to reflect the ongoing activity in local excitatory networks. PMID:25992724

  18. The balance of NMDA- and AMPA/kainate receptor-mediated activity in normal adult goldfish and during optic nerve regeneration.

    PubMed

    Taylor, Andrew L; Rodger, Jennifer; Stirling, R Victoria; Beazley, Lyn D; Dunlop, Sarah A

    2005-10-01

    Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.

  19. Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines.

    PubMed

    Radley, Jason J; Farb, Claudia R; He, Yong; Janssen, William G M; Rodrigues, Sarina M; Johnson, Luke R; Hof, Patrick R; LeDoux, Joseph E; Morrison, John H

    2007-02-23

    Synapses onto dendritic spines in the lateral amygdala formed by afferents from the auditory thalamus represent a site of plasticity in Pavlovian fear conditioning. Previous work has demonstrated that thalamic afferents synapse onto LA spines expressing glutamate receptor (GluR) subunits, but the GluR subunit distribution at the synapse and within the cytoplasm has not been characterized. Therefore, we performed a quantitative analysis for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluR2 and GluR3 and N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B by combining anterograde labeling of thalamo-amygdaloid afferents with postembedding immunoelectron microscopy for the GluRs in adult rats. A high percentage of thalamo-amygdaloid spines was immunoreactive for GluR2 (80%), GluR3 (83%), and NR1 (83%), while a smaller proportion of spines expressed NR2B (59%). To compare across the various subunits, the cytoplasmic to synaptic ratios of GluRs were measured within thalamo-amygdaloid spines. Analyses revealed that the cytoplasmic pool of GluR2 receptors was twice as large compared to the GluR3, NR1, and NR2B subunits. Our data also show that in the adult brain, the NR2B subunit is expressed in the majority of in thalamo-amygdaloid spines and that within these spines, the various GluRs are differentially distributed between synaptic and non-synaptic sites. The prevalence of the NR2B subunit in thalamo-amygdaloid spines provides morphological evidence supporting its role in the fear conditioning circuit while the differential distribution of the GluR subtypes may reflect distinct roles for their involvement in this circuitry and synaptic plasticity.

  20. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin

    PubMed Central

    Liu, Wenhua; Yuen, Eunice Y.; Allen, Patrick B.; Feng, Jian; Greengard, Paul; Yan, Zhen

    2006-01-01

    The noradrenergic system in the prefrontal cortex (PFC) is involved in many physiological and psychological processes, including working memory and mood control. To understand the functions of the noradrenergic system, we examined the regulation of NMDA receptors (NMDARs), key players in cognition and emotion, by α1- and α2-adrenergic receptors (α1-ARs, α2-ARs) in PFC pyramidal neurons. Applying norepinephrine or a norepinephrine transporter inhibitor reduced the amplitude but not paired-pulse ratio of NMDAR-mediated excitatory postsynaptic currents (EPSC) in PFC slices. Specific α1-AR or α2-AR agonists also decreased NMDAR-EPSC amplitude and whole-cell NMDAR current amplitude in dissociated PFC neurons. The α1-AR effect depended on the phospholipase C–inositol 1,4,5-trisphosphate–Ca2+ pathway, whereas the α2-AR effect depended on protein kinase A and the microtubule-based transport of NMDARs that is regulated by ERK signaling. Furthermore, two members of the RGS family, RGS2 and RGS4, were found to down-regulate the effect of α1-AR on NMDAR currents, whereas only RGS4 was involved in inhibiting α2-AR regulation of NMDAR currents. The regulating effects of RGS2/4 on α1-AR signaling were lost in mutant mice lacking spinophilin, which binds several RGS members and G protein-coupled receptors, whereas the effect of RGS4 on α2-AR signaling was not altered in spinophilin-knockout mice. Our work suggests that activation of α1-ARs or α2-ARs suppresses NMDAR currents in PFC neurons by distinct mechanisms. The effect of α1-ARs is modified by RGS2/4 that are recruited to the receptor complex by spinophilin, whereas the effect of α2-ARs is modified by RGS4 independent of spinophilin. PMID:17101972

  1. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block.

    PubMed

    Dravid, Shashank M; Erreger, Kevin; Yuan, Hongjie; Nicholson, Katherine; Le, Phuong; Lyuboslavsky, Polina; Almonte, Antoine; Murray, Ernest; Mosely, Cara; Barber, Jeremy; French, Adam; Balster, Robert; Murray, Thomas F; Traynelis, Stephen F

    2007-05-15

    We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.

  2. [First occurrence of an organic manic schizophreniform syndrome followed by catatonia induced by anti-NMDA-receptor encephalitis].

    PubMed

    Fousse, M; Becker, C; Faßbender, K; Reith, W; Körner, H; Alexandrou, M; Spiegel, J

    2013-04-01

    We report on a 39-year-old female patient who developed catatonia after there had been schizomanic symptoms in the six months before. At admission the patient exhibited catatonia, a tetraspastic syndrome and focal epileptic seizures. The cranial MRI revealed bilateral subcortical hyperintense lesions which took up contrast agent. Examination of the cerebrospinal fluid disclosed a lymphocytic pleocytosis and autochthone oligoclonal bands. In the serum autoantibodies against the NMDA-NR-1 receptor were reproducibly detected. A detailed search for a tumour was negative. In detail, we could exclude a neoplasm of the ovaries which is often present in the paraneoplastic type of anti-NMDA-receptor encephalitis. Therefore we assume an autoimmune, not paraneoplastic, encephalitis in our patient. The symptoms improved significantly after an immunosuppressive therapy - initially with glucocorticoids followed by rituximab - had been initiated. This case illustrates that an autoimmune encephalitis should be looked for when first psychotic symptoms occur.

  3. Anti-NMDA (a-NMDAR) receptor encephalitis related to acute consumption of metamphetamine: Relevance of differential diagnosis.

    PubMed

    Iriondo, O; Zaldibar-Gerrikagoitia, J; Rodríguez, T; García, J M; Aguilera, L

    2017-03-01

    A 19-year-old male came to the Emergency Room of our hospital due to an episode of dystonic movements and disorientation 4 days after consuming methamphetamine, which evolved to a catatonic frank syndrome and eventually to status epilepticus. Definitive diagnosis was anti-NMDA receptor encephalitis, an acute inflammation of the limbic area of autoimmune origin in which early diagnosis and treatment are key elements for the final outcome. In this case, initial normal tests and previous methamphetamine poisoning delayed diagnosis, because inhaled-methamphetamine poisoning causes similar clinical symptoms to anti-NMDA receptor encephalitis. Methamphetamine poisoning may have caused an immune response in the patient, bringing on the progress of the pathology.

  4. Fluorine-18 radiolabelling, biodistribution studies and preliminary PET evaluation of a new memantine derivative for imaging the NMDA receptor.

    PubMed

    Ametamey, S M; Samnick, S; Leenders, K L; Vontobel, P; Quack, G; Parsons, C G; Schubiger, P A

    1999-01-01

    A synthetic method has been established for preparing [18F]1-amino-3-fluoromethyl-5-methyl-adamantane ([18F]AFA). Biodistribution of the radiotracer in mice showed high brain uptake. The peak uptake (3.7% I.D/g organ) for the brain occurred at 30 min after injection. Accumulation of radioactivity in mouse brain was consistent with the known distribution of the NMDA receptors. The binding of [18F]AFA to the phencyclidine (PCP) binding sites of the NMDA receptor complex and the sigma recognition sites in a Rhesus monkey was also examined using positron emission tomography (PET). The regional brain distribution of [18F]AFA was changed by memantine and by (+)-MK-801, indicating competition for the same binding sites. Treatment with haloperidol caused a marked reduction of radioactivity uptake in all the brain regions examined. (-)-Butaclamol, which has pharmacological specificity for sigma sites, did not have any significant effects.

  5. A lasting effect of postnatal sevoflurane anesthesia on the composition of NMDA receptor subunits in rat prefrontal cortex.

    PubMed

    Zhang, Xiaoyu; Shen, Fengyan; Xu, Daojie; Zhao, Xuan

    2016-11-01

    Sevoflurane is widely used in pediatric anesthesia and studies have shown that it is capable of inducing neurodegeneration and subsequent cognitive disorders in the developing brain. However, the evidence that anesthetics are toxic to the human brain is insufficient. N-Methyl-d-aspartate (NMDA) receptors, critical for learning and memory, display expression changes with age and can be modulated by inhalation anesthetics. Generally, NMDA receptor (NR) type 1 is expressed at birth, peaks around the third postnatal week, and then declines slightly to adult levels. NR2Bs slowly decrease and NR2As gradually increase during postnatal development. These developmental switches of NMDA receptor subunits composition mark the transition from immature to adult neural processing and allow for the final maturation of associative learning abilities. In this study, we aimed to evaluate the effect of repeated sevoflurane anesthesia on NMDA receptor subunits composition in the developing rat brain and related behavioral disorders. Six-day-old male Sprague Dawley rats were randomly allocated into either a control group (group con) or a sevoflurane group (group sevo). Group sevo inhaled 2.1% sevoflurane carried by 70% oxygen for 2h each day from postnatal day (PND) 6 to PND 8. The same procedure, without applying the sevoflurane, was executed in group con. The membrane protein expression of NR1, NR2A and NR2B in the prefrontal cortex (PFC) and hippocampus was assessed at the end of the three days of anesthesia and at PND 21. An open field test was carried out to assess spontaneous locomotion on PNDs 21, 28 and 35. Y maze performance was used to assess attention and working memory on PND 28. Sevoflurane induced upregulation of NR1 and NR2B in the PFC at the end of anesthesia. On PND 21, NR1 and NR2B receptors were significantly increased whereas NR2A receptors were significantly decreased in the PFC in group sevo. Sevoflurane-treated rats showed hyper-locomotion and impairment of

  6. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function

    PubMed Central

    Kiraly, Drew D.; Lemtiri-Chlieh, Fouad; Levine, Eric S.; Mains, Richard E.; Eipper, Betty A.

    2011-01-01

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor (GEF) localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins including PSD-95, DISC-1, AF-6 and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal LTP as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell-surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity. PMID:21880917

  7. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function.

    PubMed

    Kiraly, Drew D; Lemtiri-Chlieh, Fouad; Levine, Eric S; Mains, Richard E; Eipper, Betty A

    2011-08-31

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7(KO)) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7(KO) mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7(KO) animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7(KO) mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.

  8. Surgical incision-induced nociception causes cognitive impairment and reduction in synaptic NMDA receptor 2B in mice.

    PubMed

    Zhang, Xiaoqin; Xin, Xin; Dong, Yuanlin; Zhang, Yiying; Yu, Buwei; Mao, Jianren; Xie, Zhongcong

    2013-11-06

    Postoperative cognitive dysfunction (POCD) is associated with impairments in daily functioning, and increased morbidity and mortality. However, the causes and neuropathogenesis of POCD remain largely unknown. Uncontrolled pain often occurs postoperatively. We therefore set out to determine the effects of surgical incision-induced nociception on the cognitive function and its underlying mechanisms in 3- and 9-month-old mice. The mice had surgical incision in the hindpaw and then were tested for nociceptive threshold, learning, and memory. Brain levels of NMDA receptor and cyclin-dependent kinase 5 (CDK5) were also assessed. We found that surgical incision-induced nociception in mice led to a decreased freezing time in the tone test (which assesses the hippocampus-independent learning and memory function), but not the context test, of Fear Conditioning System at 3 and 7 d, but not 30 d post incision in 9-month-old, but not 3-month-old mice. Consistently, the surgical incision selectively decreased synaptic NMDA receptor 2B levels in the medial prefrontal cortex, and increased levels of tumor necrosis factor-α and CDK5 in the cortex, but not hippocampus, of the mice. Finally, eutectic mixture of local anesthetics and CDK5 inhibitor, roscovitine, attenuated the surgical incision-induced reduction in the synaptic NMDA receptor 2B levels and learning impairment. These results suggested that surgical incision-induced nociception reduced the synaptic NMDA receptor 2B level in the medial prefrontal cortex of mice, which might lead to hippocampus-independent learning impairment, contributing to POCD. These findings call for further investigation to determine the role of surgical incision-induced nociception in POCD.

  9. NMDA receptor antagonism disrupts the acquisition and retention of the Context Preexposure Facilitation Effect in adolescent rats

    PubMed Central

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Rosen, Jeffrey B.; Stanton, Mark E.

    2016-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1 mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24 hours later. Experiment 3 showed that expression of contextual fear via a 24hr retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1 mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05 mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood. PMID:26711910

  10. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24

    SciTech Connect

    Lewis, T.B.; DuPont, B.R.; Leach, R.

    1996-02-15

    This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.

  11. Extinction of conditioned opiate withdrawal in rats is blocked by intracerebroventricular infusion of an NMDA receptor antagonist.

    PubMed

    Coleman, Brian R; Carlezon, William A; Myers, Karyn M

    2013-04-29

    Maladaptive conditioned responses (CRs) contribute to psychiatric disorders including anxiety disorders and addiction. Methods of reducing these CRs have been considered as possible therapeutic approaches. One such method is extinction, which involves exposure to CR-eliciting cues in the absence of the event they once predicted. In animal models, extinction reduces both fear and addiction-related CRs, and in humans, extinction-based cue exposure therapy (CET) reduces fear CRs. However, CET is less effective in drug addicts, for reasons that are not clear. Increased understanding of the neurobiology of extinction of drug-related CRs as compared to fear CRs may help illuminate this issue. Here, we examine the N-methyl-d-aspartate (NMDA) receptor-dependence of extinction of conditioned opiate withdrawal in rats. Using a place conditioning paradigm, we trained morphine-dependent rats to associate an environment with naloxone-precipitated withdrawal. We then extinguished that association by returning the rats repeatedly to the environment in the absence of acute withdrawal. In some rats we administered the NMDA receptor antagonist d,l-2-amino-5-phosphovaleric acid (AP5) intracerebroventricularly immediately prior to extinction training. In a subsequent test session, these rats avoided the formerly naloxone-paired environment, similar to rats that had not undergone extinction training. By contrast, rats that received vehicle prior to extinction training did not avoid the formerly naloxone-paired environment. This finding indicates that extinction of a drug-related CR (conditioned opiate withdrawal) is dependent on NMDA receptors, similar to extinction of conditioned fear. The locus of the critical NMDA receptors is unclear but may include basolateral amygdala and/or medial prefrontal cortex.

  12. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  13. Bradykinin Enhances AMPA and NMDA Receptor Activity in Spinal Cord Dorsal Horn Neurons by Activating Multiple Kinases to Produce Pain Hypersensitivity

    PubMed Central

    Kohno, Tatsuro; Wang, Haibin; Amaya, Fumimasa; Brenner, Gary J.; Cheng, Jen-Kun; Ji, Ru-Rong; Woolf, Clifford J.

    2009-01-01

    Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B2 receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B2 receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the δ isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity. PMID:18434532

  14. SA4503, a novel cognitive enhancer with sigma1 receptor agonist properties, facilitates NMDA receptor-dependent learning in mice.

    PubMed

    Maurice, T; Privat, A

    1997-06-05

    The selective sigma1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenyl propyl)piperazine dihydrochloride (SA4503) was reported to reverse the amnesia induced by the muscarinic receptor antagonist scopolamine at sub-mg/kg doses. We examined its effect on the learning impairment induced in mice by the non-competitive NMDA receptor antagonist dizocilpine. Learning capacities were evaluated using spontaneous alternation in the Y-maze for spatial working memory, and step-down type passive avoidance. SA4503 (0.03-1 mg/kg s.c.) attenuated the dizocilpine (0.15 mg/kg i.p.)-induced memory deficits following a bell-shaped curve in both tests. These effects of SA4503 were blocked by haloperidol (0.05 mg/kg i.p.), implicating sigma1 receptors. SA4503 also reversed the alternation deficit induced by N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.p.) at the same dosage, indicating that it acted on working memory through the nitric oxide (NO)-mediated signalling pathway. Furthermore, progesterone (2 mg/kg s.c.) blocked the SA4503 effects in the dizocilpine- and L-NAME-amnesia models, in accordance with the purported neurosteroids/sigma1 receptors interaction. These results demonstrate a promising neurobehavioural profile of SA4503, a ligand equally efficient to reverse the deficit in the glutamatergic as well as in the cholinergic amnesia model. Pertinent informations on the potential mechanism of the anti-amnesic effects of sigma1 receptor ligands were also obtained.

  15. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.

  16. [Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: experience with six pediatric patients. Potential efficacy of methotrexate].

    PubMed

    Bravo-Oro, Antonio; Abud-Mendoza, Carlos; Quezada-Corona, Arturo; Dalmau, Josep; Campos-Guevara, Verónica

    2013-11-01

    INTRODUCTION. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a condition that is increasingly more frequently diagnosed in the paediatric age. Unlike adults, in many cases it is not associated to tumours and the most common initial manifestations in children are seizures and movement disorders, while in adults there is a predominance of psychiatric alterations. CASE REPORTS. We present six confirmed paediatric cases with antibodies against the subunit NR1 of the NMDA receptor in serum and cerebrospinal fluid. Five of the cases began with seizures as the initial clinical symptom prior to the development of the classical clinical features of this condition. In all cases, steroids were used as the first line of treatment, although these only brought about control over the manifestations in one of them; the other patients therefore required second-line immunomodulators. All the patients received methotrexate as immunomodulator treatment to prevent relapses, and in all cases there was an improvement in the patients' situation. CONCLUSIONS. In our series of patients with anti-NMDA receptor encephalitis, none were associated with tumours. All of them were given methotrexate for at least one year and no adverse clinical or analytical events were observed; likewise, there were no neurological sequelae or relapses during treatment. Although it is a small series and it would be advisable to increase the number and time to progression, we see methotrexate as an excellent alternative immunomodulator treatment for this pathology.

  17. The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea

    PubMed Central

    2010-01-01

    Background Memory is the ability to store, retain, and later retrieve information that has been learned. Intermediate term memory (ITM) that persists for up to 3 h requires new protein synthesis. Long term memory (LTM) that persists for at least 24 h requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. It has been shown in a number of different model systems that NMDA receptors, protein kinase C (PKC) and mitogen activated protein kinase (MAPK) are all involved in the memory formation process. Results Here we show that snails trained in control conditions are capable of forming, depending on the training procedure used, either ITM or LTM. However, blockage of NMDA receptors (MK 801), inhibition of PKC (GF109203X hydrochloride) and MAPK activity (UO126) prevent the formation of both ITM and LTM. Conclusions The injection of either U0126 or GF109203X, which inhibit MAPK and PKC activity respectively, 1 hour prior to training results in the inhibition of both ITM and LTM formation. We further found that NMDA receptor activity was necessary in order for both ITM and LTM formation. PMID:20807415

  18. Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site.

    PubMed

    Yamamoto, H; Yamamoto, T; Sagi, N; Klenerová, V; Goji, K; Kawai, N; Baba, A; Takamori, E; Moroji, T

    1995-01-01

    To investigate the modulatory effects of sigma ligands on the N-methyl-D-aspartate (NMDA) receptor-ion channel complex in vivo, we examined the intact cell binding of 3H-N-[1-(2-thienyl)cyclohexyl]piperidine (3H-TCP) to cultured neuronal cells prepared from fetal rat telencephalon. The 3H-TCP binding was saturable, reversible, and inhibited by a selective NMDA receptor antagonist, D-amino-5-phosphonovaleric acid. MII-limolar Mg2+ inhibited 3H-TCP binding both in the absence and presence of L-glutamate. 5-Methyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine maleate (MK801) inhibited 3H-TCP intact cell binding in a competitive manner, while haloperidol inhibited it in a noncompetitive manner. The effect of the test drugs to inhibit 3H-TCP intact cell binding was in the order of dextromethorphan, haloperidol > (+/-)MK 801 > (+)pentazocine > (-)pentazocine > DTG > PCP > (+)-N-allylnormetazocine [(+)SKF 10047] > (+)3-(3-hydroxyphenyl)-N- (1-propyl)piperidine [(+)3-PPP] > (-)SKF 10047 > (-)3-PPP. The IC50 values of the six sigma ligands for 3H-TCP binding were closely correlated with the Ki values of the corresponding drugs for DTG site 1 in the guinea pig brain reported by Rothman et al. (1991). These findings suggest that the sigma ligand indirectly modulates the NMDA receptor ion channel complex, presumably through sigma 1 sites in vivo as well as in vitro.

  19. Recovery from severe frontotemporal dysfunction at 3years after N-methyl-d-aspartic acid (NMDA) receptor antibody encephalitis.

    PubMed

    Leypoldt, Frank; Gelderblom, Mathias; Schöttle, Daniel; Hoffmann, Sascha; Wandinger, Klaus-Peter

    2013-04-01

    Encephalitis associated with antibodies against N-methyl-d-aspartic acid (NMDA) receptor is characterized by severe memory deficits, decreased consciousness, epileptic seizures and movement disorders and occurs most commonly in young women. Recovery is mostly good but little is known about the disease course in patients whose treatment has been delayed severely. We present a 16-year-old girl with a 36-month follow-up. A single course of methylprednisolone attenuated some symptoms but severe and incapacitating frontotemporal syndrome remained. Second-line treatment with rituximab was initiated 12months after the onset of symptoms. A surprising recovery occurred 18months after treatment and 30months after onset. Recovery in NMDA receptor antibody-associated encephalitis can be severely delayed and does not have to be linear. Whether delayed therapy contributed to recovery in this patient cannot be answered with certainty. Spontaneous recovery independent of therapy is possible, as it has been observed previously as late as 3years after onset. Although serum antibodies disappeared with recovery in this patient, previous cases have shown serum antibodies to be unreliable markers of disease activity. Second-line treatment, especially with substances as well tolerated as rituximab, should at least be considered in NMDA receptor encephalitis with persistent neuropsychiatric syndromes after first-line therapy.

  20. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  1. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex.

    PubMed

    Fernández-Cabrera, Mónica R; Selvas, Abraham; Miguéns, Miguel; Higuera-Matas, Alejandro; Vale-Martínez, Anna; Ambrosio, Emilio; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma

    2017-04-21

    The rodent parafascicular nucleus (PFn) or the centromedian-parafascicular complex of primates is a posterior intralaminar nucleus of the thalamus related to cortical activation and maintenance of states of consciousness underlying attention, learning and memory. Deep brain stimulation (DBS) of the PFn has been proved to restore arousal and consciousness in humans and to enhance performance in learning and memory tasks in rats. The primary expected effect of PFn DBS is to induce plastic changes in target neurons of brain areas associated with cognitive function. In this study, Wistar rats were stimulated for 20mins in the PFn following a DBS protocol that had previously facilitated memory in rats. NMDA and GABAB receptor binding, and gene expression of the GluN1subunit of the NMDA receptor (NMDAR) were assessed in regions related to cognitive functions, such as the prefrontal cortex and hippocampus. The results showed that PFn DBS induced a decrease in NMDAR GluN1 subunit gene expression in the cingulate and prelimbic cortices, but no significant statistical differences were found in the density of NMDA or GABAB receptors in any of the analyzed regions. Taken together, our findings suggest a possible role for the NMDAR GluN1 subunit in the prefrontal cortex in the procognitive actions of the PFn DBS.

  2. Growth hormone (GH) increases cognition and expression of ionotropic glutamate receptors (AMPA and NMDA) in transgenic zebrafish (Danio rerio).

    PubMed

    Studzinski, Ana Lupe Motta; Barros, Daniela Martí; Marins, Luis Fernando

    2015-11-01

    The growth hormone/insulin-like factor I (GH/IGF-I) somatotropic axis is responsible for somatic growth in vertebrates, and has important functions in the nervous system. Among these, learning and memory functions related to the neural expression of ionotropic glutamate receptors, mainly types AMPA (α-amino-3hydroxy-5methylisoxazole-4propionic) and NMDA (N-methyl-d-aspartate) can be highlighted. Studies on these mechanisms have been almost exclusively conducted on mammal models, with little information available on fish. Consequently, this study aimed at evaluating the effects of the somatotropic axis on learning and memory of a GH-transgenic zebrafish (Danio rerio) model (F0104 strain). Long-term memory (LTM) was tested in an inhibitory avoidance apparatus, and brain expression of igf-I and genes that code for the main subunits of the AMPA and NMDA receptors were evaluated. Results showed a significant increase in LTM for transgenic fish. Transgenic animals also showed a generalized pattern of increase in the expression of AMPA and NMDA genes, as well as a three-fold induction in igf-I expression in the brain. When analyzed together, these results indicate that GH, mediated by IGF-I, has important effects on the brain, with improvement in LTM as a result of increased glutamate receptors. The transgenic strain F0104 was shown to be an interesting model for elucidating the intricate mechanisms related to the effect of the somatotropic axis on learning and memory in vertebrates.

  3. Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells.

    PubMed

    Li, Qiang; Yan, Haidun; Wilson, Wilkie A; Swartzwelder, H Scott

    2010-06-25

    Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor-mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutamatergic activity by CB1 receptors in the frontal neocortex is mediated by a presynaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function.

  4. Reduction in Ventral Midbrain NMDA Receptors Reveals Two Opposite Modulatory Roles for Glutamate on Reward

    PubMed Central

    Hernandez, Giovanni; Khodami-Pour, Ali; Lévesque, Daniel; Rompré, Pierre-Paul

    2015-01-01

    Glutamate is a major component of the reward circuitry and recent clinical studies suggest that new molecules that would target glutamate neurotransmission are most likely to constitute more effective medications for mood disorders. It is well known that activation of N-methyl-D-aspartate glutamate receptors (NMDARs) initiates dopamine burst firing, a mode associated with reward signaling; but NMDARs also contribute to the maintenance of an inhibitory drive to dopamine neurons. Such opposite modulatory functions imply that different subtypes of NMDARs are expressed on different ventral midbrain (VM) neurons and/or afferent inputs to dopamine neurons. By using the small interfering RNA (siRNA) technique, we studied the effects of VM downregulation of NMDAR subunits GluN1, GluN2A, and GluN2D on reward induced by dorsal raphe electrical stimulation. Reward thresholds were measured before and 24 h after each of three consecutive daily bilateral microinjections of siRNA for the targeted receptor subunit(s) or non-active RNA sequence. After the last measurement, reward thresholds were reassessed following a bilateral microinjection of the preferred GluN2A-NMDA antagonist, (2R,4S)-4-(3-Phosphopropyl)-2-piperidinecarboxylic acid (PPPA). Western-blot analysis showed that siRNAs reduced GluN1- and GluN2A-containing receptors whereas behavioral tests showed that only a reduction in GluN1 produced reward attenuation. Despite NMDAR reduction, reward-enhancing effect of PPPA remained unchanged. We conclude that VM glutamate relays the reward signal initiated by dorsal raphe electrical stimulation by acting on NMDARs devoid of GluN2A/2D subunits and exerts an inhibition on this reward signal by acting on GluN2A-containing NMDARs most likely located on afferent terminals. PMID:25578795

  5. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    SciTech Connect

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. )

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  6. Interaction of the NMDA receptor noncompetitive antagonist MK-801 with model and native membranes.

    PubMed Central

    Moring, J; Niego, L A; Ganley, L M; Trumbore, M W; Herbette, L G

    1994-01-01

    MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo. PMID:7696477

  7. Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN

    PubMed Central

    Zheng, Mei; Liao, Mingxia; Cui, Tianyuan; Tian, Honglin; Fan, Dong-Sheng; Wan, Qi

    2012-01-01

    The dysfunction of TAR DNA-binding protein-43 (TDP-43) is implicated in neurodegenerative diseases. However, the function of TDP-43 is not fully elucidated. Here we show that the protein level of endogenous TDP-43 in the nucleus is increased in mouse cortical neurons in the early stages, but return to basal level in the later stages after glutamate accumulation-induced injury. The elevation of TDP-43 results from a downregulation of phosphatase and tensin homolog (PTEN). We further demonstrate that activation of NR2A-containing NMDA receptors (NR2ARs) leads to PTEN downregulation and subsequent reduction of PTEN import from the cytoplasm to the nucleus after glutamate accumulation. The decrease of PTEN in the nucleus contributes to its reduced association with TDP-43, and thereby mediates the elevation of nuclear TDP-43. We provide evidence that the elevation of nuclear TDP-43, mediated by NR2AR activation and PTEN downregulation, confers protection against cortical neuronal death in the late stages after glutamate accumulation. Thus, this study reveals a NR2AR–PTEN–TDP-43 signaling pathway by which nuclear TDP-43 promotes neuronal survival. These results suggest that upregulation of nuclear TDP-43 represents a self-protection mechanism to delay neurodegeneration in the early stages after glutamate accumulation and that prolonging the upregulation process of nuclear TDP-43 might have therapeutic significance. PMID:22526419

  8. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  9. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine

    PubMed Central

    Zhang, Hai Xia; Hyrc, Krzysztof; Thio, Liu Lin

    2009-01-01

    Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca2+, as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca2+-activated K+ currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists. PMID:19433577

  10. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  11. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration.

    PubMed

    Joe, N; Scott, V; Brown, C H

    2014-01-01

    Magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) project to the posterior pituitary gland where they release the hormones, vasopressin and oxytocin into the circulation to maintain plasma osmolality. Hormone release is proportionate to SON MNC action potential (spike) firing rate. When activated by ambient extracellular glutamate, extrasynaptic NMDA receptors (eNMDARs) mediate a tonic (persistent) depolarisation to increase the probability of action potential firing. In the present study, in vivo single-unit electrophysiological recordings were made from urethane-anaesthetised female Sprague-Dawley rats to investigate the impact of tonic eNMDAR activation on MNC activity. Water deprivation (for up to 48 h) caused an increase in the firing rate of SON MNCs that was associated with a general increase in post-spike excitability. To determine whether eNMDAR activation contributes to the increased MNC excitability during water deprivation, memantine, which preferentially blocks eNMDARs, was administered locally into the SON by microdialysis. Memantine significantly decreased the firing rate of MNCs recorded from 48-h water-deprived rats but had no effect on MNCs recorded from euhydrated rats. In the presence of the glial glutamate transporter-1 (GLT-1) blocker, dihydrokainate, memantine also reduced the MNC firing rate in euhydrated rats. Taken together, these observations suggest that GLT-1 clears extracellular glutamate to prevent the activation of eNDMARs under basal conditions and that, during dehydration, eNMDAR activation contributes to the increased firing rate of MNCs.

  12. Synapse-Specific Control of Experience-Dependent Plasticity by Presynaptic NMDA Receptors

    PubMed Central

    Larsen, Rylan S.; Smith, Ikuko T.; Miriyala, Jayalakshmi; Han, Ji Eun; Corlew, Rebekah J.; Smith, Spencer L.; Philpot, Benjamin D.

    2014-01-01

    SUMMARY Sensory experience orchestrates the development of cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity. However, the mechanisms underlying these experience-dependent modifications remain elusive. Here we demonstrate that visual experience suppresses a presynaptic NMDA receptor (preNMDAR)-mediated form of timing-dependent long-term depression (tLTD) at visual cortex layer (L) 4-2/3 synapses. This tLTD can be maintained during development, or reinstated in adulthood, by sensory deprivation. The changes in tLTD are mirrored by changes in glutamate release; visual deprivation enhances both tLTD and glutamate release. These effects require the GluN3A NMDAR subunit, the levels of which are increased by visual deprivation. Further, by coupling the pathway-specific optogenetic induction of tLTD with cell-type-specific NMDAR deletion, we find that visual experience modifies preNMDAR-mediated plasticity specifically at L4-L2/3 synapses. PMID:25144876

  13. Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons.

    PubMed

    Muñoz, Francisco J; Godoy, Juan A; Cerpa, Waldo; Poblete, Inés M; Huidobro-Toro, Juan Pablo; Inestrosa, Nibaldo C

    2014-02-07

    Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca(2+) signaling through a mechanism that depends on Ca(2+) release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.

  14. CONSERVED HIGHER ORDER CHROMATIN REGULATES NMDA RECEPTOR GENE EXPRESSION AND COGNITION

    PubMed Central

    Bharadwaj, Rahul; Peter, Cyril J.; Jiang, Yan; Roussos, Panos; Vogel-Ciernia, Annie; Shen, Erica; Mitchell, Amanda; Mao, Wenjie; Whittle, Catheryne; Dincer, Aslihan; Jakovcevski, Mira; Pothula, Venu; Rasmussen, Theodore P.; Giakoumaki, Stella G.; Bitsios, Panos; Sherif, Ajfar; Gardner, Paul D.; Ernst, Patricia; Ghose, Subroto; Sklar, Pamela; Haroutunian, Vahram; Tamminga, Carol; Myers, Richard H.; Futai, Kensuke; Wood, Marcelo A.; Akbarian, Schahram

    2014-01-01

    3-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here, we describe activity-regulated long-range loopings bypassing up to 0.5 megabase of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3’ intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a ‘cargo’ of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition. PMID:25467983

  15. Diagnóstico diferencial en la encefalitis por anticuerpos contra el receptor NMDA

    PubMed Central

    González-Valcárcel, J.; Rosenfeld, M.R.; Dalmau, J.

    2011-01-01

    Resumen Introducción La encefalitis por anticuerpos contra el receptor de NMDA (NMDAR) suele desarrollarse como un síndrome característico de evolución multifásica y diagnóstico diferencial amplio. Pacientes Presentamos a 2 pacientes diagnosticadas de encefalitis por anticuerpos NMDAR con un cuadro clínico típico, pero que inicialmente señaló otras etiologías. Discusión La afectación frecuente de pacientes jóvenes con manifestaciones psiquiátricas prominentes indica frecuentemente otras consideraciones diagnósticas; las más frecuentes son las encefalitis virales, los procesos psiquiátricos y el síndrome neuroléptico maligno. Varios síndromes previamente definidos de manera parcial o descriptiva en adultos y pacientes pediátricos probablemente eran casos de encefalitis anti-NMDAR. Conclusiones La encefalitis anti-NMDAR debe considerarse en pacientes jóvenes con manifestaciones psiquiátricas subagudas, movimientos anormales y alteraciones autonómicas. La caracterización clínica e inmunológica de esta enfermedad ha llevado a la identificación de nuevos anticuerpos que afectan a procesos de memoria, aprendizaje, conducta y psicosis. PMID:20964986

  16. A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons

    PubMed Central

    Emnett, Christine; Li, Hairong; Jiang, Xiaoping; Benz, Ann; Boggiano, Joseph; Conyers, Sara; Wozniak, David F.; Zorumski, Charles F.; Reichert, David E.; Mennerick, Steven

    2016-01-01

    Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA receptors (NMDARs) may trigger ketamine’s psychoactive effects, ketamine or its major metabolite norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/norketamine. We introduced an alkyne “click” handle into norketamine (alkyne-norketamine, A-NK) at the key nitrogen atom. Ketamine, norketamine, and A-NK, but not A-NK-amide, showed acute and persisting psychoactive effects in mice. This psychoactivity profile paralleled activity of the compounds as NMDAR channel blockers; A-NK-amide was inactive at NMDARs, and norketamine and A-NK were active but ~4-fold less potent than ketamine. We incubated rat hippocampal cells with 10 μM A-NK or A-NK-amide then performed Cu2+ catalyzed cycloaddition of azide-Alexa Fluor 488, which covalently attaches the fluorophore to the alkyne moiety in the compounds. Fluorescent imaging revealed intracellular localization of A-NK but weak A-NK-amide labeling. Accumulation was not dependent on membrane potential, NMDAR expression, or NMDAR activity. Overall, the approach revealed a correlation among NMDAR activity, intracellular accumulation/retention, and behavioral effects. Thus, we advance first generation chemical biology tools to aid in the identification of ketamine targets. PMID:27982047

  17. Mitochondria and NMDA Receptor-Dependent Toxicity of Berberine Sensitizes Neurons to Glutamate and Rotenone Injury

    PubMed Central

    Kysenius, Kai; Brunello, Cecilia A.; Huttunen, Henri J.

    2014-01-01

    The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine. PMID:25192195

  18. [Contributions of neuropsychology to anti-NMDA receptor antibody encephalitis: a literature review].

    PubMed

    Luna-Lario, P; Hernaez-Goni, P; Tirapu-Ustarroz, J

    2016-05-01

    Limbic encephalitis generated by anti-N-methyl-D-aspartate (NMDA) receptor antibodies is an acute and severe neurological entity, which is more prevalent in young females and is associated to an underlying tumour. Since it leads to severe cognitive impairment, thought needs to be given to the contributions of neuropsychology to the diagnosis, development and treatment of the disease, which have received little attention from researchers to date. A review is conducted of the prior literature, evaluating the measurement of the cognitive symptoms (predominantly mnemonic and executive) associated to this disease. Valid, reliable neuropsychological instruments are proposed, and it is suggested that neuropsychological measures may be used as parameters to follow up these patients which help monitor their functionality in daily living once they have recovered from the acute phase. Similarly they can become a basis on which to assemble rehabilitation programmes that favour the accomplishment of personal autonomy and the patients' reintegration in the community. Nevertheless, we stress the need to include neuropsychologists and neuropsychiatrists in not only the detection but also the treatment of these patients so as to enable them to recover their personal independence and re-adapt to their natural settings.

  19. HIV-1 gp120Bal down-regulates phosphorylated NMDA receptor subunit 1 in cortical neurons via activation of glutamate and chemokine receptors

    PubMed Central

    Ru, Wenjuan; Tang, Shao-Jun

    2015-01-01

    HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit 1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection. PMID:26582091

  20. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

    PubMed

    Martire, Alberto; Pepponi, Rita; Domenici, Maria Rosaria; Ferrante, Antonella; Chiodi, Valentina; Popoli, Patrizia

    2013-04-01

    NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

  1. Cannabinoid Receptors Couple to NMDA Receptors to Reduce the Production of NO and the Mobilization of Zinc Induced by Glutamate

    PubMed Central

    Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, María; Vicente-Sánchez, Ana

    2013-01-01

    Abstract Aims: Overactivation of glutamate N-methyl-D-aspartate receptor (NMDAR) increases the cytosolic concentrations of calcium and zinc, which significantly contributes to neural death. Since cannabinoids prevent the NMDAR-mediated increase in cytosolic calcium, we investigated whether they also control the rise of potentially toxic free zinc ions, as well as the processes implicated in this phenomenon. Results: The cannabinoid receptors type 1 (CNR1) and NMDARs are cross-regulated in different regions of the nervous system. Cannabinoids abrogated the stimulation of the nitric oxide-zinc pathway by NMDAR, an effect that required the histidine triad nucleotide-binding protein 1 (HINT1). Conversely, NMDAR antagonism reduced the analgesia promoted by the CNR1 agonist WIN55,212-2 and impaired its capacity to internalize CNR1s. At the cell surface, CNR1s co-immunoprecipitated with the NR1 subunits of NMDARs, an association that diminished after the administration of NMDA in vivo or as a consequence of neuropathic overactivation of NMDARs, both situations in which cannabinoids do not control NMDAR activity. Under these circumstances, inhibition of protein kinase A (PKA) restored the association between CNR1s and NR1 subunits, and cannabinoids regained control over NMDAR activity. Notably, CNR1 and NR1 associated poorly in HINT1−/− mice, in which there was little cross-regulation between these receptors. Innovation: The CNR1 can regulate NMDAR function when the receptor is coupled to HINT1. Thus, internalization of CNR1s drives the co-internalization of the NR1 subunits, neutralizing the overactivation of NMDARs. Conclusion: Cannabinoids require the HINT1 protein to counteract the toxic effects of NMDAR-mediated NO production and zinc release. This study situates the HINT1 protein at the forefront of cannabinoid protection against NMDAR-mediated brain damage. Antioxid. Redox Signal. 19, 1766–1782. PMID:23600761

  2. A developmental change in NMDA receptor-associated proteins at hippocampal synapses.

    PubMed

    Sans, N; Petralia, R S; Wang, Y X; Blahos, J; Hell, J W; Wenthold, R J

    2000-02-01

    The membrane-associated guanylate kinases [Chapsyn-110/postsynaptic density-93 (PSD-93), synapse-associated protein-90 (SAP-90)/PSD-95, and SAP-102] are believed to cluster and anchor NMDA receptors at the synapse and to play a role in signal transduction. We have investigated the developmental changes in expression of these proteins in rat hippocampus using biochemical analyses and quantitative immunogold electron microscopy. At postnatal day 2 (P2), SAP-102 was highly expressed, whereas PSD-93 and PSD-95 were low. SAP-102 expression increased during the first week, stayed stable through P35, and showed a reduced expression at 6 months. From P2 through 6 months, PSD-93 and PSD-95 increased. For PSD-95, the percent of labeled synapses increased almost threefold with age, whereas the number of gold particles per labeled synapse did not change significantly, suggesting that the increase in PSD-95 is attributable primarily to an increase in the number of synapses containing PSD-95. In contrast, for SAP-102, both percent labeled synapses and the number of gold particles per labeled synapse decreased during this time. From Western blots of hippocampus and immunogold analysis of CA1 synapses, the high expression of NR2B at P2 coincides with the high level of SAP-102 at synapses, whereas the later expression of NR2A coincides with that of PSD-93 and PSD-95. To determine whether the changes in PSD-93/95 and SAP-102 reflect preferred associations with NR2A and NR2B, respectively, we measured co-immunoprecipitation in the adult hippocampus. These studies suggest that there is a preference for complexes of NR2A/PSD-93/95 and NR2B/SAP-102. These results indicate that individual receptor-associated proteins may have specific functions that are critical to synapse development.

  3. Opposite Roles of NMDA Receptors in Relapsing and Primary Progressive Multiple Sclerosis

    PubMed Central

    Rossi, Silvia; Studer, Valeria; Moscatelli, Alessandro; Motta, Caterina; Coghe, Giancarlo; Fenu, Giuseppe; Caillier, Stacy; Buttari, Fabio; Mori, Francesco; Barbieri, Francesca; Castelli, Maura; De Chiara, Valentina; Monteleone, Fabrizia; Mancino, Raffaele; Bernardi, Giorgio; Baranzini, Sergio E.; Marrosu, Maria G.; Oksenberg, Jorge R.; Centonze, Diego

    2013-01-01

    Synaptic transmission and plasticity mediated by NMDA receptors (NMDARs) could modulate the severity of multiple sclerosis (MS). Here the role of NMDARs in MS was first explored in 691 subjects carrying specific allelic variants of the NR1 subunit gene or of the NR2B subunit gene of this glutamate receptor. The analysis was replicated for significant SNPs in an independent sample of 1548 MS subjects. The C allele of rs4880213 was found to be associated with reduced NMDAR-mediated cortical excitability, and with increased probability of having more disability than the CT/TT MS subjects. MS severity was higher in the CC group among relapsing-remitting MS (RR-MS) patients, while primary progressive MS (PP-MS) subjects homozygous for the T allele had more pronounced clinical worsening. Mean time to first relapse, but not to an active MRI scan, was lower in the CC group of RR-MS patients, and the number of subjects with two or more clinical relapses in the first two years of the disease was higher in CC compared to CT/TT group. Furthermore, the percentage of relapses associated with residual disability was lower in subjects carrying the T allele. Lesion load at the MRI was conversely unaffected by the C or T allele of this SNP in RR-MS patients. Axonal and neuronal degeneration at the optical coherence tomography was more severe in the TT group of PP-MS patients, while reduced retinal nerve fiber thickness had less consequences on visual acuity in RR-MS patients bearing the T allele. Finally, the T allele was associated with preserved cognitive abilities at the Rao’s brief repeatable neuropsychological battery in RR-MS. Signaling through glutamate NMDARs enhances both compensatory synaptic plasticity and excitotoxic neurodegeneration, impacting in opposite ways on RR-MS and PP-MS pathophysiological mechanisms. PMID:23840674

  4. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function.

    PubMed

    Won, Hyejung; Lee, Hye-Ryeon; Gee, Heon Yung; Mah, Won; Kim, Jae-Ick; Lee, Jiseok; Ha, Seungmin; Chung, Changuk; Jung, Eun Suk; Cho, Yi Sul; Park, Sae-Geun; Lee, Jung-Soo; Lee, Kyungmin; Kim, Daesoo; Bae, Yong Chul; Kaang, Bong-Kiun; Lee, Min Goo; Kim, Eunjoon

    2012-06-13

    Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.

  5. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist HC-067047 and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of HC-067047 after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity. PMID:23459987

  6. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech.

    PubMed

    Grey, Kathryn B; Burrell, Brian D

    2008-05-01

    In vertebrate hippocampal neurons, application of forskolin (an adenylyl cyclase activator) and rolipram (a phosphodiesterase inhibitor) is an effective technique for inducing chemical long-term potentiation (cLTP) that is N-methyl-d-aspartate (NMDA) receptor (NMDAR)-dependent. However, it is not known whether forskolin induces a similar potentiation in invertebrate synapses. Therefore, we examined whether forskolin plus rolipram treatment could induce potentiation at a known glutamatergic synapse in the leech (Hirudo sp.), specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Perfusion of isolated ganglia with forskolin (50 muM) in conjunction with rolipram (0.1 muM) in Mg(2+)-free saline significantly potentiated the P-to-AP excitatory postsynaptic potential. Application of 2-amino-5-phosphonovaleric acid (APV, 100 muM), a competitive NMDAR antagonist, blocked the potentiation, indicating P-to-AP potentiation is NMDAR-dependent. Potentiation was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA, 1 mM) into the postsynaptic cell, but not by BAPTA injection into the presynaptic neuron, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Application of db-cAMP mimicked the potentiating effects of forskolin, and Rp-cAMP, an inhibitor of protein kinase A, blocked forskolin-induced potentiation. Potentiation was also blocked by autocamtide-2-related inhibitory peptide (AIP), indicating a requirement for activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII). Finally, potentiation was blocked by botulinum toxin, suggesting that trafficking of glutamate receptors also plays a role in this form of synaptic plasticity. These experiments demonstrate that techniques used to induce cLTP in vertebrate synapses also induce NMDAR-dependent potentiation in the leech CNS and that many of the cellular processes that mediate LTP are conserved between vertebrate and invertebrate phyla.

  7. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury.

    PubMed

    Patel, Tapan P; Ventre, Scott C; Geddes-Klein, Donna; Singh, Pallab K; Meaney, David F

    2014-03-19

    Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca(2+)]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca(2+)]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg(2+) block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury.

  8. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: the complex mechanism of blonanserin action involving D₃-5-HT₂A and D₁-NMDA receptors in the mPFC.

    PubMed

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-02-01

    Blonanserin differs from currently used serotonin 5-HT₂A/dopamine-D₂ receptor antagonists in that it exhibits higher affinity for dopamine-D₂/₃ receptors than for serotonin 5-HT₂A receptors. We investigated the involvement of dopamine-D₃ receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT₂A receptor agonist) and 7-OH-DPAT (a dopamine-D₃ receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D₁ receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr(197) and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser(897) by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser(896) by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D₁-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D₃ and serotonin 5-HT₂A receptors in the mPFC.

  9. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  10. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons

    PubMed Central

    Stanika, Ruslan I.; Winters, Christine A.; Pivovarova, Natalia B.; Andrews, S. Brian

    2009-01-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca2+ overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca2+ elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca2+ and ROS elevations were abolished in Ca2+-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca2+-overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons. PMID:19879359

  11. Brain-specific regulator of G-protein signaling 9-2 selectively interacts with alpha-actinin-2 to regulate calcium-dependent inactivation of NMDA receptors.

    PubMed

    Bouhamdan, Mohamad; Yan, Hai-Dun; Yan, Xiu-Hua; Bannon, Michael J; Andrade, Rodrigo

    2006-03-01

    Regulator of G-protein signaling 9-1 (RGS9-1) and RGS9-2 are highly related RGS proteins with distinctive C termini arising from alternative splicing of RGS9 gene transcripts. RGS9-1 is expressed in photoreceptors where it functions as a regulator of transducin. In contrast, RGS9-2 is abundantly expressed in the brain, especially in basal ganglia, where its specific function remains poorly understood. To gain insight into the function of RGS9-2, we screened a human cDNA library for potential interacting proteins. This screen identified a strong interaction between RGS9-2 and alpha-actinin-2, suggesting a possible functional relationship between these proteins. Consistent with this idea, RGS9-2 and alpha-actinin-2 coimmunoprecipitated after coexpression in human embryonic kidney 293 (HEK-293) cells. Furthermore, endogenous RGS9-2 and alpha-actinin-2 could also be coimmunoprecipitated from extracts of rat striatum, an area highly enriched in both these proteins. These results supported the idea that RGS9-2 and alpha-actinin-2 could act in concert in central neurons. Like alpha-actinin-2, RGS9-2 coimmunoprecipitated NMDA receptors from striatal extracts, suggesting an interaction between RGS9-2, alpha-actinin-2, and NMDA receptors. Previous studies have shown that alpha-actinin mediates calcium-dependent inactivation of NMDA receptors. In HEK-293 cells expressing NMDA receptors, expression of RGS9-2 significantly modulated this form of NMDA receptor inactivation. Furthermore, this modulation showed remarkable preference for NMDA receptor inactivation mediated by alpha-actinin-2. Using a series of deletion constructs, we localized this effect to the RGS domain of the protein. These results identify an unexpected functional interaction between RGS9-2 and alpha-actinin-2 and suggest a potential novel role for RGS9-2 in the regulation of NMDA receptor function.

  12. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization.

    PubMed

    Lin, Da-Ting; Huganir, Richard L

    2007-12-12

    Changes in surface trafficking of AMPA receptors play an important role in synaptic plasticity. Phosphorylation of the C terminus of the AMPA receptor (AMPAR) subunit glutamate receptor 2 (GluR2) and the binding of GluR2 to the PDZ [postsynaptic density-95/Discs large/zona occludens-1]-domain containing protein, protein interacting with protein kinase C (PICK1), have been proposed to play an important role in NMDA receptor dependent internalization of GluR2. However, the fate of internalized GluR2 after NMDA receptor (NMDAR) activation is still unclear. Both recycling and degradation of GluR2 after the activation of NMDAR have been reported. Here, we used a pH-sensitive green fluorescent protein variant, pHluorin, tagged to the N terminus of GluR2 (pH-GluR2) to study the dynamic internalization and recycling of GluR2 after NMDAR activation. Using fluorescence recovery after photobleach (FRAP), we directly demonstrate that internalized pH-GluR2 subunits recycle back to the cell surface after NMDAR activation. We further demonstrate that changing the phosphorylation state of the S880 residue at the C terminus of GluR2 does not affect NMDAR-dependent GluR2 internalization, but alters the recycling of GluR2 after NMDAR activation. In addition, mutation of the N-ethylmaleimide-sensitive fusion protein (NSF) binding site in the pH-GluR2 slows receptor recycling. Finally, neurons lacking PICK1 display normal NMDAR dependent GluR2 internalization compared with wild-type neurons, but demonstrate accelerated GluR2 recycling after NMDAR activation. These results indicate that phosphorylation of GluR2 S880 and NSF and PICK1 binding to GluR2 dynamically regulate GluR2 recycling.

  13. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation.

    PubMed

    Lipton, Stuart A

    2007-05-01

    Alzheimer's disease (AD) and Vascular dementia represent the most common forms of dementia. If left unabated, the economic cost of caring for patients with these maladies would consume the entire gross national product of the industrialized world by the middle of this century. Until recently, the only available drugs for this condition were cholinergic treatments, which symptomatically enhance cognitive state to some degree, but they were not neuroprotective. Many potential neuroprotective drugs tested in clinical trials failed because of intolerable side effects. However, after our discovery of its clinically-tolerated mechanism of action, one putatively neuroprotective drug, memantine, was recently approved by the European Union and the U.S. Food and Drug Administration (FDA) for the treatment of dementia. Recent phase 3 clinical trials have shown that memantine is effective in the treatment of both mild and moderate-to-severe Alzheimer's disease and possibly Vascular dementia (multi-infarct dementia). Here we review the molecular mechanism of memantine's action and also the basis for the drug's use in these neurological diseases, which are mediated at least in part by excitotoxicity. Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. Excitotoxic neuronal cell damage is mediated in part by overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, which results in excessive Ca(2+) influx through the receptor associated ion channel and subsequent free radical formation. Physiological NMDA receptor activity, however, is also essential for normal neuronal function. This means that potential neuroprotective agents that block virtually all NMDA receptor activity will very likely have unacceptable clinical side effects. For this reason many previous NMDA receptor antagonists have disappointingly failed advanced clinical trials for a number of

  14. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  15. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  16. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  17. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction.

  18. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning.

    PubMed

    Yin, Henry H; Knowlton, Barbara J; Balleine, Bernard W

    2005-07-01

    Although there is consensus that instrumental conditioning depends on the encoding of action-outcome associations, it is not known where this learning process is localized in the brain. Recent research suggests that the posterior dorsomedial striatum (pDMS) may be the critical locus of these associations. We tested this hypothesis by examining the contribution of N-methyl-D-aspartate receptors (NMDARs) in the pDMS to action-outcome learning. Rats with bilateral cannulae in the pDMS were first trained to perform two actions (left and right lever presses), for sucrose solution. After the pre-training phase, they were given an infusion of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (APV, 1 mg/mL) or artificial cerebral spinal fluid (ACSF) before a 30-min session in which pressing one lever delivered food pellets and pressing the other delivered fruit punch. Learning during this session was tested the next day by sating the animals on either the pellets or fruit punch before assessing their performance on the two levers in extinction. The ACSF group selectively reduced responding on the lever that, in training, had earned the now devalued outcome, whereas the APV group did not. Experiment 2 replicated the effect of APV during the critical training session but found no effect of APV given after acquisition and before test. Furthermore, Experiment 3 showed that the effect of APV on instrumental learning was restricted to the pDMS; infusion into the dorsolateral striatum did not prevent learning. These experiments provide the first direct evidence that, in instrumental conditioning, NMDARs in the dorsomedial striatum are involved in encoding action-outcome associations.

  19. Dendritic remodeling of hippocampal neurons is associated with altered NMDA receptor expression in alcohol dependent rats

    PubMed Central

    Staples, Miranda C.; Kim, Airee; Mandyam, Chitra D.

    2015-01-01

    Prolonged alcohol exposure has been previously shown to impair the structure and function of the hippocampus, although the underlying structural and biochemical alterations contributing to these deleterious effects are unclear. Also unclear is whether these changes persist into prolonged periods of abstinence. Previous work from our lab utilizing a clinically relevant rodent model of alcohol consumption demonstrated that alcohol dependence (induced by chronic intermittent ethanol vapor exposure or CIE) decreases proliferation and survival of neural stem cells in the hippocampal subgranular zone and hippocampal neurogenesis in the dentate gyrus, implicating this region of the cortex as particularly sensitive to the toxic effects of prolonged ethanol exposure. For this study, we investigated seven weeks of CIE-induced morphological changes (dendritic complexity and dendritic spine density) of dentate gyrus (DG) granule cell neurons, CA3, and CA1 pyramidal neurons and the associated alterations in biochemical markers of synaptic plasticity and toxicity (NMDA receptors and PSD-95) in the hippocampus in ethanol-experienced Wistar rats 3h (CIE) and 21 days (protracted abstinence) after the last ethanol vapor exposure. CIE reduced dendritic arborization of DG neurons and this effect persisted into protracted abstinence. CIE enhanced dendritic arborization of pyramidal neurons and this effect did not persist into protracted abstinence. The architectural changes in dendrites did not correlate with alterations in dendritic spine density, however, they were associated with increases in the expression of pNR2B, total NR2B, and total NR2A immediately following CIE with expression levels returning to control levels in prolonged abstinence. Overall, these data provide the evidence that CIE produces profound changes in hippocampal structural plasticity and in molecular tools that maintain hippocampal structural plasticity, and these alterations may underlie cognitive dysfunction

  20. Pattern-dependent Role of NMDA receptors in Action Potential Generation: Consequences on ERK Activation

    PubMed Central

    Zhao, Meilan; Adams, J. Paige

    2005-01-01

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular-signal regulated kinases 1 and 2 (ERKs) with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs, and ERK activation, could be overcome with the addition of the GABA-A antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to APV, in contrast to that induced with 5 Hz or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation. PMID:16049179

  1. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors

    PubMed Central

    Christian, Kimberly M.; Miracle, Angela D.; Wellman, Cara L.; Nakazawa, Kazu

    2010-01-01

    Chronic stress induces dendritic retraction in the hippocampal CA3 subregion, but the mechanisms responsible for this retraction and its impact on neural circuitry are not well understood. To determine the role of NMDA (N-methyl-D-aspartic acid) receptor (NMDAR)-mediated signaling in this process, we compared the effects of chronic immobilization stress (CIS) on hippocampal dendritic morphology, hypothalamic-pituitary-adrenal (HPA) axis activation, and anxiety-related and hippocampus-dependent behaviors, in transgenic male mice in which the NMDAR had been selectively deleted in CA3 pyramidal cells and in non-mutant littermates. We found that CIS exposure for 10 consecutive days in non-mutant mice effectively induces HPA axis activation and dendritic retraction of CA3 short-shaft pyramidal neurons, but not CA3 long-shaft pyramidal neurons, suggesting a differential cellular stress response in this region. Dendritic reorganization of short-shaft neurons occurred throughout the longitudinal axis of the hippocampus and, in particular, in the ventral pole of this structure. We also observed a robust retraction of dendrites in dorsal CA1 pyramidal neurons in the non-mutant C57BL/6 mouse strain. Strikingly, chronic stress-induced dendritic retraction was not evident in any of the neurons in either CA3 or CA1 in the mutant mice that had a functional lack of NMDARs restricted to CA3 pyramidal neurons. Interestingly, the prevention of dendritic retraction in the mutant mice had a minimal effect on HPA axis activation and behavioral alterations that were induced by chronic stress. These data support a role for NMDAR-dependent glutamatergic signaling in CA3 in the cell-type specific induction of dendritic retraction in two hippocampal subregions following chronic stress. PMID:21108993

  2. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  3. Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis

    PubMed Central

    Oberwahrenbrock, Timm; Mikolajczak, Janine; Zimmermann, Hanna; Prüss, Harald; Paul, Friedemann; Finke, Carsten

    2016-01-01

    Objective: To assess structural and functional changes in the afferent visual system following anti-NMDA receptor (NMDAR) encephalitis. Methods: In this cross-sectional study including 31 patients after acute NMDAR encephalitis and matched healthy controls, visual function was assessed as high-contrast visual acuity using Early Treatment Diabetic Retinopathy Study charts and low-contrast sensitivity using Functional Acuity Contrast Test. Retinal changes were measured using optical coherence tomography with assessment of peripapillary retinal nerve fiber layer (pRNFL) and macular intraretinal layer thicknesses. Residual clinical impairment was described using the modified Rankin Scale. Results: High-contrast (logMAR 0.02 ± 0.14 vs −0.09 ± 0.14, p < 0.001) and low-contrast (area under the curve 1.89 ± 0.21 vs 2.00 ± 0.26, p = 0.039) visual acuity were reduced in patients in comparison to healthy controls. More severely affected patients performed worse in visual acuity testing than patients with good recovery (logMAR −0.02 ± 0.11 vs 0.08 ± 0.17, p = 0.030). In contrast, patients did not differ from matched healthy controls in pRNFL or in thickness of intraretinal layers, including the ganglion cell complex, the inner nuclear layer, the outer nuclear and plexiform layers, and the photoreceptor layer. Conclusions: After acute NMDAR encephalitis, patients have mild visual dysfunction in comparison to matched healthy controls, while retinal structure appears unaltered. These observations could point to an impairment of anterior or posterior visual pathway NMDAR function that is similar to dysfunction of NMDAR in cerebral cortex and subcortical structures. Alternatively, residual cognitive impairment might reduce visual function. PMID:26894203

  4. Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP

    PubMed Central

    Bickford, Paula C.; Browning, Michael D.

    2008-01-01

    NMDA receptor-dependent long-term potentiation (LTP) in the hippocampus is widely accepted as a cellular substrate for memory formation. Age-related declines in the expression of both NMDAR-dependent LTP and NMDAR subunit proteins in the CA1 region of the hippocampus have been well characterized and likely underlie age-related memory impairment. In the current study, we examined NMDAR-dependent LTP in young Fischer 344 rats (4 months old) and aged rats (24 months old) given either a control diet or a diet supplemented with blueberry extract for 6–8 weeks. NMDAR-dependent LTP was evoked by high-frequency stimulation (HFS) in the presence of nifedipine, to eliminate voltage-gated calcium channel LTP. Field excitatory postsynaptic potentials (fEPSPs) were increased by 57% 1 h after HFS in young animals, but this potentiation was reduced to 31% in aged animals. Supplementation of the diet with blueberry extract elevated LTP (63%) in aged animals to levels seen in young. The normalization of LTP may be due to the blueberry diet preventing a decline in synaptic strength, as measured by the slope of the fEPSP for a given fiber potential. The blueberry diet did not prevent age-related declines in NMDAR protein expression. However, phosphorylation of a key tyrosine residue on the NR2B subunit, important for increasing NMDAR function, was enhanced by the diet, suggesting that an increase in NMDAR function might overcome the loss in protein. This report provides evidence that dietary alterations later in life may prevent or postpone the cognitive declines associated with aging. PMID:19424850

  5. Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus.

    PubMed

    Le Bail, Matildé; Martineau, Magalie; Sacchi, Silvia; Yatsenko, Natalia; Radzishevsky, Inna; Conrod, Sandrine; Ait Ouares, Karima; Wolosker, Herman; Pollegioni, Loredano; Billard, Jean-Marie; Mothet, Jean-Pierre

    2015-01-13

    NMDA receptors (NMDARs) require the coagonists D-serine or glycine for their activation, but whether the identity of the coagonist could be synapse specific and developmentally regulated remains elusive. We therefore investigated the contribution of D-serine and glycine by recording NMDAR-mediated responses at hippocampal Schaffer collaterals (SC)-CA1 and medial perforant path-dentate gyrus (mPP-DG) synapses in juvenile and adult rats. Selective depletion of endogenous coagonists with enzymatic scavengers as well as pharmacological inhibition of endogenous D-amino acid oxidase activity revealed that D-serine is the preferred coagonist at SC-CA1 mature synapses, whereas, unexpectedly, glycine is mainly involved at mPP-DG synapses. Nevertheless, both coagonist functions are driven by the levels of synaptic activity as inferred by recording long-term potentiation generated at both connections. This regional compartmentalization in the coagonist identity is associated to different GluN1/GluN2A to GluN1/GluN2B subunit composition of synaptic NMDARs. During postnatal development, the replacement of GluN2B- by GluN2A-containing NMDARs at SC-CA1 synapses parallels a change in the identity of the coagonist from glycine to D-serine. In contrast, NMDARs subunit composition at mPP-DG synapses is not altered and glycine remains the main coagonist throughout postnatal development. Altogether, our observations disclose an unprecedented relationship in the identity of the coagonist not only with the GluN2 subunit composition at synaptic NMDARs but also with astrocyte activity in the developing and mature hippocampus that reconciles the complementary functions of D-serine And Glycine In Modulating Nmdars During The Maturation Of Tripartite Glutamatergic Synapses.

  6. Role of NMDA receptors in noise-induced tau hyperphosphorylation in rat hippocampus and prefrontal cortex.

    PubMed

    Li, Kang; Jia, Hengchuan; She, Xiaojun; Cui, Bo; Zhang, Na; Chen, Xuewei; Xu, Chuanxiang; An, Gaihong; Ma, Qiang

    2014-05-15

    Chronic noise exposure has been associated with abnormalities in glutamate (Glu)-NMDAR signaling and tau hyperphosphorylation. However, further studies are necessary to clarify potential causal relationships. The aim of the present study was to evaluate the role of NMDA receptors in noise-induced tau hyperphosphorylation in the rat hippocampus and prefrontal cortex. Male Wistar rats were randomly divided into three groups in the present study: control with isotonic saline instillation (n=10); noise exposure (100 dB SPL white noise, 4h/d × 14d) and treated with saline (n=10); and noise exposure and treated with MK-801 (0.5mg/kg, intraperitoneally; n=10). The levels of tau phosphorylated at Ser202 and Ser396, and proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were measured in the hippocampus and prefrontal cortex (PFC) after the last noise exposure. We showed that phosphorylated tau levels were enhanced in noise-exposed-rat hippocampus and PFC. MK-801 decreased the hyperphosphorylation of tau at Ser202 and Ser396 sites in the hippocampus and PFC. Furthermore, MK-801 reversed noise-induced GSK3β overexpression but had no significant effect on PP2A levels. This suggests that MK-801 protects against chronic-noise-induced tau hyperphosphorylation in the hippocampus and PFC. These findings demonstrate that Glu-NMDAR signaling may be involved in triggering aberrant tau hyperphosphorylation in the hippocampus and PFC after chronic noise exposure.

  7. Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals.

    PubMed

    Peterson, Bethany L; Park, Thomas J; Larson, John

    2012-01-11

    Adult naked mole-rats show a number of systemic adaptations to a crowded underground habitat that is low in oxygen and high in carbon dioxide. Remarkably, brain slice tissue from adult naked mole-rats also is extremely tolerant to oxygen deprivation as indicated by maintenance of synaptic transmission under hypoxic conditions as well as by a delayed neuronal depolarization during anoxia. These characteristics resemble hypoxia tolerance in brain slices from neonates in a variety of mammal species. An important component of neonatal tolerance to hypoxia involves the subunit composition of NMDA receptors. Neonates have a high proportion of NMDA receptors with GluN2D subunits which are protective because they retard calcium entry into neurons during hypoxic episodes. Therefore, we hypothesized that adult naked mole-rats retain a protective, neonatal-like, NMDA receptor subunit profile. We used immunoblotting to assess age-related changes in NMDA receptor subunits in naked mole-rats and mice. The results show that adult naked mole-rat brain retains a much greater proportion of the hypoxia-protective GluN2D subunit compared to adult mice. However, age-related changes in other subunits (GluN2A and GluN2B) from the neonatal period to adulthood were comparable in mice and naked mole-rats. Hence, adult naked mole-rat brain only retains the neonatal NMDA receptor subunit that is associated with hypoxia tolerance.

  8. NMDA receptors of dorsal hippocampus are involved in the acquisition, but not in the expression of morphine-induced place preference.

    PubMed

    Zarrindast, Mohammad-Reza; Lashgari, Reza; Rezayof, Ameneh; Motamedi, Fereshteh; Nazari-Serenjeh, Farzaneh

    2007-07-30

    In the present study, involvement of the N-methyl-d-aspartate (NMDA) receptors of the CA1 region of dorsal hippocampus (intra-CA1) in the acquisition or expression of morphine-induced conditioned place preference in rats was studied. Male Wistar rats were used in these experiments. NMDA-receptor agonist (NMDA) and antagonist (MK-801) were injected into the CA1 region of the dorsal hippocampus (intra-CA1) and morphine was injected subcutaneously. An unbiased conditioned place preference paradigm was used to study the effect of these agents. In the first set of experiments, the drugs were used during the development of conditioned place preference by morphine or they were used alone in order to see if they induce conditioned place preference or conditioned place aversion. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (2.5-10 mg/kg) induced conditioned place preference in rat. NMDA (0.1-1 microg/rat) or MK-801 (1-4 microg/rat) did not induce conditioned place preference or conditioned place aversion. Intra-CA1 administration of different doses of NMDA (0.1-1 microg/rat) increased, while MK-801 (1-4 microg/rat) decreased morphine-induced place preference. MK-801 reversed the effect of NMDA on morphine response. In the second set of experiments, when the drugs were used before testing on Day 5, in order to test their effects on the expression of morphine (7.5 mg/kg)-induced place preference, intra-CA1 administration of NMDA or MK-801 did not alter the morphine response. None of the drugs influenced locomotion. It is concluded that NMDA receptor of the CA1 region of hippocampus are involved in the acquisition but not expression of morphine-induced place preference.

  9. NMDA receptors mediate heat shock protein induction in the mouse brain following administration of the ibotenic acid analogue AMAA.

    PubMed

    Planas, A M; Ferrer, I; Rodríguez-Farré, E

    1995-11-27

    Expression of inducible heat shock protein-70 (HSP-70) and hsp-70 mRNA were studied in the adult mouse brain following systemic administration of the ibotenic acid analogue (+/-)-2-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMAA), which is a potent N-methyl-D-aspartate (NMDA) agonist. At the dose of 20 mg/kg, AMAA produced excitatory behaviours in adult mice but overt convulsions were not seen. This treatment did not result in any detectable morphological brain damage at 4 days following administration. At 2.5 h and 5 h following treatment induction of hsp-70 mRNA expression was found in the pyramidal cell layers of CA1 and, to a lesser extent, CA3 fields of hippocampal Ammon's horn, amygdala, olfactory lobes, tenia tecta, hypothalamic nuclei and a superficial layer of cingulate, frontal and retrosplenial cortices. The presence of HSP-70 was detected by immunochemistry at 24 h following drug administration in those regions previously showing hsp-70 mRNA induction. AMAA-induced hsp-70 mRNA expression was prevented by pre-treatment with the non-competitive NMDA antagonist MK-801. These results suggest that NMDA receptors are involved in the stress response induced by AMAA.

  10. Participation of NMDA receptors in the lateral hypothalamus in gastric erosion induced by cold-water restraint.

    PubMed

    Landeira-Fernandez, J

    2015-03-01

    The present study investigated whether neurons in the lateral hypothalamus (LH) play a role in the occurrence of gastric ulcerations induced by cold-water restraint. The first experiment indicated that bilateral N-methyl-d-aspartate (NMDA) lesions of the LH (20μg/1μl per side) reduced the amount of gastric ulceration induced by cold-water restraint. In the second experiment, the NMDA antagonist DL-2-amino-5-phosphonovaleric acid (APV; 2.5μg/0.5μl per side) or its vehicle was microinjected bilaterally into the LH prior to the cold-water restraint procedure. APV did not induce gastric ulcerations but reduced the amount of ulceration induced by cold-water restraint. These results indicate that NMDA receptors in the LH play an important role in the occurrence of gastric ulceration induced by cold-water restraint. The participation of the LH and possible neuronal circuitry involved in stress-induced ulceration are discussed.

  11. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  12. Association between genetic variations of NMDA receptor NR3 subfamily genes and heroin addiction in male Han Chinese.

    PubMed

    Xie, Xiaohu; Liu, Huifen; Zhang, Jianbing; Chen, Weisheng; Zhuang, Dingding; Duan, Shiwei; Zhou, Wenhua

    2016-09-19

    Growing amounts of evidence suggest that N-Methyl-d-aspartate (NMDA) receptor mediated glutamate neurotransmission may be involved in the pathophysiology of drug dependence. The NMDA receptor consists of three subfamilies (NR1, NR2, and NR3). The ability of subunit NR3 to negatively modulate the NMDA receptor function makes it an attractive candidate gene of heroin addiction. The purpose of this study is to explore the association between four single nucleotide polymorphisms (SNPs) of NR3 gene and heroin addiction. Genotyping of two SNPs (rs3739722 and rs17189632) in GRIN3A and two SNPs (rs4807399 and rs2240158) in GRIN3B was performed using TaqMan SNP genotyping method. The association between heroin addiction and these SNPs was assessed among 332 male heroin dependent patients and 400 male normal control subjects. The results showed the genotype and allele frequencies of rs17189632 and rs2240158 were significantly different between the cases and the controls (nominal P values were 0.0284, 0.0136 for rs17189632; 0.0048, 0.0013 for rs2240158, respectively). After Bonferroni correction, rs2240158 of GRIN3B was still found to be associated with heroin addiction. The frequencies of haplotype C-A at GRIN3A (rs3739722-rs17189632) and of C-C and C-T at GRIN3B (rs4807399-rs2240158) differed significantly between the cases and the controls. The genotype and allele distributions of rs3739722 and rs4807399 were not significantly different between in the cases and in the controls (P>0.05). These results suggest that GRIN3A rs17189632 and GRIN3B rs2240158 may contribute to the susceptibility of heroin addiction.

  13. Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors.

    PubMed

    Postnikova, T Y; Zubareva, O E; Kovalenko, A A; Kim, K K; Magazanik, L G; Zaitsev, A V

    2017-03-01

    Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Real-time PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

  14. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.

  15. Encefalitis por anticuerpos contra el receptor de NMDA: experiencia con seis pacientes pediátricos. Potencial eficacia del metotrexato

    PubMed Central

    Bravo-Oro, Antonio; Abud-Mendoza, Carlos; Quezada-Corona, Arturo; Dalmau, Josep; Campos-Guevara, Verónica

    2016-01-01

    Introducción La encefalitis por anticuerpos contra el receptor de N-metil-D-aspartato (NMDA) es una entidad cada vez más diagnosticada en edad pediátrica. A diferencia de los adultos, en muchos casos no se asocia a tumores y las manifestaciones iniciales en niños más frecuentes son crisis convulsivas y trastornos del movimiento, mientras que en los adultos predominan las alteraciones psiquiátricas. Casos clínicos Presentamos seis casos pediátricos confirmados con anticuerpos contra la subunidad NR1 del receptor de NMDA en suero y líquido cefalorraquídeo. Cinco de los casos comenzaron con crisis convulsivas como manifestación clínica inicial antes de desarrollar el cuadro clásico de esta entidad. En todos los casos se utilizaron esteroides como primera línea de tratamiento, con los que sólo se observó control de las manifestaciones en uno, por lo que el resto de los pacientes requirió inmunomoduladores de segunda línea. Todos los pacientes recibieron metotrexato como tratamiento inmunomodulador para evitar recaídas y la evolución fue a la mejoría en todos ellos. Conclusiones En nuestra serie de pacientes con encefalitis por anticuerpos contra el receptor de NMDA, ninguno se asoció a tumores. Todos los casos recibieron metotrexato por lo menos durante un año, no observamos eventos adversos clínicos ni por laboratorio, ni hubo secuelas neurológicas ni recaídas durante el tratamiento. Aunque es una serie pequeña y es deseable incrementar el número y tiempo de evolución, consideramos el metotrexato una excelente alternativa como tratamiento inmunomodulador para esta patología. PMID:24150952

  16. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  17. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  18. A young woman presenting with psychotic and mood symptoms from anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis: an emerging diagnosis.

    PubMed

    Yuan, Neal; Glezer, Anna

    2013-01-01

    Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis, first characterized in 2005, is a neurological disease with prominent psychiatric features that frequently involves the consultation of psychiatrists. Since its discovery, the rate of diagnosis of new cases has increased rapidly and several epidemiological studies now confirm that NMDA-R encephalitis may be as common as many other prominent infectious etiologies of encephalitis. We describe a case of a young woman presenting initially with psychotic and mood symptoms who was found to have anti-NMDA-R encephalitis. We further provide details of her treatment and prolonged recovery process after hospital discharge with a review of the literature and discussion of the epidemiology, symptomology, diagnosis, and management of both the neurologic and psychiatric manifestations of this condition. Last, we contextualize the importance of anti-NMDA-R encephalitis for psychiatrists, highlighting the role for psychiatrists in establishing the initial diagnosis as well as in providing ongoing psychiatric care.

  19. Longitudinal electroencephalographic (EEG) findings in pediatric anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis: the Padua experience.

    PubMed

    Nosadini, Margherita; Boniver, Clementina; Zuliani, Luigi; de Palma, Luca; Cainelli, Elisa; Battistella, Pier Antonio; Toldo, Irene; Suppiej, Agnese; Sartori, Stefano

    2015-02-01

    To contribute to characterize electroencephalographic (EEG) activity in pediatric anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis, we reviewed electroclinical data of 5 children with anti-NMDA receptor encephalitis diagnosed in our department. We identified 4 longitudinal electroencephalographic phases: in the early phase, background activity was normal, with intermixed nonreactive slow waves; in the florid phase, background activity deteriorated with appearance of sequences of peculiar rhythmic theta and/or delta activity unrelated to clinical changes, unresponsive to stimuli and antiepileptic medications; in the recovery phase, these sequences decreased and reactive posterior rhythm re-emerged; electroencephalogram normalized 2 to 5 months after onset. In conclusion, in the presence of evocative clinical history, recognizing a characteristic longitudinal electroencephalographic activity could provide ancillary aspects addressing the diagnosis and the overall management of children with anti-N-methyl-d-aspartate receptor encephalitis; in particular, knowing that peculiar and recurrent paroxysmal nonepileptic rhythmic theta-delta patterns can occur in these patients could help distinguish paroxysmal epileptic and nonepileptic electroencephalographic activity.

  20. The Sleep-Promoting and Hypothermic Effects of Glycine are Mediated by NMDA Receptors in the Suprachiasmatic Nucleus

    PubMed Central

    Kawai, Nobuhiro; Sakai, Noriaki; Okuro, Masashi; Karakawa, Sachie; Tsuneyoshi, Yosuke; Kawasaki, Noriko; Takeda, Tomoko; Bannai, Makoto; Nishino, Seiji

    2015-01-01

    The use of glycine as a therapeutic option for improving sleep quality is a novel and safe approach. However, despite clinical evidence of its efficacy, the details of its mechanism remain poorly understood. In this study, we investigated the site of action and sleep-promoting mechanisms of glycine in rats. In acute sleep disturbance, oral administration of glycine-induced non-rapid eye movement (REM) sleep and shortened NREM sleep latency with a simultaneous decrease in core temperature. Oral and intracerebroventricular injection of glycine elevated cutaneous blood flow (CBF) at the plantar surface in a dose-dependent manner, resulting in heat loss. Pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and CGP78608 but not the glycine receptor antagonist strychnine inhibited the CBF increase caused by glycine injection into the brain. Induction of c-Fos expression was observed in the hypothalamic nuclei, including the medial preoptic area (MPO) and the suprachiasmatic nucleus (SCN) shell after glycine administration. Bilateral microinjection of glycine into the SCN elevated CBF in a dose-dependent manner, whereas no effect was observed when glycine was injected into the MPO and dorsal subparaventricular zone. In addition, microinjection of D-serine into the SCN also increased CBF, whereas these effects were blocked in the presence of L-701324. SCN ablation completely abolished the sleep-promoting and hypothermic effects of glycine. These data suggest that exogenous glycine promotes sleep via peripheral vasodilatation through the activation of NMDA receptors in the SCN shell. PMID:25533534

  1. Approach to the Management of Pediatric-Onset Anti-N-Methyl-d-Aspartate (Anti-NMDA) Receptor Encephalitis: A Case Series.

    PubMed

    Brenton, J Nicholas; Kim, Joshua; Schwartz, Richard H

    2016-08-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a treatable cause of autoimmune encephalitis. It remains unclear if the natural history of this disease is altered by choice of acute therapy or the employment of chronic immunotherapy. Chart review was undertaken for pediatric patients diagnosed with anti-NMDA receptor encephalitis. Data obtained included patient demographics, disease manifestations, treatment course, and clinical outcomes. Ten patients with anti-NMDA receptor encephalitis were identified. All patients were treated with immunotherapy in the acute period, and all patients experienced good recovery. Neurologic relapse did not occur in any patient. All patients received varied forms of chronic immunosuppression to prevent relapses. Complications of chronic immunotherapy occurred in 50% of patients. The benefits of chronic immunotherapy and the duration of use should be carefully weighed against the risks. Complications from immunotherapy are not uncommon and can be serious. Clinical trials assessing the benefit of long-term immunotherapy in this population are needed.

  2. Pressure-selective modulation of NMDA receptor subtypes may reflect 3D structural differences.

    PubMed

    Mor, Amir; Kuttner, Yosef Y; Levy, Shiri; Mor, Merav; Hollmann, Michael; Grossman, Yoram

    2012-01-01

    Professional deep-water divers exposed to high pressure (HP) above 1.1 MPa suffer from High Pressure Neurological Syndrome (HPNS), which is associated with CNS hyperexcitability. We have previously reported that HP augments N-methyl-D-aspartate receptor (NMDAR) synaptic responses, increases neuronal excitability, and potentially causes irreversible neuronal damage. We now report that HP (10.1 MPa) differentially affects eight specific NMDAR subtypes. GluN1(1a or 1b) was co-expressed with one of the four GluN2(A-D) subunits in Xenopus laevis oocytes. HP increased ionic currents (measured by two electrode voltage clamps) of one subtype, reduced the current in four others, and did not affect the current in the remaining three. 3D theoretical modeling was aimed at revealing specific receptor domains involved with HP selectivity. In light of the information on the CNS spatial distribution of the different NMDAR subtypes, we conclude that the NMDAR's diverse responses to HP may lead to selective HP effects on different brain regions. These discoveries call for further and more specific investigation of deleterious HP effects and suggest the need for a re-evaluation of deep-diving safety guidelines.

  3. Glutamatergic Dysbalance and Oxidative Stress in In Vivo and In Vitro Models of Psychosis Based on Chronic NMDA Receptor Antagonism

    PubMed Central

    Genius, Just; Geiger, Johanna; Dölzer, Anna-Lena; Benninghoff, Jens; Giegling, Ina; Hartmann, Annette M.; Möller, Hans-Jürgen; Rujescu, Dan

    2013-01-01

    Background The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists in healthy humans and their tendency to aggravate psychotic symptoms in schizophrenic patients have promoted the notion of altered glutamatergic neurotransmission in the pathogenesis of schizophrenia. Methods The NMDA-receptor antagonist MK-801 was chronically administered to rats (0.02 mg/kg intraperitoneally for 14 days). In one subgroup the antipsychotic haloperidol (1 mg/kg) was employed as a rescue therapy. Glutamate distribution and 3-NT (3-nitrotyrosine) as a marker of oxidative stress were assessed by immunohistochemistry in tissue sections. In parallel, the effects of MK-801 and haloperidol were investigated in primary embryonal hippocampal cell cultures from rats. Results Chronic NMDA-R antagonism led to a marked increase of intracellular glutamate in the hippocampus (126.1 +/− 10.4% S.E.M of control; p = 0.037), while 3-NT staining intensity remained unaltered. No differences were observed in extrahippocampal brain regions. Essentially these findings could be reproduced in vitro. Conclusion The combined in vivo and in vitro strategy allowed us to assess the implications of disturbed glutamate metabolism for the occurrence of oxidative stress and to investigate the effects of antipsychotics. Our data suggest that oxidative stress plays a minor role in this model than previously suggested. The same applies to apoptosis. Moreover, the effect of haloperidol seems to be mediated through yet unidentified mechanisms, unrelated to D2-antagonism. These convergent lines of evidence indicate that further research should be focused on the glutamatergic system and that our animal model may provide a tool to explore the biology of schizophrenia. PMID:23869202

  4. Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domith, Ivan; Encarnação, Thaísa G.; Loiola, Erick C.; Ventura, Ana L. M.; Cossenza, Marcelo; Relvas, João B.; Castro, Newton G.; Paes-de-Carvalho, Roberto

    2017-01-01

    Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons. PMID:28098256

  5. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors

    PubMed Central

    Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac; Luna-López, Armando; Lazzarini-Lechuga, Roberto; González-Puertos, Viridiana Yazmín; Posadas-Rodríguez, Pedro; Silva-Palacios, Alejandro; Königsberg, Mina; Santamaría, Abel

    2017-01-01

    The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. The synthetic CBr agonist WIN55,212-2 acts mainly on CB1 receptor. In turn, the mitochondrial toxin 3-nitropropionic acid (3-NP) produces striatal alterations in rats similar to those observed in the brain of Huntington’s disease patients. Herein, the effects of WIN55,212-2 were tested on different endpoints of the 3-NP-induced toxicity in rat brain synaptosomes and striatal tissue. Motor activity was also evaluated. The 3-NP (1 mM)-induced mitochondrial dysfunction and lipid peroxidation was attenuated by WIN55,212-2 (1 µM) in synaptosomal fractions. The intrastriatal bilateral injection of 3-NP (500 nmol/µL) to rats increased lipid peroxidation and locomotor activity, augmented the rate of cell damage, and decreased the striatal density of neuronal cells. These alterations were accompanied by transcriptional changes in the NMDA (NR1 subunit) content. The administration of WIN55212-2 (1 mg/kg, i.p.) to rats for six consecutive days, before the 3-NP injection, exerted preventive effects on all alterations elicited by the toxin. The prevention of the 3-NP-induced NR1 transcriptional alterations by the CBr agonist together with the increase of CB1 content suggest an early reduction of the excitotoxic process via CBr activation. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies. PMID:28337258

  6. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors.

    PubMed

    Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac; Luna-López, Armando; Lazzarini-Lechuga, Roberto; González-Puertos, Viridiana Yazmín; Posadas-Rodríguez, Pedro; Silva-Palacios, Alejandro; Königsberg, Mina; Santamaría, Abel

    2017-01-01

    The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. The synthetic CBr agonist WIN55,212-2 acts mainly on CB1 receptor. In turn, the mitochondrial toxin 3-nitropropionic acid (3-NP) produces striatal alterations in rats similar to those observed in the brain of Huntington's disease patients. Herein, the effects of WIN55,212-2 were tested on different endpoints of the 3-NP-induced toxicity in rat brain synaptosomes and striatal tissue. Motor activity was also evaluated. The 3-NP (1 mM)-induced mitochondrial dysfunction and lipid peroxidation was attenuated by WIN55,212-2 (1 µM) in synaptosomal fractions. The intrastriatal bilateral injection of 3-NP (500 nmol/µL) to rats increased lipid peroxidation and locomotor activity, augmented the rate of cell damage, and decreased the striatal density of neuronal cells. These alterations were accompanied by transcriptional changes in the NMDA (NR1 subunit) content. The administration of WIN55212-2 (1 mg/kg, i.p.) to rats for six consecutive days, before the 3-NP injection, exerted preventive effects on all alterations elicited by the toxin. The prevention of the 3-NP-induced NR1 transcriptional alterations by the CBr agonist together with the increase of CB1 content suggest an early reduction of the excitotoxic process via CBr activation. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.

  7. Association between the NMDA glutamate receptor GRIN2B gene and obsessive–compulsive disorder

    PubMed Central

    Alonso, Pino; Gratacós, Mónica; Segalàs, Cinto; Escaramís, Georgia; Real, Eva; Bayés, Mónica; Labad, Javier; López-Solà, Clara; Estivill, Xavier; Menchón, José M.

    2012-01-01

    Background Recent data from neuroimaging, genetic and clinical trials and animal models suggest a role for altered glutamatergic neurotransmission in the pathogenesis of obsessive–compulsive disorder (OCD). The aim of this study was to investigate whether variants in the GRIN2B gene, the gene encoding the NR2 subunit of the N-methyl-d-aspartate (NMDA) glutamate receptor, may contribute to genetic susceptibility to OCD or to different OCD subphenotypes. Methods Between 2003 and 2008, we performed a case–control association study in which we genotyped 10 tag single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region (3′ UTR) of GRIN2B. We performed SNP association and haplotype analysis considering the OCD diagnosis and different OCD subphenotypes: early-onset OCD, comorbid tic disorders and OCD clinical symptom dimensions. Results We enrolled 225 patients with OCD and 279 controls recruited from the OCD Clinic at Bellvitge Hospital (Barcelona, Spain). No significant difference in the distribution of alleles or genotypes was detected between patients with OCD and controls. Nonetheless, on analyzing OCD subphenotypes, the rs1805476 SNP in male patients (95% confidence interval [CI] 1.37–4.22, p = 0.002) and a 4-SNP haplotype in the whole sample (rs1805476, rs1805501, rs1805502 and rs1805477; odds ratio 1.92, 95% CI 1.22–3.01; permutation p = 0.023) were significantly associated with the presence of contamination obsessions and cleaning compulsions. Limitations Study limitations included the risk of population stratification associated with the case–control design, use of psychiatrically unscreened blood donors as the control group, reduced sample size of participants with certain OCD subphenotypes and tested polymorphisms limited to 3′ UTR and exon 13 of GRIN2B. Conclusion Our results converge with recent data suggesting a possible contribution of glutamatergic variants to the genetic vulnerability to OCD or at least to certain OCD

  8. Inhibition of the NMDA receptor protects the rat sciatic nerve against ischemia/reperfusion injury

    PubMed Central

    KE, TIE; LI, RENBIN; CHEN, WENCHANG

    2016-01-01

    Inhibition of the N-methyl-D-aspartate (NMDA) receptor by MK-801 reduces ischemia/reperfusion (I/R) injury in the central nervous system. However, few previous studies have evaluated the neuroprotective effects of MK-801 against peripheral I/R injury. The present study aimed to investigate the protective effects of MK-801 pretreatment against I/R injury in the rat sciatic nerve (SN). Sprague-Dawley rats were subjected to a sham surgery (n=8) or to a 5-h ischemic insult by femoral artery clamping (I/R and I/R+MK-801 groups; n=48 per group). I/R+MK-801 rats were intraperitoneally injected with MK-801 (0.5 ml or 1 mg/kg) at 15 min prior to reperfusion. The rats were sacrificed at 0, 6, 12, 24, 72 h, or 7 days following reperfusion. Plasma malondialdehyde (MDA) and nitric oxide (NO) concentrations, and SN inducible NO synthase (iNOS) protein expression levels, were measured using colorimetry. In addition, the protein expression levels of tumor necrosis factor-α (TNF-α) were measured using immunohistochemistry, and histological analyses of the rat SN were conducted using light and electron microscopy. Alterations in the mRNA expression levels of TNF-α and TNF-α converting enzyme (TACE) in the rat SN were detected using reverse transcription-quantitative polymerase chain reaction. In the I/R group, plasma concentrations of NO (175.3±4.2 µmol/l) and MDA (16.2±1.9 mmol/l), and the levels of iNOS (2.5±0.3) in the SN, peaked at 24 h post-reperfusion. At 24 h, pretreatment with MK-801 significantly reduced plasma NO (107.3±3.6 µmol/l) and MDA (11.8±1.6 mmol/l), and SN iNOS (1.65±0.2) levels (all P<0.01). The mRNA expression levels of TNF-α and TACE in the SN were significantly reduced in the I/R+MK-801 group, as compared with the I/R group (P<0.05). Furthermore, MK-801 pretreatment was shown to have alleviated histological signs of I/R injury, including immune cell infiltration and axon demyelination. The results of the present study suggested that pretreatment

  9. Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist

    SciTech Connect

    Zaja-Milatovic, Snjezana; Aschner, Michael

    2009-10-15

    Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treated acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7-15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant (p < 0.01) increases in biomarkers of ROS (F{sub 2}-isoprostanes, F{sub 2}-IsoPs; and F{sub 4}-neuroprostanes, F{sub 4}-NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant (p < 0.01) reductions in dendritic lengths and spine density. When rats were pretreated with the antioxidants N-tert-butyl-{alpha}-phenylnitrone (PBN, 200 mg/kg, i.p.), or vitamin E (100 mg/kg, i.p./day for 3 days), or memantine (18 mg/kg, i.p.), significant attenuations in DFP-induced increases in F{sub 2}-IsoPs, F{sub 4}-NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1

  10. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.

    PubMed

    Curti, S; Falconi, A; Morales, F R; Borde, M

    1999-10-15

    Weakly electric fish generate meaningful electromotor behaviors by specific modulations of the discharge of their medullary pacemaker nucleus from which the rhythmic command for each electric organ discharge (EOD) arises. Certain electromotor behaviors seem to involve the activation of specific neurotransmitter receptors on particular target cells within the nucleus, i.e., on pacemaker or on relay cells. This paper deals with the neural basis of the electromotor behavior elicited by activation of Mauthner cells in Gymnotus carapo. This behavior consists of an abrupt and prolonged increase in the rate of the EOD. The effects of specific glutamate agonists and antagonists on basal EOD frequency and on EOD accelerations induced by Mauthner cell activation were assessed. Injections of both ionotropic (AMPA, kainate, and NMDA) and metabotropic (trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid) glutamate agonists induced increases in EOD rate that were maximal when performed close to the soma of pacemaker cells. In contrast, injections in the proximity of relay cells were ineffective. Therefore, pacemaker neurons are probably endowed with diverse glutamate receptor subtypes, whereas relay cells are probably not. The Mauthner cell-evoked electromotor behavior was suppressed by injections of AP-5 and (+/-)-amino-4-carboxy-methyl-phenylacetic acid, NMDA receptor and metabotropic glutamate receptor antagonists, respectively. Thus, this electromotor behavior relies on the activation of the NMDA and metabotropic glutamate receptor subtypes of pacemaker cells. Our study gives evidence for the synergistic effects of NMDA and metabotropic receptor activation and shows how a simple circuit can produce specific electromotor outputs.

  11. Alteration in 5-HT₂C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Anju, T R; Abraham, Pretty Mary; Paulose, C S

    2015-01-01

    Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex.

  12. NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice.

    PubMed

    Pomierny-Chamioło, Lucyna; Poleszak, Ewa; Pilc, Andrzej; Nowak, Gabriel

    2010-01-01

    Several lines of evidence suggest an antidepressant-like activity for 3-[(methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), a highly selective, non-competitive antagonist of metabotropic glutamate receptors subtype 5 (mGluR(5)). This effect has been observed following both acute and chronic MTEP treatments in behavioral tests and experimental models of depression, such as the forced swim test (FST), the tail suspension test, and the olfactory bulbectomy model of depression. However, the mechanism of action for mGluR(5) antagonists remains unclear. The aim of this study was to investigate whether the antidepressant-like action of MTEPis dependent on ionotropic glutamatergic receptors. Male Albino Swiss mice were used, and antidepressant-like activity was evaluated using the FST. The antidepressant-like effect of MTEP (0.3 mg/kg) was significantly antagonized by pre-treatment with the NMDA receptor agonist N-methyl-D-aspartic acid (NMDA, 75 mg/kg, i.p.). The AMPA receptor antagonist NBQX (10 mg/kg, i.p.) did not affect the MTEP activity. Our results indicate that the antidepressant-like activity of MTEP in the FST involves NMDA but not AMPA receptors and suggest that the interaction between mGluR(5) and NMDA receptors plays an important role in the underlying antidepressant mechanism(s).

  13. An