Science.gov

Sample records for augments nmda receptor

  1. Recruiting extrasynaptic NMDA receptors augments synaptic signaling.

    PubMed

    Harris, Alexander Z; Pettit, Diana L

    2008-02-01

    N-Methyl-d-aspartate receptor (NMDAR) activation may promote cell survival or initiate cell death, with the outcome dependent on whether synaptic or extrasynaptic receptors are activated. Similarly, this differential activation has been proposed to govern the direction of plasticity. However, the physiological parameters necessary to activate extrasynaptic NMDARs in brain slices remain unknown. Using the irreversible use-dependent NMDAR antagonist MK-801 to isolate extrasynaptic NMDARs, we have tested the ability of short-stimulation trains from 5 to 400 Hz to activate these receptors on CA1 hippocampal slice pyramidal neurons. Frequencies as low as 25 Hz engage extrasynaptic NMDARs, with maximal activation at frequencies between 100 and 200 Hz. Since similar bursts of synaptic input occur during exploratory behavior in rats, our results demonstrate that "extrasynaptic" NMDARs regularly participate in synaptic transmission. Further, 175-Hz-stimulation trains activate all available synaptic and extrasynaptic dendritic NMDARs, suggesting these NMDARs act as synaptic receptors as needed, transiently increasing synaptic strength. Thus extrasynaptic NMDARs play a vital role in synaptic physiology, calling into question their status as "extrasynaptic."

  2. Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons

    PubMed Central

    George, Joju; Dravid, Shashank M.; Prakash, Anand; Xie, Jun; Peterson, Jennifer; Jabba, Sairam V.; Baden, Daniel G.; Murray, Thomas F.

    2009-01-01

    A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca2+ and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca2+/calmodulin-dependent protein kinase signaling cascades has moreover been demonstrated to regulate neurite/axonal outgrowth (Wayman et al., 2004). We used a sodium channel activator, brevetoxin (PbTx-2), to explore the relationship between intracellular [Na+] and NMDAR-dependent development. PbTx-2 alone, at a concentration of 30 nM, did not affect Ca2+ dynamics in DIV-2 cerebrocortical neurons; however, this treatment robustly potentiated NMDA-induced Ca2+ influx. The 30 nM PbTx-2 treatment produced a maximum [Na+]i of 16.9 ± 1.5 mM representing an increment of 8.8 ± 1.8 mM over basal. The corresponding membrane potential change produced by 30 nM PbTx-2 was modest and therefore insufficient to relieve the voltage-dependent Mg2+ block of NMDARs. To unambiguously demonstrate the enhancement of NMDA receptor function by PbTx-2, we recorded single-channel currents from cell-attached patches. PbTx-2 treatment was found to increase both the mean open time and open probability of NMDA receptors. These effects of PbTx-2 on NMDA receptor function were dependent on extracellular Na+ and activation of Src kinase. The functional consequences of PbTx-2-induced enhancement of NMDAR function were evaluated in immature cerebrocortical neurons. PbTx-2 concentrations between 3 and 300 nM enhanced neurite outgrowth. Voltage-gated sodium channel activators may accordingly represent a novel pharmacologic strategy to regulate neuronal plasticity through an NMDA receptor and Src family kinase-dependent mechanism. PMID:19279266

  3. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  4. Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain.

    PubMed

    Forsyth, Jennifer K; Bachman, Peter; Mathalon, Daniel H; Roach, Brian J; Asarnow, Robert F

    2015-12-15

    Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmenting N-methyl-d-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using d-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and a n-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. The n-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg; n = 32) or placebo (n = 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on the n-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers.

  5. Selective Augmentation of Striatal Functional Connectivity Following NMDA Receptor Antagonism: Implications for Psychosis

    PubMed Central

    Dandash, Orwa; Harrison, Ben J; Adapa, Ram; Gaillard, Raphael; Giorlando, Francesco; Wood, Stephen J; Fletcher, Paul C; Fornito, Alex

    2015-01-01

    The psychotomimetic effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is thought to arise from a functional modulation of the brain's fronto-striato-thalamic (FST) circuits. Animal models suggest a pronounced effect on ventral ‘limbic' FST systems, although recent work in patients with psychosis and high-risk individuals suggests specific alterations of dorsal ‘associative' FST circuits. Here, we used functional magnetic resonance imaging to investigate the effects of a subanesthetic dose of ketamine on measures of functional connectivity as indexed by the temporal coherence of spontaneous neural activity in both dorsal and ventral FST circuits, as well as their symptom correlates. We adopted a placebo-controlled, double-blind, randomized, repeated-measures design in which 19 healthy participants received either an intravenous saline infusion or a racemic mixture of ketamine (100 ng/ml) separated by at least 1 week. Compared with placebo, ketamine increased functional connectivity between the dorsal caudate and both the thalamus and midbrain bilaterally. Ketamine additionally increased functional connectivity of the ventral striatum/nucleus accumbens and ventromedial prefrontal cortex. Both connectivity increases significantly correlated with the psychosis-like and dissociative symptoms under ketamine. Importantly, dorsal caudate connectivity with the ventrolateral thalamus and subthalamic nucleus showed inverse correlation with ketamine-induced symptomatology, pointing to a possible resilience role to disturbances in FST circuits. Although consistent with the role of FST in mediating psychosis, these findings contrast with previous research in clinical samples by suggesting that acute NMDAR antagonism may lead to psychosis-like experiences via a mechanism that is distinct from that implicated in frank psychotic illness. PMID:25141922

  6. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  7. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission.

    PubMed

    Hampson, A J; Bornheim, L M; Scanziani, M; Yost, C S; Gray, A T; Hansen, B M; Leonoudakis, D J; Bickler, P E

    1998-02-01

    Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as delta9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (deltaCa2+NMDA) in rat brain slices. The presence of anandamide reduced deltaCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting deltaCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences deltaCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated deltaCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.

  8. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition.

  9. Autoimmune NMDA receptor encephalitis.

    PubMed

    Lazar-Molnar, Eszter; Tebo, Anne E

    2015-01-01

    Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is a treatable autoimmune disease of the central nervous system (CNS) with prominent neurologic and psychiatric features at disease onset. The disease is associated with the production of autoantibodies to NMDAR, a protein involved in memory function and synaptic plasticity. Affected patients develop a multistage progressive illness with symptoms ranging from memory deficits, seizures and psychosis, to potentially lethal catatonia, and autonomic and breathing instability. The outcome can be much improved with accurate diagnosis and early treatment using adequate immunosuppressive therapy. However, since the neurological and psychiatric symptoms as well as the clinical examination results can be non-specific, the disease is probably under-recognized. Reliable and accurate clinical testing for the identification of NMDAR autoantibodies is crucial for diagnosis, timely treatment selection, and monitoring. Recently, a cell-based indirect immunofluorescent antibody test for the detection of IgG antibodies to NMDAR has become available for diagnostic use. This review highlights the progress and challenges of laboratory testing in the evaluation and management anti-NMDAR encephalitis, and perspectives for the future.

  10. Chronic intermittent ethanol exposure enhances NMDA-receptor-mediated synaptic responses and NMDA receptor expression in hippocampal CA1 region.

    PubMed

    Nelson, T E; Ur, C L; Gruol, D L

    2005-06-28

    In previous studies, we found that chronic intermittent ethanol (CIE) treatment-a model of ethanol consumption in which animals are exposed to and withdrawn from intoxicating levels of ethanol on a daily basis-produces neuroadaptive changes in hippocampal area CA1 excitatory synaptic transmission and plasticity. Synaptic responses mediated by N-methyl-D-aspartate (NMDA) receptors are known to be sensitive to ethanol and could play an important role in the neuroadaptive changes induced by CIE treatment. To address this issue, we compared electrophysiological recordings of pharmacologically isolated NMDA-receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 region of hippocampal slices prepared from control rats and rats exposed to 2 weeks of CIE treatment administered by vapor inhalation. We found that fEPSPs induced by NMDA receptor activation were unaltered in slices prepared shortly after cessation of CIE treatment (i.e., < or = 1 day of withdrawal from CIE). However, following 7 days of withdrawal from CIE treatment, NMDA-receptor-mediated fEPSPs were augmented relative to age-matched controls. Western blot analysis of NMDA receptor subunit expression showed that, at 7 days of withdrawal, the level of protein for NR2A and NR2B subunits was elevated in the CA1 region of hippocampal slices from CIE-treated animals compared with slices from age-matched controls. These results are consistent with an involvement of NMDA-receptor-mediated synaptic responses in the neuroadaptive effects of CIE on hippocampal physiology and suggest that such changes may contribute to ethanol-induced changes in processes dependent on NMDA-receptor-mediated synaptic responses such as learning and memory, neural development, hyperexcitability and seizures, and neurotoxicity.

  11. NMDA receptor and schizophrenia: a brief history.

    PubMed

    Coyle, Joseph T

    2012-09-01

    Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.

  12. Triheteromeric NMDA Receptors at Hippocampal Synapses

    PubMed Central

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  13. Novel NMDA Receptor Modulators: An Update

    PubMed Central

    Santangelo, Rose M.; Acker, Timothy M.; Zimmerman, Sommer S.; Katzman, Brooke M.; Strong, Katie L.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Summary Introduction The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer’s disease, Parkinson’s disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. Areas Covered The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. Expert Opinion The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties. PMID:23009122

  14. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  15. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  16. Anti-NMDA Receptor Encephalitis and Vaccination.

    PubMed

    Wang, Hsiuying

    2017-01-18

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.

  17. Anti-NMDA Receptor Encephalitis and Vaccination

    PubMed Central

    Wang, Hsiuying

    2017-01-01

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint. PMID:28106787

  18. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  19. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  20. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  1. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  2. NMDA receptor modulators: an updated patent review (2013 – 2014)

    PubMed Central

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2016-01-01

    Introduction The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are able to regulate the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA inter-subunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. Areas covered This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. Expert Opinion The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics. PMID:25351527

  3. Anti-NMDA Receptor Encephalitis in a Pregnant Woman.

    PubMed

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-06-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation.

  4. NMDA receptor binding in focal epilepsies.

    PubMed

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-10-01

    To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [(18)F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [(18)F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [(18)F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [(18)F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [(18)F]GE-179 VT (-29%; p<0.002). There were no focal abnormalities common to the epilepsy group. In patients with focal epilepsies, we detected primarily global increases of [(18)F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [(18)F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Ketamine's antidepressant action: beyond NMDA receptor inhibition.

    PubMed

    Hashimoto, Kenji

    2016-11-01

    The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is one of the most attractive antidepressants since this drug causes rapid-onset and sustained antidepressant effects in treatment resistant patients with depression. There are unanswered questions about how ketamine induces its rapid and sustained antidepressant actions. This key article suggests that (2R,6R)-HNK (hydroxynorketamine), a major metabolite of (R)-ketamine, shows antidepressant effects in rodent models of depression, indicating that the metabolism of (R)-ketamine to (2R,6R)-HNK is pivotal in its antidepressant action. Here these findings are put into context and their significance is discussed.

  6. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  7. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  8. Active NMDA glutamate receptors are expressed by mammalian osteoclasts

    PubMed Central

    Espinosa, Leon; Itzstein, Cécile; Cheynel, Hervé; Delmas, Pierre D; Chenu, Chantal

    1999-01-01

    The N-methyl-D-aspartate (NMDA) glutamate receptor, widely distributed in the mammalian nervous system, has recently been identified in bone. In this study, we have investigated whether NMDA receptors expressed by osteoclasts have an electrophysiological activity. Using the patch clamp technique two agonists of the NMDA receptor, L-glutamate (Glu) and NMDA, were shown to activate whole-cell currents recorded in isolated rabbit osteoclasts. The current-voltage (I-V) relationships of the currents induced by Glu (IGlu) and NMDA (INMDA) were studied using Mg2+-free solutions. The agonist-induced currents had a linear I-V relationship with a reversal potential near 0 mV, as expected for a voltage independent and non-selective cationic current. IGlu and INMDA were sensitive to specific blockers of NMDA subtype glutamate receptors, such as magnesium ions, (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten -5,10-imine (MK-801) and 1-(1,2-diphenylethyl) piperidine (DEP). The block of IGlu and INMDA by these specific antagonists was voltage dependent, strong for negative potentials (inward current) and absent for positive potentials (outward current). These results demonstrate that NMDA receptors are functional in rabbit osteoclasts, and that their electrophysiological and pharmacological properties in these cells are similar to those documented for neuronal cells. Active NMDA receptors expressed by osteoclasts may represent a new target for regulating bone resorption. PMID:10373688

  9. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  10. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  11. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  12. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  13. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  14. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  15. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  16. Hydrocarbon molar water solubility predicts NMDA vs. GABAA receptor modulation.

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2014-11-19

    Many anesthetics modulate 3-transmembrane (such as NMDA) and 4-transmembrane (such as GABAA) receptors. Clinical and experimental anesthetics exhibiting receptor family specificity often have low water solubility. We hypothesized that the molar water solubility of a hydrocarbon could be used to predict receptor modulation in vitro. GABAA (α1β2γ2s) or NMDA (NR1/NR2A) receptors were expressed in oocytes and studied using standard two-electrode voltage clamp techniques. Hydrocarbons from 14 different organic functional groups were studied at saturated concentrations, and compounds within each group differed only by the carbon number at the ω-position or within a saturated ring. An effect on GABAA or NMDA receptors was defined as a 10% or greater reversible current change from baseline that was statistically different from zero. Hydrocarbon moieties potentiated GABAA and inhibited NMDA receptor currents with at least some members from each functional group modulating both receptor types. A water solubility cut-off for NMDA receptors occurred at 1.1 mM with a 95% CI = 0.45 to 2.8 mM. NMDA receptor cut-off effects were not well correlated with hydrocarbon chain length or molecular volume. No cut-off was observed for GABAA receptors within the solubility range of hydrocarbons studied. Hydrocarbon modulation of NMDA receptor function exhibits a molar water solubility cut-off. Differences between unrelated receptor cut-off values suggest that the number, affinity, or efficacy of protein-hydrocarbon interactions at these sites likely differ.

  17. Peripheral NMDA and non-NMDA receptors contribute to nociception: an electrophysiological study.

    PubMed

    Wang, C; Wang, Y; Zhao, Z

    2000-05-01

    The present study investigated the effects of peripheral administration of N-methy-D-aspartate (NMDA) and non-NMDA receptor antagonists on C-fiber evoked responses of the spinal dorsal horn neurons in the spinalized rats. When DL-2-amino-5-phosphonovaleric acid (AP5) (10 mM, 1 mM, 0.1 mM, 20 microl) or 6, 7-dinitroquinoxaline-2, 3-dione (DNQX) (1 mM, 0.1 mM, 0.01 mM, 20 microl) was subcutaneously injected into the receptive field on the hindplantar region, C-fiber evoked responses of the dorsal horn neurons were profoundly inhibited in a dose-dependent manner. Three hours after subcutaneous injection of carrageenan into the ipsilateral hindpaw, NMDA and non-NMDA antagonist-induced inhibition of C-fiber evoked responses was more potent than that in the normal rat (Student's t-test, p < 0.05). In the carragenan-treated rats, DNQX-induced inhibition was stronger than AP-5-induced one (Student's t-test, p < 0.05). The results suggest that peripheral NMDA and non-NMDA receptors are involved in mediating excitation of nociceptors.

  18. Targeting of NMDA receptors in new treatments for schizophrenia.

    PubMed

    Hashimoto, Kenji

    2014-09-01

    Abnormalities in glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) are implicated in the pathophysiology of schizophrenia, although the precise mechanisms are unknown. The author examines the role of the NMDA receptor in schizophrenia, focusing on results from preclinical and clinical studies that support the NMDA receptor hypothesis of schizophrenia. The author first reviewed papers detailing alterations in the levels of endogenous substances such as glutamine, glutamate, d-serine, l-serine, kynurenic acid and glutathione (GSH), all of which can affect NMDA receptor function. Next, the author reviewed clinical findings for glycine, d-serine, d-cycloserine, d-amino acid oxidase inhibitors (e.g., sodium benzoate) and glycine transporter-1 inhibitors (e.g., sarcosine, bitopertin), as potential therapeutic drugs. In addition, the author outlined how oxidative stress associated with decreased levels of the endogenous antioxidant GSH may play a role in the pathophysiology of schizophrenia. Finally, the author reviewed N-acetylcysteine (NAC), a precursor of GSH and an activator of the cystine-glutamate antiporter, as a potential therapeutic drug. Given the NMDA receptor hypothesis of schizophrenia, the glycine modulatory site on NMDA receptors is the most attractive therapeutic target for this disease. In addition, both the kynurenine pathway and cystine-glutamate antiporter represent credible potential therapeutic targets for schizophrenia.

  19. NMDA receptors in the rat VTA: a critical site for social stress to intensify cocaine taking.

    PubMed

    Covington, Herbert E; Tropea, Thomas F; Rajadhyaksha, Anjali M; Kosofsky, Barry E; Miczek, Klaus A

    2008-04-01

    Cocaine strengthens behaviors associated with its administration. The stress response by individuals that are defeated in a brief aggressive confrontation can also promote enduring behavioral consequences similar to those of stimulants. The study intends to find whether intermittent episodes of defeat promote cocaine's reinforcing effects by triggering N-methyl-D: -aspartic acid (NMDA)-receptor-mediated plasticity in the ventral tegmental area (VTA). Long-Evans rats were investigated after four social defeats in three experiments. Two experiments examined systemic or intra-VTA antagonism of NMDA receptors during stress on the later expression of behavioral sensitization and cocaine self-administration during fixed and progressive ratio (PR) schedules of reinforcement (0.3 mg/kg/infusion), including a novel 24-h variable-dose continuous access binge (0.2, 0.4, and 0.8 mg/kg/infusion, delivered in an irregular sequence). Third, the expression of receptor proteins NR1 (NMDA) and GluR1 [alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)] were examined in VTA and nucleus accumbens. Intermittent defeats augment locomotor responses to cocaine and increase cocaine taking. Rates of responding during binges are increased after defeat stress. These effects are prevented when NMDA or AMPA receptor antagonists are administered before defeats. VTA infusions of the NMDA antagonist AP-5 (5 nmol/side) before stress prevents locomotor sensitization to cocaine and intensified responding for cocaine during a PR schedule or binge. Episodic defeats increase GluR1 AMPA subunit protein expression in the VTA. Social stress stimulates NMDA receptors in the VTA, and this neural action of defeat may be essential for prompting a later increase in cocaine intake during binges.

  20. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  1. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  2. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  3. Cortical hypometabolism demonstrated by PET in relapsing NMDA receptor encephalitis.

    PubMed

    Pillai, Sekhar C; Gill, Deepak; Webster, Richard; Howman-Giles, Robert; Dale, Russell C

    2010-09-01

    N-methyl-d-aspartate (NMDA) receptor encephalitis is a newly defined type of autoimmune encephalitis. Two girls (age 3 years, case 1, and 7 years, case 2) with relapsing NMDA receptor encephalitis each had the classic clinical features of encephalopathy, movement disorders, psychiatric symptoms, seizures, insomnia, and mild autonomic dysfunction. Both patients had persistent neuropsychiatric disability, despite immune therapies. Positron emission tomography (PET) scans were performed during clinical relapse at 6 weeks (case 1) and 5 months (case 2). In both cases, the scans demonstrated reduced fluorodeoxyglucose metabolism in the cerebral cortex, with the temporal regions being most affected. PET imaging was more sensitive than magnetic resonance imaging in these patients. In contrast, the one previous report of acute NMDA receptor encephalitis indicated cortical hypermetabolism. Thus, NMDA receptor encephalitis may be associated with variable PET findings, possibly dependent upon the timing of the study, or other factors. Future studies should investigate whether cortical hypometabolism is associated with a relapsing course, and whether it is predictive of a poorer outcome in NMDA receptor encephalitis.

  4. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  5. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-06

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    PubMed Central

    2012-01-01

    Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC) could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF) containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL) plus 0.4 mg/mL dizocilpine (MK-801) was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P < 0.005) difference that is consistent with increased NMDA receptor antagonism by sevoflurane in rats receiving strychnine. Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability. PMID:22672766

  7. Increased NMDA receptor inhibition at an increased Sevoflurane MAC.

    PubMed

    Brosnan, Robert J; Thiesen, Roberto

    2012-06-06

    Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC) could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF) containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL) plus 0.4 mg/mL dizocilpine (MK-801) was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P < 0.005) difference that is consistent with increased NMDA receptor antagonism by sevoflurane in rats receiving strychnine. Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  8. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  9. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  10. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond

    PubMed Central

    Balu, Darrick T; Coyle, Joseph T

    2016-01-01

    Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-d-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments. PMID:25540902

  11. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  12. Adult forebrain NMDA receptors gate social motivation and social memory.

    PubMed

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.

  13. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  14. [Two cases of anti-NMDA receptor encephalitis].

    PubMed

    Nakamura, Kazue; Takahashi, Tsutomu; Matsuoka, Tadasu; Kido, Mikio; Uehara, Takashi; Suzuki, Michio

    2011-01-01

    Anti-NMDA receptor encephalitis, reported by Dalmau et al., is a paraneoplastic encephalitis frequently associated with ovarian teratoma. After the manifestation of schizophrenia-like psychotic symptoms in the initial stage, serious neurological symptoms such as convulsions and central hypoventilation develop. We report two cases of 17-year-old girls with anti-NMDA receptor encephalitis who exhibited different clinical courses. Case 1 showed a typical course of anti-NMDA receptor encephalitis associated with sustained consciousness disturbance requiring long-term artificial respiration. Case 2 underwent surgery for an ovarian teratoma in the early stages of the disorder, did not show convulsions or central hypoventilation, and recovered without any sequelae. Early resection of the ovarian teratoma and the immune suppression therapy may have contributed to the rapid recovery and favorable outcome in case 2. Psychiatrists are the first to see a majority of patients with anti-NMDA receptor encephalitis because of psychiatric symptoms and behavioral changes observed in the initial stage. For successful treatment, psychiatrists need to cooperate with neurologists and gynecologists early in the course of this disorder. Psychiatrists' knowledge of the symptoms and clinical course of this form of encephalitis is essential for early detection and adequate treatment, which may be life-saving and contribute to good functional outcomes.

  15. [Anti-NMDA-receptor encephalitis. An interdisciplinary clinical picture].

    PubMed

    Prüss, H; Dalmau, J; Arolt, V; Wandinger, K-P

    2010-04-01

    Anti-NMDA-receptor encephalitis is a severe and considerably underdiagnosed form of encephalitis with characteristic clinical features including psychiatric symptoms, decreased levels of consciousness, hypoventilation, epileptic seizures, autonomic dysfunction and dyskinesias. Most patients are primarily seen by psychiatrists, often on the assumption of a drug-induced psychosis. Anti-NMDA-receptor encephalitis had initially been described in young women with ovarian teratoma, but is also common in women without tumour, in men and in children. The diagnosis is based on the characteristic clinical picture, supporting findings of brain MRI, electroencephalogram and cerebrospinal fluid (CSF), and the presence of highly specific autoantibodies directed against the NR1 subunit of NMDA-type glutamate receptors in the serum or CSF. In particular, anti-NMDA-receptor encephalitis must be excluded in patients with 'encephalitis of unknown cause'. In principle, the prognosis is favourable and recovery from symptoms can be expected even after prolonged intensive care treatment and mechanical ventilation. However, improvement correlates with prompt identification of the disorder, early immunotherapy and - in the case of a malignancy - with complete tumour removal. Patient care requires an interdisciplinary approach including neurologists, psychiatrists, paediatricians, oncologists and gynaecologists.

  16. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors.

    PubMed

    Gray, John A; Nicoll, Roger A

    2012-08-03

    In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

  17. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  18. NMDA receptor gating of information flow through the striatum in vivo.

    PubMed

    Pomata, Pablo E; Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2008-12-10

    A role of NMDA receptors in corticostriatal synaptic plasticity is widely acknowledged. However, the conditions that allow NMDA receptor activation in the striatum in vivo remain obscure. Here we show that NMDA receptors contribute to sustain the membrane potential of striatal medium spiny projection neurons close to threshold during spontaneous UP states in vivo. Moreover, we found that the blockade of striatal NMDA receptors reduces markedly the spontaneous firing of ensembles of medium spiny neurons during slow waves in urethane-anesthetized rats. We speculate that recurrent activation of NMDA receptors during UP states allows off-line information flow through the striatum and system level consolidation during habit formation.

  19. Glutamatergic NMDA Receptor as Therapeutic Target for Depression.

    PubMed

    Réus, Gislaine Z; Abelaira, Helena M; Tuon, Talita; Titus, Stephanie E; Ignácio, Zuleide M; Rodrigues, Ana Lúcia S; Quevedo, João

    2016-01-01

    Major depressive disorder (MDD) affects approximately 121 million individuals globally and poses a significant burden to the healthcare system. Around 50-60% of patients with MDD respond adequately to existing treatments that are primarily based on a monoaminergic system. However, the neurobiology of MDD has not been fully elucidated; therefore, it is possible that other biochemical alterations are involved. The glutamatergic system and its associated receptors have been implicated in the pathophysiology of MDD. In fact, the N-methyl-d-aspartate (NMDA) receptor, a glutamate receptor, is a binding or modulation site for both classical antidepressants and new fast-acting antidepressants. Thus, this review aims to present evidence describing the effect of antidepressants that modulate NMDA receptors and the mechanisms that contribute to the antidepressant response.

  20. Lead inhibition of NMDA channels in native and recombinant receptors.

    PubMed

    Gavazzo, P; Gazzoli, A; Mazzolini, M; Marchetti, C

    2001-10-08

    NMDA channels are key targets for lead (Pb2+) neurotoxicity and Pb2+-induced inhibition of NMDA current is age- and subunit-dependent. In rat cerebellar granule cells maintained in high KCl, glycine affinity as well as sensitivity to ifenprodil change significantly with the days in vitro, indicating a reduction of NR2B subunit expression. Pb2+ blocked NMDA current with IC50 approximately 4 microM and this effect decreased significantly during the second week in vitro. In Xenopus laevis oocytes expressing recombinant NR1-NR2A, NR1-NR2B or NR1-NR2C receptors, Pb2+ inhibited glutamate-activated currents with IC50 of 3.3, 2.5 and 4.7 microM respectively. These data indicate that Pb2+ action is dependent on subunit composition and suggest that down-regulation of the NR2B subunit is correlated to a diminished sensitivity to Pb2+ inhibition.

  1. Open-channel blockers of the NMDA receptor complex.

    PubMed

    Albensi, Benedict C; Ilkanich, Erin

    2004-11-01

    A variety of compounds have been shown to limit or prevent excitotoxicity by blocking N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission. However, many first-generation NMDA antagonists did not live up to clinical expectations in trials of acute brain injury because of the manifestation of multiple side effects. In spite of this, development of NMDA antagonists continues, where some of the newer agents block excitotoxicity through alternative mechanisms. For example, blockers selective to the NR2B subunit or agents that block metabotropic glutamate receptors or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are currently under investigation. Several years ago, the arylalkylamine spider toxins were demonstrated to function as open-channel blockers similar to memantine, which was very recently approved by the U.S. FDA for use in patients with Alzheimer's dementia. With this said, programs focusing on NMDA antagonism via alternative mechanisms may still hold promise for treating acute injury and even chronic forms of dementia.

  2. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.

    PubMed

    Gee, Christine E; Benquet, Pascal; Raineteau, Olivier; Rietschin, Lotty; Kirbach, Sebastian W; Gerber, Urs

    2006-05-01

    Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramidal cells and transiently depressed in the resistant CA3 pyramidal cells. The long-lasting potentiation of NMDA responses in CA1 cells was associated with delayed cell death and was prevented by blocking tyrosine kinase-dependent up-regulation of NMDA receptor function. In CA3 cells, the energy deprivation-induced transient depression of NMDA responses was converted to potentiation by blocking protein phosphatase signalling. These results suggest that energy deprivation differentially shifts the intracellular equilibrium between the tyrosine kinase and phosphatase activities that modulate NMDA responses in CA1 and CA3 pyramidal cells. Therapeutic modulation of tyrosine phosphorylation may thus prove beneficial in mitigating ischemia-induced neuronal death in vulnerable brain areas.

  3. Intramuscular ketorolac inhibits activation of rat peripheral NMDA receptors.

    PubMed

    Cairns, Brian E; Dong, Xu-Dong; Wong, Hayes; Svensson, Peter

    2012-06-01

    The nonsteroidal anti-inflammatory drug (NSAID) diclofenac has local anesthetic-like and peripheral N-methyl-d-aspartate (NMDA) receptor antagonist characteristics when administered at higher concentrations to masticatory muscle. It is not known if the ability to inhibit NMDA receptors is unique to diclofenac or shared by other NSAIDs. This study was undertaken to determine whether intramuscular injection of ketorolac or naproxen at concentrations that do not induce local anesthetic-like effects could attenuate jaw-closer muscle nociceptor discharge in anesthetized Sprague-Dawley rats. It was found that ketorolac (5 mM) inhibited hypertonic saline-evoked nociceptor discharge, which suggests that at this concentration, ketorolac has local anesthetic-like properties. A lower concentration of ketorolac (0.5 mM), which did not affect hypertonic saline-evoked discharge, did inhibit nociceptor discharge evoked by NMDA. In contrast, naproxen (5 mM) did not alter hypertonic saline- or NMDA-evoked nociceptor discharge. Subsequent experiments revealed that ketorolac (0.5 mM) had no effect on nociceptor discharge evoked by αβ-methylene ATP, 5-hydroxytryptamine, or AMPA. The inhibitory effect of ketorolac did not appear to be related to cyclooxygenase inhibition, because the concentration of prostaglandin E(2) in the masticatory muscles 10 min after injection of either NSAID was not significantly decreased. The present study indicates that in vivo, ketorolac, but not naproxen, can antagonize NMDA-evoked nociceptor discharge similarly to diclofenac. We speculate that structural similarities between ketorolac and diclofenac could account for the ability of these NSAIDs to inhibit NMDA-evoked nociceptor discharge. These properties may partly explain the analgesic effect of intramuscularly injected ketorolac in the clinic.

  4. The role of the PDZ protein GIPC in regulating NMDA receptor trafficking.

    PubMed

    Yi, Zhaohong; Petralia, Ronald S; Fu, Zhanyan; Swanwick, Catherine Croft; Wang, Ya-Xian; Prybylowski, Kate; Sans, Nathalie; Vicini, Stefano; Wenthold, Robert J

    2007-10-24

    The NMDA receptor is an important component of excitatory synapses in the CNS. In addition to its synaptic localization, the NMDA receptor is also present at extrasynaptic sites where it may have functions distinct from those at the synapse. Little is known about how the number, composition, and localization of extrasynaptic receptors are regulated. We identified a novel NMDA receptor-interacting protein, GIPC (GAIP-interacting protein, C terminus), that associates with surface as well as internalized NMDA receptors when expressed in heterologous cells. In neurons, GIPC colocalizes with a population of NMDA receptors on the cell surface, and changes in GIPC expression alter the number of surface receptors. GIPC is mainly excluded from the synapse, and changes in GIPC expression do not change the total number of synaptic receptors. Our results suggest that GIPC may be preferentially associated with extrasynaptic NMDA receptors and may play a role in the organization and trafficking of this population of receptors.

  5. Biochemical modulation of NMDA receptors: role in conditioned taste aversion.

    PubMed

    Jiménez, Beatriz; Tapia, Ricardo

    2004-01-01

    Glutamate neurotransmission plays a crucial role in a variety of functions in the central nervous system, including learning and memory. However, little is known about the mechanisms underlying this process in mammals because of the scarceness of experimental models that permit correlation of behavioral and biochemical changes occurring during the different stages of learning and the retrieval of the acquired information. One model that has been useful to study these mechanisms is conditioned taste aversion (CTA), a paradigm in which animals learn to avoid new tastes when they are associated with gastrointestinal malaise. Glutamate receptors of the N-methyl-D-aspartate (NMDA) type appear to be necessary in this process, because blockade of this receptor prevents CTA. Phosphorylation of the main subunits of the NMDA receptor is a well-established biochemical mechanism for the modulation of the receptor response. Such modulation seems to be involved in CTA, because inhibitors of protein kinase C (PKC) block CTA acquisition and because the exposure to an unfamiliar taste results in an increased phosphorylation of tyrosine and serine residues of the NR2B subunit of the receptor in the insular cortex, the cerebral region where gustatory and visceral information converge. In this work we review these mechanisms of NMDA receptor modulation in CTA.

  6. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  7. A novel fluorescent GSH-adduct binds to the NMDA receptor.

    PubMed

    Shaw, C A; Pasqualotto, B A; Curry, K; Kim, S U; LeCompte, K A; Langmuir, M E

    1999-10-30

    In an attempt to develop various fluorescent probes to label glutathione (GSH) receptors, we have serendipitously synthesized a probe that binds to and antagonizes the NMDA receptor. Probe 1, a GSH adduct, displaces the competitive NMDA antagonist [3H]-CGP 39653 with a higher affinity than NMDA or cysteine in rat synaptic membranes. In recording experiments from a rat cortical 'wedge' preparation, Probe 1 reversibly blocks both NMDA- and cysteine-induced depolarization. In mixed astrocyte-neuron tissue culture preparations, Probe 1 labels parts of both cell bodies as well as processes. The present data suggest that Probe 1 binds to the NMDA receptor and antagonizes channel function.

  8. Augmented gamma band auditory steady-state responses: support for NMDA hypofunction in schizophrenia.

    PubMed

    Hamm, Jordan P; Gilmore, Casey S; Clementz, Brett A

    2012-06-01

    Individuals with schizophrenia (SZ) have deviations in auditory perception perhaps attributable to altered neural oscillatory response properties in thalamo-cortical and/or local cortico-cortical circuits. Previous EEG studies of auditory steady-state responses (aSSRs; a measure of sustained neuronal entrainment to repetitive stimulation) in SZ have indicated attenuated gamma range (≈40 Hz) neural entrainment. Stimuli in most such studies have been relatively brief (500-1000 ms) trains of 1 ms clicks or amplitude modulated pure tones (1000 Hz) with short, fixed interstimulus intervals (200-1000 ms). The current study used extended (1500 ms), more aurally dense broadband stimuli (500-4000 Hz noise; previously demonstrated to elicit larger aSSRs) with longer, variable interstimulus intervals (2700-3300 ms). Dense array EEG (256 sensor) was collected while 17 SZ and 16 healthy subjects passively listed to stimuli modulated at 15 different frequencies spanning beta and gamma ranges (16-44 Hz in 2 Hz steps). Results indicate that SZ have augmented aSSRs that were most extreme in the gamma range. Results also constructively replicate previous findings of attenuated low frequency auditory evoked responses (2-8 Hz) in SZ. These findings (i) highlight differential characteristics of low versus high frequency and induced versus entrained oscillatory auditory responses in both SZ and healthy stimulus processing, (ii) provide support for an NMDA-receptor hypofunction-based pharmacological model of SZ, and (iii) report a novel pattern of aSSR abnormalities suggesting that gamma band neural entrainment deviations among SZ may be more complex than previously supposed, including possibly being substantially influenced by physical stimulus properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. NMDA receptor modulation of incidental learning in Pavlovian context conditioning.

    PubMed

    Stote, Deborah L; Fanselow, Michael S

    2004-02-01

    Rats exposed to a footshock show conditional fear when reexposed to the shock context. Immediate presentation of shock after placement in the context significantly reduces this fear. Preexposure to the context in the absence of shock, coupled with a minimum preshock interval during training, overcomes this immediate shock deficit. Because rats learn about the context during preexposure and express that learning after being reinforced, the context preexposure effect is an aversive analogue of latent learning. The authors examined the effect of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphovalerate (APV) on the facilitatory effect of context preexposure. Rats were preexposed to a chamber after APV administration. The next day they were placed in the same chamber without drug and received shock 35 s later. APV blocked the facilitatory effect of preexposure. Therefore NMDA receptors are important for contextual latent learning.

  10. Efficacies of treatments for anti-NMDA receptor encephalitis.

    PubMed

    Wang, Hsiuying

    2016-01-01

    Treatments for anti-N-methyl-D-aspartate (NMDA) receptor encephalitis include immunotherapy with steroids, intravenous immunoglobulin, plasma exchange, or plasmapheresis as first-line treatments, immunotherapy with rituximab or cyclophosphamide as second-line treatments, and tumor removal. In this systematic review, we evaluated previous studies and examined the association between certain microRNAs and anti-NMDA receptor encephalitis to investigate the performance of different treatment combinations. The efficacies of different combinations of treatments classified into the following four categories were compared: (I) intravenous immunoglobulin administration, (II) plasmapheresis or plasma exchange, (III) treatment with rituximab or cyclophosphamide and (IV) tumor removal. Statistical analyses showed that treatment combinations including at least two of these categories resulted in higher efficacy rates than treatment with a single form of therapy. These findings suggest that if a patient is not recovering, converting to other therapies is more likely to result in early recovery than continuing on the original therapy.

  11. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation.

    PubMed

    Vanhoutte, Peter; Bading, Hilmar

    2003-06-01

    Neuronal responses to electrical activity-induced calcium signals are specified by the localization of the calcium entry site and the spatial properties of the calcium transient. Calcium flux through NMDA receptors located in the synapse initiates changes in synaptic efficacy and promotes pro-survival events, whereas calcium flux through extrasynaptic NMDA receptors is coupled to cell death pathways. The dialogue between the synaptic NMDA receptors and the nucleus is also modulated by extrasynaptic NMDA receptors, which shut down activity of CRE-binding protein (CREB) and antagonize the increase in brain-derived neurotrophic factor (BDNF) expression induced by synaptic NMDA receptors. The specification of the biological response by the localization of the receptor activated is a new concept in neuronal calcium signalling that can explain many of the opposing roles of NMDA receptors.

  12. Subunit-dependent effects of nickel on NMDA receptor channels.

    PubMed

    Marchetti, Carla; Gavazzo, Paola

    2003-10-07

    Nickel (Ni2+) is a transition metal that affects different neuronal ionic channels. We investigated its effects on glutamate channels of the NMDA-type in the presence of saturating concentration of glutamate or NMDA (50 microM), in 0 external Mg and in the continuous presence of saturating glycine (30 microM). In neonatal rat cerebellar granule cells, Ni2+ inhibited the current evoked by NMDA at -60 mV with an IC50 close to 40 microM. The inhibition was weakly voltage-dependent and the current at +40 mV was inhibited with IC50=86 microM. Wash out of the metal unmasked a stimulatory effect which persisted for a few seconds. In HEK293 cells transiently transfected with recombinant NR1a-NR2A receptors, Ni2+ inhibited the current elicited by glutamate with an IC50=52 microM at -60 mV and 90 microM at +40 mV. In HEK293 expressing NR1a-NR2B receptors, 0.1-100 microM Ni2+ caused a potentiation of the current, with EC50=4 microM, while with 300 microM, a voltage-dependent block became apparent (IC50=170 microM). As previously reported, the current through both classes of recombinant receptors was steeply dependent on external pH, and in both cases the protonic block had an IC50 close to pH 7.2. Application of Ni2+ showed that stimulation of NR1a-NR2B receptor channels was dependent on external pH, while voltage-independent inhibition of NR1a-NR2A was less sensitive to pH change. These results indicate that Ni2+ has multiple and complex effects on NMDA channels, which are largely dependent on the NR2 subunit.

  13. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder.

    PubMed

    Fountoulakis, Konstantinos N

    2012-01-01

    Glutamate is the most abundant excitatory neurotransmitter in the brain and the ionotropic NMDA receptor is one of the major classes of its receptors, thought to play an important role in schizophrenia and mood disorders. The current systematic review summarized the evidence concerning the involvement of NMDA receptors in the pathophysiology of bipolar disorder. Genetic studies point to the genes encoding the NMDA 1, 2A and 2B subunits while neuropathological studies suggest a possible region specific decrease in the density of NMDA receptor and more consistently a reduced NMDA-mediated glutamatergic activity in patients with bipolar disorder in the frame of slower NMDA kinetics because of lower contribution of NR2A subunits. However the literature is poor and incomplete; future research is necessary to elucidate the mechanisms underlying bipolar disorder and its specific relationship to a possible NMDA malfunction and to explore the possibility of developing novel therapeutic agents.

  14. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis

    PubMed Central

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers’ critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  15. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  16. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis.

    PubMed

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers' critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position.

  17. Alcohol and NMDA receptor: current research and future direction.

    PubMed

    Chandrasekar, Raman

    2013-01-01

    The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.

  18. Alcohol and NMDA receptor: current research and future direction

    PubMed Central

    Chandrasekar, Raman

    2013-01-01

    The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism. PMID:23754976

  19. Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements.

    PubMed

    Fujita, Satoshi; Kiguchi, Motori; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

    2010-03-31

    The role of NMDA receptors in the ventrolateral striatum to modulate dopamine receptor-mediated jaw movements was investigated in freely moving rats, using a magnetic sensor system combined with intracerebral microinjection of drugs. Apomorphine (1mg/kg i.v.) induced repetitive jaw movements that were reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor agonist NMDA (0.1 and 1mug/0.2mul bilaterally) into the ventrolateral striatum. Apomorphine-induced repetitive jaw movements were also reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor antagonists d-APV (0.01 and 0.1mug) or MK-801 (0.5 and 5mug). The inhibitory effect of NMDA (1mug) was reduced by co-administration of MK-801 (0.5mug). Microinjections of drugs into the ventrolateral striatum in the absence of apomorphine did not affect jaw movements. These results suggest that NMDA receptors in the ventrolateral striatum play an important modulatory role in the expression of dopamine receptor-mediated jaw movements. However, similar effects of NMDA and NMDA antagonists echo previous paradoxical findings and indicate that interactions between dopamine and NMDA receptors are complex and multifaceted. Cellular mechanism(s) may involve differential effects of NMDA agonism and antagonism on dopamine D1-like vs D2-like receptors and, possibly, on related GABAergic processes. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Anti-NMDA Receptor antibody encephalitis with concomitant detection of Varicella zoster virus.

    PubMed

    Solís, Natalia; Salazar, Lucrecia; Hasbun, Rodrigo

    2016-10-01

    The typical presentation of anti-NMDA (N-Methyl-d-Aspartate) receptor encephalitis involves young women with psychiatric, neurologic and autonomic symptoms; it is often associated with mature ovarian teratomas. NMDA receptor encephalitis has been described following Herpes simplex virus (HSV) encephalitis. This case describes a classic presentation of anti-NMDA receptor encephalitis with the concomitant presence of Varicella zoster virus in the cerebrospinal fluid.

  1. NMDA receptors and fear extinction: implications for cognitive behavioral therapy.

    PubMed

    Davis, Michael

    2011-01-01

    Based primarily on studies that employ Pavlovian fear conditioning, extinction of conditioned fear has been found to be mediated by N-methyi-D-aspartate (NMDA) receptors in the amygdala and medial prefrontal cortex. This led to the discovery that an NMDA partial agonist, D-cycloserine, could facilitate fear extinction when given systemically or locally into the amygdala. Because many forms of cognitive behavioral therapy depend on fear extinction, this led to the successful use of D-cycloserine as an adjunct to psychotherapy in patients with so-called simple phobias (fear of heights), social phobia, obsessive-compulsive behavior, and panic disorder. Data in support of these conclusions are reviewed, along with some of the possible limitations of D-cycloserine as an adjunct to psychotherapy.

  2. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  3. Anti-NMDA-receptor encephalitis: a severe, multistage, treatable disorder presenting with psychosis.

    PubMed

    Wandinger, Klaus-Peter; Saschenbrecker, Sandra; Stoecker, Winfried; Dalmau, Josep

    2011-02-01

    Anti-NMDA-receptor encephalitis is a severe, treatable and potentially reversible disorder presenting with memory deficits, psychiatric symptoms and seizures. Initially described in young patients with ovarian teratoma, the disease is meanwhile increasingly recognized also in women without tumours, in men and in children. The presence of anti-glutamate receptor (type NMDA) autoantibodies in serum or cerebrospinal fluid is specific for this novel and widely underdiagnosed disorder. Early recognition is crucial since prognosis largely depends on adequate immunotherapy and, in paraneoplastic cases, complete tumour removal. Indirect immunofluorescence using NMDA-type glutamate receptors recombinantly expressed in human cells is a highly competent method for diagnosing anti-NMDA-receptor encephalitis.

  4. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to

  5. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function.

    PubMed

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-08-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.

  6. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  7. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  8. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  9. Anti-NMDA Receptor Encephalitis During Pregnancy

    PubMed Central

    Mathis, Stéphane; Pin, Jean-Christophe; Pierre, Fabrice; Ciron, Jonathan; Iljicsov, Anna; Lamy, Matthias; Neau, Jean-Philippe

    2015-01-01

    Abstract Anti-N-methyl-D-aspartate receptor (anti-MMDAR) encephalitis is an immune-mediated encephalitis mainly affecting young women. We describe the case of a 21-year-old woman who developed a classical form of anti-NMDAR encephalitis during the 10th week of gestation. The patient had been treated with methylpredinsolone and intravenous immunoglobulins. Birth history of the child was normal, with normal APGAR score. The clinical symptoms of the patient have improved after a few months. This rare occurrence during pregnancy (only 9 other cases described) presents an opportunity to highlight the importance of making the earliest possible diagnosis of this treatable and potentially reversible encephalitis, and to educate gynecologists, psychiatrists, anesthetists, and neurologists on this potential cause of psychiatric and neurological manifestations during pregnancy. PMID:26131809

  10. Roles of presynaptic NMDA receptors in neurotransmission and plasticity

    PubMed Central

    Banerjee, Abhishek; Larsen, Rylan S.; Philpot, Benjamin D.; Paulsen, Ole

    2015-01-01

    Presynaptic NMDA receptors (preNMDARs) play pivotal roles in excitatory neurotransmission and synaptic plasticity. They facilitate presynaptic neurotransmitter release and modulate mechanisms controlling synaptic maturation and plasticity during formative periods of brain development. There is an increasing understanding of the roles of preNMDARs in experience-dependent synaptic and circuit-specific computation. In this review, we summarize the latest understanding of compartment-specific expression and function of preNMDARs, and how they contribute to synapse-specific and circuit-level information processing. PMID:26726120

  11. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders

    PubMed Central

    Stys, Peter K; You, Haitao; Zamponi, Gerald W

    2012-01-01

    Abstract N-Methyl-d-aspartate (NMDA) receptors mediate a wide range of important nervous system functions. Conversely, excessive NMDA receptor activity leads to cytotoxic calcium overload and neuronal damage in a wide variety of CNS disorders. It is well established that NMDA receptors are tightly regulated by a number of cell signalling pathways. Recently, it has been shown that NMDA receptor activity is modulated by cellular prion protein (PrPC) in a copper-dependent manner. Here we give an overview of the current state of knowledge concerning the novel concept of potent modulation of this receptor's kinetics by copper ions, and the interplay between NMDA receptors and PrPC in the context of neurological diseases such as Alzheimer's disease, epilepsy, pain and depression. PMID:22310309

  12. The role of NMDA receptors in human eating behavior: evidence from a case of anti-NMDA receptor encephalitis.

    PubMed

    Perogamvros, Lampros; Schnider, Armin; Leemann, Beatrice

    2012-06-01

    Research in animal models has implicated N-methyl-D-aspartate (NMDA) receptors (NMDARs) in the control of food intake. Until now, these findings have been not replicated in humans. Here we describe a 22-year-old woman with anti-NMDAR encephalitis and no prior neurological or psychiatric history. Her clinical course was marked by successive eating disorders: anorexia followed by hyperphagia. We propose that, much as they do in other animals, NMDARs in humans interact with the neuroendocrine, homeostatic, and reward systems controlling food intake in the central and peripheral nervous system structures related to feeding and satiety.

  13. Contribution of NMDA and non-NMDA receptors to in vivo glutamate-induced calpain activation in the rat striatum. Relation to neuronal damage.

    PubMed

    Del Río, Perla; Montiel, Teresa; Massieu, Lourdes

    2008-08-01

    Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, alpha-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.

  14. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    PubMed

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings.

    PubMed

    Di Prisco, Silvia; Olivero, Guendalina; Merega, Elisa; Bonfiglio, Tommaso; Marchi, Mario; Pittaluga, Anna

    2016-12-01

    Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [(3)H]noradrenaline ([(3)H]NA) or [(3)H]D-aspartate ([(3)H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca(2+) from intraterminal IP3-sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [(3)H]NA and [(3)H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.

  16. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals.

    PubMed

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S; Kim, Hyeyoung; McRoberts, James A; Marvizón, Juan Carlos G

    2014-05-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  18. Synaptic plasticity of NMDA receptors: mechanisms and functional implications

    PubMed Central

    Hunt, David L.; Castillo, Pablo E.

    2012-01-01

    Beyond their well-established role as triggers for LTP and LTD of fast synaptic transmission mediated by AMPA receptors, an expanding body of evidence indicates that NMDA receptors (NMDARs) themselves are also dynamically regulated and subject to activity-dependent long-term plasticity. NMDARs can significantly contribute to information transfer at synapses particularly during periods of repetitive activity. It is also increasingly recognized that NMDARs participate in dendritic synaptic integration and are critical for generating persistent activity of neural assemblies. Here we review recent advances on the mechanisms and functional consequences of NMDAR plasticity. Given the unique biophysical properties of NMDARs, synaptic plasticity of NMDAR-mediated transmission emerges as a particularly powerful mechanism for the fine tuning of information encoding and storage throughout the brain. PMID:22325859

  19. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.

    PubMed

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-26

    In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  20. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  1. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  2. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  3. Lack of NMDA-AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test.

    PubMed

    Dybała, Małgorzata; Siwek, Agata; Poleszak, Ewa; Pilc, Andrzej; Nowak, Gabriel

    2008-11-01

    The NMDA receptor antagonist, CGP 37849-induced reduction in immobility time in the forced swim test in mice was not antagonized by pre-treatment with the AMPA receptor antagonist NBQX. This is the first demonstration of the antidepressant effect of the NMDA antagonist not being dependent on the AMPA transmission.

  4. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  5. Extrasynaptic glutamate NMDA receptors: key players in striatal function.

    PubMed

    Garcia-Munoz, Marianela; Lopez-Huerta, Violeta G; Carrillo-Reid, Luis; Arbuthnott, Gordon W

    2015-02-01

    N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.

  6. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones

    PubMed Central

    Suárez, F.; Zhao, Q.; Monaghan, D. T.; Jane, D. E.; Jones, S.; Gibb, A. J.

    2014-01-01

    The nigra substantia nigra pars compacta (SNc) and substantia pars reticulata (SNr) form two major basal ganglia components with different functional roles. SNc dopaminergic (DA) neurones are vulnerable to cell death in Parkinson's disease, and NMDA receptor activation is a potential contributing mechanism. We have investigated the sensitivity of whole-cell and synaptic NMDA responses to intracellular ATP and GTP application in the SNc and SNr from rats on postnatal day (P) 7 and P28. Both NMDA current density (pA/pF) and desensitization to prolonged or repeated NMDA application were greater in the SNr than in the SNc. When ATP levels were not supplemented, responses to prolonged NMDA administration desensitized in P7 SNc DA neurones but not at P28. At P28, SNr neurones desensitized more than SNc neurones, with or without added ATP. Responses to brief NMDA applications and synaptic NMDA currents were not sensitive to inclusion of ATP in the pipette solution. To investigate these differences between the SNc and SNr, NR2 subunit-selective antagonists were tested. NMDA currents were inhibited by ifenprodil (10 μm) and UBP141 (4 μm), but not by Zn2+ (100 nm), in both the SNr and SNc, suggesting that SNc and SNr neurones express similar receptor subunits; NR2B and NR2D, but not NR2A. The different NMDA response properties in the SNc and SNr may be caused by differences in receptor modulation and/or trafficking. The vulnerability of SNc DA neurones to cell death is not correlated with NMDA current density or receptor subtypes, but could in part be related to inadequate NMDA receptor desensitization. PMID:20618827

  7. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  8. Defining the role of NMDA receptors in anesthesia: are we there yet?

    PubMed

    Petrenko, Andrey B; Yamakura, Tomohiro; Sakimura, Kenji; Baba, Hiroshi

    2014-01-15

    N-methyl-d-aspartate (NMDA) receptors are important in mediating excitatory neurotransmission in the nervous system. They are preferentially inhibited by some general anesthetics and have, therefore, been implied in the mediation of their effects. This review summarizes the main research findings available related to NMDA receptors and their role in anesthesia. The contribution of NMDA receptors to the anesthetized state is discussed separately for each of its components: amnesia, analgesia, unconsciousness and immobility. Anesthetic-induced unconsciousness and immobility have received the most attention in the research community and are the main focus of this review. In the overall perspective, however, studies using pharmacological or electrophysiological approaches have failed to reach definitive conclusions regarding the contribution of NMDA receptors to these anesthetic endpoints. None of the studies have specifically addressed the role of NMDA receptors in the amnestic effect of general anesthetics, and the few available data are (at best) only indirect. NMDA receptor antagonism by general anesthetics may have a preventive anti-hyperalgesic effect. The only and most extensively used genetic tool to examine the role of NMDA receptors in anesthesia is global knockout of the GluN2A subunit of the NMDA receptor. These animals are resistant to many intravenous and inhalational anesthetics, but the interpretation of their phenotype is hindered by the secondary changes occurring in these animals after GluN2A knockout, which are themselves capable of altering anesthetic sensitivity. Generation of more sophisticated conditional knockout models targeting NMDA receptors is required to finally define their role in the mechanisms of anesthesia. © 2013 Published by Elsevier B.V.

  9. Reduction of food intake by cholecystokinin requires activation of hindbrain NMDA-type glutamate receptors.

    PubMed

    Wright, Jason; Campos, Carlos; Herzog, Thiebaut; Covasa, Mihai; Czaja, Krzysztof; Ritter, Robert C

    2011-08-01

    Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.

  10. The NMDA receptor as a target for cognitive enhancement

    PubMed Central

    Collingridge, Graham L.; Volianskis, Arturas; Bannister, Neil; France, Grace; Hanna, Lydia; Mercier, Marion; Tidball, Patrick; Fang, Guangyu; Irvine, Mark W.; Costa, Blaise M.; Monaghan, Daniel T.; Bortolotto, Zuner A.; Molnár, Elek; Lodge, David; Jane, David E.

    2015-01-01

    NMDA receptors (NMDAR) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. PMID:22796429

  11. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  12. [Anti- NMDA- receptor encephalitis; a neuropsychiatric illness requiring further study].

    PubMed

    Waas, J A; Storm, A H

    2012-01-01

    We describe the case of a 17-year-old girl with anti-NMDA-receptor encephalitis. She had the characteristic psychiatric symptoms such as hallucinations, delirious and bizarre behaviour, and catatonic symptoms. She later also displayed neurological symptoms such as epileptic seizures, dyskinesias and sensitivity disturbances. After treatment with corticosteroids and immunoglobulins patient recovered completely. Potentially lethal symptoms can arise from the autonomic dysregulation. The incidence of this disorder has not yet been established. The catatonic features should be treated adequately with high doses of benzodiazepines. Because patients usually present with psychiatric symptoms, treatment often starts in a psychiatric setting. In view of the serious somatic complications it is desirable that the patient be treated in a general hospital. Early diagnosis and treatment are very important because the chances of recovery are thereby enhanced.

  13. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  14. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  15. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs.

    PubMed

    Sanderson, Thomas M; Collingridge, Graham L; Fitzjohn, Stephen M

    2011-07-27

    The removal of AMPA receptors from synapses is a major component of long-term depression (LTD). How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2) expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses). In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP) inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  16. Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics.

    PubMed

    Barygin, Oleg I; Nagaeva, Elina I; Tikhonov, Denis B; Belinskaya, Darya A; Vanchakova, Nina P; Shestakova, Natalia N

    2017-04-01

    It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca(2+)-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca(2+)-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca(2+)-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Discriminative stimulus effects of NMDA, AMPA and mGluR5 glutamate receptor ligands in methamphetamine-trained rats

    PubMed Central

    Wooters, Thomas E.; Dwoskin, Linda P.; Bardo, Michael T.

    2011-01-01

    Glutamate contributes to the reinforcing and stimulant effects of methamphetamine, yet its potential role in the interoceptive stimulus properties of methamphetamine is unknown. In the current study, adult male Sprague-Dawley rats were trained to discriminate methamphetamine (1.0 mg/kg, i.p.) from saline in a standard operant discrimination task. The effects of methamphetamine (0.1-1.0 mg/kg, i.p.), the N-methyl-D-aspartate (NMDA) receptor channel blockers MK-801 (0.03-0.3 mg/kg, i.p.) and ketamine (1.0-10.0 mg/kg, i.p.), the low-affinity NMDA antagonist memantine (1.0-10 mg/kg, i.p.), the polyamine site NMDA receptor antagonist ifenprodil (1-10 mg/kg), the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-10 mg/kg, i.p.), and the metabotropic 5 (mGluR5) receptor antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP; 1-10 mg/kg) given alone were determined in substitution tests. The effects of MK-801 (0.03 and 0.1 mg/kg), ketamine (1.0 and 3.0 mg/kg), ifenprodil (5.6 mg/kg), CNQX (5.6 mg/kg) and MPEP (5.6 mg/kg) were also tested in combination with methamphetamine to assess for alterations in the methamphetamine cue. In substitution tests, none of the test drugs generalized to the methamphetamine cue. However, ketamine and ifenprodil produced significant leftward shifts in the methamphetamine dose-response curve; pretreatment with 3 mg/kg of ketamine, for example, decreased the ED50 value for methamphetamine by half. These results suggest that blockade of the NMDA receptor augments the interoceptive stimulus properties of methamphetamine. PMID:21836462

  18. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    PubMed Central

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors. PMID:28378791

  19. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  20. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice.

    PubMed

    Blue, Mary E; Kaufmann, Walter E; Bressler, Joseph; Eyring, Charlotte; O'driscoll, Cliona; Naidu, Sakkubai; Johnston, Michael V

    2011-10-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of N-Methyl-D-aspartate (NMDA) receptors in the prefrontal cortex of 2-8-year-old girls, whereas girls older than 10 years had reductions in NMDA receptors compared with age-matched controls (Blue et al., Ann Neurol 1999b;45:541-545). Using [(3)H]-CGP to label NMDA-type glutamate receptors in 2- and 7-week old wild-type (WT), Mecp2-null, and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at 2 weeks of age but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice.

  1. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  2. NMDA receptors on the surface of cancer cells: Target for chemotherapy?

    PubMed Central

    Deutsch, Stephen I.; Tang, Amy H.; Burket, Jessica A.; Benson, Andrew D.

    2017-01-01

    The mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a therapeutic target for many types of cancers. NMDA receptors regulate mTOR signalling activity; their inappropriate expression on several human cancer cell lines represents a potential therapeutic avenue to control dysregulated growth, division and invasiveness. Targeting these receptors with selective ligands (e.g., glycineB site ligands) may be a less toxic and more tolerable approach than administering compounds acting at the mTORC1 complex itself, such as rapamycin and its derivatives. Thus, testing glycineB site ligands in relevant in vitro and in vivo paradigms with established human cancer cells that express NMDA receptors on their surface could provide proofs of concept/principle that would encourage exploration of these and other “non-toxic” strategies. Interestingly, in some cancer models that express NMDA receptors on their surface, NMDA receptor antagonists, such as MK-801 (dizocilpine), were shown to possess anti-proliferative and anti-invasive effects, which conflict with hypotheses about promoting NMDA receptor activation as a cancer chemotherapeutic strategy. Whether NMDA receptor activation or antagonism is associated with anti-proliferative and anti-invasive effects may reflect differences between cancer cell lines in terms of the proteins associated with the NMDA receptors on their cell surfaces, which, in turn, could lead to different “downstream” effects on cascades of intracellular phosphorylations. Irrespective of whether activation or antagonism is associated with anti-proliferative and anti-invasive effects for specific types of cancer, data are emerging that support exploration of targeting NMDA receptors expressed on the surface of cancer cells as a therapeutic strategy. PMID:24751001

  3. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    PubMed

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-08-27

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed.

  4. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut

    PubMed Central

    Prüss, H.; Leubner, J.; Wenke, N. K.; Czirják, G. Á.; Szentiks, C. A.; Greenwood, A. D.

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut’s encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut’s cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  5. Ethanol inhibits epileptiform activity and NMDA receptor-mediated synaptic transmission in rat amygdaloid slices

    SciTech Connect

    Gean, P.W. )

    1992-02-26

    The effect of ethanol on the epileptiform activity induced by Mg{sup ++}-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg{sup ++}-free medium. Superfusion with ethanol reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg{sup ++}-free solution or in the presence of 50 {mu}M bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation.

  6. [Clinical diagnosis and treatment of anti-NMDA (N-methyl-D-aspartate) receptor encephalitis].

    PubMed

    Kamei, Satoshi

    2013-05-01

    Recent clinical management of anti-NMDA receptor encephalitis is reviewed. This illness is required the management of the neurological emergency. Typical symptoms of anti-NMDA receptor encephalitis develop in several stages that progresses from psychosis, memory deficits, seizures, and language disintegration into a state of unresponsiveness with catatonic features often associated with abnormal movements, and autonomic and respiratory instability. The diagnosis is depended on the detection of the NMDA receptor antibody in CSF or serum under the above characteristic symptoms of encephalitis. The disorder predominantly affects children and young adults, occurs with or without tumor association. The presence of a tumor (usually an ovarian teratoma) is dependent on age and sex, being more frequent in women older than 18 years. Anti-NMDA receptor encephalitis should be treated with tumor resection and immunotherapy (corticosteroids, intravenous immunoglobulin, or plasma exchange) responded faster to treatment and less frequently needed second-line immunotherapy (cyclophosphamide or rituximab, or both).

  7. DOPAMINE RECEPTOR ACTIVATION REVEALS A NOVEL, KYNURENATE-SENSITIVE COMPONENT OF STRIATAL NMDA NEUROTOXICITY

    PubMed Central

    Poeggeler, Burkhard; Rassoulpour, Arash; Wu, Hui-Qiu; Guidetti, Paolo; Roberts, Rosalinda C.; Schwarcz, Robert

    2007-01-01

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in 2-3-fold increases in excitotoxic lesion size. Pre-treatment with kynurenine 3-hydroxylase inhibitors or dopamine receptor antagonists, two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum. PMID:17629627

  8. EXTREME DELTA BRUSH EEG PATTERN IN A CASE WITH ANTI-NMDA RECEPTOR ENCEPHALITIS.

    PubMed

    Söylemez, Elif; Güveli, Betül Tekin; Atakli, Dilek; Yatmazoğlu, Merve; Atay, Turan; Dayan, Cengiz

    2015-09-30

    Anti-N-methyl-D-aspartate receptor NMDA-R encephalitis is caused by antibodies against the NMDA-R and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. This disorder is often accompanied with malignancies, especially ovarian teratoma. Some patients' EEGs show a different pattern similar to the waveforms of premature infants and this pattern is specifically named as extreme delta brush (EDB). We report a 24-year-old female having anti-NMDA receptor encephalitis and EDB patern.

  9. CGX-1007 prevents excitotoxic cell death via actions at multiple types of NMDA receptors.

    PubMed

    Alex, Anitha B; Saunders, Gerald W; Dalpé-Charron, Alexandre; Reilly, Christopher A; Wilcox, Karen S

    2011-08-01

    Glutamate induced excitotoxic injury through over-activation of N-methyl-D-aspartate receptors (NMDARs) plays a critical role in the development of many neurodegenerative diseases. The present study was undertaken to evaluate the role of CGX-1007 (Conantokin G) as a neuroprotective agent against NMDA-induced excitotoxicity. Conantokin G, a cone snail peptide isolated from Conus geographus is reported to selectively inhibit NR2B containing NMDARs with high specificity and is shown to have potent anticonvulsant and antinociceptive effects. CGX-1007 significantly reduced the excitotoxic cell death induced by NMDA in organotypic hippocampal brain slice cultures in a concentration-dependent manner. In contrast, ifenprodil, another NR2B specific antagonist failed to offer neuroprotection against NMDA-induced excitotoxicity. We further determined that the neuroprotection observed is likely due to the action of CGX-1007 at multiple NMDA receptor subtypes. In a series of electrophysiology experiments, CGX-1007 inhibited NMDA-gated currents in human embryonic kidney (HEK) 293 cells expressing NMDA receptors containing either NR1a/NR2B or NR1a/NR2A subunit combinations. CGX-1007 produced a weak inhibition at NR1a/NR2C receptors, whereas it had no effect on NR1a/NR2D receptors. Further, the inhibition of NMDA receptors by CGX-1007 was voltage-dependent with greater inhibition seen at hyperpolarized membrane potentials. The voltage-dependence of CGX-1007 activity was also observed in recordings of NMDA-gated currents evoked in native receptors expressed in cortical neurons in culture. Based on our results, we conclude that CGX-1007 is a potent neuroprotective agent that acts as an antagonist at both NR2A and NR2B containing receptors.

  10. Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling.

    PubMed

    Wang, Wen-Yuan; Jia, Li-Jie; Luo, Yan; Zhang, Hong-Hai; Cai, Fang; Mao, Hui; Xu, Wei-Cai; Fang, Jun-Biao; Peng, Zhi-You; Ma, Zheng-Wen; Chen, Yan-Hong; Zhang, Juan; Wei, Zhen; Yu, Bu-Wei; Hu, Shuang-Fei

    2016-01-01

    It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors

  11. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection.

    PubMed

    Makhro, Asya; Kaestner, Lars; Bogdanova, Anna

    2017-01-01

    Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca(2+) in these cells and, by doing that, controls red cell volume, membrane stability, and O2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([(3)H]MK-801) binding technique. Uptake of Ca(2+) following the NMDA receptor activation is detected in cells loaded with Ca(2+)-sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca(2+)-sensitive K(+) (Gardos) channels that open upon Ca(2+) uptake via the active NMDA receptor. Furthermore, K(+) flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K(+)((86)Rb(+)) influx.

  12. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  13. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning.

  14. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  15. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia.

    PubMed

    Gunduz-Bruce, Handan; Kenney, Joshua; Changlani, Suravi; Peixoto, Aldo; Gueorguieva, Ralitza; Leone, Cheryl; Stachenfeld, Nina

    2017-03-13

    Altered N-methyl-D-aspartate (NMDA) receptor activity and glutamate signaling may underlie the pathogenesis of both schizophrenia and depression in subgroups of patients. In schizophrenia, pharmacologic modeling, postmortem and imaging data suggest reduced NMDA signaling. In contrast, recent clinical trials demonstrating the efficacy of the NMDA antagonist ketamine in severely depressed patients suggest increased NMDA receptor signaling. We conducted a proof of concept study to assess whether there is any in vivo evidence for an inverse association in depression and schizophrenia with respect to the NMDA receptor function. For this purpose we used a translational approach, based on findings from animal studies that NMDA receptor is a key mediator of arginine-vasopressin (AVP) release into the bloodstream. Using hypertonic saline to induce AVP release, as done in animal studies, we found that in depressed patients, NMDA receptor mediated AVP release induced by hypertonic saline infusion was significantly increased 0.24 (0.15) pg/ml P[AVP] /mOsmol POsm , P< 0.05 compared to schizophrenia patients 0.07 (0.07) pg/ml P[AVP] /mOsmol POsm , in whom same response was abnormally low. Slopes for healthy control were 0.11 (0.09) pg/ml P[AVP] /mOsmol POsm , and not different than either group. These findings are consistent with implicated NMDA receptor related abnormalities in depression and schizophrenia in subgroups of patients, and provide the first in vivo evidence towards this dichotomy. This article is protected by copyright. All rights reserved.

  16. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats

    PubMed Central

    Hingne, Priyanka M.; Sluka, Kathleen A.

    2008-01-01

    Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543

  17. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects.

    PubMed

    Guilarte, Tomás R; Chen, Ming-Kai

    2007-11-01

    Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2

  18. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  19. NMDA receptor antibodies associated with distinct white matter syndromes.

    PubMed

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R; Buckley, Camilla; Vincent, Angela; Lim, Ming

    2014-06-01

    To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody-positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. THREE DISTINCT CLINICORADIOLOGIC PHENOTYPES WERE RECOGNIZED: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease.

  20. Cardiac sympathetic dysfunction in anti-NMDA receptor encephalitis.

    PubMed

    Byun, Jung-Ick; Lee, Soon-Tae; Moon, Jangsup; Jung, Keun-Hwa; Shin, Jung-Won; Sunwoo, Jun-Sang; Lim, Jung-Ah; Shin, Yong-Won; Kim, Tae-Joon; Lee, Keon-Joo; Park, Kyung-Il; Jung, Ki-Young; Lee, Sang Kun; Chu, Kon

    2015-12-01

    Patients with anti-NMDA receptor (anti-NMDAR) encephalitis frequently suffer from autonomic dysfunctions, which can cause substantial morbidity. This study assessed cardiac autonomic functions in patients with anti-NMDAR encephalitis using heart rate variability (HRV) analysis. This was a retrospective single-center case-control study. Eleven patients with anti-NMDAR encephalitis and 15 age- and sex-matched controls were included in this study. To ensure that autonomic dysfunction does not occur in any encephalitis, we additionally analyzed HRV of 9 patients with herpes encephalitis (HSE) and compared with that of NMDAR encephalitis patients and controls. Five minute resting stationary electrocardiogram was collected from each subject, and HRV was analyzed. Total power and low frequency (LF) power were lower in anti-NMDAR encephalitis patients than those in controls (p=0.005, 0.001 respectively), indicating cardiac autonomic dysfunction especially in sympathetic system. Patients with HSE showed no significant difference in HRV parameters compared with that of controls. Cardiac autonomic dysfunction was associated with 3 month functional outcome in anti-NMDAR encephalitis patients.

  1. Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia

    PubMed Central

    Jones, Kevin S.; Corbin, Joshua G.; Huntsman, Molly M.

    2014-01-01

    The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model. PMID:25290690

  2. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  3. Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI.

    PubMed

    Shatillo, Artem; Salo, Raimo A; Giniatullin, Rashid; Gröhn, Olli H

    2015-06-01

    Cortical spreading depression (CSD) is a phenomenon implicated in migraine with aura and associated with other neurological disorders (e.g. stroke, brain trauma). Current evidence points to the essential role of NMDA receptors in CSD mechanisms. However, the roles of multiple subunits of NMDA receptors expressed in neurons, glia and blood vessels in vivo, are little explored. Using BOLD fMRI of urethane anesthetized rats as an integrative CSD readout, we tested the involvement of different NMDA receptor subtypes in CSD induction and propagation. Rats were treated with a non-selective NMDA blocker (MK-801), NR2B antagonist (ifenprodil) or a NR2A selective antagonist (TCN-201). CSD was induced during fMRI scanning by application of KCl onto the cerebral cortex and fMRI data were collected by 9.4 T MRI. The non-specific NMDA antagonist MK-801 completely blocked CSD, which was not observed in the NR2A group where TCN-201 did not alter the CSD features. Unexpectedly, the NR2B specific antagonist ifenprodil largely promoted the initial negative phase of the BOLD CSD response, likely due to altered neurovascular coupling. Our data suggest key roles and differential involvement of NMDA receptor subtypes in CSD generation and propagation, highlighting an important role for the NR2B subtype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reconsolidation of Reminder-Induced Amnesia: Role of NMDA and AMPA Glutamate Receptors.

    PubMed

    Nikitin, V P; Kozyrev, S A; Solntseva, S V

    2015-11-01

    We studied the role of glutamate receptors and reminder in the mechanisms of amnesia maintenance caused by disruption of conditioned food aversion reconsolidation with an antagonist of NMDA glutamate receptor in snails. At the early stage of amnesia (day 3 after induction), injection or NMDA of AMPA glutamate receptor antagonists prior to reminder (presentation of the conditioned food stimulus) led to memory recovery. Reminder alone or injection of antagonists without reminder or after reminder was ineffective. At the late stage of amnesia (day 10), antagonists/reminder had no effect on amnesia maintenance. It was hypothesized that reminder at the early stage of amnesia led to reactivation and reconsolidation of the molecular processes of amnesia including activation NMDA and AMPA glutamate receptors. Injection of antagonists of these receptors prior to reminder led to disruption of reactivation/reconsolidation of amnesia and recovery of the conditioned food aversion memory.

  5. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  6. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists.

    PubMed

    Jackisch, R; Kruchen, A; Sauermann, W; Hertting, G; Feuerstein, T J

    1994-10-24

    N-Methyl-D-aspartate- (NMDA-) evoked [3H]acetylcholine release in rabbit caudate nucleus slices was inhibited by the antiparkinsonian drugs budipine (1-tert-butyl-4,4-diphenylpiperidine) and biperiden (1-bicyclo[2.2.1.]hept-5-en-2-yl-1-phenyl-3-piperidino propanol) yielding functional Ki values of 4.6 and 8.8 microM. In contrast to the competitive antagonist 2-amino-5-phosphonopentaonate, budipine and biperidene significantly reduced both the apparent KD and the Emax value of NMDA. Moreover, they displaced [3H]MK-801 specifically bound to membranes of the same tissue, although with low affinity (IC50: 38 and 92 microM). It is concluded that budipine and biperiden are use-dependent (uncompetitive) antagonists at the NMDA receptor, binding to the receptor-linked ion channel, but probably not to the MK-801 binding site. NMDA antagonism may contribute to the antiparkinsonian effects of budipine.

  7. Synthesis of C5-tetrazole derivatives of 2-amino-adipic acid displaying NMDA glutamate receptor antagonism.

    PubMed

    Lenda, Fatimazohra; Crouzin, Nadine; Cavalier, Mélanie; Guiramand, Janique; Lanté, Fabien; Barbanel, Gérard; Cohen-Solal, Catherine; Martinez, Jean; Guenoun, Farhate; Lamaty, Frédéric; Vignes, Michel

    2011-03-01

    Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-D: -aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.

  8. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid

    PubMed Central

    Costa, Blaise Mathias; Irvine, Mark W.; Fang, Guangyu; Eaves, Richard J.; Mayo-Martin, Maria Belen; Laube, Bodo; Jane, David E.; Monaghan, Daniel T.

    2012-01-01

    Over-activation of N-methyl-D-aspartate (NMDA) receptors is critically involved in many neurological conditions, thus there has been considerable interest in developing NMDA receptor antagonists. We have recently identified a series of naphthoic and phenanthroic acid compounds that allosterically modulate NMDA receptors through a novel mechanism of action. In the present study, we have determined the structure-activity relationships of 18 naphthoic acid derivatives for the ability to inhibit the four GluN1/GluN2(A-D) NMDA receptor subtypes. 2-Naphthoic acid has low activity at GluN2A-containing receptors and yet lower activity at other NMDA receptors. 3-Amino addition, and especially 3-hydroxy addition, to 2-naphthoic acid increased inhibitory activity at GluN1/GluN2C and GluN1/GluN2D receptors. Further halogen and phenyl substitutions to 2-hydroxy-3-naphthoic acid leads to several relatively potent inhibitors, the most potent of which is UBP618 (1-bromo-2-hydroxy-6-phenylnaphthalene-3-carboxylic acid) with an IC50 ~ 2 μM at each of the NMDA receptor subtypes. While UBP618 is non-selective, elimination of the hydroxyl group in UBP618, as in UBP628 and UBP608, leads to an increase in GluN1/GluN2A selectivity. Of the compounds evaluated, specifically those with a 6-phenyl substitution were less able to fully inhibit GluN1/GluN2A, GluN1/GluN2B and GluN1/GluN2C responses (maximal % inhibition of 60 – 90%). Such antagonists may potentially have reduced adverse effects by not excessively blocking NMDA receptor signaling. Together, these studies reveal discrete structure-activity relationships for the allosteric antagonism of NMDA receptors that may facilitate the development of NMDA receptor modulator agents for a variety of neuropsychiatric and neurological conditions. PMID:22155206

  9. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats.

    PubMed

    Zakharova, E S; Danysz, W; Bespalov, A Y

    2005-04-01

    Antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors inhibit various phenomena associated with exposures to nicotine (e.g., tolerance, sensitization, dependence, and intravenous self-administration). These effects are often discussed in terms of nicotine-induced glutamate release with subsequent glutamate-dependent stimulation of dopamine metabolism and neuronal plasticity in brain areas critically involved in drug-addiction mechanisms. However, it is also well established that certain types of NMDA receptor antagonists (channel blockers) potently bind to nicotinic receptors and may act as nicotinic receptor antagonists. The present study aimed to evaluate the discriminative-stimulus effects of the NMDA receptor channel blockers (+)MK-801, dextromethorphan, and memantine in rats trained to discriminate nicotine from its vehicle. Adult male Wistar rats were trained to discriminate 0.6 mg/kg nicotine from saline under a two-lever, fixed-ratio 10 schedule of food reinforcement. During test sessions, injections of (+)MK-801 (0.03--0.3 mg/kg, i.p.), dextromethorphan (30 mg/kg, s.c.), or memantine (1--10 mg/kg, i.p.) were co-administered with s.c. nicotine (0.075--0.6 mg/kg; interaction tests) or saline (generalization tests). Additional interaction and generalization tests were conducted with the selective nicotinic receptor antagonists mecamylamine (0.1--3 mg/kg, s.c.) and MRZ 2/621 (0.3--10 mg/kg, i.p.), and the mGlu5 receptor antagonist MPEP (3--10 mg/kg, i.p.). In generalization tests, none of the compounds produced any appreciable levels of substitution for nicotine. The nicotine discriminative-stimulus control was dose dependently attenuated by mecamylamine (ED(50)=0.67 mg/kg) and MRZ 2/621 (ED(50)=9.7 mg/kg). Both agents produced a marked downward shift in the nicotine dose-response curve. Memantine and MPEP slightly attenuated nicotine discriminative-stimulus effects, while (+)MK-801 and dextromethorphan did not affect the

  10. Differential modulation of GABAA and NMDA receptors by α7-nicotinic receptor desensitization in cultured rat hippocampal neurons

    PubMed Central

    Shen, Lei; Cui, Wen-yu; Chen, Ru-zhu; Wang, Hai

    2016-01-01

    Aim: To explore the modulatory effect of desensitized α7-containing nicotinic receptors (α7-nAChRs) on excitatory and inhibitory amino acid receptors in cultured hippocampal neurons and to identify the mechanism underlying this effect. Methods: Whole-cell patch-clamp recordings were performed on cultured rat hippocampal neurons to measure α7-nAChR currents and to determine the role of desensitized α7-nAChRs on brain amino acid receptor activity. Results: Pulse and perfusion applications of the α7-nAChR agonist choline were applied to induce different types of α7-nAChR desensitization in cultured hippocampal neurons. After a brief choline pulse, α7-nAChR was desensitized as a result of receptor activation, which reduced the response of the A type γ-aminobutyric acid (GABAA) receptor to its agonist, muscimol, and enhanced the response of the NMDA receptor to its agonist NMDA. By contrast, the responses of glycine or AMPA receptors to their agonists, glycine or AMPA, respectively, were not affected. Pretreatment with the α7-nAChR antagonist methyllycaconitine (MLA, 10 nmol/L) blocked the choline-induced negative modulation of the GABAA receptor and the positive modulation of the NMDA receptor. The regulation of the GABAA and NMDA receptors was confirmed using another type of α7-nAChR desensitization, which was produced by a low concentration of choline perfusion. The negative modulation of the GABAA receptor was characterized by choline-duration dependency and intracellular calcium dependency, but the positive modulation of the NMDA receptor was not associated with cytoplasmic calcium. Conclusion: Brain GABAA and NMDA receptors are modulated negatively and positively, respectively, by desensitized α7-nAChR as a result of choline pretreatment in cultured hippocampal neurons. PMID:26806304

  11. Control of Proton Sensitivity of the NMDA Receptor by RNA Splicing and Polyamines

    NASA Astrophysics Data System (ADS)

    Traynelis, Stephen F.; Hartley, Melissa; Heinemann, Stephen F.

    1995-05-01

    The function of the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor can be regulated by extracellular pH, a process that may be important during ischemia in the brain or during seizures. Protons inhibit NMDA receptor function by 50 percent at pH 7.3 through interactions with the NR1 subunit, and both polyamines and NR1 exon 5 potentiate receptor function through relief of the tonic proton inhibition present at physiological pH. A single amino acid (lysine 211) was identified that mediates the effects of exon 5 in the rat brain. Electroneutral substitutions at this position restored pH sensitivity and, consequently, polyamine relief of tonic inhibition. This effect, together with the structural similarities between polyamines and the surface loop encoded by exon 5, suggest that exon 5 may act as a tethered pH-sensitive constitutive modulator of NMDA receptor function.

  12. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  13. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking.

    PubMed

    Lopez, Joëlle; Gamache, Karine; Schneider, Rilla; Nader, Karim

    2015-02-11

    Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.

  14. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    PubMed Central

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  15. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  16. Underlying mechanism for NMDA receptor antagonism by the anti-inflammatory drug, sulfasalazine, in mouse cortical neurons.

    PubMed

    Noh, Ji-Hyun; Gwag, Byoung-Joo; Chung, Jun-Mo

    2006-01-01

    Sulfasalazine (SULFA), of anti-inflammatory drugs, shows a protective action against NMDA-induced neuronal toxicity. Here, we used an electrophysiological study of the pharmacological effects of SULFA on NMDA receptors to examine the molecular mechanisms underlying the neuroprotective role of SULFA. The drug acted as a typical noncompetitive inhibitor with neither agonist- nor use-dependency, and antagonized NMDA-evoked responses in a voltage-independent manner, suggesting that SULFA is not an open channel blocker. Noise and single channel analyses showed that SULFA-blocked NMDA responses by reducing the number of NMDA channels available for activation, and also reduced the channel open probability without changing single channel conductance. Moreover, SULFA accelerated NMDA desensitization without affecting the affinity of the receptor for NMDA or glutamate. Taken together, these data indicate that SULFA blocks the NMDA response by reducing the number of NMDA channels available for activation. This appears to occur via a SULFA-induced decrease in the channel open probability, and a concomitant acceleration of the desensitization response, which is likely associated with a reduced affinity for glycine. SULFA indeed decreased the glycine-potentiated NMDA response without binding directly to the glycine site. Our results suggest that SULFA acts as a noncompetitive NMDA receptor antagonist with an allosteric glycine modulation.

  17. Role of ventral hippocampal NMDA receptors in anxiolytic-like effect of morphine.

    PubMed

    Motevasseli, Tahmineh; Rezayof, Ameneh; Zarrindast, Mohammad-Reza; Nayer-Nouri, Touraj

    2010-12-02

    The possible role of ventral hippocampal N-methyl-d-aspartate (NMDA) receptors on morphine-induced anxiolytic-like behavior in an elevated plus maze (EPM) task was investigated in the present study. Adult male mice (7 per group) with cannulas aimed at the ventral hippocampus (VH) received NMDA or a competitive NMDA receptor antagonist D-AP5 with or without morphine and 30min later were subjected to an EPM task. Intraperitoneal injection (i.p.) of morphine (3-9mg/kg) increased the percentage of open arm time (%OAT) and open arm entries (%OAE), which suggested an anxiolytic-like effect. Intra-VH microinjection of NMDA (0.5-1μg/mouse) with an ineffective dose of morphine (3mg/kg, i.p.) significantly increased %OAT and %OAE. However, microinjections of the same doses of NMDA into the VH in the absence of morphine had no effect on %OAT and %OAE. Intra-VH microinjection of D-AP5 (0.5-2μg/mouse) decreased the anxiolytic-like effect of morphine, while intra-VH microinjection of the same doses of D-AP5 alone increased %OAT and %OAE, which indicated an anxiolytic response. Furthermore, intra-VH microinjection of D-AP5 reversed the effect of NMDA response to the administration of a lower morphine dose as seen in the EPM task. It should be noted that intra-VH microinjection of D-AP5 plus NMDA, 5min before morphine increased locomotor activity, while other treatments had no effect on this parameter. The results suggest that VH-NMDA receptors participate in the mediation of morphine-induced anxiolytic-like behavior.

  18. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    PubMed

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  19. Antidepressant Augmentation Using the NMDA-Antagonist Memantine: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Smith, Eric G.; Deligiannidis, Kristina M.; Ulbricht, Christine M.; Landolin, Chelsea S.; Patel, Jayendra K.; Rothschild, Anthony J.

    2014-01-01

    Objective Intravenous NMDA antagonists have shown promising results in rapidly ameliorating depression symptoms, but placebo-controlled trials of oral NMDA antagonists as monotherapy have not observed efficacy. We conducted a randomized, double-blind, placebo-controlled trial (NCT00344682) of the NMDA antagonist memantine as an augmentation treatment for patients with DSM-IV major depressive disorder. Method 31 participants with partial or nonresponse to their current antidepressant were randomized (from 2006–2011) to add memantine (flexible dose 5–20 mg/day, with all memantine group participants reaching the dose of 20 mg/day) (n= 15) or placebo (n= 16) to their existing treatment for 8 weeks. The primary outcome, change in Montgomery-Asberg Depression Rating Score (MADRS), was evaluated with repeated measures mixed effects models using last-observation-carried-forward methods. Secondary outcomes included other depression and anxiety rating scales, suicidal and delusional ideation, and other adverse effects. Results Participants receiving memantine did not show a statistically or clinically significant change in MADRS scores compared to placebo, either over the entire study (β=0.133, favoring placebo, p=0.74) or at study completion (week 8 MADRS score change: −7.13 +/−6.61 (memantine); −7.25 +/−11.14 (placebo), p=0.97). A minimal-to-small effect size (comparing change to baseline variability) was observed (d=0.19), favoring placebo. Similarly, no substantial effect sizes favoring memantine, nor statistically significant between-group differences, were observed on secondary efficacy or safety outcomes. Conclusions This trial did not detect significant statistical or effect size differences between memantine and placebo augmentation among nonresponders or poor responders to conventional antidepressants. While the small number of participants is a limitation, this study suggests memantine lacks substantial efficacy as an augmentation treatment against

  20. Desensitization of AMPA receptors and AMPA-NMDA receptor interaction: an in vivo cyclic GMP microdialysis study in rat cerebellum.

    PubMed Central

    Fedele, E.; Raiteri, M.

    1996-01-01

    1. Desensitization is an important characteristic of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type. 2. Stimulation of N-methyl-D-aspartate (NMDA) or AMPA receptors in cerebellum results in increased production of cyclic GMP. We have investigated AMPA receptor desensitization in vivo by monitoring extracellular cyclic GMP during intracerebellar microdialysis in conscious unrestrained adult rats. 3. Local infusion of AMPA (10 to 100 microM) caused dose-related elevations of cyclic GMP levels. The effect of AMPA was prevented by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG). 4. In the absence of AMPA, DNQX lowered the basal levels of cyclic GMP whereas the NMDA receptor channel antagonist dizocilpine (MK-801) was ineffective. 5. Cyclothiazide, a blocker of AMPA receptor desensitization, potentiated the cyclic GMP response to exogenous AMPA. Moreover, cyclothiazide (100-300 microM) produced on its own dose-dependent elevations of extracellular cyclic GMP. The cyclothiazide-induced response was prevented not only by DNQX but also by MK-801. 6. While the cyclic GMP response elicited by AMPA was totally insensitive to MK-801, the response produced by AMPA (10 microM) plus cyclothiazide (30 microM) was strongly attenuated by the NMDA receptor antagonist (30 microM). 7. The results suggest that (a) AMPA receptors linked to the NO-cyclic GMP pathway in the cerebellum can undergo desensitization in vivo during exposure to exogenous AMPA; cyclothiazide inhibits such desensitization; (b) AMPA receptors (but not NMDA receptors) are 'tonically' activated and kept in a partly desensitized state by endogenous glutamate; (c) if cyclothiazide is present, activation of AMPA receptors may permit endogenous activation of NMDA receptors. PMID:8882607

  1. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  2. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  3. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors

    PubMed Central

    Farina, Anthony N.; Blain, Katherine Y.; Maruo, Tomohiko; Kwiatkowski, Witek; Choe, Senyon; Nakagawa, Terunaga

    2011-01-01

    The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits co-assemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and X-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors. PMID:21389213

  4. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis.

    PubMed

    Sühs, Kurt-Wolfram; Wegner, Florian; Skripuletz, Thomas; Trebst, Corinna; Tayeb, Said Ben; Raab, Peter; Stangel, Martin

    2015-10-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis.

  5. Differential contributions of NMDA and non-NMDA receptors to spinal Fos expression evoked by superficial tissue and muscle inflammation in the rat.

    PubMed

    Hu, J Y; Zhao, Z Q

    2001-01-01

    The role of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the spinal cord in the transmission of nociceptive afferents from superficial tissue and muscle was studied by examining the effects of NMDA or non-NMDA receptor antagonists on Fos expression in the spinal dorsal horn. Muscle inflammation was induced by injection of turpentine oil into the gastrocnemius muscle, whereas superficial tissue inflammation was induced by an intraplantar injection of turpentine oil into the hindpaw. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5), the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) or normal saline were intrathecally administered 15 min before an intramuscular or intraplantar injection of turpentine oil. Muscle inflammation evoked expression of Fos-like immunoreactive neurons staining in neurons that were predominantly distributed in the middle portions of laminae I-II(outer) and the lateral portions of laminae V-VI of the ipsilateral dorsal horn at the spinal L(4)-L(5). DNQX, but not AP-5, significantly reduced the total number of Fos-like immunoreactive neurons evoked by muscle inflammation. In contrast, superficial tissue inflammation evoked expression of Fos-like immunoreactive neurons in the medial portions of laminae I-II(outer) and V-VI of the ipsilateral dorsal horn at the spinal L(4)-L(5) that was blocked by AP-5, but not by DNQX. Injection of normal saline did not influence the numbers of Fos-LI neurons. These results indicate that different glutamate receptors in the dorsal horn of the spinal cord may mediate nociceptive input from superficial tissue (particularly skin) and muscle. DNQX receptors may mediate transmission of nociceptive information originating in muscle, while NMDA receptors may preferentially mediate transmission of nociceptive information originating in skin.

  6. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  7. The Rehabilitation of Children with Anti-NMDA-Receptor Encephalitis: A Case Series

    PubMed Central

    Houtrow, Amy J.; Bhandal, Manjit; Pratini, Napala R.; Davidson, Loren; Neufeld, Jacob A.

    2012-01-01

    Anti-N-methyl-D-aspartate (NMDA)-receptor encephalitis is a serious, complex, and potentially fatal disease in children. Children with this condition frequently present with altered mental status, rapid functional deterioration, and seizures. Despite aggressive treatment with immune therapy such as corticosteroids, intravenous immunoglobin (IVIG), and plasmapheresis, children often need extensive rehabilitative services and can be left with lasting deficits. In this case series we report on six known consecutive pediatric cases of NMDA-receptor antibody encephalitis in Northern California requiring comprehensive inpatient rehabilitation. The children presented with a variety of symptoms and had waxing and waning clinical courses. All children progressed well through their rehabilitation programs, but were discharged home with persistent functional deficits. At follow-up, all but one child had lasting deficits. Because of the complicated management and extensive rehabilitation needs of children with anti-NMDA-receptor encephalitis, physiatrists and other rehabilitation providers should be knowledgeable about this complex condition. PMID:22415341

  8. Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report.

    PubMed

    Mechelhoff, David; van Noort, Betteke Maria; Weschke, Bernhard; Bachmann, Christian J; Wagner, Christiane; Pfeiffer, Ernst; Winter, Sibylle

    2015-11-01

    Since 2007, more than 600 patients have been diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, with almost 40 % of those affected being children or adolescents. In early phases of the illness, this life-threatening disease is characterized by psychiatric symptoms, such as depression, anxiety, obsessions, hallucinations or delusions. Consequently, a high percentage of patients receive psychiatric diagnoses at first, hindering the crucial early diagnosis and treatment of the anti-NMDA receptor encephalitis. We report on a 15-year-old girl initially presenting with pathological eating behaviour and significant weight loss resulting in an (atypical) anorexia nervosa (AN) diagnosis. Her early course of illness, diagnostic process, treatment and short-term outcome are described. This case report aims to raise awareness about the association between anorectic behaviour and anti-NMDA receptor encephalitis and highlight the importance of multidisciplinary teams in child and adolescent services.

  9. A Case of Anti-NMDA Receptor Encephalitis Treated with ECT.

    PubMed

    Jones, Kristin C; Schwartz, Ann C; Hermida, Adriana P; Kahn, David A

    2015-09-01

    We describe the case of a 17-year-old male who presented with acute onset of seizures and malignant catatonia with psychosis, agitation, and hypermetabolism, who responded to electroconvulsive therapy (ECT). Soon after he began to respond, he was diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis and then given immunosuppressive therapy. Anti-NMDA receptor encephalitis is an increasingly recognized autoimmune disorder that often presents with neuropsychiatric symptoms. The mainstays for treatment have been early diagnosis, tumor work-up and removal if found, and initiation of immunosuppressive therapy. Treatment response is often slow and residual symptoms common. In this case, ECT produced clinical stabilization before the underlying diagnosis of anti-NMDA receptor encephalitis was made and standard treatment initiated. We suggest that ECT may be highly beneficial for stabilizing life-threatening neuropsychiatric symptoms in this syndrome and should be considered as a potentially additive treatment to immunotherapy when rapid relief is sought.

  10. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo

    PubMed Central

    Ultanir, Sila K.; Kim, Ji-Eun; Hall, Benjamin J.; Deerinck, Thomas; Ellisman, Mark; Ghosh, Anirvan

    2007-01-01

    Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex. PMID:18048342

  11. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo.

    PubMed

    Ultanir, Sila K; Kim, Ji-Eun; Hall, Benjamin J; Deerinck, Thomas; Ellisman, Mark; Ghosh, Anirvan

    2007-12-04

    Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex.

  12. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    PubMed Central

    Mantuano, Elisabetta; Lam, Michael S.; Shibayama, Masataka; Campana, W. Marie; Gonias, Steven L.

    2015-01-01

    ABSTRACT NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  13. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  14. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  15. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex.

    PubMed

    De-May, C L; Ali, A B

    2013-01-03

    To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings - combined with biocytin labelling - were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II-V of rat (postnatal days 17-22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (d-AP5) (50μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow.

  16. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies

    PubMed Central

    Dalmau, Josep; Gleichman, Amy J; Hughes, Ethan G; Rossi, Jeffrey E; Peng, Xiaoyu; Lai, Meizan; Dessain, Scott K; Rosenfeld, Myrna R; Balice-Gordon, Rita; Lynch, David R

    2008-01-01

    Summary Background A severe form of encephalitis associated with antibodies against NR1–NR2 heteromers of the NMDA receptor was recently identified. We aimed to analyse the clinical and immunological features of patients with the disorder and examine the effects of antibodies against NMDA receptors in neuronal cultures. Methods We describe the clinical characteristics of 100 patients with encephalitis and NR1–NR2 antibodies. HEK293 cells ectopically expressing single or assembled NR1–NR2 subunits were used to determine the epitope targeted by the antibodies. Antibody titres were measured with ELISA. The effect of antibodies on neuronal cultures was determined by quantitative analysis of NMDA-receptor clusters. Findings Median age of patients was 23 years (range 5–76 years); 91 were women. All patients presented with psychiatric symptoms or memory problems; 76 had seizures, 88 unresponsiveness (decreased conciousness), 86 dyskinesias, 69 autonomic instability, and 66 hypoventilation. 58 (59%) of 98 patients for whom results of oncological assessments were available had tumours, most commonly ovarian teratoma. Patients who received early tumour treatment (usually with immunotherapy) had better outcome (p=0.004) and fewer neurological relapses (p=0.009) than the rest of the patients. 75 patients recovered or had mild deficits and 25 had severe deficits or died. Improvement was associated with a decrease of serum antibody titres. The main epitope targeted by the antibodies is in the extracellular N-terminal domain of the NR1 subunit. Patients’ antibodies decreased the numbers of cell-surface NMDA receptors and NMDA-receptor clusters in postsynaptic dendrites, an effect that could be reversed by antibody removal. Interpretation A well-defined set of clinical characteristics are associated with anti-NMDA-receptor encephalitis. The pathogenesis of the disorder seems to be mediated by antibodies. PMID:18851928

  17. Unilateral predominance of abnormal movements: A characteristic feature of the pediatric anti-NMDA receptor encephalitis?

    PubMed

    Benjumea-Cuartas, Vanessa; Eisermann, Monika; Simonnet, Hina; Hully, Marie; Nabbout, Rima; Desguerre, Isabelle; Kaminska, Anna

    2017-01-01

    Anti-NMDA receptor encephalitis is a treatable autoimmune disease characterized by cognitive, motor and psychiatric features that primarily affects young adults and children. We present a case of a 7-year-old boy with asymmetrical (mainly right hemibody) and abnormal polymorphic movements without concomitant scalpictal EEG changes but had background slowing predominating over the left hemisphere. This report illustrates previous descriptions of asymmetric presentation of abnormal movements in pediatric anti-NMDA receptor encephalitis and emphasizes the importance of video-EEG interpreted within the overall clinical context, to differentiate epileptic from non-epileptic abnormal movements in patients with autoimmune encephalitis.

  18. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis in a young Lebanese girl.

    PubMed

    Safadieh, Layal; Dabbagh, Omar

    2013-10-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a recently recognized autoimmune neurologic disorder that presents with severe neuropsychiatric symptoms in previously healthy children. A 4-year-old Lebanese girl presented with new-onset behavioral changes, orofacial dyskinesias, fluctuation in consciousness, inability to walk, and mutism. Antibodies directed against NMDA receptors were detected in the patient's serum and cerebrospinal fluid. Prompt treatment with a single course of intravenous immunoglobulin resulted in early complete recovery. This is the first case report of a Middle Eastern child affected with this condition.

  19. Anti-NMDA receptor encephalitis: a neurological disease in psychiatric disguise.

    PubMed

    Sharma, Bhawna; Handa, Rahul; Prakash, Swayam; Nagpal, Kadam; Gupta, Pankaj

    2014-02-01

    Anti-NMDA receptor encephalitis was first described in 2005 when psychiatric features, memory loss and altered consciousness were found in four women with ovarian teratoma. We report a case of anti-NMDA receptor encephalitis in a 16-year-old female who presented with psychiatric features followed by autonomic dysfunction and orofacial dyskinesias that showed drastic improvement to intravenous immunoglobulin. As many patients of anti-NMDAR encephalitis initially present with psychiatric features, it is important for psychiatrists to have high index of suspicion for this disease and thus avoid the delay in diagnosing this treatable condition which may be otherwise fatal.

  20. Anti-NMDA receptor encephalitis: psychiatric presentation and diagnostic challenges from psychosomatic medicine perspective.

    PubMed

    Gulyayeva, Nataliya A; Massie, Mary Jane; Duhamel, Katherine N

    2014-04-01

    We describe two cases of confirmed anti-NMDA receptor encephalitis; one patient initially presented with a clinical picture that resembled delirium and later appeared to present with a conversion reaction and the second patient presented with a first psychotic break followed by the clinical picture of neuroleptic malignant syndrome with catatonia. Neither patient had a previous history of psychiatric illness or recreational drug use. These cases illustrate the diagnostic and treatment challenges associated with this neuropsychiatric condition and underscore the role of psychosomatic medicine psychiatrists in diagnosing anti-NMDA receptor encephalitis.

  1. Central Amygdalar and Dorsal Striatal NMDA Receptor Involvement in Instrumental Learning and Spontaneous Behavior

    PubMed Central

    Andrzejewski, Matthew E.; Sadeghian, Kenneth; Kelley, Ann E.

    2008-01-01

    Glutamate-coded signaling in corticostriatal circuits has been shown to be important in various forms of learning and memory. In the present study, the authors found that N-methyl-D-aspartate (NMDA) receptor antagonism in the central nucleus of the amygdala (CeA) and the posterior lateral striatum (PLS) impaired instrumental conditioning but had no effect in the anterior dorsal striatum. NMDA receptor antagonism in the CeA and PLS also affected spontaneous motor behavior and certain aspects of feeding. The present findings extend knowledge of the dynamic neurophysiological processes, instantiated in a complex neural network, required for instrumental learning in the mammalian brain. PMID:15301599

  2. [Anti-NMDA receptor encephalitis: two paediatric cases].

    PubMed

    González-Toro, M Cristina; Jadraque-Rodríguez, Rocío; Sempere-Pérez, Ángela; Martínez-Pastor, Pedro; Jover-Cerdá, Jenaro; Gómez-Gosálvez, Francisco

    2013-12-01

    Introduccion. La encefalitis asociada a anticuerpos antirreceptores de N-metil-D-aspartato (NMDA) es una patologia neurologica autoinmune documentada en la poblacion pediatrica de manera creciente en los ultimos años. Se presentan dos casos de nuestra experiencia con clinica similar. Casos clinicos. Caso 1: niña de 5 años que inicia un cuadro de convulsiones y alteracion de conciencia, asociando trastornos del movimiento y regresion de habilidades previamente adquiridas que evoluciona a autismo. Caso 2: niña de 13 años que presenta hemiparesia izquierda, movimientos anomalos, trastorno de conducta y disautonomia. En ambos casos se obtienen anticuerpos antirreceptores de NMDA positivos en el liquido cefalorraquideo y se diagnostican de encefalitis antirreceptor de NMDA. En el primer caso se inicia el tratamiento con perfusion intravenosa de corticoides e inmunoglobulinas y es necesario asociar rituximab. En el segundo, corticoides e inmunoglobulinas. La evolucion fue favorable en ambas pacientes, con una leve alteracion del lenguaje como secuela en el primer caso y una recaida en el segundo caso, con resolucion completa. Conclusion. La encefalitis antirreceptor de NMDA es un trastorno tratable y es importante el diagnostico y tratamiento precoz, ya que mejora el pronostico y disminuye las recaidas.

  3. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning.

    PubMed

    Parkes, Shauna L; De la Cruz, Vanesa; Bermúdez-Rattoni, Federico; Coutureau, Etienne; Ferreira, Guillaume

    2014-12-01

    Our current understanding of the neurobiology of taste learning and memory has been greatly facilitated by the use of a reliable behavioural model, conditioned taste aversion (CTA). This model has revealed that the insular cortex (IC), specifically muscarinic and N-methyl-d-aspartate (NMDA) receptor activation in the IC, is critical for the formation of aversive taste memories. In contrast, current models of appetitive taste learning are less adequate, relying on the use of neophobic tastes (attenuation of neophobia) or on the integration of appetitive and aversive taste memories (latent inhibition of CTA). While these models have implicated IC muscarinic receptors, the involvement of NMDA receptors in the IC remains unclear. Here, we examined the role of both muscarinic and NMDA receptors in appetitive taste learning using a simple paradigm that is independent of neophobic and aversive components. First, we demonstrated that a single exposure to a novel taste, saccharin 0.1%, is sufficient to promote an appetitive taste memory as revealed by an increase in saccharin consumption during the second presentation. This increase was blocked by bilateral infusion in the IC of the muscarinic receptor antagonist, scopolamine. In contrast, infusion of the NMDA receptor antagonist, AP5, did not block appetitive taste learning but did abolish CTA. Therefore, common and distinct molecular substrates within the IC mediate appetitive versus aversive learning about the same taste.

  4. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors

    PubMed Central

    Lambot, Laurie; Chaves Rodriguez, Elena; Houtteman, Delphine; Li, Yuquing; Schiffmann, Serge N.; Gall, David

    2016-01-01

    The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic

  5. Anti-NMDA receptor antibodies in patients with a first episode of schizophrenia

    PubMed Central

    Masopust, Jiří; Andrýs, Ctirad; Bažant, Jan; Vyšata, Oldřich; Kuca, Kamil; Vališ, Martin

    2015-01-01

    Background Encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDA-R) is classified as an autoimmune disorder with psychotic symptoms, which are frequently dominant. However, it remains unclear how frequently NMDA-R antibodies lead to a condition that mimics psychosis and first-episode schizophrenia. In our work, we investigated the presence of antibodies against NMDA-R in patients with first-episode psychosis (FEP) in comparison with healthy volunteers. Methods This study included 50 antipsychotic-naïve patients with FEP (including 21 women) and 50 healthy volunteers (including 21 women). The mean age of the patients was 27.4 (±7.4) years and that of the healthy controls was 27.0 (±7.3) years. Antibodies against NMDA-R in the serum were detected by immunofluorescence. Results None of the investigated patients with an FEP and none of the healthy controls showed positive antibodies against NMDA-Rs. Conclusion According to results of studies, a small proportion of patients with an FEP possess antibodies against NMDA-R. However, the extent to which this finding contributes to the etiopathogenesis of the response to antipsychotic medication and whether immunomodulatory therapy is indicated in these cases remains uncertain. PMID:25834440

  6. The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones

    PubMed Central

    Sobolevsky, Alexander I; Yelshansky, Maria V

    2000-01-01

    N-methyl-d-aspartate (NMDA) receptor responses were recorded from acutely isolated rat hippocampal neurones using the whole-cell patch-clamp technique. A rapid perfusion system was used to study the voltage-dependent block of NMDA channels by Mg2+, amantadine (AM) and N-2-(adamantyl)-hexamethylenimine (A-7). Mg2+, AM and A-7-induced stationary blockade of NMDA channels increased with the blocker concentration but did not depend on the agonist (aspartate; Asp) concentration. Blockade by AM and A-7, but not Mg2+, was weakly use dependent. ‘Hooked’ tail currents were observed after coapplication of Asp and Mg2+, AM or A-7. The hooked tail current kinetics, amplitude and carried charge indicated that Mg2+, AM and A-7 did not prevent closure and desensitization of NMDA channels nor agonist dissociation. Tail currents following Asp application in the absence and continuous presence of Mg2+, AM or A-7 had similar kinetics. Application of multiple stationary and kinetic criteria to the Mg2+, AM and A-7 blockade led us to conclude that their effects on NMDA channels can be described in terms of a ‘trapping’ model, which is fully symmetrical with respect to the blocking transition. In general, the apparent blocking/recovery kinetics predicted by the fully symmetrical trapping model differ significantly from the microscopic kinetics and depend on the rate of binding and unbinding of the blocker, the NMDA channel open probability and the rate of solution exchange. PMID:10922002

  7. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  8. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  9. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  10. Relief learning is dependent on NMDA receptor activation in the nucleus accumbens

    PubMed Central

    Mohammadi, Milad; Fendt, Markus

    2015-01-01

    Background and Purpose Recently, we demonstrated that the nucleus accumbens (NAC) is required for the acquisition and expression of relief memory. The purpose of this study was to investigate the role of NMDA receptors within the NAC in relief learning. Experimental Approach The NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) was injected into the NAC. The effects of these injections on the acquisition and expression of relief memory, as well as on the reactivity to aversive electric stimuli, were tested. Key Results Intra-accumbal AP-5 injections blocked the acquisition but not the expression of relief memory. Furthermore, reactivity to aversive electric stimuli was not affected by the AP-5 injections. Conclusion and Implication The present data indicate that NMDA-dependent plasticity within the NAC is crucial for the acquisition of relief memory. PMID:25572550

  11. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  12. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  13. The NMDA receptor complex: a long and winding road to therapeutics.

    PubMed

    Wood, Paul L

    2005-03-01

    Advances in our basic understanding of inhibitory and excitatory amino acid neurotransmission have provided the foundation for directed drug discovery programs to modulate inhibitory GABAergic and excitatory N-methyl-D-aspartate (NMDA) receptor-mediated synapses. Gamma-Amino butyric acid (GABA(A)) and NMDA receptors are complex ion channels formed by multiple protein subunits that act as binding sites for transmitter amino acids and as allosteric regulatory binding sites to regulate ion channel activity. In the case of the NMDA receptor complex, one such allosteric site binds the obligatory glycine and/or d-serine co-agonist. Historical data from preclinical and clinical studies of GABAergic agents have clearly demonstrated that direct receptor modulators lack sufficient therapeutic indices to warrant clinical utility. However, pharmacological modulation of allosteric sites of the GABA multimeric receptor has resulted in the clinical development of safe and efficacious agents, exemplified by the benzodiazepines. Research has also revealed a similar outcome for the NMDA receptor, with allosteric modulators demonstrating improved safety profiles in the modulation of excitatory amino acid (EAA) transmission compared with direct NMDA receptor antagonists. First-generation EAA drugs were low affinity channel blockers of the NMDA multimeric receptor complex and included the anesthetic agent ketamine and the Alzheimer's drug memantine. As predicted by preclinical studies, direct NMDA receptor antagonists (eg, selfotel (Novartis AG) and high-affinity channel blockers (eg, dizocilpine) failed in the clinic as a result of narrow therapeutic indices. More recent efforts have focused on glycine/d-serine co-agonist function. These approaches include partial glycine agonists, in their agonist dose-range, for cognitive improvement and for treating schizophrenia. Such partial glycine agonists are also being advanced for the treatment of neuropathic pain in the antagonist dose

  14. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors.

    PubMed

    Pawlak, Robert; Melchor, Jerry P; Matys, Tomasz; Skrzypiec, Anna E; Strickland, Sidney

    2005-01-11

    Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.

  15. NMDA receptor coagonist glycine site: evidence for a role in lateral hypothalamic stimulation of feeding.

    PubMed

    Stanley, B G; Butterfield, B S; Grewal, R S

    1997-08-01

    To investigate the role of the glycine coagonist binding site on the N-methyl-D-aspartate (NMDA) receptor in feeding control, we injected the glycine site antagonist 7-chlorokynurenic acid (7-CK) into the lateral hypothalamus (LH) of satiated rats before LH injection of NMDA, 7-CK (10-44 nmol) blocked the 6- to 10-g eating response elicited by NMDA. This block was reversed by LH pretreatment with glycine, arguing for a specific action at the glycine site. In contrast to the suppression produced by high doses, 7-CK at 0.1 nmol enhanced NMDA-elicited eating. For examination of behavioral specificity, 7-CK was injected into the LH before kainic acid (KA) or DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). 7-CK at a dose of 0.1 nmol suppressed feeding elicited by KA or AMPA, but at 10 nmol it suppressed eating elicited by AMPA while enhancing eating elicited by KA. Finally, bilateral LH injection of 7-CK effectively suppressed eating produced by fasting. These findings support a role for the NMDA receptor coagonist glycine site in LH regulation of eating behavior.

  16. Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors

    SciTech Connect

    Dhawan, J.; Biegon, A.; Dhawan, J.; Benveniste, H.; Nawrocky, M.; Smith, S.D.; Biegon, A.

    2010-03-04

    Stroke is accompanied by neuroinflammation in humans and animal models. To examine the temporal and anatomical profile of neuroinflammation and NMDA receptors (NMDAR) in a stroke model, rats (N = 17) were subjected to a 90 min occlusion of the middle cerebral artery (MCAO) and compared to sham (N = 5) and intact (N = 4) controls. Striatal and parietal cortical infarction was confirmed by MRI 24 h after reperfusion. Animals were killed 14 or 30-40 days later and consecutive coronal cryostat sections were processed for quantitative autoradiography with the neuroinflammation marker [{sup 3}H]PK11195 and the NMDAR antagonist [{sup 3}H]MK801. Significantly increased specific binding of [{sup 3}H]PK11195 relative to non-ischemic controls was observed in the ipsilateral striatum (> 3 fold, p < 0.0001), substantia innominata (> 2 fold) with smaller (20%-80%) but statistically significant (p = 0.002-0.04) ipsilateral increases in other regions partially involved in the infarct such as the parietal and piriform cortex, and in the lateral septum, which was not involved in the infarct. Trends for increases in PBR density were also observed in the contralateral hemisphere. In the same animals, NMDAR specific binding was significantly decreased bilaterally in the septum, substantia innominata and ventral pallidum. Significant decreases were also seen in the ipsilateral striatum, accumbens, frontal and parietal cortex. The different anatomical distribution of the two phenomena suggests that neuroinflammation does not cause the observed reduction in NMDAR, though loss of NMDAR may be locally augmented in ipsilateral regions with intense neuroinflammation. Persistent, bilateral loss of NMDAR, probably reflecting receptor down regulation and internalization, may be responsible for some of the effects of stroke on cognitive function which cannot be explained by infarction alone.

  17. Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors

    PubMed Central

    Dhawan, Jasbeer; Benveniste, Helene; Nawrocky, Marta; Smith, S. David; Biegon, Anat

    2010-01-01

    Stroke is accompanied by neuroinflammation in humans and animal models. To examine the temporal and anatomical profile of neuroinflammation and NMDA receptors (NMDAR) in a stroke model, rats (N=17) were subjected to 90 minutes occlusion of the middle cerebral artery (MCAO) and compared to sham (N=5) and intact (N=4) controls. Striatal and partial cortical Infarction was confirmed by MRI 24 hr after reperfusion. Animals were killed 14 or 30–40 days later and consecutive coronal cryostat sections processed for quantitative autoradiography with the neuroinflammation marker [3H]PK11195 and the NMDAR antagonist [3H]MK801. Significantly Increased specific binding of [3H]PK11195 relative to non-ischemic controls was observed in the ipsilateral striatum (>3 fold, p<0.0001), susbstantia innominata (>2 fold) with smaller (20%–80%) but statistically significant (p=0.002–0.04) ipsilateral increases in other regions partially involved in the infarct such as the parietal and piriform cortex, and in the lateral septum, which was not involved in the infarct. Trends for increases in PBR density were also observed in the contralateral hemisphere. . In the same animals, NMDAR specific binding was significantly decreased bilaterally in the septum, substantia innominata and ventral pallidum. Significant decreases were also seen in the ipsilateral striatum, accumbens, frontal and parietal cortex. The different anatomical distribution of the two phenomena suggests that neuroinflammation does not cause the observed reduction in NMDAR, though loss of NMDAR may be locally augmented in ipsilateral regions with intense neuroinflammation. . Persistent, bilateral loss of NMDAR, probably reflecting receptor down regulation and internalization, may be responsible for some of the effects of stroke on cognitive function which can not be explained by infarction alone. PMID:20206701

  18. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  19. The human immunodeficiency virus coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains.

    PubMed

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph P; Haughey, Norman J

    2011-11-23

    Infection by the human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV-associated neurocognitive disorders. Although the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for this effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. gp120 enlarged and stabilized the structure of lipid microdomains on dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2) to the plasma membrane. A concurrent pathway was activated that accelerated the forward traffic of NMDA receptors by a PKA-dependent phosphorylation of the NR1 C-terminal serine 897 (masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced by threefold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from accelerating the surface localization of NMDA receptors. Disrupting the structure of membrane microdomains after gp120 treatments restored the ability of NMDA receptors to disperse and internalize. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV infection by interfering with NMDA receptor trafficking.

  20. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish.

    PubMed

    Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2015-04-01

    Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.

  1. Surface Expression of NMDA Receptor Changes during Memory Consolidation in the Crab "Neohelice granulata"

    ERIC Educational Resources Information Center

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab "Neohelice granulata". Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of…

  2. Surface Expression of NMDA Receptor Changes during Memory Consolidation in the Crab "Neohelice granulata"

    ERIC Educational Resources Information Center

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab "Neohelice granulata". Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of…

  3. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  4. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    PubMed

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  5. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  6. Reconsolidation after Remembering an Odor-Reward Association Requires NMDA Receptors

    ERIC Educational Resources Information Center

    Torras-Garcia, Meritxell; Tronel, Sophie; Sara, Susan J.; Lelong, Julien

    2005-01-01

    A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous…

  7. Reconsolidation after Remembering an Odor-Reward Association Requires NMDA Receptors

    ERIC Educational Resources Information Center

    Torras-Garcia, Meritxell; Tronel, Sophie; Sara, Susan J.; Lelong, Julien

    2005-01-01

    A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous…

  8. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  9. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  10. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex

    PubMed Central

    Wang, Huaixing; Stradtman, George G.; Wang, Xiao-Jing; Gao, Wen-Jun

    2008-01-01

    In the prefrontal cortex, NMDA receptors are important for normal prefrontal functions such as working memory, and their dysfunction plays a key role in the pathological processes of psychiatric disorders such as schizophrenia. Little is known, however, about the synaptic properties of NMDA receptors in the local circuits of recurrent excitation, a leading candidate mechanism underlying working memory. We investigated the NMDA receptor-mediated currents at monosynaptic connections between pairs of layer 5 pyramidal neurons. We found that NMDA receptor-mediated currents at prefrontal synapses in the adult, but not young, rats exhibit a twofold longer decay time-constant and temporally summate a train of stimuli more effectively, compared to those in the primary visual cortex. Experiments with pharmacological, immunocytochemical, and biochemical approaches further suggest that, in the adult animals, neurons express significantly more NR2B subunits in the prefrontal cortex than the visual cortex. The NR2B-rich synapses in the prefrontal circuitry may be critically implicated in online cognitive computations and plasticity in learning, as well as psychiatric disorders. PMID:18922773

  11. The effect of the NMDA receptor-dependent signaling pathway on cell morphology and melanosome transfer in melanocytes.

    PubMed

    Ni, Jing; Wang, Nan; Gao, Lili; Li, Lili; Zheng, Siwen; Liu, Yuejian; Ozukum, Molu; Nikiforova, Anna; Zhao, Guangming; Song, Zhiqi

    2016-12-01

    The pigmentation of skin and hair in mammals is driven by the intercellular transfer of melanosome from the melanocyte to surrounding keratinocytes However, the detailed molecular mechanism is still a subject of investigation. To investigate the effects of N-methyl-d-aspartate (NMDA) receptor-dependent signaling pathway on melanocyte morphologic change and melanosome transfer between melanocytes and keratinocytes. The expression and the intracellular distribution of NMDA receptor in human melanocyte were analyzed by Western blot and immunofluorescence staining. Melanocytes were treated with 100μM NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate] and 100μM NMDA receptor agonist NMDA, after which the morphological change of melanocyte dendrites and filopodias were observed by scanning electron microscope. The β-tubulin distribution and intracellular calcium concentration ([Ca(2+)]i) were observed by immunofluorescence staining and flow cytometry under the same treatment respectively. In addition, melanocytes and keratinocytes were co-cultured with or without treatment of MK-801, and the melanosome transfer efficacy were analyzed by flow cytometry. We show that human epidermal melanocytes expresses NMDA receptor 1, one subtype of the ionotropic glutamate receptors (iGluRs). Stimulation with agonist of NMDA receptor increased the number of melanocyte filopodia. In contrast, blockage of NMDA receptor with antagonist decreased the number of melanocyte filopodia and this morphological change was accompanied by the disorganization of β-tubulin microfilaments in the intracellular cytoskeleton. In melanocyte-keratinocyte co-cultures, numerous melanocyte filopodia connect to keratinocyte plasma membranes; agonist of NMDA receptor exhibited an increased number of melanocyte filopodia attachments to keratinocyte, while antagonist of NMDA receptor led to a decreased. Moreover, antagonist of NMDA receptor decreased the

  12. Activation of nucleus accumbens NMDA receptors differentially affects appetitive or aversive taste learning and memory

    PubMed Central

    Núñez-Jaramillo, Luis; Rangel-Hernández, José A.; Burgueño-Zúñiga, Belén; Miranda, María I.

    2012-01-01

    Taste memory depends on motivational and post-ingestional consequences; thus, it can be aversive (e.g., conditioned taste aversion, CTA) if a novel, palatable taste is paired with visceral malaise, or it can be appetitive if no intoxication appears after novel taste consumption, and a taste preference is developed.The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli, and recent findings suggest that reward and aversion are differentially encoded by the activity of NAc neurons. The present study examined whether the requirement for N-methyl-D-aspartate (NMDA) receptors in the NAc core during rewarding appetitive taste learning differs from that during aversive taste conditioning, as well as during retrieval of appetitive vs. aversive taste memory, using the taste preference or CTA model, respectively. Bilateral infusions of NMDA (1 μg/μl, 0.5 μl) into the NAc core were performed before acquisition or before retrieval of taste preference or CTA. Activation of NMDA receptors before taste preference training or CTA acquisition did not alter memory formation. Furthermore, NMDA injections before aversive taste retrieval had no effect on taste memory; however, 24 h later, CTA extinction was significantly delayed. Also, NMDA injections, made before familiar appetitive memory retrieval, interrupted the development of taste preference and produced a preference delay 24 h later. These results suggest that memory formation for a novel taste produces neurochemical changes in the NAc core that have differential requirements for NMDA receptors during retrieval of appetitive or aversive memory. PMID:22529783

  13. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  14. A Novel Family of Negative and Positive Allosteric Modulators of NMDA ReceptorsS⃞

    PubMed Central

    Costa, Blaise Mathias; Irvine, Mark W.; Fang, Guangyu; Eaves, Richard J.; Mayo-Martin, Marie Belen; Skifter, Donald A.; Jane, David E.

    2010-01-01

    The N-methyl-d-aspartate (NMDA) receptor family regulates various central nervous system functions, such as synaptic plasticity. However, hypo- or hyperactivation of NMDA receptors is critically involved in many neurological and psychiatric conditions, such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Consequently, subtype-selective positive and negative modulators of NMDA receptor function have many potential therapeutic applications not addressed by currently available compounds. We have identified allosteric modulators with several novel patterns of NMDA receptor subtype selectivity that have a novel mechanism of action. In a series of carboxylated naphthalene and phenanthrene derivatives, compounds were identified that selectively potentiate responses at GluN1/GluN2A [e.g., 9-iodophenanthrene-3-carboxylic acid (UBP512)]; GluN1/GluN2A and GluN1/GluN2B [9-cyclopropylphenanthrene-3-carboxylic acid (UBP710)]; GluN1/GluN2D [3,5-dihydroxynaphthalene-2-carboxylic acid (UBP551)]; or GluN1/GluN2C and GluN1/GluN2D receptors [6-, 7-, 8-, and 9-nitro isomers of naphth[1,2-c][1,2,5]oxadiazole-5-sulfonic acid (NSC339614)] and have no effect or inhibit responses at the other NMDA receptors. Selective inhibition was also observed; UBP512 inhibits only GluN1/GluN2C and GluN1/GluN2D receptors, whereas 6-bromo-2-oxo-2H-chromene-3-carboxylic acid (UBP608) inhibits GluN1/GluN2A receptors with a 23-fold selectivity compared with GluN1/GluN2D receptors. The actions of these compounds were not competitive with the agonists l-glutamate or glycine and were not voltage-dependent. Whereas the N-terminal regulatory domain was not necessary for activity of either potentiators or inhibitors, segment 2 of the agonist ligand-binding domain was important for potentiating activity, whereas subtype-specific inhibitory activity was dependent upon segment 1. In terms of chemical structure, activity profile, and mechanism of action, these modulators represent a new

  15. [NMDA receptor encephalitis in the course of recurrent CNS demyelinating disorders: a case report].

    PubMed

    Yamamoto, Masanari; Kokubun, Norito; Watanabe, Yuka; Okabe, Ryuta; Nakamura, Toshiki; Hirata, Koichi

    2013-01-01

    We present the case of a 31-year-old woman who developed N-methyl-d-aspartate (NMDA) receptor encephalitis during the course of relapsing and remitting multiple brain lesions. The patient developed a tingling sensation in the left upper and lower extremities, and was first admitted to our hospital at age 27. She was tentatively diagnosed with multiple sclerosis on the basis of multiple lesions with Gd-enhancement in the brainstem, and 2 separate clinical relapses by age 28. At age 31, she developed a headache and pyrexia, followed by confusion and abnormal behavior. Her symptoms acutely progressed to stupor, and subsequently, she developed oral dyskinesia and athetosis-like involuntary movement of the left arm. The stupor state continued over 2 months. However, she had completely recovered by 3 months after the onset of psychiatric symptoms. Her serum and CSF samples tested positive for anti-NMDA receptor antibodies, and she was diagnosed with NMDA receptor encephalitis. Her serum was negative for anti-AQP4 antibody, but showed weak positivity for antinuclear antibody. Between ages 32 and 34, she experienced 2 clinical relapses, including right-hand clumsiness, confusion, aphasia, and dysphagia. FLAIR images showed a high-intensity area in the brain stem, thalamus, and subcortical white matter. No tumors were found throughout the course. A clinical entity of NMDA receptor encephalitis can include various neurologic disorders, such as the development of recurrent demyelinating brain lesions. Further investigation is required to clarify the pathophysiological role of anti-NMDA receptor antibody in our patient.

  16. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors.

    PubMed

    Wong, H; Kang, I; Dong, X-D; Christidis, N; Ernberg, M; Svensson, P; Cairns, B E

    2014-06-06

    Intramuscular injection of nerve growth factor (NGF) in healthy humans mimics some of the symptoms of myofascial temporomandibular disorders (M-TMD). We hypothesized that NGF induces a prolonged myofascial mechanical sensitization by increasing peripheral N-methyl-d-aspartate (NMDA) receptor expression, leading to an enhanced response of muscle nociceptors to endogenous glutamate. Behavioral experiments with an injection of NGF (25 μg/ml, 10 μl) into the masseter muscle reduced the mechanical withdrawal threshold for 1 day in male rats and 5 days in female rats. These results mirror the sex-related differences found in NGF-induced mechanical sensitization in humans. Intramuscular injection with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV, 0.020 g/ml, 10 μl) reversed the mechanical sensitization in male but not in female rats. NGF increased the number of NMDA receptor subtype 2B (NR2B)-expressing rat trigeminal masseter ganglion neurons in both sexes, which peaked at 3 days post injection. There was an association between the levels of NR2B expression and NGF-induced mechanical sensitization. The average soma size of NR2B-expressing neurons increased significantly. Increased expression of neuropeptides (CGRP and SP) was observed in NR2B-expressing masseter ganglion neurons in female but not in male rats. In healthy men and women, comparable basal expression levels of NR2B and SP were found in peripheral fibers from masseter muscle microbiopsies. This study suggests that NGF-induced sensitization of masseter nociceptors is mediated, in part, by enhanced peripheral NMDA receptor expression. Measurement of peripheral NMDA receptor expression may be useful as a biomarker for M-TMD pain.

  17. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine

    PubMed Central

    Kloda, Anna; Adams, David J

    2005-01-01

    The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per ∼20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT=5-methyltryptamine>tryptamine>7-methyltryptamine>5-HT≫tryptophan=melatonin. Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration. PMID:15655527

  18. Pharmacological characterization of metabotropic glutamate receptors potentiating NMDA responses in mouse cortical wedge preparations.

    PubMed Central

    Mannaioni, G.; Carlà, V.; Moroni, F.

    1996-01-01

    1. Mouse cortical wedge preparations were used in order to study the effects of metabotropic glutamate receptor (mGluR) agonists and antagonists on the depolarization induced by N-methyl-D-aspartate (NMDA) or by (S)-alpha-amino-4-bromo-3-hydroxy-5-isoxazolepropionic acid (AMPA). 2. (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) (30-300 microM) significantly potentiated the depolarizations induced by NMDA, leaving unchanged those mediated by AMPA. This potentiation developed slowly and lasted for up to 60 min provided that the slices were continuously perfused with the mGluR agonist. 3. Concentration-response curves to NMDA in the absence and in the presence of 1S,3R-ACPD (100 microM) indicated that the potentiation was due to increased affinity of the NMDA receptor complex for its agonist. The maximal responses to NMDA were not potentiated. 4. Selective agonists of group 1 mGluR such as quisqualate (Quis) (30 microM) or (RS)-3,5-dihydroxyphenylglycine (DHPG) (300 microM) did not potentiate NMDA responses. Similarly, selective agonists of group 2 mGluRs, such as (2S,3S,4S)-alpha-carboxycyclopropyl-glycine (L-CCG-I) (3-30 microM), and of group 3, such as L-2-amino-4-phosphonobutyric acid (L-AP4) (100 microM) were inactive in our test. A number of other putative mGluR agents having partial agonist activity on mGluRs in brain slices and in expression systems, such as 1R,3S-ACPD (500 microM), DL-2-amino-3-phosphonopropionic acid (DL-AP3) (300 microM) and (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG; 500 microM), when placed in the experimental protocol we used, did not change NMDA responses. 5. Available mGluR antagonists, such as DL-AP3 (1 mM), (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) (500 microM), S-4-carboxyphenylglycine (4CPG; 500 microM) and S-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG; 500 microM), did not reduce 1S,3R-ACPD potentiation of NMDA responses. 6. It is concluded that the potentiation of NMDA currents induced by the mGluR agonist

  19. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    PubMed Central

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  20. GHB–Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor

    PubMed Central

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A.K

    2011-01-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex. PMID:21886597

  1. GHB-Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor.

    PubMed

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A K

    2011-03-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex.

  2. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus.

    PubMed

    Swanger, Sharon A; Vance, Katie M; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland; Traynelis, Stephen F

    2015-12-02

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)-P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. Copyright © 2015 the authors 0270-6474/15/3515971-13$15.00/0.

  3. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor.

    PubMed

    Kyuhou, Shin-ichi; Gemba, Hisae

    2007-04-27

    We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.

  4. NMDA receptors are the basis for persistent network activity in neocortex slices.

    PubMed

    Castro-Alamancos, Manuel A; Favero, Morgana

    2015-06-01

    During behavioral quiescence the neocortex generates spontaneous slow oscillations that consist of Up and Down states. Up states are short epochs of persistent activity, but their underlying source is unclear. In neocortex slices of adult mice, we monitored several cellular and network variables during the transition between a traditional buffer, which does not cause Up states, and a lower-divalent cation buffer, which leads to the generation of Up states. We found that the resting membrane potential and input resistance of cortical cells did not change with the development of Up states. The synaptic efficacy of excitatory postsynaptic potentials mediated by non-NMDA receptors was slightly reduced, but this is unlikely to facilitate the generation of Up states. On the other hand, we identified two variables that are associated with the generation of Up states: an enhancement of the intrinsic firing excitability of cortical cells and an enhancement of NMDA-mediated responses evoked by electrical or optogenetic stimulation. The fact that blocking NMDA receptors abolishes Up states indicates that the enhancement in intrinsic firing excitability alone is insufficient to generate Up states. NMDA receptors have a crucial role in the generation of Up states in neocortex slices.

  5. Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure

    PubMed Central

    Li, Nanxin; Liu, Rong-Jian; Dwyer, Jason M.; Banasr, Mounira; Lee, Boyoung; Son, Hyeon; Li, Xiao-Yuan; Aghajanian, George; Duman, Ronald S.

    2011-01-01

    Background Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants, or the molecular mechanisms that could account for the rapid responses. Methods We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex (PFC) neurons. Results The results demonstrate that acute treatment with the non-competitive NMDA channel blocker ketamine or the selective NR2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonia and anxiogenic behaviors. We also find that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (EPSCs) in layer V pyramidal neurons in the PFC, and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin (mTOR) protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. Conclusions The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in an mTOR-dependent manner. PMID:21292242

  6. Estrogen-mediated neuroprotection in the cortex may require NMDA receptor activation.

    PubMed

    Connell, B J; Crosby, K M; Richard, M J P; Mayne, M B; Saleh, T M

    2007-04-25

    Several studies have suggested that a potential mechanism for estrogen-mediated neuroprotection following experimental stroke is a result of modulating glutamate-mediated excitotoxicity. Our laboratory has shown that in male rats, estrogen injection (systemic or direct intracortical injection) resulted in an immediate depolarization of cortical neurons. Therefore, the present study was designed to investigate whether the estrogen-induced depolarization of cortical neurons was required in mediating the early events associated with this neuroprotection. We tested this hypothesis by co-injecting selective antagonists of the NMDA (MK-801) or AMPA (DNQX) glutamatergic receptors with estrogen. Systemic injection of estrogen significantly attenuated the MK-801-induced decrease in infarct volume following middle cerebral artery occlusion (MCAO). Similarly, when estrogen and MK-801 were co-injected directly into the cortex, no neuroprotection was observed. However, when estrogen or MK-801 was injected centrally 10 min prior to the injection of the other drug, significant neuroprotection was observed. This led us to hypothesize that estrogen-mediated neuroprotection required an initial activation of NMDA receptors. Furthermore, our results suggest that this estrogen-mediated neuroprotection was also associated with a significant increase in m-calpain and activation of an endoplasmic reticulum (ER) specific caspase-12. Finally, the results of current clamp experiments showed that estrogen significantly depolarized cortical neurons as well as enhanced NMDA-induced depolarization. Taken together, these results suggest that estrogen pretreatment may activate NMDA receptors resulting in modification of ER-associated molecular mechanisms involved in neuroprotection following MCAO.

  7. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity

    PubMed Central

    Suckow, Shelby K; Caudle, Robert M

    2009-01-01

    Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore

  8. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    PubMed

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  9. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex.

    PubMed

    Kharazia, V N; Phend, K D; Rustioni, A; Weinberg, R J

    1996-05-24

    Electrophysiology and light microscopy suggest that a single excitatory synapse may use both amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Using immunogold electron microscopy, we here provide direct evidence for colocalization at individual synapses in sensorimotor cortex of adult rats. Colocalization was most commonly observed on dendritic spines; subunits of the two classes of receptors seemed to be independently distributed within the synaptic active zone.

  10. Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones

    PubMed Central

    Waters, D Jack; Allen, Timothy G J

    1998-01-01

    Ionotropic glutamate receptor-mediated responses were recorded from rat magnocellular basal forebrain neurones under voltage clamp from a somatically located patch-clamp pipette. Currents were recorded from both acutely dissociated neurones and neurones maintained in culture for up to 6 weeks. Non-NMDA and NMDA receptor-mediated events could be distinguished pharmacologically using the selective agonists (S)-α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA), and antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (AP5). Responses to rapid application of AMPA displayed pronounced and rapid desensitization. Responses to kainate showed no desensitization. Steady-state EC50 values for AMPA and kainate were 2.7 ± 0.4 μm (n = 5) and 138 ± 25 μm (n = 10), respectively. Cyclothiazide markedly increased current amplitude of responses to both agonists, whereas concanavalin A had no clear effect on either response. The selective AMPA receptor antagonist GYKI 53655 inhibited responses to kainate with an IC50 of 1.2 ± 0.08 μm (n = 5) at -70 mV. These data strongly suggest that AMPA receptors are the predominant non-NMDA receptors expressed by basal forebrain neurones. At -70 mV, approximately 6% of control current amplitude remained, at a maximally effective concentration of GYKI 53655. This residual response displayed desensitization, was insensitive to cyclothiazide and was potentiated by concanavalin A, suggesting that it was mediated by a kainate receptor. Current-voltage relationships for non-NMDA receptor-mediated currents were obtained from both nucleated patches pulled from neurones in culture and from acutely dissociated neurones. With 30 μm spermine in the recording pipette, currents frequently displayed double-rectification characteristic of non-NMDA receptors with high Ca2+ permeabilities. Ca2+ permeability, relative to Na+ and Cs+, was investigated using constant

  11. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses.

    PubMed

    Lerma, J; Zukin, R S; Bennett, M V

    1990-03-01

    In Xenopus oocytes injected with rat brain mRNA, as in neurons, glycine greatly potentiated responses of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Injected oocytes generated a partially desensitizing inward current in response to NMDA with 30 nM added glycine. As the added glycine concentration was increased from 30 nM to 1 microM, the NMDA response was increased and exhibited less desensitization. The relationship between the NMDA peak response and added glycine concentration indicated a single component response with apparent affinity of 0.29 microM and a Hill coefficient of 0.77. The desensitized response was also fit by the Hill relation with a lower affinity but similar coefficient. The time course of desensitization at 500 microM NMDA was exponential with a time constant (350 msec) that was independent of glycine concentration between 0.03 and 0.3 microM. At higher glycine concentration a slower component of decay (tau = 1.4 sec) was observed. This component was enhanced by increasing the extracellular Ca2+. NMDA without added glycine evoked a small transient response. However this response was suppressed completely by prewashing with the glycine antagonist 7-chlorokynurenic acid, suggesting that it may have been due to glycine contamination. The dose-response relation for low concentrations of glycine indicated that the measured level of glycine contamination accounted for these responses. These results indicate that glycine has at least two actions at the NMDA receptor: it enables channel opening by the agonist and decreases desensitization.

  12. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  13. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis

    PubMed Central

    SÜHS, KURT-WOLFRAM; WEGNER, FLORIAN; SKRIPULETZ, THOMAS; TREBST, CORINNA; TAYEB, SAID BEN; RAAB, PETER; STANGEL, MARTIN

    2015-01-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis. PMID:26622479

  14. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons.

    PubMed

    Chen, Ben; Jiang, Min; Zhou, Mi; Chen, Lulan; Liu, Xu; Wang, Xin; Wang, Yun

    2012-11-27

    Cofilin is the major actin-depolymerizing factor in the CNS for the regulation of actin dynamics. Neurodegenerative stimuli can induce the formation of cofilin rod, a pathological structure composed of cofilin and actin. The formation of cofilin rod was found to disrupt synapse function and cause neurite loss. The aim of the present study is to study the whole process of cofilin rod formation pattern in cultured hippocampal neurons under excitotoxic stimulation and to explore its underlying pharmacological mechanism. By using live cell imaging of neurons overexpressing EGFP-tagged wild type cofilin, we found a two-phase pattern of rod formation induced by glutamate stimulation. The early phase of rod formation occurred shortly after stimulation (∼0.5h) but quickly dissolved within 2h. The second phase happened within a much longer time window, 8h after stimulation. Immunostaining of endogenous cofilin in neurons also confirmed this glutamate stimulation induced two-phase rod formation pattern. The first phase was co-related with intracellular calcium concentration and pH increase while the second phase was not. These two phases of cofilin rod formation induced by glutamate stimulation was antagonized by both non-NMDA and NMDA receptor antagonist DNQX and AP5, respectively. Our results for the first time demonstrate the dynamic cofilin rod formation pattern under stress stimulation in detail by time lapse imaging. These findings reveal a novel time course of excitotoxicity induced neuronal damage and indicate a potential target of neuropathy treatment of neurodegenerative diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Presynaptic NMDA Receptors: Newly Appreciated Roles in Cortical Synaptic Function and Plasticity

    PubMed Central

    Corlew, Rebekah; Brasier, Daniel J.; Feldman, Daniel E.; Philpot, Benjamin D.

    2009-01-01

    Many aspects of synaptic development, plasticity, and neurotransmission are critically influenced by NMDA-type glutamate receptors (NMDARs). Moreover, dysfunction of NMDARs has been implicated in a broad array of neurological disorders, including schizophrenia, stroke, epilepsy, and neuropathic pain. Classically, NMDARs were thought to be exclusively postsynaptic. However, substantial evidence in the last 10 years demonstrates that NMDARs also exist presynaptically, and that presynaptic NMDA receptors (preNMDARs) modulate synapse function and have critical roles in plasticity at many synapses. Here we review current knowledge of the role of preNMDARs in synaptic transmission and plasticity, focusing on the neocortex. We discuss the prevalence, function, and development of these receptors, and their potential modification by experience and in brain pathology. PMID:19029059

  16. Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-02-01

    The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 microM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 microM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors.

  17. Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding.

    PubMed

    Palmer, Abraham A; Printz, David J; Butler, Pamela D; Dulawa, Stephanie C; Printz, Morton P

    2004-01-23

    Epidemiological studies suggest that prenatal malnutrition increases the risk of developing schizophrenia. Animal models indicate that prenatal protein deprivation (PPD) affects many aspects of adult brain function. We tested the hypothesis that PPD in rats would alter prepulse inhibition (PPI), which is an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Additionally, we examined dopaminergic and glutaminergic receptor binding in the striatum and hippocampus, which have been suggested to play a role in the etiology of schizophrenia. Rat dams were fed normal (25%) or low (6%) protein diets beginning 5 weeks prior to, and throughout pregnancy. The pups were tested at postnatal days (PND) 35 and 56 for PPI. Striatal and hippocampal NMDA receptor, and striatal dopamine receptor binding were quantified post-mortem in a subset of these rats. Female rats exposed to PPD had reduced levels of PPI at PND 56, but not PND 35, suggesting the emergence of a sensorimotor gating deficit in early adulthood. Striatal NMDA receptor binding was increased in PPD females. A decrease in initial startle response (SR) was also observed in all PPD rats relative to control rats. These results suggest that PPD causes age- and sex-dependent decreases in PPI and increases in NMDA receptor binding. This animal model may be useful for the investigation of neurodevelopmental changes that are associated with schizophrenia in humans.

  18. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  19. NMDA Receptor Hypofunction Phase Couples Independent γ-Oscillations in the Rat Visual Cortex

    PubMed Central

    Anver, Himashi; Ward, Peter D; Magony, Andor; Vreugdenhil, Martin

    2011-01-01

    Hallucinations, a hallmark of psychosis, can be induced by the psychotomimetic N-methyl--aspartic acid (NMDA) receptor antagonists, ketamine and phencyclidine (PCP), and are associated with hypersynchronization in the γ-frequency band, but it is unknown how reduced interneuron activation associated with NMDA receptor hypofunction can cause hypersynchronization or distorted perception. Low-frequency γ-oscillations (LFγ) and high-frequency γ-oscillations (HFγ) serve different aspects of perception. In this study, we test whether ketamine and PCP affect the interactions between HFγ and LFγ in the rat visual cortex in vitro. In slices of the rat visual cortex, kainate and carbachol induced LFγ (∼34 Hz at 32°C) in layer V and HFγ (∼54 Hz) in layer III of the same cortical column. In controls, HFγ and LFγ were independent, and pyramidal neurons recorded in layer III were entrained by HFγ, but not by LFγ. Sub-anesthetic concentrations of ketamine selectively decelerated HFγ by 22 Hz (EC50=2.7 μM), to match the frequency of LFγ in layer V. This caused phase coupling of the two γ-oscillations, increased spatial coherence in layer III, and entrained the firing of layer III pyramidal neurons by LFγ in layer V. PCP similarly decelerated HFγ by 22 Hz (EC50=0.16 μM), causing cross-layer phase coupling of γ-oscillations. Selective NMDA receptor antagonism, selective NR2B subunit-containing receptor antagonism, and reduced D-serine levels caused a similar selective deceleration of HFγ, whereas increasing NMDA receptor activation through exogenous NMDA, D-serine, or mGluR group 1 agonism selectively accelerated HFγ. The NMDA receptor hypofunction-induced phase coupling of the normally independent γ-generating networks is likely to cause abnormal cross-layer interactions, which may distort perceptions due to aberrant matching of top-down information with bottom-up information. If decelerated HFγ and subsequent cross-layer synchronization

  20. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  1. Rhythmic delta activity represents a form of nonconvulsive status epilepticus in anti-NMDA receptor antibody encephalitis.

    PubMed

    Kirkpatrick, McNeill P; Clarke, Charles D; Sonmezturk, Hasan H; Abou-Khalil, Bassel

    2011-02-01

    Anti-NMDA receptor antibody encephalitis is a limbic encephalitis with psychiatric manifestations, abnormal movements, coma, and seizures. The coma and abnormal movements are not typically attributed to seizure activity, and slow activity is the most common EEG finding. We report drug-resistant nonconvulsive status epilepticus as the basis for coma in a 19-year-old woman with anti-NMDA receptor antibodies and a mediastinal teratoma. The EEG showed generalized rhythmic delta activity, with evolution in morphology, frequency, and field typical of nonconvulsive status epilepticus. The status was refractory to antiepileptic drugs, repeated drug-induced coma, resection of the tumor, intravenous steroids, rituximab, and plasmapheresis. She awoke after the addition of felbamate, and the rhythmic delta activity ceased. The rhythmic delta activity described with coma in anti-NMDA receptor antibody encephalitis may represent a pattern of status epilepticus in some patients. Felbamate, which has NMDA receptor antagonist activity, should be studied as a therapeutic agent in this condition.

  2. Protons trap NR1/NR2B NMDA receptors in a nonconducting state.

    PubMed

    Banke, Tue G; Dravid, Shashank M; Traynelis, Stephen F

    2005-01-05

    NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.

  3. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    PubMed Central

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  4. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    PubMed Central

    2011-01-01

    Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. PMID:22182308

  5. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    PubMed

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.

  6. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit

    PubMed Central

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196

  7. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors.

    PubMed

    Zhou, X; Hollern, D; Liao, J; Andrechek, E; Wang, H

    2013-03-28

    N-methyl-D-aspartate receptors (NMDAR) overactivation is linked to neurodegeneration. The current prevailing theory suggests that synaptic and extrasynaptic NMDAR (syn- and ex-NMDAR) impose counteracting effects on cell fate, and neuronal cell death is mainly mediated by the activation of ex-NMDAR. However, several lines of evidence implicate the limitation of this theory. Here, we demonstrate that activation of NMDAR bi-directionally regulated cell fate through stimulating pro-survival or pro-death signaling. While low-dose NMDA preferentially activated syn-NMDAR and stimulated the extracellular signal-regulated kinase ½-cAMP responsive element-binding protein-brain-derived neurotrophic factor pro-survival signaling, higher doses progressively activated increasing amount of ex-NMDAR along with syn-NMDAR and triggered cell death program. Interestingly, the activation of syn- or ex-NMDAR alone did not cause measurable cell death. Consistently, activation of syn- or ex-NMDAR alone stimulated pro-survival but not pro-death signaling. Next, we found that memantine, which was previously identified as an ex-NMDAR blocker, inhibited intracellular signaling mediated by syn- or ex-NMDAR. Simultaneous blockade of syn- and ex-NMDAR by memantine dose-dependently attenuated NMDAR-mediated death. Moreover, long- but not short-term treatment with high-dose NMDA or oxygen-glucose deprivation triggered cell death and suppressed pro-survival signaling. These data implicate that activation of syn- or ex-NMDAR alone is not neurotoxic. The degree of excitotoxicity depends on the magnitude and duration of syn- and ex-NMDAR coactivation. Finally, genome-wide examination demonstrated that the activation of syn- and ex-NMDAR lead to significant overlapping rather than counteracting transcriptional responses.

  8. Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle

    PubMed Central

    Lee, Jongseok; Saloman, Jami L.; Weiland, Gustave; Auh, Q-Schick; Chung, Man-Kyo; Ro, Jin Y.

    2012-01-01

    NMDA and TRPV1 receptors that are expressed in sensory neurons have been independently demonstrated to play important roles in peripheral pain mechanisms. In the present study, we investigated whether the two receptor-channel systems form a functional complex that provides the basis for the development of mechanical hyperalgesia. In the masseter muscle, direct application of NMDA induced a time dependent increase in mechanical sensitivity, which was significantly blocked when the muscle was pretreated with a specific TRPV1 antagonist, AMG9810. The NR1 subunit of the NMDA receptor and TRPV1 were co-expressed in 32% of masseter afferents in trigeminal ganglia (TG). Furthermore, NR1 and NR2B formed protein-protein complexes with TRPV1 in TG as demonstrated by co-immunoprecipitation experiments. Calcium imaging analyses further corroborated that NMDA and TRPV1 receptors functionally interact. In TG culture, application of NMDA resulted in phosphorylation of serine, but not threonine or tyrosine, residues of TRPV1 in a time course similar to that of the development of NMDA-induced mechanical hyperalgesia. The NMDA-induced phosphorylation was significantly attenuated by CaMKII and PKC inhibitors, but not by a PKA inhibitor. Consistent with the biochemical data, the NMDA-induced mechanical hyperalgesia was also effectively blocked when the muscle was pretreated with a CaMKII or PKC inhibitor. Thus, NMDA receptors and TRPV1 functionally interact via CaMKII and PKC signaling cascades and contribute to mechanical hyperalgesia. These data offer novel mechanisms by which two ligand-gated channels in sensory neurons interact and reinforce the notion that TRPV1 functions as a “signal integrator” under pathological conditions. PMID:22609428

  9. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting.

    PubMed

    Hama, A T; Unnerstall, J R; Siegan, J B; Sagen, J

    1995-07-31

    Excessive activation of N-methyl-D-aspartate (NMDA) receptors in the spinal cord consequent to peripheral injury has been implicated in the initiation of neuropathologic events leading to a state of chronic hyperexcitability and persistence of exaggerated sensory processing. In other CNS disease or injury states, NMDA-mediated neurotoxic damage is associated with a loss of NMDA receptors, and outcome may be improved by agents reducing NMDA activation. Previous findings in our laboratory have demonstrated that the transplantation of adrenal medullary tissue into the spinal subarachnoid space can alleviate sensory abnormalities and reduce the induction of a putative nitric oxide synthase consequent to peripheral nerve injury. In order to determine changes in NMDA receptor expression in the spinal cord following peripheral nerve injury and adrenal medullary grafting, NMDA receptor binding using a high-affinity competitive NMDA receptor antagonist, CGP-39653, and NMDAR1 subunit distribution using immunocytochemistry were investigated. Two weeks following peripheral nerve injury by loose ligation of the right sciatic nerve, either adrenal medullary or striated muscle (control) tissue pieces were implanted in the spinal subarachnoid space. Binding studies revealed a marked reduction in [3H]CGP-39653 binding at L4-L5 levels ipsilateral to peripheral nerve injury in control transplanted animals. In contrast, NMDA binding was normalized in adrenal medullary grafted animals. In addition, NMDAR1 immunoreactivity was reduced in both the dorsal horn neuropil and motor neurons of the ventral horn in animals with peripheral nerve injury, while levels in adrenal medullary grafted animals appeared similar to intact controls. These results suggest that adrenal medullary transplants reduce abnormal sensory processing resulting from peripheral injury by intervening in the spinal NMDA-excitotoxicity cascade.

  10. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.

  11. The participation of NMDA receptors, PKC, and MAPK in Lymnaea memory extinction.

    PubMed

    Rosenegger, David; Lukowiak, Ken

    2013-02-01

    The aerial respiratory behavior of Lymnaea can be operantly conditioned to form a long-term memory (LTM) that will persist for >24h. LTM formation is dependent on altered gene activity and new protein synthesis, with the N-methyl-D-aspartate (NMDA) receptors, mitogen activated protein kinase (MAPK), and protein kinase C (PKC) pathways playing a critical role. LTM can also undergo extinction, whereby the original memory is temporarily masked by a new memory. Here we investigate if the formation of an extinction memory uses similar molecular pathways to those required for LTM formation. We find that the formation of the extinction memory can be blocked by inhibitors of NMDA receptors, PKC, and MAPK suggesting that extinction memory formation uses similar mechanisms to that of 'normal' memory formation.

  12. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors

    PubMed Central

    Gandolfi, Daniela; Vilella, Antonietta; Zoli, Michele; Bigiani, Albertino

    2016-01-01

    Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity. PMID:27531957

  13. The Role of NMDA Receptors in the Development of Brain Resistance through Pre- and Postconditioning

    PubMed Central

    Celso Constantino, Leandra; Tasca, Carla Inês; Boeck, Carina Rodrigues

    2014-01-01

    Brain tolerance or resistance can be achieved by interventions before and after injury through potential toxic agents used in low stimulus or dose. For brain diseases, the neuroprotection paradigm desires an attenuation of the resulting motor, cognitive, emotional, or memory deficits following the insult. Preconditioning is a well-established experimental and clinical translational strategy with great beneficial effects, but limited applications. NMDA receptors have been reported as protagonists in the adjacent cellular mechanisms contributing to the development of brain tolerance. Postconditioning has recently emerged as a new neuroprotective strategy, which has shown interesting results when applied immediately, i.e. several hours to days, after a stroke event. Investigations using chemical postconditioning are still incipient, but nevertheless represent an interesting and promising clinical strategy. In the present review pre- and postconditioning are discussed as neuroprotective paradigms and the focus of our attention lies on the participation of NMDA receptors proteins in the processes related to neuroprotection. PMID:25489494

  14. Requirement for hippocampal CA3 NMDA receptors in associative memory recall.

    PubMed

    Nakazawa, Kazu; Quirk, Michael C; Chitwood, Raymond A; Watanabe, Masahiko; Yeckel, Mark F; Sun, Linus D; Kato, Akira; Carr, Candice A; Johnston, Daniel; Wilson, Matthew A; Tonegawa, Susumu

    2002-07-12

    Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.

  15. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-.

    PubMed

    Kim, W K; Choi, Y B; Rayudu, P V; Das, P; Asaad, W; Arnelle, D R; Stamler, J S; Lipton, S A

    1999-10-01

    Recent evidence indicates that the NO-related species, nitroxyl anion (NO), is produced in physiological systems by several redox metal-containing proteins, including hemoglobin, nitric oxide synthase (NOS), superoxide dismutase, and S-nitrosothiols (SNOs), which have recently been identified in brain. However, the chemical biology of NO- remains largely unknown. Here, we show that NO- -unlike NO*, but reminiscent of NO+ transfer (or S-nitrosylation)- -reacts mainly with Cys-399 in the NR2A subunit of the N-methyl-D-aspartate (NMDA) receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults. This effect of NO- closely resembles that of NOS, which also downregulates NMDA receptor activity under similar conditions in culture.

  16. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  17. Direct inhibition of N-methyl-D-aspartate (NMDA)-receptor function by antiglaucomatous beta-antagonists.

    PubMed

    Nagata, Tatsuo; Ueno, Susumu; Morita, Hirofumi; Kubota, Toshiaki; Toyohira, Yumiko; Tsutsui, Masato; Tawara, Akihiko; Yanagihara, Nobuyuki

    2008-03-01

    In the present study, we investigated the direct effects of antiglaucoma drugs (timolol, betaxolol, pilocarpine, and latanoprost) on N-methyl-D-aspartate (NMDA)-receptor function using a Xenopus oocytes expression system and electrophysiological techniques. In oocytes expressing wild-type NMDA (NR1a/NR2A) receptors, timolol and betaxolol significantly inhibited glutamate-evoked currents, whereas less inhibition was obtained with pilocarpine, and latanoprost had few effects. Moreover, the effect of timolol and betaxolol was noncompetitive with respect to glutamate. Mutations that changed Asn616 of the NR1a subunit, a critical residue for Mg(2+) blocking of NMDA receptors, to Arg (N616R) or Gln (N616Q) almost eliminated the inhibitory effects of timolol and betaxolol, as well as the blocking effect of Mg(2+). Experiments were also carried out to examine the protective effects of timolol and betaxolol against death of oocytes expressing NMDA receptors. During incubation of oocytes, especially in Mg(2+)-free medium, cell death was induced by addition of glutamate because of the continuous activation of the NMDA receptors expressed. Timolol and betaxolol significantly improved oocyte viability when they were added during the incubation period. These results suggest that timolol and betaxolol may have an additional role that they directly inhibit NMDA-receptor function, possibly via N616 of the NR1a subunit.

  18. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity

    PubMed Central

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-01-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments. PMID:23856634

  19. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.

    PubMed

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-12-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.

  20. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.

    PubMed

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-09-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.

  1. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.

    PubMed

    Braun, Urs; Schäfer, Axel; Bassett, Danielle S; Rausch, Franziska; Schweiger, Janina I; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-11-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.

  2. Role of NMDA receptors in the syndrome of behavioral changes produced by predator stress.

    PubMed

    Blundell, Jacqueline; Adamec, Robert; Burton, Paul

    2005-09-15

    Effects on behavioral response to predator stress of competitive block of NMDA receptors with doses of .1, 1.0 and 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. An affect test battery assessed behavioral response to stress and employed hole board, elevated plus maze, light/dark box, social interaction, social avoidance and response to acoustic startle tests. Doses of 1-10 mg/kg of CPP administered ip 30 min prior to predator stress blocked the effects of predator stress on some but not all behaviors measured 8-9 days later. Predator stress normally reduces open arm exploration and risk assessment in the plus maze, decreases entries into the lighted arm of the light dark box and delays habituation of the acoustic startle response. CPP blocked all of these effects of predator stress. A dose of 10 mg/kg of CPP was required for all behaviors except habituation to startle. Block of effects on habituation to startle occurred at 1 and 10 mg/kg. Behaviors in which effects of predator stress were not blocked by CPP included reduction in unprotected head dips in the elevated plus maze and reduced social interaction. In addition, predator stress was without effect on social avoidance measured with the Haller test. These findings extend previous work showing NMDA receptor dependence of effects of predator stress on behavior in the elevated plus maze and on amplitude of acoustic startle response. Novel findings include NMDA receptor dependence of predator stress effects on light dark box behavior and startle habituation. Taken together, the findings add to a body of evidence showing that a syndrome of behavioral changes follows predator stress. Components of this syndrome of behavioral changes likely depend on changes in separable neural substrates initiated in part by NMDA receptors as well as by other neurochemical means.

  3. A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression.

    PubMed

    Jurado, Sandra; Biou, Virginie; Malenka, Robert C

    2010-09-01

    AKAP79/150 is a protein scaffold that is thought to position specific kinases (protein kinase A and C) and phosphatases (calcineurin) in appropriate synaptic domains so that their activities can regulate excitatory synaptic strength. Using a viral-mediated molecular replacement strategy in rat hippocampal slices, we found that AKAP is required for NMDA receptor-dependent long-term depression solely because of its interaction with calcineurin.

  4. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function

    PubMed Central

    Braun, Urs; Schäfer, Axel; Rausch, Franziska; Schweiger, Janina I.; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S.; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-01-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation–inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified “network flexibility,” a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia. PMID:27791105

  5. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    PubMed

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-04-02

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder).

  6. Effects of NMDA receptor antagonists on probability discounting depend on the order of probability presentation.

    PubMed

    Yates, Justin R; Breitenstein, Kerry A; Gunkel, Benjamin T; Hughes, Mallory N; Johnson, Anthony B; Rogers, Katherine K; Shape, Sara M

    Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Non-NMDA receptors in the lateral parabrachial nucleus modulate sodium appetite.

    PubMed

    De Gobbi, Juliana I F; Beltz, Terry G; Johnson, Ralph F; Menani, José Vanderlei; Thunhorst, Robert L; Johnson, Alan Kim

    2009-12-08

    Glutamatergic mechanisms have been implicated in the control of fluid ingestion. In the present study, we investigated whether non-N-methyl-d-aspartate (NMDA) glutamatergic receptors in the lateral parabrachial nucleus (LPBN) are involved in the control of water and sodium intake. Male Sprague-Dawley rats had cannulas implanted bilaterally into the LPBN. They were acutely depleted of water and sodium by injections of the diuretic furosemide (Furo; 10 mg/kg, bw) and given a low dose of the angiotensin-converting enzyme inhibitor, captopril (Cap; 5 mg/kg, bw). Bilateral LPBN injections of the non-NMDA receptor antagonist DNQX (2 and 5 nmol/0.2 microl) increased the ingestion of 0.3 M NaCl and water of Furo/Cap treated rats. The increased ingestion produced by DNQX was abolished by pretreating the LPBN with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a non-NMDA receptor agonist. AMPA injected alone into the LPBN reduced water and 0.3 M NaCl intake. Injections of DNQX (5 nmol/0.2 microl) into the LPBN also produced ingestion of 0.3 M NaCl after sc injections of the beta-adrenoceptor agonist, isoproterenol, a hypotensive drug that typically produces only water intake. Food intake, arterial blood pressure and heart rate were not altered by DNQX LPBN injections. We conclude that agonists acting on non-NMDA receptors in the LPBN exert an inhibitory influence on sodium intake during acute fluid depletion with hypotension and after isoproterenol treatment. A possible interaction of serotonin with glutamate within the LPBN is discussed.

  8. NON-NMDA RECEPTORS IN THE LATERAL PARABRACHIAL NUCLEUS MODULATE SODIUM APPETITE

    PubMed Central

    De Gobbi, Juliana I. F.; Beltz, Terry G.; Johnson, Ralph F.; Menani, José Vanderlei; Thunhorst, Robert L.; Johnson, Alan Kim

    2009-01-01

    Glutamatergic mechanisms have been implicated in the control of fluid ingestion. In the present study, we investigated whether non-N-methyl-D-aspartate (NMDA) glutamatergic receptors in the lateral parabrachial nucleus (LPBN) are involved in the control of water and sodium intake. Male Sprague-Dawley rats had cannulas implanted bilaterally into the LPBN. They were acutely depleted of water and sodium by injections of the diuretic furosemide (Furo; 10 mg/kg, bw) and given a low dose of the angiotensin-converting enzyme inhibitor, captopril (Cap; 5 mg/kg, bw). Bilateral LPBN injections of the non-NMDA receptor antagonist DNQX (2 and 5 nmol/0.2 µl) increased the ingestion of 0.3 M NaCl and water of Furo/Cap treated rats. The increased ingestion produced by DNQX was abolished by pretreating the LPBN with α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a non-NMDA receptor agonist. AMPA injected alone into the LPBN reduced water and 0.3 M NaCl intake. Injections of DNQX (5 nmol/0.2 µl) into the LPBN also produced ingestion of 0.3 M NaCl after sc injections of the β-adrenoceptor agonist, isoproterenol, a hypotensive drug that typically produces only water intake. Food intake, arterial blood pressure and heart rate were not altered by DNQX LPBN injections. We conclude that agonists acting on non-NMDA receptors in the LPBN exert an inhibitory influence on sodium intake during acute fluid depletion with hypotension and after isoproterenol treatment. A possible interaction of serotonin with glutamate within the LPBN is discussed. PMID:19747457

  9. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  10. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors.

    PubMed

    Li, Yu-Jiao; Yang, Qi; Zhang, Kun; Guo, Yan-Yan; Li, Xu-Bo; Yang, Le; Zhao, Ming-Gao; Wu, Yu-Mei

    2013-01-01

    Cytisine (CYT), one of the principal bioactive components derived from the seeds of Cytisus laborinum L, has been widely used for central nervous system (CNS) diseases treatment. The present study investigated the protective effect of CYT on cultured cortical neural injury induced by N-methyl-d-aspartate (NMDA). Our data showed that CYT conferred protective effect against loss of cellular viability induced by brief exposure to 200 μM NMDA in a concentration-dependent manner. CYT significantly inhibited the neuronal apoptosis induced by NMDA exposure by reversing intracellular Ca(2+) overload and balancing Bcl-2 and Bax expression levels. Furthermore, CYT significantly reversed the up-regulation of GluN2B-containing NMDA receptors by exposure to NMDA, but it did not affect the level of GluN2A-containing NMDA receptors. These findings suggest that CYT protects cortical neurons, at least partially, by inhibiting the level of GluN2B-containing NMDA receptors and regulating Bcl-2 family.

  11. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  12. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice

    PubMed Central

    Jastrzębska, Kamila; Walczak, Magdalena; Cieślak, Przemysław Eligiusz; Szumiec, Łukasz; Turbasa, Mateusz; Engblom, David; Błasiak, Tomasz; Parkitna, Jan Rodriguez

    2016-01-01

    The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms. PMID:27853270

  13. NMDA receptor activity and the transmission of sensory input into motor output in introverts and extraverts.

    PubMed

    Rammsayer, Thomas H

    2003-05-01

    Recent research suggests that individual differences in brain dopamine functioning may be related to the personality dimension of extraversion. The major goal of the present study was to answer the question of whether a pharmacologically induced change in glutamatergic NMDA receptor activity would also differentially affect the transmission of sensory input into motor out-put in introverts and extraverts. Therefore, in a double-blind within-subjects design, either 30 mg of the NMDA receptor antagonist memantine or placebo were administered to 48 healthy male volunteers before performing a choice reaction-time task. In introverts, memantine caused a pronounced increase in lift-off time (i.e., the time required to lift the finger from a home button) compared to that in extraverts, whereas movement time (i.e., the time required to move the finger from the home button to a response button) was decreased in both groups. The pattern of results suggests that extraversion-related differential sensitivity to pharmacologically induced changes in NMDA receptor activity is limited to functions that involve an interaction between the glutamatergic and dopaminergic systems.

  14. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  15. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning.

    PubMed

    Schauz, C; Koch, M

    2000-01-01

    The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia.

  16. Steroid unresponsive anti-NMDA receptor encephalitis during pregnancy successfully treated with plasmapheresis.

    PubMed

    Shahani, Lokesh

    2015-04-29

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is an autoimmune disorder resulting in neurological and psychiatric symptoms. It is rare during pregnancy and treatment is extremely challenging as little data exist to guide management. A 26-year-old woman presented at 22 weeks of gestation with intermittent headache and an acute episode of bizarre behaviour and grandiose delusions resulting in hospitalisation. The patient was worked up for encephalitis and was found to have anti-NMDA receptor antibody in cerebrospinal fluid as well as in serum. She was initially treated with high-dose steroids but failed to improve clinically and serologically. She was then treated with plasmapheresis and showed clinical and serological response. She had a successful delivery at 37 weeks and the baby did not show serological evidence of disease. This case adds to the sparse literature of anti-NMDA receptor encephalitis during pregnancy and adds to the differential diagnosis of new onset psychiatric symptoms during pregnancy.

  17. Intrahippocampal Administration of an NMDA Receptor Antagonist Impairs Spatial Discrimination Reversal Learning in Weanling Rats

    PubMed Central

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    Systemic administration of MK-801, an NMDA receptor antagonist, impairs reversal learning in weanling rats (Chadman, Watson, & Stanton, 2006). The brain systems responsible for this effect are not known in either adult or young animals. This study tested the hypothesis that hippocampal NMDA receptors are engaged in weanling-age rats during spatial discrimination reversal training in a T-maze. In Experiment 1, 26-day-old Long-Evans rats (P26) showed a dose-related impairment on this task following bilateral intrahippocampal administration of either 2.5 or 5.0 μg MK-801 or saline vehicle during the reversal training phase only. In Experiment 2, P26 rats were trained on the same task, but received intrahippocampal MK-801 (2.5 μg) during acquisition, reversal, both, or neither. MK-801 failed to impair acquisition, ruling out nonspecific “performance effects” of the drug. MK-801 impaired reversal irrespective of drug treatment during acquisition. NMDA receptor antagonism in the hippocampus is sufficient to account for the previously reported effects of systemic MK-801 on reversal of T-maze position discrimination. PMID:19248837

  18. Blockade of NMDA Receptors in the Amygdala Prevents Latent Inhibition of Fear-Conditioning

    PubMed Central

    Schauz, Cornelia; Koch, Michael

    2000-01-01

    The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-d-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist d,l-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia. PMID:11112798

  19. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo

    PubMed Central

    Zhang, Yong; Cudmore, Robert H.; Lin, Da-Ting; Linden, David J.; Huganir, Richard L.

    2015-01-01

    Regulation of AMPA receptor (AMPAR) membrane trafficking plays a critical role in synaptic plasticity and learning and memory. However, how AMPAR trafficking occurs in vivo remains elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stimulation leads to a significant increase in the surface expression of the AMPAR GluA1 subunit (sGluA1) in both spines and dendritic shafts and small increases in spine size. Interestingly, initial spine properties bias spine changes following whisker stimulation. Changes in spine sGluA1 are positively correlated with changes in spine size and dendritic shaft sGluA1 following whisker stimulation. The increase in spine sGluA1 evoked by whisker stimulation is NMDA receptor dependent and long lasting, similar to major forms of synaptic plasticity in the brain. These results reveal experience dependent AMPAR trafficking in real time and characterize, in vivo, a major form of synaptic plasticity in the brain. PMID:25643295

  20. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Akbarian, Reyhaneh; Imran-Khan, Muhammad; Ghasemi, Mehdi; Dehpour, Ahmad-Reza

    2017-09-01

    Tramadol is an analgesic agent that is mainly used to treat moderate to severe pain. There is evidence that tramadol may have antidepressant property. However, the mechanisms underlying the antidepressant effects of tramadol have not been elucidated yet. Considering that fact that N-methyl-d-aspartate (NMDA) receptor signaling may play an important role in the pathophysiology of depression, the aim of the present study was to investigate the role of NMDA receptor signaling in the possible antidepressant-like effects of tramadol in the mouse forced swimming test (mFST). We found that tramadol exerted antidepressant-like effects at high dose (40mg/kg, intraperitoneally [i.p.]) in the mFST. Co-administration of non-effective doses of NMDA receptor antagonists (ketamine [1mg/kg, i.p.], MK-801 [0.05mg/kg, i.p.], or magnesium sulfate [10mg/kg, i.p.]) with sub-effective dose of tramadol (20mg/kg, i.p.) exerted significant antidepressant-like effects in the mFST. The antidepressant-like effects of tramadol (40mg/kg) was also inhibited by pre-treatment with non-effective dose of the NMDA receptor agonist NMDA (75mg/kg, i.p.). Our data suggest a role for NMDA receptor signaling in the antidepressant-like effects of tramadol in the mFST. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Non-tumor-Associated Anti-N-Methyl-D-Aspartate (NMDA) Receptor Encephalitis in Chinese Girls With Positive Anti-thyroid Antibodies.

    PubMed

    Guan, Wenjuan; Fu, Zhenqiang; Zhang, Hui; Jing, Lijun; Lu, Jingjing; Zhang, Jing; Lu, Hong; Teng, Junfang; Jia, Yanjie

    2015-10-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a new category of autoimmune encephalitis associated with anti-NMDA receptor antibodies. The disease was first described in 2007, and it predominantly affects young women with or without ovarian teratomas. Most patients typically present with seizures, a decreased consciousness level, dyskinesia, autonomic dysfunction, and psychiatric symptoms. The presence of anti-thyroid antibodies in non-tumor-associated anti-NMDA receptor encephalitis was first described in 2010. Additionally, anti-thyroid antibodies were found in teratoma-associated anti-NMDA receptor encephalitis. We report the cases of 3 Chinese girls with non-tumor-associated anti-NMDA receptor encephalitis with positive anti-thyroid antibodies. We followed up the details of their titers and suggest that anti-thyroid antibodies were an indicator of autoimmune predisposition in the development of non-tumor-associated anti-NMDA receptor encephalitis.

  2. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  3. Pathological reorganization of NMDA receptors subunits and postsynaptic protein PSD-95 distribution in Alzheimer's disease.

    PubMed

    Leuba, Genevieve; Vernay, Andre; Kraftsik, Rudolf; Tardif, Eric; Riederer, Beat Michel; Savioz, Armand

    2014-01-01

    In Alzheimer's disease (AD), synaptic alterations play a major role and are often correlated with cognitive changes. In order to better understand synaptic modifications, we compared alterations in NMDA receptors and postsynaptic protein PSD-95 expression in the entorhinal cortex (EC) and frontal cortex (FC; area 9) of AD and control brains. We combined immunohistochemical and image analysis methods to quantify on consecutive sections the distribution of PSD-95 and NMDA receptors GluN1, GluN2A and GluN2B in EC and FC from 25 AD and control cases. The density of stained receptors was analyzed using multivariate statistical methods to assess the effect of neurodegeneration. In both regions, the number of neuronal profiles immunostained for GluN1 receptors subunit and PSD-95 protein was significantly increased in AD compared to controls (3-6 fold), while the number of neuronal profiles stained for GluN2A and GluN2B receptors subunits was on the contrary decreased (3-4 fold). The increase in marked neuronal profiles was more prominent in a cortical band corresponding to layers 3 to 5 with large pyramidal cells. Neurons positive for GluN1 or PSD-95 staining were often found in the same localization on consecutive sections and they were also reactive for the anti-tau antibody AD2, indicating a neurodegenerative process. Differences in the density of immunoreactive puncta representing neuropile were not statistically significant. Altogether these data indicate that GluN1 and PSD-95 accumulate in the neuronal perikarya, but this is not the case for GluN2A and GluN2B, while the neuropile compartment is less subject to modifications. Thus, important variations in the pattern of distribution of the NMDA receptors subunits and PSD-95 represent a marker in AD and by impairing the neuronal network, contribute to functional deterioration.

  4. [Selective disturbance of associative memory reactivation by serotonin or NMDA glutamate receptor antagonists in snail].

    PubMed

    Solntseva, S V; Nikitin, V P

    2007-10-01

    Effects of serotonin or glutamate receptors antagonists on reactivation of food aversion conditioning were studied in snail Helix lucorum. Metiotepin (nonselective serotonin receptor antagonist, 0.1 mg/snail) or MK-801 (NMDA glutamate receptor antagonist, 0.005 mg/snail) were injected 24 hours after 3 days of food aversion conditioning, then reminding stimulus (banana, "conditioned" food) was presented and food aversion conditioning was tested. Long-term impairing (more then 2 weeks) of food aversion conditioning was found 3 hours after concurrent reminding and inhibitors injection. Injection of receptor antagonists without reminding stimulus did not influence on food aversion conditioning retrieval. Besides, in snails with amnesia after metiotepin/reminder, facilitation of repeated elaboration aversion conditioning on banana is revealed. The repeated training of snails with amnesia caused by MK-801/reminder did not result in food aversion conditioning. It is was suggested that 5-HT5,6,7 serotonin receptors are involved in mechanisms of memory "trace" extraction of food aversion conditioning, whereas NMDA glutamate receptor - in processes of its storage in snail.

  5. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  6. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  7. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway.

  8. Presynaptic NMDA receptors – dynamics and distribution in developing axons in vitro and in vivo

    PubMed Central

    Gill, Ishwar; Droubi, Sammy; Giovedi, Silvia; Fedder, Karlie N.; Bury, Luke A. D.; Bosco, Federica; Sceniak, Michael P.; Benfenati, Fabio; Sabo, Shasta L.

    2015-01-01

    ABSTRACT During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons – including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development. PMID:25526735

  9. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  10. Anti-NMDA receptor encephalitis: an easily missed diagnosis in older patients.

    PubMed

    Rainey, Katie; Gholkar, Bethan; Cheesman, Mark

    2014-09-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an important, treatable cause of encephalitis which remains under-recognised despite a growing body of the literature [1]. It is an immune-mediated syndrome which presents with a variety of neurological symptoms including headache, fever, personality change and seizures. Most case reports to date are of young adults, it is much less frequently reported in older adults. The syndrome has been associated with ovarian teratomas. The prognosis is good with early recognition and treatment, though may relapse. We present a case of NMDA encephalitis in an elderly patient who responded well to immunosuppressive therapy. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Organization, control and function of extrasynaptic NMDA receptors

    PubMed Central

    Papouin, Thomas; Oliet, Stéphane H. R.

    2014-01-01

    N-methyl d-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors. PMID:25225095

  12. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine

    PubMed Central

    Kargieman, Lucila; Santana, Noemí; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2007-01-01

    NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia models because of their ability to evoke positive and negative symptoms as well as cognitive deficits similar to those of the illness. Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. These deficits are of particular interest because an early improvement in cognitive performance predicts a better long-term clinical outcome. Here, we examined the effect of the noncompetitive NMDA-R antagonist phencyclidine (PCP) on PFC function to understand the cellular and network elements involved in its schizomimetic actions. PCP induces a marked disruption of the activity of the PFC in the rat, increasing and decreasing the activity of 45% and 33% of the pyramidal neurons recorded, respectively (22% of the neurons were unaffected). Concurrently, PCP markedly reduced cortical synchrony in the delta frequency range (0.3–4 Hz) as assessed by recording local field potentials. The subsequent administration of the antipsychotic drugs haloperidol and clozapine reversed PCP effects on pyramidal cell firing and cortical synchronization. PCP increased c-fos expression in PFC pyramidal neurons, an effect prevented by the administration of clozapine. PCP also enhanced c-fos expression in the centromedial and mediodorsal (but not reticular) nuclei of the thalamus, suggesting the participation of enhanced thalamocortical excitatory inputs. These results shed light on the involvement of PFC in the schizomimetic action of NMDA-R antagonists and show that antipsychotic drugs may partly exert their therapeutic effect by normalizing a disrupted PFC activity, an effect that may add to subcortical dopamine receptor blockade. PMID:17785415

  13. Hypersensitivity of dopamine transmission in the rat striatum after treatment with the NMDA receptor antagonist amantadine.

    PubMed

    Peeters, Magali; Page, Guylène; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2002-09-13

    Amantadine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist known to increase dopamine synthesis and release in the striatum, is frequently associated with L-DOPA in the treatment of Parkinson's disease. However, the biochemical mechanisms involved in the effect of amantadine and the consequences of its repetitive administration on the modulation of striatal dopamine transmission still need to be clarified. We have investigated the effects of short-term amantadine treatments on the expression of dopamine receptors and the functional coupling to G proteins in rat striatal membranes. Dopamine-induced stimulation of guanosine 5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding was significantly enhanced (40%) in striatum homogenates from rats treated for 4 days with amantadine (40 mg/kg, i.p.) compared to vehicle-treated animals. This effect was specific for dopamine receptors and was transient as no significant modifications were observed when animals were treated for either 2 or 7 days. Administration of amantadine did not directly affect the animal behaviour. However, treated animals exhibited hypersensitive dopamine transmission since rats treated for 4 days showed exacerbated responses to a single apomorphine administration (enhanced locomotor activity and reduced stereotypy). Since the effects of amantadine administration differ from those usually observed with direct dopamine receptor agonists or other NMDA receptor antagonists, we suggest that multiple biochemical mechanisms contribute to the modulation of dopamine transmission by amantadine.

  14. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  15. Sleep-dependent declarative memory consolidation--unaffected after blocking NMDA or AMPA receptors but enhanced by NMDA coagonist D-cycloserine.

    PubMed

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-12-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors.

  16. Receptor to glutamate NMDA-type: the functional diversity of the nr1 isoforms and pharmacological properties.

    PubMed

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Escoto-Delgadillo, Martha; Ureña-Guerrero, Mónica Elisa; Camins, Antoni; Beas-Zarate, Carlos

    2013-01-01

    Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca(2+) ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.

  17. NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates.

    PubMed

    Bishop, Stephanie F; Lauzon, Nicole M; Bechard, Melanie; Gholizadeh, Shervin; Laviolette, Steven R

    2011-01-01

    The medial prefrontal cortex (mPFC) plays a significant role in associative learning and memory formation during the opiate addiction process. Various lines of evidence demonstrate that glutamatergic (GLUT) transmission through the N-methyl D-aspartate (NMDA) receptor can modulate neuronal network activity within the mPFC and influence dopaminergic signaling within the mesocorticolimbic pathway. However, little is known about how modulation of NMDA receptor signaling within the mPFC may regulate associative opiate reward learning and memory formation. Using a conditioned place preference (CPP) procedure, we examined the effects of selective NMDA receptor blockade directly within the prelimbic cortex (PLC) during the acquisition of associative opiate reward learning. NMDA receptor blockade specifically within the PLC caused a strong potentiation in the rewarding effects of either systemic or intra-ventral tegmental area (intra-VTA) morphine administration. This reward potentiation was dose dependently blocked by coadministration of dopamine D1 or D2 receptor antagonists and by blockade of presynaptic GLUT release. In addition, pharmacological inactivation of the basolateral amygdala (BLA) also prevented intra-PLC NMDA receptor blockade-induced potentiation of opiate reward signals, demonstrating a functional interaction between inputs from the VTA and BLA within the PLC, during the encoding and modulation of associative opiate reward information.

  18. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model.

    PubMed

    Hu, Rui; Wei, Pan; Jin, Lu; Zheng, Teng; Chen, Wen-Yu; Liu, Xiao-Ya; Shi, Xiao-Dong; Hao, Jing-Ru; Sun, Nan; Gao, Can

    2017-03-30

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which affects more and more people. But there is still no effective treatment for preventing or reversing the progression of the disease. Soluble amyloid-beta (Aβ) oligomers, also known as Aβ-derived diffusible ligands (ADDLs) play an important role in AD. Synaptic activity and cognition critically depend on the function of glutamate receptors. Targeting N-methyl-D-aspartic acid (NMDA) receptors trafficking and its regulation is a new strategy for AD early treatment. EphB2 is a key regulator of synaptic localization of NMDA receptors. Aβ oligomers could bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. Here we identified that overexpression of EphB2 with lentiviral vectors in dorsal hippocampus improved impaired memory deficits and anxiety or depression-like behaviors in APPswe/PS1-dE9 (APP/PS1) transgenic mice. Phosphorylation and surface expression of GluN2B-containing NMDA receptors were also improved. Overexpression of EphB2 also rescued the ADDLs-induced depletion of the expression of EphB2 and GluN2B-containing NMDA receptors trafficking in cultured hippocampal neurons. These results suggest that improving the decreased expression of EphB2 and subsequent GluN2B-containing NMDA receptors trafficking in hippocampus may be a promising strategy for AD treatment.

  19. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition.

    PubMed

    Xiong, Z G; Pelkey, K A; Lu, W Y; Lu, Y M; Roder, J C; MacDonald, J F; Salter, M W

    1999-11-01

    The protein-tyrosine kinase Src is known to potentiate the function of NMDA receptors, which is necessary for the induction of long-term potentiation in the hippocampus. With recombinant receptors composed of NR1-1a/NR2A or NR1-1a/2B subunits, Src reduces voltage-independent inhibition by the divalent cation Zn2+. Thereby the function of recombinant NMDA receptors is potentiated by Src only when the Zn2+ level is sufficient to cause tonic inhibition. Here we investigated whether the Src-induced potentiation of NMDA receptor function in neurons is caused by reducing voltage-independent Zn2+ inhibition. Whereas chelating extracellular Zn2+ blocked the Src-induced potentiation of NR1-1a/2A receptors, we found that Zn2+ chelation did not affect the potentiation of NMDA receptor (NMDAR) currents by Src applied into hippocampal CA1 or CA3 neurons. Moreover, Src did not alter the Zn2+ concentration-inhibition relationship for NMDAR currents in CA1 or CA3 neurons. Also, chelating extracellular Zn2+ did not prevent the upregulation of NMDA single-channel activity by endogenous Src in membrane patches from spinal dorsal horn neurons. Taking these results together we conclude that Src-induced potentiation of NMDAR currents is not mediated by reducing Zn2+ inhibition in hippocampal and dorsal horn neurons.

  20. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    SciTech Connect

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  1. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  2. Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate.

    PubMed

    Hasanein, Parisa; Parviz, Mohsen; Keshavarz, Mansoor; Javanmardi, Kazem; Allahtavakoli, Mohammad; Ghaseminejad, Majid

    2007-01-12

    Acute cholestasis is associated with increased activity of the endogenous opioid system that results to changes including analgesia. N-methyl-d-aspartate (NMDA) receptors are involved in the nociceptive pathway and play a major role in the development of morphine induced analgesia. The magnesium acts as a non-competitive NMDA receptor antagonist by blocking the NMDA receptor channel. Considering the reported antinociceptive effect of magnesium sulfate as a NMDA receptor antagonist and the existence of close functional links between NMDA receptor antagonists and magnesium with the opioid system, we studied the effect of acute and chronic administration of MK-801 as a NMDA antagonist and magnesium sulfate on modulation of nociception in an experimental model of elevated endogenous opioid tone, acute cholestasis, using the tail-flick paradigm. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transsection of the duct at the midpoint between them. A significant increase (P<0.001) in nociception threshold was observed in bile duct ligated rats compared to unoperated and sham-operated animals. In acute treatment, MK-801 (0.1 mg/kg, b.i.d), but not magnesium (150 mg/kg magnesium sulfate, i.e. 30 mg/kg of Mg(+2), i.p., b.i.d.) increased antinociception in cholestatic rats compared to saline treated cholestatics (P<0.05). In chronic treatment, administration of MK-801 or magnesium sulfate for 7 consecutive days, increased tail-flick latency (P<0.05, P<0.01) in cholestatic animals compared to saline treated cholestatics. These data showed that NMDA receptor pathway is involved in modulation of cholestasis-induced antinociception in rats and that repeated dosages of magnesium sulfate similar to MK-801 is able to modulate nociception in cholestasis.

  3. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  4. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    PubMed Central

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  5. A Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice.

    PubMed

    Aiyer, Rohit; Mehta, Neel; Gungor, Semih; Gulati, Amitabh

    2017-09-01

    To investigate the efficacy of N-methyl-D-aspartate receptor (NMDA) receptor antagonists for neuropathic pain and review literature to determine if specific pharmacologic agents provide adequate neuropathic pain relief. Literature was reviewed on PubMed using a variety of key words for 8 NMDA receptor antagonists. These key words include: "Ketamine and Neuropathy", "Ketamine and Neuropathic Pain", "Methadone and Neuropathy", "Methadone and Neuropathic Pain", "Memantine and Neuropathic pain", "Memantine and Neuropathy", "Amantadine and Neuropathic Pain", "Amantadine and Neuropathy", "Dextromethorphan and Neuropathic Pain", "Dextromethorphan and Neuropathy", "Carbamazepine and Neuropathic Pain", "Carbamazepine and Neuropathy", "Valproic Acid and Neuropathy", "Valproic Acid and Neuropathic Pain", "Phenytoin and Neuropathy" and "Phenytoin and Neuropathic Pain". With the results, the papers were reviewed using the PRISMA (Preferred Reporting in Systematic and Meta-Analyses) guideline. A total of 58 randomized controlled trials were reviewed among 8 pharmacologic agents, which are organized by date and alphabetical order. Of the trials for ketamine, 15 showed some benefit for analgesia. Methadone had 3 beneficiary trials, while amantadine and memantine each only had 2 trials showing neuropathic analgesic properties. Dextromethorphan and Valproic Acid both had 4 randomized controlled trials that showed some neuropathic treatment benefit while carbamazepine had over 8 trials showing efficacy. Finally, phenytoin only had 1 trial that showed clinical response in treatment. It is evident there are a variety of NMDA receptor antagonist agents that should be considered for treatment of neuropathic pain. Nevertheless, continued and further investigation of the 8 pharmacologic agents is needed to continue to evaluate their efficacy for treatment of neuropathic pain.

  6. NMDA receptor is involved in neuroinflammation in intracerebroventricular colchicine-injected rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa

    2016-07-01

    The neurodegeneration in intracerebroventricular (icv) colchicine injected (ICIR) rats is linked with neuroinflammation. Glutamate excitotoxicity through NMDA receptors is involved with the neuroinflammation in some animal models of Alzheimer Disease (AD), but it has not been explored in ICIR rats. The aim of this study was to investigate the role of NMDA receptors (by blocking it's activity with memantine) in colchicine-induced neuroinflammation and neurodegeneration and impacts on peripheral immune parameters in ICIR rats. Levels of inflammatory markers (IL-1β, TNFα, ROS, nitrite) in the hippocampus and serum, histopathology of the hippocampus and select peripheral immune parameters were measured 14 and 21-days after icv colchicine injection in rats. These parameters were also measured in rats that received daily per os administration of memantine (20 mg/kg) in both study durations. Neuroinflammation in the hippocampus of ICIR rats was associated with neurodegeneration (chromatolysis, plaque formation), along with changes in inflammatory markers in the serum and alterations in peripheral immune parameters (phagocytic activity of WBC and splenic PMN, cytotoxic activity/leukocyte adhesion inhibition by splenic MNC). Administration of memantine to ICIR rats resulted in mitigation of colchicine-induced inflammation in the hippocampus, inflammatory markers in the serum and neurodegeneration and also led to recovery of the measured immune endpoints; most of these effects were greater with the longer duration of study. Phagocytic activity of WBC and splenic PMN cells appeared to correlate with levels of the measured central inflammatory markers. It appears from the results that neuroinflammation might be linked with the NMDA receptor activity in ICIR rats and that this receptor is involved in the process of progressive neuroinflammation and neurodegeneration in the hippocampus of ICIR and potentially in immunomodulation in these same hosts.

  7. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens

    PubMed Central

    Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Chen, Jiayang; Padolecchia, Cristina; Pittaluga, Anna; Tomé, Angelo R.; Cunha, Rodrigo A.; Marchi, Mario

    2014-01-01

    We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid receptors (NMDARs) in glutamatergic terminals of the nucleus accumbens (NAc). Immunocytochemical studies showed that a significant percentage of NAc terminals were glutamatergic and possessed GluN1 and α7-containing nAChR. A short-term pre-exposure of synaptosomes to nicotine (30 µM) or choline (1 mM) caused a significant potentiation of the 100 µM NMDA-evoked [3H]D-aspartate ([3H]D-Asp) outflow, which was prevented by α-bungarotoxin (100 nM). The pre-exposure to nicotine (100 µM) or choline (1 mM) also enhanced the NMDA-induced cytosolic free calcium levels, as measured by FURA-2 fluorescence imaging in individual NAc terminals, an effect also prevented by α-bungarotoxin. Pre-exposure to the α4-nAChR agonists 5IA85380 (10 nM) or RJR2429 (1 µM) did not modify NMDA-evoked ([3H]D-Asp) outflow and calcium transients. The NMDA-evoked ([3H]D-Asp) overflow was partially antagonized by the NMDAR antagonists MK801, D-AP5, 5,7-DCKA and R(-)CPP and unaffected by the GluN2B-NMDAR antagonists Ro256981 and ifenprodil. Notably, pre-treatment with choline increased GluN2A biotin-tagged proteins. In conclusion, our results show that the GluN2A-NMDA receptor function can be positively regulated in NAc terminals in response to a brief incubation with α7 but not α4 nAChRs agonists. This might be a general feature in different brain areas since a similar nAChR-mediated bolstering of NMDA-induced ([3H]D-Asp) overflow was also observed in hippocampal synaptosomes. PMID:25360085

  8. Genetic Demonstration of a Role for Stathmin in Adult Hippocampal Neurogenesis, Spinogenesis, and NMDA Receptor-Dependent Memory

    PubMed Central

    Martel, Guillaume; Uchida, Shusaku; Hevi, Charles; Chévere-Torres, Itzamarie; Fuentes, Ileana; Park, Young Jin; Hafeez, Hannah; Yamagata, Hirotaka; Watanabe, Yoshifumi

    2016-01-01

    Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an

  9. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex

    PubMed Central

    Lalo, U.; Palygin, O.; Verkhratsky, A.; Grant, S. G. N.; Pankratov, Y.

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  10. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  11. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  12. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  13. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis.

    PubMed

    Kayser, Matthew S; Dalmau, Josep

    2016-09-01

    Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a recently-discovered synaptic autoimmune disorder in which auto-antibodies target NMDARs in the brain, leading to their removal from the synapse. Patients manifest with prominent psychiatric symptoms - and in particular psychosis - early in the disease course. This presentation converges with long-standing evidence on multiple fronts supporting the glutamatergic model of schizophrenia. We review mechanisms underlying disease in anti-NMDAR encephalitis, and discuss its role in furthering our understanding of neural circuit dysfunction in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Frequent rhabdomyolysis in anti-NMDA receptor encephalitis.

    PubMed

    Lim, Jung-Ah; Lee, Soon-Tae; Kim, Tae-Joon; Moon, Jangsup; Sunwoo, Jun-Sang; Byun, Jung-Ick; Jung, Keun-Hwa; Jung, Ki-Young; Chu, Kon; Lee, Sang Kun

    2016-09-15

    The aim of this study was to analyze the clinical presentation and provocation factors of rhabdomyolysis in anti-NMDAR encephalitis. Among the 16 patients with anti-NMDAR encephalitis in our institutional cohort, nine patients had elevated CK enzyme levels and clinical evidence of rhabdomyolysis. Rhabdomyolysis was more frequent after immunotherapy. The use of dopamine receptor blocker (DRB) increased the risk of rhabdomyolysis. None of the patients without rhabdomyolysis received DRBs. Rhabdomyolysis is a frequent complication in anti-NMDAR encephalitis and more common after immunotherapy and the use of DRBs increases the risk. Therefore, DRBs should be administered carefully in patients with anti-NMDAR encephalitis.

  15. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias.

    PubMed

    Busse, Stefan; Brix, Britta; Kunschmann, Ralf; Bogerts, Bernhard; Stoecker, Winfried; Busse, Mandy

    2014-08-01

    The N-methyl-d-aspartate glutamate receptor (NMDA-R) plays a central role in learning and memory and has therefore a potential role in the pathophysiology of neuropsychiatric disorders. Recently, we detected NMDA-R autoantibodies in aged healthy volunteers without neuropsychiatric disorders. Since studies showing the involvement of NMDA-R antibodies in mild cognitive impairment and different forms of dementia are rare, we examined NMDA-R antibodies (Abs) in serum of 46 patients with Alzheimer's disease (AD), 26 patients with subcortical ischemic vascular dementia (SIVD), 18 patients with frontotemporal dementia (FTD), 11 patients with Lewy body disease (LBD) and 33 patients with mild cognitive impairment (MCI) and in 21 healthy aged, gender-matched volunteers. While IgM and/or IgA NMDA-R Abs were present in all groups, IgG was only detected in one AD sample. Seropositivity could be correlated with the presence of co-symptoms: MCI and AD patients suffering from depression and AD and SIVD patients with a psychosis were almost all NMDA-R Ab positive. We conclude that the presence of NMDA-R Abs in dementia could influence the incidence of comorbid depressive and/or psychotic states. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  17. PDI regulates seizure activity via NMDA receptor redox in rats

    PubMed Central

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-01-01

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5–5′-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality. PMID:28198441

  18. Retinal NMDA receptor function and expression are altered in a mouse lacking d-amino acid oxidase

    PubMed Central

    Morgans, Catherine W.; Tekmen, Merve; Sullivan, Steven J.; Esguerra, Manuel; Konno, Ryuichi; Miller, Robert F.

    2013-01-01

    d-serine is present in the vertebrate retina and serves as a coagonist for the N-methyl-d-aspartate (NMDA) receptors of ganglion cells. Although the enzyme d-amino acid oxidase (DAO) has been implicated as a pathway for d-serine degradation, its role in the retina has not been established. In this study, we investigated the role of DAO in regulating d-serine levels using a mutant mouse line deficient in DAO (ddY/DAO−) and compared these results with their wild-type counterparts (ddY/DAO+). Our results show that DAO is functionally present in the mouse retina and normally serves to reduce the background levels of d-serine. The enzymatic activity of DAO was restricted to the inner plexiform layer as determined by histochemical analysis. Using capillary electrophoresis, we showed that mutant mice had much higher levels of d-serine. Whole cell recordings from identified retinal ganglion cells demonstrated that DAO-deficient animals had light-evoked synaptic activity strongly biased toward a high NMDA-to-AMPA receptor ratio. In contrast, recordings from wild-type ganglion cells showed a more balanced ratio between the two receptor subclasses. Immunostaining for AMPA and NMDA receptors was carried out to compare the two receptor ratios by quantitative immunofluorescence. These studies revealed that the mutant mouse had a significantly higher representation of NMDA receptors compared with the wild-type controls. We conclude that 1) DAO is an important regulatory enzyme and normally functions to reduce d-serine levels in the retina, and 2) d-serine levels play a role in the expression of NMDA receptors and the NMDA-to-AMPA receptor ratio. PMID:24068757

  19. NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light

    PubMed Central

    Webb, Ian C.; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    The “core” region of the suprachiasmatic nucleus (SCN), a central clock responsible for coordinating circadian rhythms, shows a daily rhythm in phosphorylation of extracellular regulated kinase (pERK). This cellular rhythm persists under constant darkness and, despite the absence of light, is dependent upon inputs from the eye. The neural signals driving this rhythmicity remain unknown and here the roles of glutamate and PACAP are examined. First, rhythmic phosphorylation of the NR1 NMDA receptor subunit (pNR1, a marker for receptor activation) was shown to coincide with SCN core pERK, with a peak at circadian time (CT) 16. Enucleation and intraocular TTX administration attenuated the peak in the pERK and pNR1 rhythms, demonstrating that activation of the NMDA receptor and ERK in the SCN core at CT16 are dependent on retinal inputs. In contrast, ERK and NR1 phosphorylation in the SCN shell region were unaffected by these treatments. Intraventricular administration of the NMDA receptor antagonist MK-801 also attenuated the peak in SCN core pERK, indicating that ERK phosphorylation in this region requires NMDA receptor activation. As PACAP is implicated in photic entrainment and is known to modulate glutamate signaling, the effects of a PAC1 receptor antagonist (PACAP 6-38) on SCN core pERK and pNR1 also were examined. PACAP 6-38 administration attenuated SCN core pERK and pNR1, suggesting that PACAP induces pERK directly, and indirectly via a modulation of NMDA receptor signaling. Together, these data indicate that, in the absence of light, retinal-mediated NMDA and PAC1 receptor activation interact to induce cellular rhythms in the SCN core. These results highlight a novel function for glutamate and PACAP release in the hamster SCN apart from their well-known roles in the induction of photic circadian clock resetting. PMID:24098484

  20. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.

    PubMed

    Khakpai, Fatemeh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-04-01

    The glutamatergic neurons in the medial septal/diagonal band of broca (MS/DB) affect the hippocampal functions by modulating the septo-hippocampal neurons. Our study investigated the possible role of NMDA receptors of the medial septum nucleus (MS) and dorsal hippocampus (CA1) on memory acquisition in male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the MS and CA1. Rats were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. Our results indicated that pre-training intra-MS or intra-CA1 infusions of NMDA (0.125 μg/rat) and D-AP7 (0.012 μg/rat) increased and decreased memory acquisition, respectively when compared to saline control group. Also, pre-training intra-CA1 and intra-MS injection of an effect dose of D-AP7 (0.012 μg/rat) along with an effect dose of NMDA (0.125 μg/rat) impaired memory acquisition. Interestingly, pre-training intra-CA1/MS infusion of D-AP7 (0.012 μg/rat) diminished memory response produced by pre-training injection of NMDA (0.125 μg/rat) in the MS/CA1, respectively (cross injection or bilateral injection). Also, all above doses of drugs did not alter locomotor activity. These results suggest that the glutamatergic pathway between the MS and CA1 regions is involved in memory acquisition process.

  1. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia.

    PubMed

    Ivanova, S A; Loonen, A J M; Pechlivanoglou, P; Freidin, M B; Al Hadithy, A F Y; Rudikov, E V; Zhukova, I A; Govorin, N V; Sorokina, V A; Fedorenko, O Y; Alifirova, V M; Semke, A V; Brouwers, J R B J; Wilffert, B

    2012-01-10

    Dyskinesias are involuntary muscle movements that occur spontaneously in Huntington's disease (HD) and after long-term treatments for Parkinson's disease (levodopa-induced dyskinesia; LID) or for schizophrenia (tardive dyskinesia, TD). Previous studies suggested that dyskinesias in these three conditions originate from different neuronal pathways that converge on overstimulation of the motor cortex. We hypothesized that the same variants of the N-methyl-D-aspartate receptor gene that were previously associated with the age of dyskinesia onset in HD were also associated with the vulnerability for TD and not LID. Genotyping patients with LID and TD revealed, however, that these two variants were dose-dependently associated with susceptibility to LID, but not TD. This suggested that LID, TD and HD might arise from the same neuronal pathways, but TD results from a different mechanism.

  2. [Two pediatric cases of anti-NMDA receptor antibody encephalitis].

    PubMed

    Ben Azoun, M; Tatencloux, S; Deiva, K; Blanc, P

    2014-11-01

    Although less frequent than viral encephalitis, anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a frequent form of acute pediatric encephalitis. After a prodromal phase of flu-like symptoms, psychiatric symptoms predominate - agitation, anxiety, hallucinations - and can make correct diagnosis more difficult. Also noted are abnormal dyskinesia and dystonia-like movements, partial seizures, difficulties talking or memorizing, and autonomic manifestations. The presentation of two cases of anti-NMDAR encephalitis illustrates the symptoms of this disease. Although the CSF abnormalities are not highly specific of this disease, and MRI most often normal, EEG shows more specific signs. These observations enable us to discuss different treatment options and understand the progression of this disease.

  3. Optical control of NMDA receptors with a diffusible photoswitch

    PubMed Central

    Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A.; Trauner, Dirk

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca2+ imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery. PMID:26311290

  4. Hippocampal NMDA receptors and the previous experience effect on memory.

    PubMed

    Cercato, Magalí C; Colettis, Natalia; Snitcofsky, Marina; Aguirre, Alejandra I; Kornisiuk, Edgar E; Baez, María V; Jerusalinsky, Diana A

    2014-01-01

    N-methyl-D-aspartate receptors (NMDAR) are thought to be responsible for switching synaptic activity specific patterns into long-term changes in synaptic function and structure, which would support learning and memory. Hippocampal NMDAR blockade impairs memory consolidation in rodents, while NMDAR stimulation improves it. Adult rats that explored twice an open field (OF) before a weak though overthreshold training in inhibitory avoidance (IA), expressed IA long-term memory in spite of the hippocampal administration of MK-801, which currently leads to amnesia. Those processes would involve different NMDARs. The selective blockade of hippocampal GluN2B-containing NMDAR with ifenprodil after training promoted memory in an IA task when the training was weak, suggesting that this receptor negatively modulates consolidation. In vivo, after 1h of an OF exposure-with habituation to the environment-, there was an increase in GluN1 and GluN2A subunits in the rat hippocampus, without significant changes in GluN2B. Coincidentally, in vitro, in both rat hippocampal slices and neuron cultures there was an increase in GluN2A-NMDARs surface expression at 30min; an increase in GluN1 and GluN2A levels at about 1h after LTP induction was also shown. We hypothesize that those changes in NMDAR composition could be involved in the "anti-amnesic effect" of the previous OF. Along certain time interval, an increase in GluN1 and GluN2A would lead to an increase in synaptic NMDARs, facilitating synaptic plasticity and memory; while then, an increase in GluN2A/GluN2B ratio could protect the synapse and the already established plasticity, perhaps saving the specific trace. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mapping and Deciphering Neural Codes of NMDA Receptor-Dependent Fear Memory Engrams in the Hippocampus

    PubMed Central

    Tsien, Joe Z.

    2013-01-01

    Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity. PMID:24302990

  6. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity

    PubMed Central

    Burket, Jessica A.; Benson, Andrew D.; Tang, Amy H.; Deutsch, Stephen I.

    2017-01-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORCl in neurons (e.g., cerebellar Purkinje cells). mTORCl is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORCl, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORCl overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORCl activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are “drivers” of mTORCl activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. PMID:25703582

  7. Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus.

    PubMed

    Zhang, Hongmiao; Chen, Guifen; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for "what at when" information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity.

  8. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus.

    PubMed

    Zhang, Xi; Zhang, Quanguang; Tu, Jingyi; Zhu, Ying; Yang, Fang; Liu, Bin; Brann, Darrell; Wang, Ruimin

    2015-03-01

    Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.

  9. Prenatal ethanol exposure modifies [3H]MK-801 binding to NMDA receptors: spermidine and ifenprodil.

    PubMed

    Honse, Yumiko; Randall, Patrick K; Leslie, Steven W

    2003-12-01

    It has been suggested that abnormalities seen in fetal alcohol syndrome are linked with NMDA receptor malfunction. Our laboratory has previously shown that prenatal ethanol treatment decreases [3H]MK-801 binding density at postnatal day 21, when NMDA receptor subunit protein levels were unaltered. Thus, the focus of the present study was to examine whether prenatal ethanol modifies native NMDA receptor levels. Cerebral cortices were taken from offspring born to three treatment groups of pregnant Sprague Dawley(R) rats: an ethanol group given an ethanol liquid diet during the gestational period, a pair-fed control group that received a liquid diet without ethanol, and an ad libitum group fed rat chow and tap water. Western blot studies were carried out at postnatal days 1, 7, 14, and 21 to examine total protein expression of NR1 and NR1b splice variants. NR2 subunit levels were examined by [3H]MK-801 binding studies using spermidine, an endogenous polyamine, and ifenprodil, a selective NR2B antagonist. [3H]MK-801 binding density was significantly reduced in prenatal ethanol-treated groups compared with ad libitum and pair-fed control groups. Spermidine increased [3H]MK-801 binding, although potentiation by spermidine was not significantly different among all three experimental groups. Furthermore, no significant differences in total protein expression of NR1 or NR1b splice variants were observed in cortical membrane homogenates at postnatal days 1 through 21. [3H]MK-801 binding in the presence of ifenprodil showed that prenatal ethanol treatment significantly decreased low-affinity ifenprodil binding. High-affinity ifenprodil binding was reduced in both pair-fed and ethanol-treated groups. These results suggest that prenatal ethanol treatment reduces [3H]MK-801 binding and that this reduction may be due to a decrease in NR2A subunits.

  10. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor.

    PubMed

    Chen, Xiangyuan; Wu, Qichao; You, Li; Chen, Sisi; Zhu, Minmin; Miao, Changhong

    2017-01-15

    Propofol is a commonly used intravenous anesthetic, and could attenuate cancer cells malignant potential via inhibiting hypoxia-inducible factor-1α (HIF-1α) expression. However, the mechanism is still inclusive. In the present study, we mainly focus on the mechanism by which propofol down-regulated HIF-1α expression and malignant potential in pancreatic cancer cells. Human pancreatic cancer cells (Miapaca-2 and Panc-1) in vitro and murine pancreatic cancer cell (Panc02) in vivo were used to assess the effect of propofol on vascular endothelial growth factor (VEGF) expression and migration of pancreatic cancer cells. Propofol inhibited cells migration, expression of VEGF and HIF-1α, phosphorylation of extracellular regulated protein kinases (ERK), AKT, Ca(2+)/calmodulin dependent protein kinases II (CaMK II), and Ca(2+) concentration in a concentration-dependent manner (5, 25, 50, 100μM). Furthermore, MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMK II, could inhibit the expression of VEGF, HIF-1a, p-AKT, p-ERK, p-CaMK II in vitro, growth of tumor and VEGF expression in vivo, which were similar to the effect of propofol. In addition, the anti-tumor effect of propofol could be counteracted by rapastinel, an activator of NMDA receptor. Our study indicated that propofol suppressed VEGF expression and migration ability of pancreatic cancer cells in vitro and in vivo, probably via inhibiting NMDA receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction

    PubMed Central

    2010-01-01

    Background A severe encephalitis that associates with auto-antibodies to the NR1 subunit of the NMDA receptor (NMDA-R) was recently reported. Patients' antibodies cause a decrease of the density of NMDA-R and synaptic mediated currents, but the in vivo effects on the extracellular glutamate and glutamatergic transmission are unknown. Methods We investigated the acute metabolic effects of patients' CSF and purified IgG injected in vivo. Injections were performed in CA1 area of Ammon's horn and in premotor cortex in rats. Results Patient's CSF increased the concentrations of glutamate in the extracellular space. The increase was dose-dependent and was dramatic with purified IgG. Patients' CSF impaired both the NMDA- and the AMPA-mediated synaptic regulation of glutamate, and did not affect the glial transport of glutamate. Blockade of GABA-A receptors was associated with a marked elevation of extra-cellular levels of glutamate following a pretreatment with patients' CSF. Conclusion These results support a direct role of NMDA-R antibodies upon altering glutamatergic transmission. Furthermore, we provide additional evidence in vivo that NMDA-R antibodies deregulate the glutamatergic pathways and that the encephalitis associated with these antibodies is an auto-immune synaptic disorder. PMID:21110857

  12. In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction.

    PubMed

    Manto, Mario; Dalmau, Josep; Didelot, Adrien; Rogemond, Véronique; Honnorat, Jérôme

    2010-11-26

    A severe encephalitis that associates with auto-antibodies to the NR1 subunit of the NMDA receptor (NMDA-R) was recently reported. Patients' antibodies cause a decrease of the density of NMDA-R and synaptic mediated currents, but the in vivo effects on the extracellular glutamate and glutamatergic transmission are unknown. We investigated the acute metabolic effects of patients' CSF and purified IgG injected in vivo. Injections were performed in CA1 area of Ammon's horn and in premotor cortex in rats. Patient's CSF increased the concentrations of glutamate in the extracellular space. The increase was dose-dependent and was dramatic with purified IgG. Patients' CSF impaired both the NMDA- and the AMPA-mediated synaptic regulation of glutamate, and did not affect the glial transport of glutamate. Blockade of GABA-A receptors was associated with a marked elevation of extra-cellular levels of glutamate following a pretreatment with patients' CSF. These results support a direct role of NMDA-R antibodies upon altering glutamatergic transmission. Furthermore, we provide additional evidence in vivo that NMDA-R antibodies deregulate the glutamatergic pathways and that the encephalitis associated with these antibodies is an auto-immune synaptic disorder.

  13. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.

    PubMed

    Elvander-Tottie, Elin; Eriksson, Therese M; Sandin, Johan; Ogren, Sven Ove

    2009-12-01

    Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal-dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5-HT(1A) receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5-HT(1A) receptors are important for hippocampal-dependent long-term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal-dependent spatial memory. Intraseptal infusion of the 5-HT(1A) receptor agonist (R)-8-OH-DPAT (1 or 4 microg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 microg/rat). While intraseptal administration of (R)-8-OH-DPAT (4 microg) combined with a subthreshold dose of the NMDA receptor antagonist D-AP5 (1 microg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5-HT(1A) receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5-HT(1A) and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5-HT(1A) receptor activation on memory, which may be clinically relevant.

  14. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  15. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.

    PubMed

    Lo, Fu-Sun; Blue, Mary E; Erzurumlu, Reha S

    2016-03-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.

  16. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice

    PubMed Central

    Lo, Fu-Sun; Blue, Mary E.

    2015-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541–545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624–1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT. PMID:26683074

  17. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    PubMed

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P < 0.05). All the aforesaid indices all decreased in the ZP group and the YP group, with statistical difference when compared with the model group (P < 0.05). The protein expressions of NR2A and NR2B in hippocamus were lower in the model group than in the blank control group (P < 0.05). But when compared with the model group, they were obviously higher in the ZP group and the YP group (P < 0.05). SDC rats had degenerated learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  18. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders

    PubMed Central

    Shen, Hongmei; Li, Zheng

    2017-01-01

    The identification and functional delineation of miRNAs (a class of small non-coding RNAs) have added a new layer of complexity to our understanding of the molecular mechanisms underlying synaptic plasticity. Genome-wide association studies in conjunction with investigations in cellular and animal models, moreover, provide evidence that miRNAs are involved in psychiatric disorders. In the present review, we examine the current knowledge about the roles played by miRNAs in NMDA (N-methyl-d-aspartate) receptor-dependent synaptic plasticity and psychiatric disorders. PMID:27252401

  19. Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities

    PubMed Central

    Torres, Eva; Duque, María D.; López-Querol, Marta; Taylor, Martin C.; Naesens, Lieve; Ma, Chunlong; Pinto, Lawrence H.; Sureda, Francesc X.; Kelly, John M.; Vázquez, Santiago

    2012-01-01

    The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein. PMID:22178660

  20. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  1. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  2. Severely impaired learning and altered neuronal morphology in mice lacking NMDA receptors in medium spiny neurons.

    PubMed

    Beutler, Lisa R; Eldred, Kiara C; Quintana, Albert; Keene, C Dirk; Rose, Shannon E; Postupna, Nadia; Montine, Thomas J; Palmiter, Richard D

    2011-01-01

    The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.

  3. Conditional Knockout of NMDA Receptors in Dopamine Neurons Prevents Nicotine-Conditioned Place Preference

    PubMed Central

    Phillip Wang, Lei; Li, Fei; Shen, Xiaoming; Tsien, Joe Z.

    2010-01-01

    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction. PMID:20062537

  4. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference.

    PubMed

    Wang, Lei Phillip; Li, Fei; Shen, Xiaoming; Tsien, Joe Z

    2010-01-07

    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction.

  5. NMDA Receptors in Clinical Neurology: Excitatory Times Ahead

    PubMed Central

    Kalia, Lorraine V.; Kalia, Suneil K.; Salter, Michael W.

    2013-01-01

    Since the N-methyl-D-aspartate receptor (NMDAR) subunits were first cloned less than two decades ago, a substantial amount of research has been invested into understanding the physiological function of NMDARs in the healthy CNS and their pathological roles in a variety of neurological diseases. These include conditions resulting from acute excitotoxic insults (e.g. ischemic stroke, traumatic brain injury), diseases due to chronic neurodegeneration (e.g. Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis), disorders arising from sensitization of neurons (e.g. epilepsy, neuropathic pain), as well as neurodevelopmental disorders associated with NMDAR hypofunction (e.g. schizophrenia). There has been much focus on selective NMDAR antagonists which have not produced positive results in clinical trials. However, there are other NMDAR-targeted therapies used in current practice which are effective for treating certain neurological disorders. In this review, we describe the evidence for the use of these therapies and provide an overview of drugs being investigated in clinical trials. We also discuss novel NMDAR-based strategies which are emerging in clinical neurology. PMID:18635022

  6. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  7. [Anti-NMDA Receptor Antibody-Related Encephalitis].

    PubMed

    Nagayama, Shigemi; Tanaka, Keiko

    2016-09-01

    Recently, the search for diagnostic antibody markers has drawn considerable attention in relation to autoimmune encephalitis. Among the antibody markers, the most frequently detected is the anti-N-methyl-D-aspartate receptor (NMDAR)antibody. Patients with this antibody develop characteristic clinical features. This disease tends to affect young women, and starts with psychiatric symptoms followed by seizures, involuntary movements, autonomic failure, and respiratory failure. Nearly half of these female patients have ovarian teratoma. Some of the patients with anti-NMDAR antibody show atypical clinical features. Approximately 4% show only psychiatric symptoms, which might lead to a diagnosis of malignant catatonia. Other reports describe patients experiencing refractory seizures to have the anti-NMDAR antibody. Some of the antibody-positive patients are associated with demyelinating disorders, and some develop anti-NMDAR encephalitis after recovery from herpes simplex encephalitis. It is important to test the anti-NMDAR antibody in these groups since immunotherapy ameliorates their symptoms. The anti-NMDAR antibody binds to the constitutional epitope at the extracellular domain of GluN1 and disrupts its function. Early introduction of immunotherapy together with tumor resection will results in improvement of neurological symptoms.

  8. Cocaine-induced changes in NMDA receptor signaling

    PubMed Central

    Ortinski, Pavel I.

    2014-01-01

    Addictive states are often thought to rely on lasting modification of signaling at relevant synapses. A long-standing theory posits that activity at N-methyl-D-aspartate receptors (NMDARs) is a critical component of long-term synaptic plasticity in many brain areas. Indeed, NMDAR signaling has been found to play a role in the etiology of addictive states, in particular following cocaine exposure. However, no consensus is apparent with respect to the specific effects of cocaine exposure on NMDARs. Part of the difficulty lies in the fact that NMDARs interact extensively with multiple membrane proteins and intracellular signaling cascades. This allows for highly heterogeneous patterns of NMDAR regulation by cocaine in distinct brain regions and at distinct synapses. The picture is further complicated by findings that cocaine effects on NMDARs are sensitive to the behavioral history of cocaine exposure, such as the mode of cocaine administration. This review provides a summary of evidence for cocaine-induced changes in NMDAR expression, cocaine-induced alterations in NMDAR function and cocaine effects on NMDAR control of intracellular signaling cascades. PMID:24445951

  9. [Identification of NMDA receptor in normal bovine ovary and ovum].

    PubMed

    Tachibana, Naoko; Ikeda, Shu-ichi

    2014-01-01

    To clarify the pathogenesis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients without ovarian teratoma, we investigate normal human ovary, normal bovine ovary and bovine ova. On the basis of immunohistochemical studies, normal human ovary expressed NR2B epitope in primordial oocytes. The results of SDS-PAGE and immunoblotting using bovine ovarian tissues and ova, we identified two bands of NR1 and NR2B. Moreover, reverse phase liquid chromatography coupled to tandem mass spectrometry showed peptides fractions of NR1, NR2A, NR2B and NR2C. Immunocytochemical study disclosed that normal bovine oocyte has a strong affinity for a patient's disease-specific IgG. Anti-NMDAR encephalitis involves mainly young women who are in their reproductive age. Ovarian teratoma is important as simultaneous tumor, the percentage of patients with ovarian teratoma is less than 40%. It is obvious that the origin of ovarian teratoma is oocyte. So the existence of NMDAR in normal oocytes is very important to assert that ovary itself is the antigen presenting tissue. And also it is helpful to explain why young women are mainly affected from this disease. It seems to conclude that anti-NMDAR encephalitis is one form of autoimmune synaptic encephalitis and that the antigen presenting tissue is ovary itself.

  10. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis mimicking a primary psychiatric disorder in an adolescent.

    PubMed

    Lebon, Sébastien; Mayor-Dubois, Claire; Popea, Irina; Poloni, Claudia; Selvadoray, Nalini; Gumy, Alain; Roulet-Perez, Eliane

    2012-12-01

    Anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis likely has a wider clinical spectrum than previously recognized. This article reports a previously healthy 16-year-old girl who was diagnosed with anti-NMDA receptor encephalitis 3 months after onset of severe depression with psychotic features. She had no neurological manifestations, and cerebral magnetic resonance imaging (MRI) was normal. Slow background on electroencephalogram and an oligoclonal band in the cerebrospinal fluid prompted the search for anti-NMDA receptor antibodies. She markedly improved over time but remained with mild neuropsychological sequelae after a trial of late immunotherapy. Only a high index of suspicion enables recognition of the milder forms of the disease masquerading as primary psychiatric disorders.

  11. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: an unusual cause of autistic regression in a toddler.

    PubMed

    Scott, Ori; Richer, Lawrence; Forbes, Karen; Sonnenberg, Lyn; Currie, Angela; Eliyashevska, Myroslava; Goez, Helly R

    2014-05-01

    Anti N-methyl-d-aspartate (NMDA) receptor encephalitis in children is associated with psychiatric changes, seizures, and dyskinesias. We present the first report of autistic regression in a toddler caused by this entity. A 33-month-old boy presented with decreased appetite, irritability, and insomnia following an upper respiratory tract infection. Over the next few weeks he lost language and social skills, and abnormal movements of his hand developed. Within a month, this patient came to fit the diagnostic criteria for autistic spectrum disorder. Upon investigation, anti-NMDA receptor antibodies were found in the boy's cerebrospinal fluid. He was treated with intravenous immunoglobulins and steroids, resulting in reacquisition of language and social skills and resolution of movements. Our case emphasizes the significance of suspecting anti-NMDA receptor encephalitis as the cause of autistic regression, even in an age group where the diagnosis of autistic spectrum disorder is typically made, and especially when presentation follows a febrile illness.

  12. Overlapping demyelinating syndromes and anti-NMDA receptor encephalitis

    PubMed Central

    Titulaer, Maarten J.; Höftberger, Romana; Iizuka, Takahiro; Leypoldt, Frank; McCracken, Lindsey; Cellucci, Tania; Benson, Leslie A.; Shu, Huidy; Irioka, Takashi; Hirano, Makito; Singh, Gagandeep; Calvo, Alvaro Cobo; Kaida, Kenichi; Morales, Pamela S.; Wirtz, Paul W.; Yamamoto, Tomotaka; Reindl, Markus; Rosenfeld, Myrna R.; Graus, Francesc; Saiz, Albert; Dalmau, Josep

    2014-01-01

    Objective To report the clinical, radiological, and immunological association of demyelinating disorders with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Methods Clinical and radiological analysis of a cohort of 691 patients with anti-NMDAR encephalitis. Determination of antibodies to NMDAR, aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) was performed using brain immunohistochemistry and cell-based assays. Results Twenty-three of 691 patients with anti-NMDAR encephalitis had prominent MRI and/or clinical features of demyelination. Group 1 included 12 patients in whom anti-NMDAR encephalitis was preceded or followed by independent episodes of NMO-spectrum disorder (5 cases, 4 anti-AQP4-positive), or brainstem or multifocal demyelinating syndromes (7 cases, all anti-MOG-positive). Group 2 included 11 patients in whom anti-NMDAR encephalitis occurred simultaneously with MRI and symptoms compatible with demyelination (5 AQ4-positive, 2 MOG-positive). Group 3 (136 controls) included 50 randomly selected patients with typical anti-NMDAR encephalitis, 56 with NMO, and 30 with multiple sclerosis: NMDAR-antibodies were detected only in the 50 anti-NMDAR patients, MOG-antibodies in 3/50 anti-NMDAR and 1/56 NMO patients, and AQP4-antibodies in 48/56 NMO and 1/50 anti-NMDAR patients (p<0.0001 for all comparisons with Groups 1 and 2). Most patients improved with immunotherapy, but compared with anti-NMDAR encephalitis the demyelinating episodes required more intensive therapy and resulted in more residual deficits. Only 1/23 NMDAR patients with signs of demyelination had ovarian teratoma compared with 18/50 anti-NMDAR controls (p=0.011) Interpretation Patients with anti-NMDAR encephalitis may develop concurrent or separate episodes of demyelinating disorders, and conversely patients with NMO or demyelinating disorders with atypical symptoms (e.g., dyskinesias, psychosis) may have anti-NMDAR encephalitis. PMID:24700511

  13. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses.

    PubMed

    Lei, Saobo; McBain, Chris J

    2002-03-14

    Dentate gyrus granule cells innervate inhibitory interneurons via a continuum of synapses comprised of either Ca(2+)-impermeable (CI) or Ca(2+)-permeable (CP) AMPA receptors. Synapses at the extreme ends of this continuum engage distinct postsynaptic responses, with activity at CI synapses being strongly influenced by NMDA receptor activation. NMDARs at CI synapses have a lower NR2B subunit composition and a higher open probability, which generate larger amplitude and more rapid EPSCs than their CP counterparts. A novel form of NMDAR-dependent long-term depression (iLTD) is associated with CI-mossy fiber synapses, whereas iLTD at CP synapses is dependent on Ca(2+)-permeable AMPA receptor activation. Induction of both forms of iLTD required elevation of postsynaptic calcium. Thus mossy fibers engage CA3 interneurons via multiple synapse types that will act to expand the computational repertoire of the mossy fiber-CA3 network.

  14. N-Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse

    PubMed Central

    Feng, Bihua; Tsintsadze, Timur S.; Morley, Richard M.; Irvine, Mark W.; Tsintsadze, Vera; Lozovaya, Natasha A.; Jane, David E.; Monaghan, Daniel T.

    2009-01-01

    N-Methyl-d-aspartate (NMDA) receptor antagonists that are highly selective for specific NMDA receptor 2 (NR2) subunits have several potential therapeutic applications; however, to date, only NR2B-selective antagonists have been described. Whereas most glutamate binding site antagonists display a common pattern of NR2 selectivity, NR2A > NR2B > NR2C > NR2D (high to low affinity), (2S*,3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) has a low selectivity for NR2C- and NR2D-containing NMDA receptors. A series of PPDA derivatives were synthesized and then tested at recombinant NMDA receptors expressed in Xenopus laevis oocytes. In addition, the optical isomers of PPDA were resolved; the (−) isomer displayed a 50- to 80-fold greater potency than the (+) isomer. Replacement of the phenanthrene moiety of PPDA with naphthalene or anthracene did not improve selectivity. However, phenylazobenzoyl (UBP125) or phenylethynylbenzoyl (UBP128) substitution significantly improved selectivity for NR2B-, NR2C-, and NR2D-containing receptors over NR2A-containing NMDA receptors. Phenanthrene attachment at the 3 position [(2R*,3S*)-1-(phenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP141); (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP145); (2R*,3S*)-1-(9-chlorophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP160); and (2R*,3S*)-1-(9-iodophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP161)] displayed improved NR2D selectivity. UBP141 and its 9-brominated homolog (UBP145) both display a 7- to 10- fold selectivity for NR2D-containing receptors over NR2B- or NR2A-containing receptors. Schild analysis indicates that these two compounds are competitive glutamate binding site antagonists. Consistent with a physiological role for NR2D-containing receptors in the hippocampus, UBP141 (5 μM) displayed greater selectivity than PPDA for inhibiting the slow-decaying component of the NMDA receptor

  15. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors

    PubMed Central

    2013-01-01

    Background NMDA receptors are ligand-gated ion channels with essential roles in glutamatergic synaptic transmission and plasticity in the CNS. As co-receptors for glutamate and glycine, gating of the NMDA receptor/channel pore requires agonist binding to the glycine sites, as well as to the glutamate sites, on the ligand-binding domains of the receptor. In addition to channel gating, glycine has been found to prime NMDA receptors for internalization upon subsequent stimulation of glutamate and glycine sites. Results Here we address the key issue of identifying molecular determinants in the glycine-binding subunit, GluN1, that are essential for priming of NMDA receptors. We found that glycine treatment of wild-type NMDA receptors led to recruitment of the adaptor protein 2 (AP-2), and subsequent internalization after activating the receptors by NMDA plus glycine. However, with a glycine-binding mutant of GluN1 – N710R/Y711R/E712A/A714L – we found that treating with glycine did not promote recruitment of AP-2 nor were glycine-treated receptors internalized when subsequently activated with NMDA plus glycine. Likewise, GluN1 carrying a single point mutation – A714L – did not prime upon glycine treatment. Importantly, both of the mutant receptors were functional, as stimulating with NMDA plus glycine evoked inward currents. Conclusions Thus, we have identified a single amino acid in GluN1 that is critical for priming of NMDA receptors by glycine. Moreover, we have demonstrated the principle that while NMDA receptor gating and priming share a common requirement for glycine binding, the molecular constraints in GluN1 for gating are distinct from those for priming. PMID:23941530

  16. Pharmacological Intervention of Hippocampal CA3 NMDA Receptors Impairs Acquisition and Long-Term Memory Retrieval of Spatial Pattern Completion Task

    ERIC Educational Resources Information Center

    Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal

    2009-01-01

    Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…

  17. The effects of isoniazid on hippocampal NMDA receptors: protective role of erdosteine.

    PubMed

    Cicek, Ekrem; Sutcu, Recep; Gokalp, Osman; Yilmaz, H Ramazan; Ozer, M Kaya; Uz, Efkan; Ozcelik, Nurten; Delibas, Namik

    2005-09-01

    Isoniazid (INH) has neurotoxic effects such as seizure, poor concentration, subtle reduction in memory, anxiety, depression and psychosis. INH-induced toxic effects are thought to be through increased oxidative stress, and these effects have been shown to be prevented by antioxidant therapies in various organs. Increased oxidative stress may be playing a role in these neurotoxic effects. N-methyl D-aspartat receptors (NMDA) are a member of the ionotropic group of glutamate receptors. These receptors are involved in a wide variety of processes in the central nervous system including synaptogenesis, synaptic plasticity, memory and learning. Erdosteine is a potent antioxidant and mucolytic agent. We aimed to investigate adverse effects of INH on rat hippocampal NMDAR receptors, and to elucidate whether erdosteine prevents possible adverse effects of INH. In the present study, compared to control group, NMDAR2A (NR2A) receptors were significantly decreased and malondialdehyde (MDA), end product of lipid peroxidation, production was significantly increased in INH-treated group. On the other hand, administration of erdosteine to INH-treated group significantly increased NR2A receptors and decreased MDA production. In conclusion, decreasing NR2A receptors in hippocampus and increasing lipid peroxidation correlates with the degree of oxidative effects of INH and erdosteine protects above effect of INH on NR2A receptors and membrane damage due to lipid peroxidation by its antioxidant properties.

  18. Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway.

    PubMed

    Ramis, Margarita; Sarubbo, Fiorella; Sola, Jessica; Aparicio, Sara; Garau, Celia; Miralles, Antonio; Esteban, Susana

    2013-08-01

    It has been reported that Growth hormone (GH) has an immediate effect enhancing excitatory postsynaptic potentials mediated by AMPA and NMDA receptors in hippocampal area CA1. As GH plays a role in adult memory processing, this work aims to study the acute effects of GH on working memory tasks in rodents and the possible involvement of NMDA and AMPA receptors and also the MEK/ERK signalling pathway. To evaluate memory processes, two different tests were used, the spatial working memory 8-arm radial maze, and the novel object recognition as a form of non-spatial working memory test. Acute GH treatment (1mg/kg i.p., 1h) improved spatial learning in the radial maze respect to the control group either in young rats (reduction of 46% in the performance trial time and 61% in the number of errors), old rats (reduction of 38% in trial time and 48% in the number of errors), and adult mice (reduction of 32% in the performance time and 34% in the number of errors). GH treatment also increased the time spent exploring the novel object respect to the familiar object compared to the control group in young rats (from 63% to 79%), old rats (from 53% to 70%), and adult mice (from 61 to 68%). The improving effects of GH on working memory tests were blocked by the NMDA antagonist MK801 dizocilpine (0.025 mg/kg i.p.) injected 10 min before the administration of GH, in both young and old rats. In addition, the AMPA antagonist DNQX (1mg/kg i.p.) injected 10 min before the administration of GH to young rats, blocked the positive effect of GH. Moreover, in mice, the MEK inhibitor SL 327 (20mg/kg i.p.) injected 30 min before the administration of GH, blocked the positive effect of GH on radial maze and the novel object recognition. In conclusion, GH improved working memory processes through both glutamatergic receptors NMDA and AMPA and it required the activation of extracellular MEK/ERK signalling pathway. These effects could be related to the enhancement of excitatory synaptic

  19. Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding.

    PubMed

    Marinelli, Luciana; Cosconati, Sandro; Steinbrecher, Thomas; Limongelli, Vittorio; Bertamino, Alessia; Novellino, Ettore; Case, David A

    2007-10-01

    NMDA receptors are glutamate-gated ion channels (iGluRs) that are involved in several important physiological functions such as neuronal development, synaptic plasticity, learning, and memory. Among iGluRs, NMDA receptors have been perhaps the most actively investigated for their role in chronic neurodegeneration such as Alzheimer's, Parkinson's, and Huntington's diseases. Recent studies have shown that the NTD of subunit NR2B modulates ion channel gating through the binding of allosteric modulators such as the prototypical compound ifenprodil. In the present paper, the construction of a three-dimensional model for the NR2B modulatory domain is described and docking calculations allow, for the first time, definition of the ifenprodil binding pose at an atomic level and fully explain all the available structure-activity relationships. Moreover, in an attempt to add further insight into the ifenprodil mechanism of action, as it is not completely clear if it binds and stabilizes an open or a closed conformation of the NR2B modulatory domain, a matter, which is fundamental for the rational design of NMDA antagonists, MD simulations followed by an MM-PBSA analysis were performed. These calculations reveal that the closed conformation of the R1-R2 domain, rather than the open, constitutes the high affinity binding site for ifenprodil and that a profound stabilization of the closed conformation upon ifenprodil binding occurs. Thus, for a rational design and/or for virtual screening experiments, the closed conformation of the R1-R2 domain should be taken into account and our 3D model can provide valuable hints for the design of NR2B-selective antagonists.

  20. A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus

    PubMed Central

    Yen, Weiwei; Williamson, John; Bertram, Edward H.; Kapur, Jaideep

    2010-01-01

    Three different classes of NMDA receptor antagonists were compared for their effectiveness in terminating prolonged status epilepticus (SE), induced by continuous hippocampal stimulation. Animals were treated after 150 min of SE by intraperitoneal administration of increasing doses of 3-((R,S)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), MK-801 (dizocilpine), ifenprodil, or saline. EEG recordings were used to determine seizure termination. The first experiment (n = 57 animals) determined the most effective anticonvulsant dose of each agent by determining its ability to terminate SE within the next 300 min. Five control rats treated with normal saline after 150 min of SE continued to exhibit continuous seizures for the next 300 min. All drugs were administered after 150 min of SE. CPP terminated seizures with an ED50 of 6.4 mg/kg; the maximal effective dose was 15 mg/kg. MK-801 has an ED50 of 1.4 mg/kg; the maximal effective dose was 2 mg/kg. Ifenprodil was maximally effective at 30 mg/kg. However, an ED50 could not be calculated. In a subsequent experiment, the NMDA antagonists were compared for their ability to terminate prolonged SE within 60 min of their administration at the most effective dose. MK-801 (2.0 mg/kg) terminated SE in 6 of 10 animals within 60 min, CPP (15 mg/kg) terminated it in 1 of 9 animals; ifenprodil (30 mg/kg) did not terminate it in any of 9 animals treated. In the 300 min following administration, CPP (6/9) and MK-801 (6/10) were equally efficacious in terminating SE but ifenprodil (2/7) was less effective (P = 0.065, chi-square test). The results indicate that the non-competitive NMDA receptor antagonist MK-801 was superior to the competitive antagonist CPP and the pH-sensitive site antagonist ifenprodil, in terminating prolonged experimental SE. PMID:15135166

  1. Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex

    PubMed Central

    Chan, Chun-Hung; Yeh, Hermes H

    2003-01-01

    Cajal-Retzius (CR) cells are among the earliest generated population of neurons in the developing neocortex and have been implicated in regulating cortical lamination. In rodents, CR cells are transient, being present only up to 2–3 weeks after birth. Although previous electrophysiological studies have demonstrated the presence of NMDA and GABAA receptors in CR cells, little is known about the functional properties of these receptors. Using whole-cell patch-clamp techniques in neocortical slices, we confirmed the presence of D-aminophosphonovaleric acid (APV)- and ifenprodil-sensitive NMDA receptors, and found that the functional expression of this receptor subtype is strain specific. The NMDA-induced response was consistently accompanied by overriding current transients that were blocked by APV and ifenprodil. In addition, bicuculline readily abolished these transients without affecting the NMDA-induced current response. The generation of these overriding current transients was dependent upon intracellular Ca2+ and was prevented by dialysis with the high-affinity Ca2+-chelator BAPTA. Overall, this study uncovered a synergistic interaction between these receptors, whereby activation of NMDA receptors leads to enhanced GABAA receptor-mediated activity through a Ca2+-dependent mechanism. PMID:12730335

  2. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana

    2014-02-01

    Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance.

  3. Malignant catatonia due to anti-NMDA-receptor encephalitis in a 17-year-old girl: case report.

    PubMed

    Consoli, Angèle; Ronen, Karine; An-Gourfinkel, Isabelle; Barbeau, Martine; Marra, Donata; Costedoat-Chalumeau, Nathalie; Montefiore, Delphine; Maksud, Philippe; Bonnot, Olivier; Didelot, Adrien; Amoura, Zahir; Vidailhet, Marie; Cohen, David

    2011-05-13

    Anti-NMDA-Receptor encephalitis is a severe form of encephalitis that was recently identified in the context of acute neuropsychiatric presentation. Here, we describe the case of a 17-year-old girl referred for an acute mania with psychotic features and a clinical picture deteriorated to a catatonic state. Positive diagnosis of anti-NMDA-receptor encephalitis suggested specific treatment. She improved after plasma exchange and immunosuppressive therapy. Post-cognitive sequelae (memory impairment) disappeared within 2-year follow-up and intensive cognitive rehabilitation.

  4. Psychotic symptoms in anti-N-methyl-d-aspartate (NMDA) receptor encephalitis: A case report and challenges.

    PubMed

    Sharma, Pawan; Sagar, Rajesh; Patra, Bichitrananda; Saini, Lokesh; Gulati, Sheffali; Chakrabarty, Biswaroop

    2016-08-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis, only recently first described, is an increasingly well-recognized inflammatory encephalitis that is seen in children and adults. An 11-year old girl admitted to the psychiatry ward with a presentation of acute psychosis was diagnosed with NMDA receptor encephalitis following neurology referral and was treated accordingly. This case highlights psychiatric manifestations in encephalitis and the need for the psychiatrist to have high index of suspicion when atypical symptoms (e.g., dyskinesia, seizure, fever etc.) present in acutely psychotic patients.

  5. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function.

    PubMed

    Würdemann, Till; Kersten, Maxi; Tokay, Tursonjan; Guli, Xiati; Kober, Maria; Rohde, Marco; Porath, Katrin; Sellmann, Tina; Bien, Christian G; Köhling, Rüdiger; Kirschstein, Timo

    2016-02-15

    Autoimmune encephalitis is increasingly recognized in patients with otherwise unexplained encephalopathy with epilepsy. Among these, patients with anti-N-methyl D-aspartate receptor (NMDAR) encephalitis present epileptic seizures, memory deficits, and psychiatric symptoms. However, the functional consequences of such autoantibodies are poorly understood. In order to investigate the pathophysiology of this disease, we stereotactically injected either cerebrospinal fluid (CSF) from three anti-NMDAR encephalitis patients or commercially available anti-NMDAR1 into the dentate gyrus of adult female rats. Control animals were injected with either CSF obtained from three epilepsy patients (ganglioglioma, posttraumatic epilepsy, focal cortical dysplasia) lacking anti-NMDAR or saline. Intracellular recordings from dentate gyrus granule cells showed a significant reduction of the NMDAR-evoked excitatory postsynaptic potentials (NMDAR-EPSPs) in animals treated with anti-NMDAR. As a consequence of this, action potential firing in these cells by NMDAR-EPSPs was significantly impaired. Long-term potentiation in the dentate gyrus was also significantly reduced in rats injected with anti-NMDAR as compared to control animals. This was accompanied by a significantly impaired learning performance in the Morris water maze hidden platform task when the animals had been injected with anti-NMDAR antibody-containing CSF. Our findings suggest that anti-NMDAR lead to reduced NMDAR function in vivo which could contribute to the memory impairment found in patients with anti-NMDAR encephalitis.

  6. NMDA receptor antagonism has differential effects on alcohol craving and drinking in heavy drinkers

    PubMed Central

    Krishnan-Sarin, Suchitra; O’Malley, Stephanie S.; Franco, Nicholas; Cavallo, Dana A.; Morean, Meghan; Shi, Julia; Pittman, Brian; Krystal, John H.

    2014-01-01

    Objective To determine the effects of the NMDA receptor antagonist, memantine (0, 20, 40 mg/day), upon alcohol drinking and craving in heavy drinkers with or without a family history (FH) of alcoholism, and to explore the modulatory influence of the presence of impulsivity on these outcomes. Methods Ninety-two, non-treatment-seeking, heavy drinkers received memantine or placebo for eight days. On the eighth day, they received a priming dose of ethanol followed by a three-hour period of alcohol access. Results Memantine at a dose of 20 mg reduced alcohol craving but did not influence alcohol drinking. No effects of FH were observed. In participants with higher baseline levels of impulsivity, 40 mg of memantine reduced alcohol craving but increased alcohol drinking and alcohol-induced stimulation. Conclusions NMDA receptor signaling may play divergent roles in mediating alcohol cue-induced craving and alcohol drinking in heavy drinkers. The potential efficacy of memantine as monotherapy for alcohol use disorders may be limited by its tendency to disinhibit drinking in some individuals. PMID:25664775

  7. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Tomita, Jun; Ueno, Taro; Mitsuyoshi, Madoka; Kume, Shoen; Kume, Kazuhiko

    2015-01-01

    Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn), and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi) to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1) (also known as dNR1) reduced sleep. The NMDA receptor (NMDAR) plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila. PMID:26023770

  8. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior

    PubMed Central

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-01-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors. PMID:21468034

  9. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.

    PubMed

    Wu, Qi; Zheng, Ruimao; Srisai, Dollada; McKnight, G Stanley; Palmiter, Richard D

    2013-09-03

    Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.

  10. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  11. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.

    PubMed

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-05-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors.

  12. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    PubMed

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  13. Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors.

    PubMed

    Besnard, S; Machado, M L; Vignaux, G; Boulouard, M; Coquerel, A; Bouet, V; Freret, T; Denise, P; Lelong-Boulouard, V

    2012-04-01

    It has recently been shown that a lack of vestibular sensory information decreases spatial memory performance and induces biochemical changes in the hippocampus in rodents. After vestibular neurectomy, patients display spatial memory deficit and hippocampal atrophy. Our objectives were to explore: (a) spatial (Y maze, radial-arm maze), and non-spatial (object recognition) memory performance, (b) modulation of NMDA receptors within the hippocampus using radioligand binding, and (c) hippocampal atrophy, using MRI, in a rat model of bilateral labyrinthectomy realized in two operations. Chemical vestibular lesions (VLs) were induced in 24 animals by transtympanic injections of sodium arsanilate (30 mg/0.1 ml/ear), one side being lesioned 3 weeks after the other. The control group received transtympanic saline solution (0.1 ml/ear) (n = 24). Spatial memory performance (Y maze and radial maze) decreased after VL. Conversely, non-spatial memory performance (object recognition) was not affected by VL. No hippocampal atrophy was observed with MRI, but density of NMDA receptors were increased in the hippocampus after VL. These findings show that the lack of vestibular information induced specific deficits in spatial memory. Additionally, quantitative autoradiographic data suggest the involvement of the glutamatergic system in spatial memory processes related to vestibular information. When studying spatial memory performances in the presence of vestibular syndrome, two-step labyrinthectomy is a suitable procedure for distinguishing between the roles of the specific components of vestibular input loss and those of impaired locomotor activity.

  14. The A-Current Modulates Learning via NMDA Receptors Containing the NR2B Subunit

    PubMed Central

    Fontán-Lozano, Ángela; Suárez-Pereira, Irene; González-Forero, David; Carrión, Ángel Manuel

    2011-01-01

    Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K+ current (IA) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in IA affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an IA inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the IA, we demonstrate that impairment of IA decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased IA requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the IA and the activity of NR2B-containing NMDA receptors in the regulation of learning. PMID:21966384

  15. Molecular lock regulates binding of glycine to a primitive NMDA receptor

    PubMed Central

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L.; Lau, Albert Y.

    2016-01-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi. The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants. PMID:27791085

  16. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    PubMed

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high.

  17. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61

    PubMed Central

    Won, Sehoon; Incontro, Salvatore; Nicoll, Roger A.; Roche, Katherine W.

    2016-01-01

    Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95–KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61. PMID:27457929

  18. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors.

    PubMed

    Huang, Ming; Cheng, Gen; Tan, Han; Qin, Rui; Zou, Yimin; Wang, Yun; Zhang, Ying

    2017-09-01

    Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin. Copyright © 2017. Published by Elsevier Inc.

  19. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61.

    PubMed

    Won, Sehoon; Incontro, Salvatore; Nicoll, Roger A; Roche, Katherine W

    2016-08-09

    Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95-KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61.

  20. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia.

    PubMed

    Anticevic, Alan; Gancsos, Mark; Murray, John D; Repovs, Grega; Driesen, Naomi R; Ennis, Debra J; Niciu, Mark J; Morgan, Peter T; Surti, Toral S; Bloch, Michael H; Ramani, Ramachandran; Smith, Mark A; Wang, Xiao-Jing; Krystal, John H; Corlett, Philip R

    2012-10-09

    Glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) receptors is vital for the cortical computations underlying cognition and might be disrupted in severe neuropsychiatric illnesses such as schizophrenia. Studies on this topic have been limited to processes in local circuits; however, cognition involves large-scale brain systems with multiple interacting regions. A prominent feature of the human brain's global architecture is the anticorrelation of default-mode vs. task-positive systems. Here, we show that administration of an NMDA glutamate receptor antagonist, ketamine, disrupted the reciprocal relationship between these systems in terms of task-dependent activation and connectivity during performance of delayed working memory. Furthermore, the degree of this disruption predicted task performance and transiently evoked symptoms characteristic of schizophrenia. We offer a parsimonious hypothesis for this disruption via biophysically realistic computational modeling, namely cortical disinhibition. Together, the present findings establish links between glutamate's role in the organization of large-scale anticorrelated neural systems, cognition, and symptoms associated with schizophrenia in humans.

  1. Molecular lock regulates binding of glycine to a primitive NMDA receptor.

    PubMed

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L; Lau, Albert Y

    2016-11-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.

  2. PACAP modulates the consolidation and extinction of the contextual fear conditioning through NMDA receptors.

    PubMed

    Schmidt, S D; Myskiw, J C; Furini, C R G; Schmidt, B E; Cavalcante, L E; Izquierdo, I

    2015-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has a broad spectrum of biological functions including neurotransmitter, neurotrophic and neuroprotective. Moreover, it has been suggested that PACAP plays a role in the modulation of learning and memory as well as on the modulation of glutamate signaling. Thus, in the current study we investigated in the CA1 region of hippocampus and in the basolateral amygdala (BLA) the role of PACAP in the consolidation and extinction of contextual fear conditioning (CFC) and the interaction between PACAP and NMDA receptors. Male rats with cannulae implanted in the CA1 region of the hippocampus or in the BLA received immediately after the training or extinction training of the CFC infusions of the Vehicle, PACAP-38 (40 pg/side), PACAP 6-38 (40 pg/side) or PACAP 6-38 plus D-serine (50 μg/side). After 24h, the animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of hippocampus, PACAP participates in the consolidation and extinction of the CFC, and in the BLA, PACAP participates only in the consolidation of the CFC. Additionally, the results suggest that the action of PACAP on the consolidation and extinction of the CFC is mediated by the glutamate NMDA receptors.

  3. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.

  4. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  5. High- and low-conductance NMDA receptors are present in layer 4 spiny stellate and layer 2/3 pyramidal neurons of mouse barrel cortex.

    PubMed

    Scheppach, Christian

    2016-12-01

    N-Methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate in the mammalian brain and are important in synaptic function and plasticity, but are also found in extrasynaptic locations and influence neuronal excitability. There are different NMDA receptor subtypes which differ in their single-channel conductance. Recently, synaptic plasticity has been studied in the mouse barrel cortex, the primary sensory cortex for input from the animal's whiskers. Pharmacological data imply the presence of low-conductance NMDA receptors in spiny stellate neurons of cortical layer 4, but of high-conductance NMDA receptors in pyramidal neurons of layer 2/3. Here, to obtain complementary electrophysiological information on the functional NMDA receptors expressed in layer 4 and layer 2/3 neurons, single NMDA receptor currents were recorded with the patch-clamp method. Both cell types were found to contain high-conductance as well as low-conductance NMDA receptors. The results are consistent with the reported pharmacological data on synaptic plasticity, and with previous claims of a prominent role of low-conductance NMDA receptors in layer 4 spiny stellate neurons, including broad integration, amplification and distribution of excitation within the barrel in response to whisker stimulation, as well as modulation of excitability by ambient glutamate. However, layer 4 cells also expressed high-conductance NMDA receptors. The presence of low-conductance NMDA receptors in layer 2/3 pyramidal neurons suggests that some of these functions may be shared with layer 4 spiny stellate neurons.

  6. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  7. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  8. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  9. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  10. The impact of NMDA Receptor hypofunction on GABAergic interneurons in the pathophysiology of schizophrenia

    PubMed Central

    Cohen, Samuel M.; Tsien, Richard W.; Goff, Donald C.; Halassa, Michael M.

    2016-01-01

    While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR) function. By highlighting post mortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics. PMID:25583246

  11. Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors

    PubMed Central

    Zweifel, Larry S.; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D.

    2008-01-01

    Summary A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors. PMID:18701073

  12. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors.

    PubMed

    Zweifel, Larry S; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D

    2008-08-14

    A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors.

  13. NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity

    PubMed Central

    Li, Bo; Devidze, Nino; Barengolts, Denis; Prostak, Naseem; Sphicas, Eleana; Apicella, Alfonso; Malinow, Roberto; Emamian, Effat S.

    2009-01-01

    Phosphorylation of the NR1 subunit of NMDA receptors (NMDAR) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation (LTP). Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders. PMID:19776282

  14. Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System.

    PubMed

    Mapelli, Lisa; Gagliano, Giuseppe; Soda, Teresa; Laforenza, Umberto; Moccia, Francesco; D'Angelo, Egidio U

    2017-02-01

    Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is therefore much more suitable for effective NVC. Here, we show, in the granular layer of acute rat cerebellar slices, that capillary diameter changes rapidly after mossy fiber stimulation. Vasodilation required neuronal NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pericytes. Vasoconstriction required metabotropic glutamate receptors and CYP ω-hydroxylase, the enzyme regulating 20-hydroxyeicosatetraenoic acid production. Therefore, granular layer capillaries are controlled by the balance between vasodilating and vasoconstricting systems that could finely tune local blood flow depending on neuronal activity changes at the cerebellar input stage.

  15. Bed nucleus of the stria terminalis NMDA receptors and nitric oxide modulate contextual fear conditioning in rats.

    PubMed

    Hott, Sara C; Gomes, Felipe V; Uliana, Daniela L; Vale, Gabriel T; Tirapelli, Carlos R; Resstel, Leonardo B M

    2017-01-01

    The bed nucleus of the stria terminalis (BNST) modulates anxiety-like responses, including conditioned emotional responses. Evidence suggests that glutamatergic neurotransmission in the BNST plays a role in the modulation of defensive responses. However, little is known about the involvement of glutamate NMDA receptor activation within the BNST, and its resultant increase in nitric oxide (NO) levels, in the expression of contextual fear conditioning (CFC). We investigated whether the antagonism of NMDA receptors or the reduction of NO levels in the BNST would attenuate behavioral and autonomic responses (i.e. increase in arterial pressure and heart rate, and decrease in tail cutaneous temperature) of rats submitted to a CFC paradigm. Intra-BNST infusion of AP7, an NMDA receptor antagonist, attenuated both behavioral and autonomic changes induced by CFC. Similar results were observed with NPLA and c-PTIO, an nNOS inhibitor and an NO scavenger, respectively. A positive correlation between BNST NO levels and the time spent in freezing behavior was also observed for animals submitted to the CFC. These findings indicate that the expression of CFC involves a facilitation of BNST NMDA receptor-NO signaling. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine

    PubMed Central

    Sibarov, Dmitry A.; Abushik, Polina A.; Giniatullin, Rashid; Antonov, Sergei M.

    2016-01-01

    Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors). We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine) considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the “synaptic type” GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to post-synaptic responses mediated

  17. Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2008-11-13

    The degree to which NMDA receptors contribute to hippocampal CA(1) stratum radiatum excitatory postsynaptic potentials (EPSP) is a matter of debate. This experiment was designed to resolve the issue by documenting and positively identifying the elements of the NMDA dependent component in the extracellularly recorded stratum radiatum CA(1) field potential under low stimulation conditions and in the presence of physiologic levels of Mg(2+). We show that EPSP generation consists of activation of both AMPA and NMDA receptor channels, which mediate distinct components of the recorded field potential. We propose that the EPSP is a combination of two waves rather than one, which sometimes has been attributed to the exclusive activation of AMPA channels. Our data suggest that the three recorded peaks signify different events. The first peak reflects the presynaptic volley while the other two represent the actual EPSP. The first peak of the EPSP is determined mainly by flow of ions through AMPA channels. The second peak most likely is determined by the concurrence of two phenomena: ionic flow through NMDA channels and the source corresponding to the sink generated at the cell bodies in the pyramidal layer. The NMDA dependent component was recorded when Mg(2+) was present in physiological concentrations. The presynaptic volley and second peak do not saturate over a 10-fold increase of the stimulation charge and their amplitudes are highly correlated. The first peak amplitude rapidly saturates. The sensitivity of the recorded signals is different, the first peak being the most sensitive (1.25-0.26 mV/nC). Isolation of NMDA dependent components under physiological conditions when using a single pulse low stimulation protocol would allow more precise investigations of the NMDA dependent forms of synaptic plasticity.

  18. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  19. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices

    PubMed Central

    Harris, Alexander Z; Pettit, Diana L

    2007-01-01

    N-methyl-d-aspartate receptor (NMDAR) activation can trigger both long- and short-term plasticity, promote cell survival, and initiate cell death. A number of studies suggest that the consequences of NMDAR activation can vary widely depending on whether synaptic or extrasynaptic receptors are activated. Here we have examined the spatial distribution of NMDARs of CA1 pyramidal neurons in acutely dissected hippocampal slices. Using a physiological definition of extrasynaptic receptors as those not accessible to single release events, we find that extrasynaptic NMDARs comprise a substantial proportion of the dendritic NMDAR pool (36%). This pool of extrasynaptic NMDARs is stable and does not shuttle into the synaptic receptor pool, as we observe no recovery of synaptic current after MK-801 synaptic blockade and washout. The subunit composition of synaptic and extrasynaptic NMDA receptor pools is similar at 3 weeks of age, with NR2B subunits present in both compartments. NR2B receptors are not enriched in the extrasynaptic compartment. Our data suggest that any role played by extrasynaptic NMDARs in synaptic transmission is dictated by their subcellular location rather than their subunit composition or mobility. PMID:17717018

  20. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices.

    PubMed

    Harris, Alexander Z; Pettit, Diana L

    2007-10-15

    N-methyl-d-aspartate receptor (NMDAR) activation can trigger both long- and short-term plasticity, promote cell survival, and initiate cell death. A number of studies suggest that the consequences of NMDAR activation can vary widely depending on whether synaptic or extrasynaptic receptors are activated. Here we have examined the spatial distribution of NMDARs of CA1 pyramidal neurons in acutely dissected hippocampal slices. Using a physiological definition of extrasynaptic receptors as those not accessible to single release events, we find that extrasynaptic NMDARs comprise a substantial proportion of the dendritic NMDAR pool (36%). This pool of extrasynaptic NMDARs is stable and does not shuttle into the synaptic receptor pool, as we observe no recovery of synaptic current after MK-801 synaptic blockade and washout. The subunit composition of synaptic and extrasynaptic NMDA receptor pools is similar at 3 weeks of age, with NR2B subunits present in both compartments. NR2B receptors are not enriched in the extrasynaptic compartment. Our data suggest that any role played by extrasynaptic NMDARs in synaptic transmission is dictated by their subcellular location rather than their subunit composition or mobility.

  1. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice.

    PubMed

    Chang, Chih-Hua; Hsiao, Ya-Hsin; Chen, Yu-Wen; Yu, Yang-Jung; Gean, Po-Wu

    2015-04-01

    Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.

  2. NMDA receptor binding is reduced within mesocorticolimbic regions following chronic inhalation of toluene in adolescent rats.

    PubMed

    Dick, Alec Lindsay Ward; Pooters, Tine; Gibbs, Sarah; Giles, Emma; Qama, Ashleigh; Lawrence, Andrew John; Duncan, Jhodie Rubina

    2015-10-22

    The purposeful inhalation of volatile solvents, such as toluene, to induce self-intoxication is prevalent, particularly within adolescent populations. Chronic misuse results in cognitive and neurobiological impairments, as well as an increased risk for addictive behaviours in adulthood. Toluene-induced neuroadaptations within mesocorticolimbic circuitry are thought, in part, to mediate some of the adverse outcomes of toluene misuse, however our understanding of the neuroadaptive processes remains equivocal. An understanding of these processes is particularly important relative to exposure that occurs during adolescence and at concentrations that reflect various patterns of use. Therefore, we exposed male adolescent Wistar rats (postnatal day [PN] 27) to either air or low or high concentrations of inhaled toluene in a chronic and intermittent fashion (CIT, 3,000 or 10,000ppm) for 1 h/day, 3-5 times per week for 4 weeks to model different patterns of human inhalant abuse. Brains were subsequently analysed using autoradiography, qPCR and immunohistochemistry 3 days following the exposure period to investigate toluene-induced neuroadaptations within mesocorticolimbic circuitry. In CIT-exposed rats binding to N-methyl-D-aspartate (NMDA) receptors containing the GluN2B subunit, as determined using [(3)H]-ifenprodil, was decreased in a concentration-related manner in the caudal cingulate cortex, dorsal striatum and accumbens; however, this was not associated with changes in GluN2B protein expression. There were no differences in [(3)H]-epibatidine binding to heteromeric neuronal nicotinic acetylcholine (nACh) receptors. Relative expression of mRNA transcripts encoding NMDA, nACh, γ-aminobutyric acid type-A (GABAA) and dopamine receptor subunits was unchanged in all regions assessed following CIT. Our data suggest that adolescent CIT exposure impacts NMDA receptors within regions of corticostriatal circuitry, possibly via post-translational mechanisms. Dysfunctional

  3. N-methyl-D-aspartate (NMDA)-stimulated noradrenaline (NA) release in rat brain cortex is modulated by presynaptic H3-receptors.

    PubMed

    Fink, K; Schlicker, E; Göthert, M

    1994-02-01

    In superfused rat brain cortex slices and synaptosomes preincubated with [3H]noradrenaline the effect of agonists or antagonists at presynaptic H3 receptors on NMDA-evoked [3H]noradrenaline release was investigated. In experiments on slices, histamine and the preferential H3 receptor agonist R-(-)-alpha-methylhistamine inhibited NMDA-evoked tritium overflow (IC20 values 0.27 mumol/l or 0.032 mumol/l, respectively); S-(+)-alpha-methylhistamine (up to 10 mumol/l) as well as the selective H1 receptor agonist (2-(2-thiazolyl)ethylamine and the selective H2 receptor agonist dimaprit (each up to 10 mumol/l) were ineffective. The H3 receptor antagonist thioperamide abolished the inhibitory effect of histamine whereas the preferential H1 receptor antagonist dimetindene and the preferential H2 receptor antagonist ranitidine were ineffective. In experiments on synaptosomes, histamine and R-(-)-alpha-methylhistamine inhibited NMDA-evoked tritium overflow, whereas 2-(2-thiazolyl)ethylamine or dimaprit had no effect. The inhibitory effect of histamine was abolished by thioperamide. When tritium overflow was stimulated by NMDA in the presence of omega-conotoxin GVIA (which by itself decreased the response to NMDA by about 55%), R-(-)-alpha-methylhistamine did not inhibit NMDA-evoked overflow. It is concluded that NMDA-evoked noradrenaline release in the cerebral cortex can be modulated by inhibitory H3 receptors. NMDA receptors and H3 receptors are both located presynaptically and may interact at the same noradrenergic varicosity. An unimpaired function of the N-type voltage-sensitive calcium channel probably is a prerequisite for the inhibition of NMDA-evoked noradrenaline release by H3 receptor stimulation.

  4. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  5. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.

    PubMed

    Sengupta, Trina; Jaryal, Ashok Kumar; Mallick, Hruda Nanda

    2016-10-01

    Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (Tbr) and body temperature (Tb) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in Tbr and Tb in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record Tb and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess Tbr. Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased Tb and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (p<0.005). Pharmacological blockade of NMDA was able to lower Tbr only. Microinjection of kainic acid and its antagonist had no effect on the variables. The finding of the study suggests that activation of the AMPA receptors at the mPOA, leads to the rise in body temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Red nucleus glutamate facilitates neuropathic allodynia induced by spared nerve injury through non-NMDA and metabotropic glutamate receptors.

    PubMed

    Yu, Jing; Ding, Cui-Ping; Wang, Jing; Wang, Ting; Zhang, Tao; Zeng, Xiao-Yan; Wang, Jun-Yang

    2015-12-01

    Previous studies have demonstrated that glutamate plays an important role in the development of pathological pain. This study investigates the expression changes of glutamate and the roles of different types of glutamate receptors in the red nucleus (RN) in the development of neuropathic allodynia induced by spared nerve injury (SNI). Immunohistochemistry indicated that glutamate was constitutively expressed in the RN of normal rats. After SNI, the expression levels of glutamate were significantly increased in the RN at 1 week and reached the highest level at 2 weeks postinjury compared with sham-operated and normal rats. The RN glutamate was colocalized with neurons, oligodendrocytes, and astrocytes but not microglia under physiological and neuropathic pain conditions. To elucidate further the roles of the RN glutamate and different types of glutamate receptors in the development of neuropathic allodynia, antagonists to N-methyl-D-aspartate (NMDA), non-NMDA, or metabotropic glutamate receptors (mGluRs) were microinjected into the RN contralateral to the nerve-injury side of rats with SNI, and the paw withdrawal threshold (PWT) was dynamically assessed with von Frey filaments. Microinjection of the NMDA receptor antagonist MK-801 into the RN did not show any effect on SNI-induced mechanical allodynia. However, microinjection of the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione or the mGluR antagonist (±)-α-methyl-(4-carboxyphenyl) glycine into the RN significantly increased the PWT and alleviated SNI-induced mechanical allodynia. These findings suggest that RN glutamate is involved in regulating neuropathic pain and facilitates the development of SNI-induced neuropathic allodynia. The algesic effect of glutamate is transmitted by the non-NMDA glutamate receptor and mGluRs.

  7. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    PubMed

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells.

  8. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.

  9. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    PubMed

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  10. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  11. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel form of long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses

    PubMed Central

    Kwon, Hyung-Bae; Castillo, Pablo E.

    2008-01-01

    The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP which is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this “classical” LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors, and a postsynaptic calcium rise. Unlike classical LTP, expression of this novel mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network. PMID:18184568

  13. Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus.

    PubMed

    Šlamberová, R; Vrajová, M; Schutová, B; Mertlová, M; Macúchová, E; Nohejlová, K; Hrubá, L; Puskarčíková, J; Bubeníková-Valešová, V; Yamamotová, A

    2014-01-01

    Since close relationship was shown between drug addiction and memory formation, the aim of the present study was to investigate the effects of interaction between prenatal methamphetamine (MA) exposure and MA treatment in adulthood on spatial and non-spatial memory and on the structure of the N-methyl-D-aspartate (NMDA) receptors in the hippocampus. Adult male rats prenatally exposed to MA (5 mg/kg) or saline were tested in adulthood. Non-spatial memory was examined in the Object Recognition Test (ORT) and spatial memory in the Object Location Test (OLT) and in the Memory Retention Test (MRT) conducted in the Morris Water Maze (MWM), respectively. Based on the type of the memory test animals were injected either acutely (ORT, OLT) or long-term (MWM) with MA (1 mg/kg). After each testing, animals were sacrificed and brains were removed. The hippocampus was then examined in Western Blot analysis for occurrence of different NMDA receptors' subtypes. Our results demonstrated that prenatal MA exposure affects the development of the NMDA receptors in the hippocampus that might correspond with improvement of spatial memory tested in adulthood in the MWM. On the other hand, the effect of prenatal MA exposure on non-spatial memory examined in the ORT was the opposite. In addition, we showed that the effect of MA administration in adulthood on NMDA receptors is influenced by prenatal MA exposure, which seems to correlate with the spatial memory examined in the OLT.

  14. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  15. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  16. Anti-NMDA Receptor Encephalitis in a Patient with Previous Psychosis and Neurological Abnormalities: A Diagnostic Challenge

    PubMed Central

    Heekin, R. David; Catalano, Maria C.; Frontera, Alfred T.; Catalano, Glenn

    2015-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune disorder characterized by IgG autoantibodies directed against the NR1 subunit of the NMDA glutamate receptor. Psychiatric symptoms are common and include psychosis, mania, depressed mood, aggression, and speech abnormalities. Neurological symptoms such as seizures, decreased responsiveness, dyskinesias, and other movement abnormalities and/or autonomic instability are frequently seen as well. We present the case of a woman who was followed up at our facility for over 14 years for the treatment of multiple neuropsychiatric symptoms. Initially, she presented with paresthesias, memory loss, and manic symptoms. Nine years later, she presented to our facility again, this time with left sided numbness, left eyelid droop, and word finding difficulties. Finally, five years later, she presented with manic symptoms, hallucinations, and memory impairment. During her hospitalization, she subsequently developed catatonic symptoms and seizures. During her stay, it was discovered that she was positive for anti-NMDA receptor antibodies and her symptoms responded well to appropriate therapy. This case demonstrates that it may be useful for clinicians to consider screening for anti-NMDA receptor antibodies in long-term patients with neuropsychiatric symptoms that have not adequately responded to therapy. PMID:26199781

  17. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism.

    PubMed

    Kiani, Reza; Lawden, Mark; Eames, Penelope; Critchley, Peter; Bhaumik, Sabyasachi; Odedra, Sunita; Gumber, Rohit

    2015-02-01

    We report anti-N-methyl-d-aspartate (NMDA) receptor encephalitis in two patients with autism and intellectual disability presenting with neuropsychiatric symptoms of catatonia and neuroleptic malignant syndrome. Case reports such as these help raise awareness of this clinical issue. By paving the way for earlier diagnoses they ultimately maximise the potential for curative treatments and prevention of long-term complications.

  18. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  19. Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons

    PubMed Central

    Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1999-01-01

    Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission. PMID:10492007

  20. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  1. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  2. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  3. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  4. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit.

    PubMed

    Zhang, Ying; Su, Ping; Liang, Ping; Liu, Tao; Liu, Xu; Liu, Xin-Ying; Zhang, Bo; Han, Tao; Zhu, Yan-Bing; Yin, Dong-Min; Li, Junfa; Zhou, Zhuan; Wang, Ke-Wei; Wang, Yun

    2010-06-02

    Glutamate-induced excitotoxicity has been implicated in the etiology of stroke, epilepsy, and neurodegenerative diseases. NMDA receptors (NMDARs) play a pivotal role in excitotoxic injury; however, clinical trials testing NMDAR antagonists as neuroprotectants have been discouraging. The development of novel neuroprotectant molecules is being vigorously pursued. Here, we report that downstream regulatory element antagonist modulator (DREAM) significantly inhibits surface expression of NMDARs and NMDAR-mediated current. Overexpression of DREAM showed neuroprotection against excitotoxic neuronal injury, whereas knockdown of DREAM enhanced NMDA-induced toxicity. DREAM could directly bind to the C0 domain of the NR1 subunit. Although DREAM contains multiple binding sites for the NR1 subunit, residues 21-40 of the N terminus are the main binding site for the NR1 subunit. Thus, 21-40 residues might relieve the autoinhibition conferred by residues 1-50 and derepress the DREAM core domain by a competitive mechanism. Intriguingly, the cell-permeable TAT-21-40 peptide, constructed according to the critical binding site of DREAM to the NR1 subunit, inhibits NMDAR-mediated currents in primary cultured hippocampal neurons and has a neuroprotective effect on in vitro neuronal excitotoxic injury and in vivo ischemic brain damage. Moreover, both pretreatment and posttreatment of TAT-21-40 is effective against excitotoxicity. In summary, this work reveals a novel, negative regulator of NMDARs and provides an attractive candidate for the treatment of excitotoxicity-related disease.

  5. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro.

    PubMed

    Murray, F; Kennedy, J; Hutson, P H; Elliot, J; Huscroft, I; Mohnen, K; Russell, M G; Grimwood, S

    2000-06-02

    [3H]MK-801 binding in vivo was used to determine the occupancy of NMDA receptor ligands shown to allosterically modulate binding in vitro. ED(50) values (mg/kg) were obtained for the channel blockers (+)-5-methyl-10,11-dihydro-5,4-dibenzo[a,d]cyclohepten-5,10-imine maleate ((+)-MK-801, 0.2), 1-(1-phenylcyclohexyl)piperidine (phencyclidine, PCP, 1.7) and ketamine (4.4). Antagonists at the glutamate (DL-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (DL-CPP, 5.7)) and glycine site (7-Chloro-4-hydroxy-3-(3-phenoxy)-phenyl-2(H)quinolinone (L-701,324, 14.1), 3R(+)cis-4-methyl-pyrrollid-2-one (L-687,414, 15.1)) inhibited [3H]MK-801 binding in vivo to varying maximum levels (69%, 103% and 45%, respectively). NR2B subunit-selective compounds acting at the ifenprodil site inhibited [3H]MK-801 in vivo by a maximum of 52-72% and gave ED(50) values (mg/kg) of: (+/-)-(1S*, 2S*)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol ((+/-)CP-101,606), 1.9; (+/-)-(3R, 4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol ((+/-)CP-283,097), 1.8; (+/-)-(R*, S*)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propanol ((+/-)Ro 25-6981), 1.0; ifenprodil, 6.0. The glycine site agonist D-serine stimulated binding to 151% of control with an ED(50) of 1.7 mg/kg. Results show that [3H]MK-801 binding in vivo may be used to measure receptor occupancy of ligands acting not only within the ion channel but also at modulatory sites on the NMDA receptor complex.

  6. Urethane anesthesia reverses the protective effect of noncompetitive NMDA receptor antagonists against cocaine intoxication.

    PubMed

    Rockhold, R W; Byrne, M; Sprabery, S; Bennett, J G

    1994-01-01

    The present experiments examined whether pretreatment with the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, MK-801 and dextrorphan, could antagonize cocaine-induced convulsions and lethality in conscious Sprague-Dawley (SD) rats and whether urethane anesthesia alters the observed interactions. Conscious, restrained male SD rats received continuous i.v. infusions of cocaine hydrochloride (1.25 mg/kg.min) until convulsions and death occurred. Cocaine doses of 21.2 +/- 1.8 and 29.5 +/- 2.5 mg/kg caused convulsions and death, respectively, in saline treated rats (n = 8). Convulsions were absent in MK-801 (1 mg/kg, i.v.; n = 8) pretreated rats; the lethal cocaine dose was 44.0 +/- 2.7 mg/kg (p < 0.05). In contrast, urethane anesthesia (1.2 g/kg, i.p.) decreased the dose of cocaine required to cause toxicity, compared to that in saline controls (24.8 +/- 0.8 mg/kg, n = 13), in MK-801 (2.0 +/- 0.3, n = 7; p < 0.01) and in dextrorphan mg/kg, n = 13), in MK-801 (2.0 +/- 0.3, n = 7; p < 0.01) and in dextrorphan (25 mg/kg, i.v.; 13.1 +/- 1.4, n = 6; p < 0.01) pretreated rats. Pressor responses with little change in heart rate were evident during cocaine infusion in vehicle pretreated rats. Bradycardiac responses were noted to cocaine in groups following NMDA receptor blockade. Reversal of the pressor response to cocaine was noted in MK-801 pretreated animals, while dextrorphan pretreatment moderated cocaine-induced increases in blood pressure. Ventilatory support protected against cocaine lethality in urethane anesthetized rats, indicating that respiratory failure is the proximate cause of death with cocaine infusion. However, artificially ventilated rats, pretreated with MK-801, were more sensitive (lethal cocaine dose, 76.6 +/- 8.0 mg/kg, n = 5) than vehicle pretreated rats (129.4 +/- 15.8 mg/kg, n = 6), indicating that MK-801 may increase both the respiratory and the cardiac toxicity of cocaine in urethane anesthetized rats. Interactions between NMDA

  7. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  8. Differential Regulation of GABAB Receptor Trafficking by Different Modes of N-methyl-d-aspartate (NMDA) Receptor Signaling*

    PubMed Central

    Kantamneni, Sriharsha; Gonzàlez-Gonzàlez, Immaculada M.; Luo, Jia; Cimarosti, Helena; Jacobs, Susan C.; Jaafari, Nadia; Henley, Jeremy M.

    2014-01-01

    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival. PMID:24425870

  9. Glutamate requires NMDA receptors to modulate alpha2 adrenoceptor in medulla oblongata cultured cells of newborn rats.

    PubMed

    Marinho da Silva, Sergio; Carrettiero, Daniel C; Chadi, Débora R F

    2014-04-03

    α2 Adrenoceptors (α2-ARs) are important in regulating the central control of blood pressure in medulla oblongata. However, it is unclear how this receptor is modulated by different receptors, especially the glutamatergic. In the present study, we studied the influence of ionotropic glutamatergic receptors over the α2-ARs in cultured cells of the medulla oblongata of newborn rats. For this purpose, the protein level of the α2-ARs was assessed after administration to the cultured cells of glutamate (glu), the agonists NMDA and kainate (KA), the NMDA receptor antagonist MK801 and the KA receptor antagonist DNQX. Results indicate that the α2-AR protein levels were increased after the treatments with glu and NMDA, and the addition of MK801 to this treatment thwarted this increase. Notwithstanding the fact that KA did not alter the receptor protein level, the combined treatment of DNQX with glu prevented the α2-AR protein modulation. In conclusion, the present study suggests that ionotropic glutamatergic receptors could be related to the α2-AR protein regulation in the medulla oblongata.

  10. Gene regulation by NMDA receptor activation in the SDN-POA neurons of male rats during sexual development.

    PubMed

    Hsu, Hseng-Kuang; Shao, Pei-Lin; Tsai, Ke-Li; Shih, Huei-Chuan; Lee, Tzu-Ying; Hsu, Chin

    2005-04-01

    The present study was designed to identify possible signaling pathways, which may play a role in prevention of neuronal apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) after physiological activation of the N-methyl-D-aspartate (NMDA) receptor. Gene response to the blockage of the NMDA receptor by an antagonist (dizocilpine hydrogen maleate; MK-801) was screened after suppression subtractive hybridization (SSH). The results showed that differential screening after SSH detected the presence of some neurotrophic genes (RNA binding motif protein 3 (RBM3), alpha-tubulin) as well as apoptosis-related genes (Bcl-2, cytochrome oxidase subunit II, cytochrome oxidase subunit III) in the SDN-POA of male rats, which were down-regulated by blocking the NMDA receptor. The RT-PCR products of the aforementioned genes in MK-801-treated males were significantly less than that in untreated males. In particular, the expression of Bcl-2 mRNA, including Bcl-2 protein, in male rats were significantly suppressed by MK-801 treatment. Moreover, the binding activity of nuclear factor kappaB (NFkappaB) was significantly higher in male rats than in females, but significantly diminished by blocking the NMDA receptor with MK-801 in male rats. No significant difference in cAMP response element-binding protein (CREB) binding activity was observed among untreated male, MK-801-treated male, untreated female and MK-801-treated female groups. These results suggest that genes regulated by NMDA receptor activation might participate in neuronal growth and/or anti-apoptosis, and support an important signaling pathway of NFkappaB activation and its target gene, Bcl-2, in preventing neuronal apoptosis in the SDN-POA of male rats during sexual development.

  11. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels.

    PubMed

    Coussens, C M; Kerr, D S; Abraham, W C

    1997-07-01

    The effects of the glucocorticoid receptor agonist RU-28362 on homosynaptic long-term depression (LTD) were examined in hippocampal slices obtained from adrenal-intact adult male rats. Field excitatory postsynaptic potentials were evoked by stimulation of the Schaffer collateral/commissural pathway and recorded in stratum radiatum of area CA1. Low-frequency stimulation (LFS) was delivered at LTD threshold (2 bouts of 600 pulses, 1 Hz, at baseline stimulation intensity). LFS of the Schaffer collaterals did not produce significant homosynaptic LTD in control slices. However, identical conditioning in the presence of the glucocorticoid receptor agonist RU-28362 (10 microM) produced a robust LTD, which was blocked by the selective glucocorticoid antagonist RU-38486. The LTD induced by glucocorticoid receptor activation was dependent on N-methyl-D-aspartate (NMDA) receptor activity, because the specific NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) blocked the facilitation. However, the facilitation of LTD was not due to a potentiation of the isolated NMDA receptor potential by RU-28362. The facilitation of LTD by RU-28362 was also blocked by coincubation of the L-type voltage-dependent calcium channel (VDCC) antagonist nimodipine. Selective activation of the L-type VDCCs by the agonist Bay K 8644 also facilitated LTD induction. Both nimodipine and D-AP5 were effective in blocking the facilitation of LTD by Bay K 8644. These results indicate that L-type VDCCs can contribute to NMDA-receptor-dependent LTD induction.

  12. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  13. Postsynaptic, not presynaptic NMDA receptors are required for spike timing dependent LTD induction

    PubMed Central

    Carter, Brett C.; Jahr, Craig E.

    2016-01-01

    Long-term depression (LTD) between cortical layer 4 spiny stellate cells and layer 2/3 pyramidal cells requires the activation of NMDA receptors (NMDARs). In young rodents, this form of LTD has been repeatedly reported to require presynaptic NMDARs for its induction. Here we show that at this synapse in the somatosensory cortex of 2 to 3 week old rats and mice, postsynaptic, not presynaptic NMDARs are required for LTD induction. First, we find no evidence for functional NMDARs in L4 neuron axons using 2 photon laser scanning microscopy and 2 photon glutamate uncaging. Second, we find that genetic deletion of postsynaptic, but not presynaptic NMDARs prevents LTD induction. Finally, the pharmacology of the NMDAR requirement is consistent with a non-ionic signaling mechanism. PMID:27399842

  14. Differential influence of 7 cations on 16 non-competitive NMDA receptor blockers.

    PubMed

    Berger, Michael L; Rebernik, Patrick

    2015-10-01

    The specific binding of the NMDA receptor (NR) channel ligand [(3)H]MK-801 to rat brain membranes is sensitive to positively charged buffer ingredients as to tris(hydroxymethyl)aminomethane (Tris), to Na(+), or to protons. Here we demonstrate that 16 non-competitive NR antagonists, including 5 long-chain diamines, classical NR channel blockers and several less known compounds, differ widely in their sensitivities to cationic buffer constituents. Although chemically distinguished either as extended di-cationic or as compact mono-cationic, their sensitivities to cationic buffer ingredients did not suggest this grouping. While the di-cationic compounds are known for their sensitivity to spermine (polyamine inverse agonists), also some of the mono-cationic blockers exhibited this feature. They might share as common target a recently described negatively charged extracellular GluN1/GluN2B interface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Endogenous co-agonists of the NMDA receptor modulate contextual fear in trace conditioning.

    PubMed

    Basu, Alo C; Puhl, Matthew D; Coyle, Joseph T

    2016-12-01

    We have used mutant mice to probe the roles of the endogenous co-agonists of the NMDA receptor (NMDAR), D-serine and glycine, in fear learning and memory. Serine racemase knockout (SR-/-) mice have less than 15% of wild type forebrain levels of D-serine, whereas glycine tra