Science.gov

Sample records for aureus cell wall

  1. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    PubMed Central

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also be anchored to the cell wall of S. aureus. The topology of cell wall-anchored beta-lactamase is reminiscent of that described for Braun's murein lipoprotein in that the N terminus of the polypeptide chain is membrane anchored whereas the C-terminal end is tethered to the bacterial cell wall. PMID:8550464

  2. Preparation of Cell Wall Antigens of Staphylococcus aureus

    PubMed Central

    Kowalski, J. J.; Tipper, Donald J.; Berman, David T.

    1970-01-01

    Cell walls were prepared from Staphylococcus aureus strains Copenhagen and 263 by high-speed mixing in the presence of glass beads followed by differential centrifugation. Insoluble peptidoglycan complexes were derived from cell walls by extraction of teichoic acid with 10% trichloroacetic acid. Intact teichoic acid was prepared from each strain by digestion of cell walls with lysostaphin and isolated by column chromatography. Soluble glycopeptide (peptidoglycan in which only the glycan has been fragmented) and the stable complex of teichoic acid with glycopeptide were prepared by digestion of cell walls with Chalaropsis B endo-N-acetylmuramidase and were separated by column chromatography. Amino acid and amino sugar contents of walls and subunits of walls were comparable to those reported by others. Images PMID:16557799

  3. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  4. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.

    PubMed

    Covas, Gonçalo; Vaz, Filipa; Henriques, Gabriela; Pinho, Mariana G; Filipe, Sérgio R

    2016-01-01

    Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE). PMID:27311674

  5. Equilibrium of sortase A dimerization on Staphylococcus aureus cell surface mediates its cell wall sorting activity

    PubMed Central

    Zhu, Jie; Xiang, Liang; Jiang, Faqin

    2015-01-01

    Staphylococcus aureus sortase A (SrtA) transpeptidase is a therapeutically important membrane-bound enzyme in Gram-positive bacteria, which organizes the covalently attached cell surface proteins on the peptidoglycan cell wall of the organism. Here, we report the direct observation of the highly selective homo-dimerization of SrtA on the cell membrane. To address the biological significance of the dimerization towards enzyme function, site-directed mutagenesis was performed to generate a SrtA mutant, which exists as monomer on the cell membrane. We observed that the cell surface display of adhesive proteins in S. aureus cells expressing monomeric SrtA mutant is more prominent than the cells expressing the wild-type enzyme. A cell-based invasion assay was also performed to evaluate the activities of wild-type SrtA and its monomeric mutant as well. Our data demonstrated that S. aureus cells expressing SrtA in monomeric form invade host mammalian cells more efficiently than those expressing wild-type SrtA in dimer-monomer equilibrium. The results suggested that the monomeric form of SrtA is more active than the dimeric form of the enzyme in terms of cell surface display of virulence factors for infection. This is the first study to present the oligomerization of SrtA and its related biological function on the cell membrane. Study of SrtA dimerization has implications for understanding its catalytic mechanism at the cellular level as well as the development of novel anti-infective agents. PMID:26129884

  6. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall

    PubMed Central

    Bayer, Arnold S.; Schneider, Tanja; Sahl, Hans-Georg

    2012-01-01

    The bactericidal, cell membrane-targeting lipopeptide antibiotic daptomycin (DAP) is an important agent in treating invasive Staphylococcus aureus infections. However, there have been numerous recent reports of development of daptomycin-resistance (DAP-R) during therapy with this agent. The mechanisms of DAP-R in S. aureus appear to be quite diverse. DAP-R strains often exhibit progressive accumulation of single nucleotide polymorphisms in the multipeptide resistance factor gene (mprF) and the yycFG components of the yycFGHI operon. Both loci are involved in key cell membrane (CM) events, with mprF being responsible for the synthesis and outer CM translocation of the positively-charged phospholipid, lysyl-phosphotidylglycerol (L-PG), while the yyc operon is involved in the generalized response to stressors such as antimicrobials. In addition, other perturbations of the CM have been identified in DAP-R strains including: extremes in CM order; resistance to CM depolarization and permeabilization; and reduced surface binding of DAP. Moreover, modifications of the cell wall (CW) appear to also contribute to DAP-R, including enhanced expression of the dlt operon (involved in D-alanylation of CW teichoic acids) and progressive CW thickening. PMID:23215859

  7. Amidase, a cell wall hydrolase, elicits protective immunity against Staphylococcus aureus and S. epidermidis.

    PubMed

    Nair, Nisha; Vinod, Vivek; Suresh, Maneesha K; Vijayrajratnam, Sukhithasri; Biswas, Lalitha; Peethambaran, Reshmi; Vasudevan, Anil Kumar; Biswas, Raja

    2015-01-01

    The morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired. However, no staphylococcal vaccine is available till date. In this study, we have identified Major amidase (Atl-AM) as a prime candidate for future vaccine design against these pathogens. Atl-AM is a multi-functional non-covalently cell wall associated protein which is involved in staphylococcal cell separation after cell division, host extracellular matrix adhesion and biofilm formation. Atl-AM is present on the surface of diverse S. aureus and S. epidermidis strains. When used in combination with Freund's adjuvant, Atl-AM generated a mixed Th1 and Th2 mediated immune response which is skewed more toward Th1; and showed increased production of opsonophagocytic IgG2a and IgG2b antibodies. Significant protective immune response was observed when vaccinated mice were challenged with S. aureus or S. epidermidis. Vaccination prevented the systemic dissemination of both organisms. Our results demonstrate the remarkable efficacy of Atl-AM as a vaccine candidate against both of these pathogens.

  8. Amidase, a cell wall hydrolase, elicits protective immunity against Staphylococcus aureus and S. epidermidis.

    PubMed

    Nair, Nisha; Vinod, Vivek; Suresh, Maneesha K; Vijayrajratnam, Sukhithasri; Biswas, Lalitha; Peethambaran, Reshmi; Vasudevan, Anil Kumar; Biswas, Raja

    2015-01-01

    The morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired. However, no staphylococcal vaccine is available till date. In this study, we have identified Major amidase (Atl-AM) as a prime candidate for future vaccine design against these pathogens. Atl-AM is a multi-functional non-covalently cell wall associated protein which is involved in staphylococcal cell separation after cell division, host extracellular matrix adhesion and biofilm formation. Atl-AM is present on the surface of diverse S. aureus and S. epidermidis strains. When used in combination with Freund's adjuvant, Atl-AM generated a mixed Th1 and Th2 mediated immune response which is skewed more toward Th1; and showed increased production of opsonophagocytic IgG2a and IgG2b antibodies. Significant protective immune response was observed when vaccinated mice were challenged with S. aureus or S. epidermidis. Vaccination prevented the systemic dissemination of both organisms. Our results demonstrate the remarkable efficacy of Atl-AM as a vaccine candidate against both of these pathogens. PMID:25841371

  9. Vancomycin Tolerant, Methicillin-Resistant Staphylococcus aureus Reveals the Effects of Vancomycin on Cell Wall Thickening

    PubMed Central

    Cázares-Domínguez, Vicenta; Cruz-Córdova, Ariadnna; Ochoa, Sara A.; Escalona, Gerardo; Arellano-Galindo, José; Rodríguez-Leviz, Alejandra; Hernández-Castro, Rigoberto; López-Villegas, Edgar O.; Xicohtencatl-Cortes, Juan

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important opportunistic pathogen that causes both healthcare- and community-acquired infections. An increase in the incidence of these infections may lead to a substantial change in the rate of vancomycin usage. Incidence of reduced susceptibility to vancomycin has been increasing worldwide for the last few years, conferring different levels of resistance to vancomycin as well as producing changes in the cell wall structure. The aim of the present study was to determine the effect of vancomycin on cell wall thickening in clinical isolates of vancomycin-tolerant (VT) MRSA obtained from pediatric patients. From a collection of 100 MRSA clinical isolates from pediatric patients, 12% (12/100) were characterized as VT-MRSA, and from them, 41.66% (5/12) exhibited the heterogeneous vancomycin-intermediate S. aureus (hVISA) phenotype. Multiplex-PCR assays revealed 66.66% (8/12), 25% (3/12), and 8.33% (1/12) of the VT-MRSA isolates were associated with agr group II, I, and III polymorphisms, respectively; the II-mec gene was amplified from 83.3% (10/12) of the isolates, and the mecIVa gene was amplified from 16.66% (2/12) of the isolates. Pulsed field electrophoresis (PFGE) fingerprint analysis showed 62% similarity among the VT-MRSA isolates. Thin transverse sections analyzed by transmission electron microscopy (TEM) revealed an average increase of 24 nm (105.55%) in the cell wall thickness of VT-MRSA compared with untreated VT-MRSA isolates. In summary, these data revealed that the thickened cell walls of VT-MRSA clinical isolates with agr type II and SCCmec group II polymorphisms are associated with an adaptive resistance to vancomycin. PMID:25793280

  10. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    PubMed Central

    Bowman, Lisa; Millership, Charlotte; Dupont Søgaard, Mia; Kaever, Volkhard; Siljamäki, Pia; Savijoki, Kirsi; Varmanen, Pekka; Nyman, Tuula A.

    2016-01-01

    ABSTRACT Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. PMID:27507828

  11. Mutations in mmpL and in the cell wall stress stimulon contribute to resistance to oxadiazole antibiotics in methicillin-resistant Staphylococcus aureus.

    PubMed

    Xiao, Qiaobin; Vakulenko, Sergei; Chang, Mayland; Mobashery, Shahriar

    2014-10-01

    Staphylococcus aureus is a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which has in vitro and in vivo activities against methicillin-resistant S. aureus (MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in the S. aureus strain COL. Through serial passages, we generated two S. aureus COL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designated S. aureus COL(I)) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureus COL(R)), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COL(R) strain was derived from the COL(I) strain. Whole-genome sequencing revealed 31 mutations in S. aureus COL(R), of which 29 were shared with COL(I). Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations in S. aureus COL(R) were substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role for mmpL in resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics in S. aureus.

  12. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. PMID:27056298

  13. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

    PubMed Central

    KIKU, Yoshio; NAGASAWA, Yuya; TANABE, Fuyuko; SUGAWARA, Kazue; WATANABE, Atsushi; HATA, Eiji; OZAWA, Tomomi; NAKAJIMA, Kei-ichi; ARAI, Toshiro; HAYASHI, Tomohito

    2016-01-01

    Staphylococcus aureus (SA) is a major cause of bovine mastitis, but its pathogenic mechanism remains poorly understood. To evaluate the role of lipoteichoic acid (LTA) in the immune or inflammatory response of SA mastitis, we investigated the gene expression profile in bovine mammary epithelial cells stimulated with LTA alone or with formalin-killed SA (FKSA) using cap analysis of gene expression. Seven common differentially expressed genes related to immune or inflammatory mediators were up-regulated under both LTA and FKSA stimulations. Three of these genes encode chemokines (IL-8, CXCL6 and CCL2) functioning as chemoattractant molecules for neutrophils and macrophages. These results suggest that the initial inflammatory response of SA infection in mammary gland may be related with LTA induced chemokine genes. PMID:27211287

  14. The membrane protein PrsS mimics σS in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents

    PubMed Central

    Krute, Christina N.; Bell-Temin, Harris; Miller, Halie K.; Rivera, Frances E.; Weiss, Andy; Stevens, Stanley M.

    2015-01-01

    Staphylococcus aureus possesses a lone extracytoplasmic function (ECF) sigma factor, σS. In Bacillus subtilis, the ECF sigma factor, σW, is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in S. aureus (termed PrsS) and explored its role in σS regulation. Herein, we demonstrate that although a cognate σS anti-sigma factor currently remains elusive, prsS phenocopies sigS in a wealth of regards. Specifically, prsS expression mimics the upregulation observed for sigS in response to DNA-damaging agents, cell wall-targeting antibiotics and during ex vivo growth in human serum and murine macrophages. prsS mutants also display the same sensitivities of sigS mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to H2O2 and MMS. Finally, a role for PrsS in S. aureus virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σS function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway. PMID:25741016

  15. Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier.

    PubMed

    Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E

    2013-02-01

    Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.

  16. Electron microscopy and computational studies of Ebh, a giant cell-wall-associated protein from Staphylococcus aureus

    SciTech Connect

    Sakamoto, Sou; Tanaka, Yoshikazu; Tanaka, Isao; Takei, Toshiaki; Yu, Jian; Kuroda, Makoto; Yao Min; Ohta, Toshiko; Tsumoto, Kouhei

    2008-11-14

    Ebh, a giant protein found in staphylococci, contains several domains, including a large central region with 52 imperfect repeats of a domain composed of 126 amino acids. We used electron microscopy to observe the rod-like structure of a partial Ebh protein containing 10 repeating units. This is the first report of the direct observation of an Ebh structure containing a large number of repeating units, although structures containing one, two, or four repeating units have been reported. The observed structure of the partial Ebh protein was distorted and had a length of ca. 520 A and a width of ca. 21 A. The observed structures were consistent with those deduced from crystal structure analysis, suggesting that the Ebh domains are connected to form a rod-like structure. The crystal structure data revealed distorted, string-like features in the simulated structure of the whole-length Ebh protein. Superposition of fragments of the simulated whole-length structure of the Ebh protein onto each electron micrograph showed a high level of correlation between the observed and calculated structures. These results suggest that Ebh is composed of highly flexible filate molecules. The highly repetitive structure and the associated unique structural flexibility of Ebh support the proposed function of this protein, i.e. binding to sugars in the cell wall. This binding might result in intra-cell-wall cross-linking that contributes to the rigidity of bacterial cells.

  17. Characterization of cell wall associated proteins of a Staphylococcus aureus isolated from bovine mastitis case by a proteomic approach.

    PubMed

    Taverna, Francesca; Negri, Armando; Piccinini, Renata; Zecconi, Alfonso; Nonnis, Simona; Ronchi, Severino; Tedeschi, Gabriella

    2007-01-31

    Staphylococcus aureus causes different pathologies in humans and animals. In particular, it is involved in intramammary infections in cows, causing economic losses and milk-safety problems. Although it is well-known that surface components (proteins and capsular polysaccharides) and exotoxins are virulence factors involved in the pathogenesis of bovine mastitis, less is known about the precise biochemical identity of such molecules. Therefore, mapping of surface proteins using specific disease- and environment-isolates provides a benchmark for strain comparison of pathogens with different pathogenic characteristics and antibiotic resistance mechanism and can aid in defining specific vaccine and therapeutic targets. In this study, we used a proteomic approach on protein extracts of lysostaphin-treated S. aureus in isotonic conditions, to produce a reproducible and well resolved 2-D electrophoresis (2-DE) reference map of surface associated proteins of isolated S. aureus from a case of bovine mastitis. The most abundant protein components were identified by Matrix assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry.

  18. The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: an Achilles’ Heel of Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Acebrón, Ivan; Chang, Mayland; Mobashery, Shahriar; Hermoso, Juan A.

    2015-01-01

    The ability to resist the effect of a wide range of antibiotics makes methicillin-resistant Staphylococcus aureus (MRSA) a leading global human pathogen. A key determinant of resistance to β-lactam antibiotics in this organism is penicillin-binding protein 2a (PBP2a), an enzyme that catalyzes the crosslinking reaction between two adjacent peptide stems during the peptidoglycan biosynthesis. The recently published crystal structure of the complex of PBP2a with ceftaroline, a cephalosporin antibiotic that shows efficacy against MRSA, has revealed the allosteric site at 60-Å distance from the transpeptidase domain. Binding of ceftaroline to the allosteric site of PBP2a triggers conformational changes that lead to the opening of the active site from a closed conformation, where a second molecule of ceftaroline binds to give inhibition of the enzyme. The discovery of allostery in MRSA remains the only known example of such regulation of cell-wall biosynthesis and represents a new paradigm in fighting MRSA. This review summarizes the present knowledge of the allosteric mechanism, the conformational changes allowing PBP2a catalysis and the means by which some clinical strains have acquired resistance to ceftaroline by disrupting the allosteric mechanism. PMID:25760091

  19. Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes

    PubMed Central

    Suzuki, Takashi; Campbell, Jennifer; Kim, Younghoon; Swoboda, Jonathan G.; Mylonakis, Eleftherios; Walker, Suzanne; Gilmore, Michael S.

    2012-01-01

    Objectives Polyanionic polymers, including lipoteichoic acid and wall teichoic acid, are important determinants of the charged character of the staphylococcal cell wall. This study was designed to investigate the extent to which teichoic acid contributes to protection from anionic azo dyes and to identify barriers to drug penetration for development of new antibiotics for multidrug-resistant Staphylococcus aureus infection. Methods We studied antimicrobial activity of azo dyes against S. aureus strains with or without inhibition of teichoic acid in vitro and in vivo. Results We observed that inhibition of wall teichoic acid expression resulted in an ∼1000-fold increase in susceptibility to azo dyes such as Congo red, reducing its MIC from >1024 to <4 mg/L. Sensitization occurred when the first step in the wall teichoic acid pathway, catalysed by TarO, was inhibited either by mutation or by chemical inhibition. In contrast, genetic blockade of lipoteichoic acid biosynthesis did not confer Congo red susceptibility. Based on this finding, combination therapy was tested using the highly synergistic combination of Congo red plus tunicamycin at sub-MIC concentrations (to inhibit wall teichoic acid biosynthesis). The combination rescued Caenorhabditis elegans from a lethal challenge of S. aureus. Conclusions Our studies show that wall teichoic acid confers protection to S. aureus from anionic azo dyes and related compounds, and its inhibition raises the prospect of development of new combination therapies based on this inhibition. PMID:22615298

  20. Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates.

    PubMed

    Upadhyayula, Venkata K K; Deng, Shuguang; Mitchell, Martha C; Smith, Geoffrey B; Nair, Vinod K; Ghoshroy, Soumitra

    2008-01-01

    Batch adsorption studies to determine adsorption kinetics of Escherichia coli (E.coli) K12 and Staphylococcus aureus (S.aureus) SH 1000 bacterial cells on single-walled carbon nanotube aggregates were performed at two different initial concentrations. The diffusivity of E. coli cells in single-walled carbon nanotube aggregates obtained was 6.54 x 10(-9) and 8.98 x 10(-9) cm(2)/s, whereas that of S. aureus was between 1.00 x 10(-7) and 1.66 x 10(-7) cm(2)/s respectively. In addition to batch adsorption studies, electron microscopy studies were also conducted. The results suggest that diffusion kinetics of bacterial cells is concentration dependent as well as bacteria dependent. Diffusivity of S. aureus is two orders of magnitude greater than E. coli cells. This proves to be beneficial from an adsorption perspective where it is desired to filter microorganisms (water pretreatment and wastewater post treatment) and from nanotube biosensor perspective where it is desired to simultaneously capture and detect biothreat agents in a shorter span of time.

  1. Cell wall integrity

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Bellincampi, Daniela; Zabotina, Olga

    2013-01-01

    The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways. PMID:23857352

  2. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  3. The T Cell Response to Staphylococcus aureus

    PubMed Central

    Bröker, Barbara M.; Mrochen, Daniel; Péton, Vincent

    2016-01-01

    Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research. PMID:26999219

  4. Sensitive and rapid detection of staphylococcus aureus in milk via cell binding domain of lysin.

    PubMed

    Yu, Junping; Zhang, Yun; Zhang, Yun; Li, Heng; Yang, Hang; Wei, Hongping

    2016-03-15

    Staphylococcus aureus (S. aureus) is an important food-borne pathogen in dairy products contaminated through raw ingredients or improper food handling. Rapid detection of S. aureus with high sensitivity is of significance for food quality and safety. In this study, a new method was developed for detecting S. aureus in milk by coupling immunomagnetic separation with enzyme linked cell wall binding domain (CBD) of lysin plyV12, which can bind to S. aureus with high affinity. There are millions of binding sites present on the cell surface of S. aureus for the CBD attachment, which greatly improves the detection sensitivity. The method has the overall testing time of only 1.5h with the detection limit of 4 × 10(3)CFU/mL in spiked milk. Because it is simple, rapid and sensitive, this method could be used for the detection of S. aureus in various food samples.

  5. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways

    PubMed Central

    Brown, Stephanie; Meredith, Timothy; Swoboda, Jonathan; Walker, Suzanne

    2010-01-01

    Summary Wall teichoic acids (WTAs) are anionic polymers that play key roles in bacterial cell shape, cell division, envelope integrity, biofilm formation, and pathogenesis. B. subtilis W23 and S. aureus both make polyribitol-phosphate (RboP) WTAs and contain similar sets of biosynthetic genes. We use in vitro reconstitution combined with genetics to show the pathways for WTA biosynthesis in B. subtilis W23 and S. aureus are different. S. aureus requires a glycerol-phosphate primase called TarF in order make RboP-WTAs; B. subtilis W23 contains a TarF homolog, but this enzyme makes glycerol-phosphate polymers and is not involved RboP-WTA synthesis. Instead, B. subtilis TarK functions in place of TarF to prime the WTA intermediate for chain extension by TarL. This work highlights the enzymatic diversity of the poorly characterized family of phosphotransferases involved in WTA biosynthesis in Gram-positive organisms. PMID:21035733

  6. A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps

    PubMed Central

    Brown, Stephanie; Zhang, Yu-Hui; Walker*, Suzanne

    2008-01-01

    Summary Resistance has emerged to every family of clinically used antibiotics, and there is a pressing need to explore novel antibacterial targets. Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of many Gram-positive bacteria. Because WTAs play an essential role in Staphylococcus aureus colonization and infection, the enzymes involved in WTA biosynthesis are proposed to be targets for antibiotic development. To facilitate the discovery of WTA inhibitors, we have reconstituted the intracellular steps of S. aureus WTA biosynthesis. We show that two intracellular steps in the biosynthetic pathway are different from what was proposed. The work reported here lays the foundation for the discovery and characterization of inhibitors of wall teichoic acid biosynthetic enzymes to assess their potential for treating bacterial infections. PMID:18215769

  7. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  8. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  9. The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Acebrón, Iván; Chang, Mayland; Mobashery, Shahriar; Hermoso, Juan A

    2015-01-01

    The ability to resist the effect of a wide range of antibiotics makes methicillin-resistant Staphylococcus aureus (MRSA) a leading global human pathogen. A key determinant of resistance to β-lactam antibiotics in this organism is penicillin-binding protein 2a (PBP2a), an enzyme that catalyzes the crosslinking reaction between two adjacent peptide stems during the peptidoglycan biosynthesis. The recently published crystal structure of the complex of PBP2a with ceftaroline, a cephalosporin antibiotic that shows efficacy against MRSA, has revealed the allosteric site at 60-Å distance from the transpeptidase domain. Binding of ceftaroline to the allosteric site of PBP2a triggers conformational changes that lead to the opening of the active site from a closed conformation, where a second molecule of ceftaroline binds to give inhibition of the enzyme. The discovery of allostery in MRSA remains the only known example of such regulation of cellwall biosynthesis and represents a new paradigm in fighting MRSA. This review summarizes the present knowledge of the allosteric mechanism, the conformational changes allowing PBP2a catalysis and the means by which some clinical strains have acquired resistance to ceftaroline by disrupting the allosteric mechanism.

  10. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Strandén, A M; Ehlert, K; Labischinski, H; Berger-Bächi, B

    1997-01-01

    The femAB operon is involved in the formation of the characteristic pentaglycine side chain of the staphylococcal peptidoglycan. Allele replacement of the femAB operon with the tetracycline resistance determinant tetK in a methicillin-resistant Staphylococcus aureus strain resulted in impaired growth, methicillin hypersusceptibility, and lysostaphin resistance. The usual pentaglycine cross-bridges were replaced by monoglycine bridges exclusively, and cross-linking of the peptidoglycan strands was drastically reduced. Complementation of the femAB null mutant by either femA or femAB resulted in the extension of the cross-bridges to a triglycine or a pentaglycine, respectively. This finding suggests that FemA is responsible for the formation of glycines 2 and 3, and FemB is responsible for formation of glycines 4 and 5, of the pentaglycine side chain of the peptidoglycan precursor. Moreover, it can be deduced that addition of the first glycine must occur by a femAB-independent mechanism. PMID:8981974

  11. Solid-state NMR characterization of amphomycin effects on peptidoglycan and wall teichoic acid biosyntheses in Staphylococcus aureus

    PubMed Central

    Singh, Manmilan; Chang, James; Coffman, Lauryn; Kim, Sung Joon

    2016-01-01

    Amphomycin and MX-2401 are cyclic lipopeptides exhibiting bactericidal activities against Gram-positive pathogens. Amphomycin and MX-2401 share structural similarities with daptomycin, but unlike daptomycin they do not target bacterial membrane. In this study, we investigate in vivo modes of action for amphomycin and MX-2401 in intact whole cells of Staphylococcus aureus by measuring the changes of peptidoglycan and wall teichoic acid compositions using solid-state NMR. S. aureus were grown in a defined media containing isotope labels [1-13C]glycine and L-[ε-15N]lysin, L-[1-13C]lysine and D-[15N]alanine, or D-[1-13C]alanine and [15N]glycine, to selectively 13C-15N pair label peptidoglycan bridge-link, stem-link, and cross-link, respectively. 13C{15N} and 15N{13C} rotational-echo double resonance NMR measurements determined that cyclic lipopeptide-treated S. aureus exhibited thinning of the cell wall, accumulation of Park’s nucleotide, inhibition of glycine utilization for purine biosynthesis, reduction of ester-linked D-Ala in teichoic acids, and reduction of peptidoglycan cross-linking. Whole cell NMR analysis also revealed that S. aureus, in presence of amphomycin and MX-2401, maintained the incorporation of D-Ala during peptidoglycan biosynthesis while the incorporation of D-Ala into teichoic acids was inhibited. These effects are consistent with amphomycin’s dual inhibition of both peptidoglycan and wall teichoic acid biosyntheses in S. aureus. PMID:27538449

  12. Solid-state NMR characterization of amphomycin effects on peptidoglycan and wall teichoic acid biosyntheses in Staphylococcus aureus.

    PubMed

    Singh, Manmilan; Chang, James; Coffman, Lauryn; Kim, Sung Joon

    2016-01-01

    Amphomycin and MX-2401 are cyclic lipopeptides exhibiting bactericidal activities against Gram-positive pathogens. Amphomycin and MX-2401 share structural similarities with daptomycin, but unlike daptomycin they do not target bacterial membrane. In this study, we investigate in vivo modes of action for amphomycin and MX-2401 in intact whole cells of Staphylococcus aureus by measuring the changes of peptidoglycan and wall teichoic acid compositions using solid-state NMR. S. aureus were grown in a defined media containing isotope labels [1-(13)C]glycine and L-[ε-(15)N]lysin, L-[1-(13)C]lysine and D-[(15)N]alanine, or D-[1-(13)C]alanine and [(15)N]glycine, to selectively (13)C-(15)N pair label peptidoglycan bridge-link, stem-link, and cross-link, respectively. (13)C{(15)N} and (15)N{(13)C} rotational-echo double resonance NMR measurements determined that cyclic lipopeptide-treated S. aureus exhibited thinning of the cell wall, accumulation of Park's nucleotide, inhibition of glycine utilization for purine biosynthesis, reduction of ester-linked D-Ala in teichoic acids, and reduction of peptidoglycan cross-linking. Whole cell NMR analysis also revealed that S. aureus, in presence of amphomycin and MX-2401, maintained the incorporation of D-Ala during peptidoglycan biosynthesis while the incorporation of D-Ala into teichoic acids was inhibited. These effects are consistent with amphomycin's dual inhibition of both peptidoglycan and wall teichoic acid biosyntheses in S. aureus. PMID:27538449

  13. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR.

    PubMed

    Romaniuk, Joseph A H; Cegelski, Lynette

    2015-10-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms.

  14. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  15. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae

    PubMed Central

    Li, Xuehua; Gerlach, David; Du, Xin; Larsen, Jesper; Stegger, Marc; Kühner, Petra; Peschel, Andreas; Xia, Guoqing; Winstel, Volker

    2015-01-01

    Many Staphylococcus aureus have lost a major genetic barrier against phage infection, termed clustered regularly interspaced palindromic repeats (CRISPR/cas). Hence, S. aureus strains frequently exchange genetic material via phage-mediated horizontal gene transfer events, but, in turn, are vulnerable in particular to lytic phages. Here, a novel strategy of S. aureus is described, which protects S. aureus against the lytic activity of Podoviridae, a unique family of staphylococcal lytic phages with short, non-contractile tails. Unlike most staphylococcal phages, Podoviridae require a precise wall teichoic acid (WTA) glycosylation pattern for infection. Notably, TarM-mediated WTA α-O-GlcNAcylation prevents infection of Podoviridae while TarS-mediated WTA β-O-GlcNAcylation is required for S. aureus susceptibility to podoviruses. Tracking the evolution of TarM revealed an ancient origin in other staphylococci and vertical inheritance during S. aureus evolution. However, certain phylogenetic branches have lost tarM during evolution, which rendered them podovirus-susceptible. Accordingly, lack of tarM correlates with podovirus susceptibility and can be converted into a podovirus-resistant phenotype upon ectopic expression of tarM indicating that a “glyco-switch” of WTA O-GlcNAcylation can prevent the infection by certain staphylococcal phages. Since lytic staphylococcal phages are considered as anti-S. aureus agents, these data may help to establish valuable strategies for treatment of infections. PMID:26596631

  16. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin.

    PubMed

    Kohler, Thomas; Weidenmaier, Christopher; Peschel, Andreas

    2009-07-01

    Skin-colonizing gram-positive bacteria produce wall teichoic acids (WTAs) or related glycopolymers for unclear reasons. Using a WTA-deficient Staphylococcus aureus mutant, we demonstrated that WTA confers resistance to antimicrobial fatty acids from human sebaceous glands by preventing fatty acid binding. Thus, WTA is probably important for bacterial skin colonization.

  17. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.; Rojas, Enrique R.; Koslover, Elena F.; Lee, Timothy K.; Huang, Kerwyn Casey; Theriot, Julie A.

    2016-01-01

    When Staphylococcus aureus undergoes cytokinesis, it builds a septum generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds (“popping”), without detectable changes in cell volume. The likelihood of popping depended on cell wall stress, and the separating cells split open asymmetrically leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Finally, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring, and exhibits hallmarks of mechanical crack propagation. PMID:25931560

  18. Wall Teichoic Acid Deficiency in Staphylococcus aureus Confers Selective Resistance to Mammalian Group IIA Phospholipase A2 and Human β-Defensin 3▿

    PubMed Central

    Koprivnjak, Tomaz; Weidenmaier, Christopher; Peschel, Andreas; Weiss, Jerrold P.

    2008-01-01

    Wall teichoic acids (WTAs) and membrane lipoteichoic acids (LTAs) are the major polyanionic polymers in the envelope of Staphylococcus aureus. WTAs in S. aureus play an important role in bacteriophage attachment and bacterial adherence to certain host cells, suggesting that WTAs are exposed on the cell surface and could also provide necessary binding sites for cationic antimicrobial peptides and proteins (CAMPs). Highly cationic mammalian group IIA phospholipase A2 (gIIA PLA2) kills S. aureus at nanomolar concentrations by an action(s) that depends on initial electrostatic interactions, cell wall penetration, membrane phospholipid (PL) degradation, and activation of autolysins. A tagO mutant of S. aureus that lacks WTA is up to 100-fold more resistant to PL degradation and killing by gIIA PLA2 and CAMP human β-defensin 3 (HBD-3) but has the sensitivity of the wild type (wt) to other CAMPs, such as Magainin II amide, hNP1-3, LL-37, and lactoferrin. In contrast, there is little or no difference in either gIIA PLA2 activity toward cell wall-depleted protoplasts of the wt and tagO strains of S. aureus or in binding of gIIA PLA2 to wt and tagO strains. Scanning and transmission electron microscopy reveal increased surface protrusions in the S. aureus tagO mutant that might account for reduced activity of bound gIIA PLA2 and HBD-3 toward the tagO mutant. In summary, the absence of WTA in S. aureus causes a selective increase in bacterial resistance to gIIA PLA2 and HBD-3, the former apparently by reducing access and/or activity of bound antibacterial enzyme to the bacterial membrane. PMID:18347049

  19. A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection.

    PubMed

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Stentzel, Sebastian; Steil, Leif; Dhople, Vishnu M; Bernhardt, Jörg; Schlüter, Rabea; Depke, Maren; Gierok, Philipp; Lalk, Michael; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2015-10-14

    Infectious diseases caused by pathogens such as Staphylococcus aureus are still a major threat for human health. Proteome analyses allow detailed monitoring of the molecular interplay between pathogen and host upon internalization. However, the investigation of the responses of both partners is complicated by the large excess of host cell proteins compared to bacterial proteins as well as by the fact that only a fraction of host cells are infected. In the present study we infected human alveolar epithelial A549 cells with S. aureus HG001 pMV158GFP and separated intact bacteria from host cell debris or infected from non-infected A549 cells by cell sorting to enable detailed proteome analysis. During the first 6.5h in the intracellular milieu S. aureus displayed reduced growth rate, induction of the stringent response, adaptation to microaerobic conditions as well as cell wall stress. Interestingly, both truly infected host cells and those not infected but exposed to secreted S. aureus proteins and host cell factors showed differences in the proteome pattern compared to A549 cells which had never been in contact with S. aureus. However, adaptation reactions were more pronounced in infected compared to non-infected A549 bystander cells.

  20. Decreased Amounts of Cell Wall-Associated Protein A and Fibronectin-Binding Proteins in Staphylococcus aureus sarA Mutants due to Up-Regulation of Extracellular Proteases

    PubMed Central

    Karlsson, Anna; Saravia-Otten, Patricia; Tegmark, Karin; Morfeldt, Eva; Arvidson, Staffan

    2001-01-01

    Data have been presented indicating that Staphylococcus aureus cell surface protein can be degraded by extracellular proteases produced by the same bacterium. We have found that in sarA mutant cells, which produce high amounts of four major extracellular proteases (staphylococcal serine protease [V8 protease] [SspA], cysteine protease [SspB], aureolysin [metalloprotease] [Aur], and staphopain [Scp]), the levels of cell-bound fibronectin-binding proteins (FnBPs) and protein A were very low compared to those of wild-type cells, in spite of unaltered or increased transcription of the corresponding genes. Cultivation of sarA mutant cells in the presence of the global protease inhibitor α2-macroglobulin resulted in a 16-fold increase in cell-bound FnBPs, indicating that extracellular proteases were responsible for the decreased amounts of FnBPs in sarA mutant cells. The protease inhibitor E64 had no effect on the level of FnBPs, indicating that cysteine proteases were not involved. Inactivation of either ssp or aur in the prototype S. aureus strain 8325-4 resulted in a threefold increase in the amount of cell-bound FnBPs. Inactivation of the same protease genes in a sarA mutant of 8325-4 resulted in a 10- to 20-fold increase in cell-bound protein A. As the serine protease requires aureolysin to be activated, it can thus be concluded that the serine protease is the most important protease in the release of cell-bound FnBPs and protein A. PMID:11447146

  1. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  2. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins

    PubMed Central

    Misawa, Yoshiki; Kelley, Kathryn A.; Wang, Xiaogang; Wang, Linhui; Park, Wan Beom; Birtel, Johannes; Saslowsky, David; Lee, Jean C.

    2015-01-01

    Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin. PMID:26201029

  3. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  4. Global transcriptome analysis of Staphylococcus aureus biofilms in response to innate immune cells.

    PubMed

    Scherr, Tyler D; Roux, Christelle M; Hanke, Mark L; Angle, Amanda; Dunman, Paul M; Kielian, Tammy

    2013-12-01

    The potent phagocytic and microbicidal activities of neutrophils and macrophages are among the first lines of defense against bacterial infections. Yet Staphylococcus aureus is often resistant to innate immune defense mechanisms, especially when organized as a biofilm. To investigate how S. aureus biofilms respond to macrophages and neutrophils, gene expression patterns were profiled using Affymetrix microarrays. The addition of macrophages to S. aureus static biofilms led to a global suppression of the biofilm transcriptome with a wide variety of genes downregulated. Notably, genes involved in metabolism, cell wall synthesis/structure, and transcription/translation/replication were among the most highly downregulated, which was most dramatic at 1 h compared to 24 h following macrophage addition to biofilms. Unexpectedly, few genes were enhanced in biofilms after macrophage challenge. Unlike coculture with macrophages, coculture of S. aureus static biofilms with neutrophils did not greatly influence the biofilm transcriptome. Collectively, these experiments demonstrate that S. aureus biofilms differentially modify their gene expression patterns depending on the leukocyte subset encountered. PMID:24042108

  5. Global Transcriptome Analysis of Staphylococcus aureus Biofilms in Response to Innate Immune Cells

    PubMed Central

    Scherr, Tyler D.; Roux, Christelle M.; Hanke, Mark L.; Angle, Amanda; Dunman, Paul M.

    2013-01-01

    The potent phagocytic and microbicidal activities of neutrophils and macrophages are among the first lines of defense against bacterial infections. Yet Staphylococcus aureus is often resistant to innate immune defense mechanisms, especially when organized as a biofilm. To investigate how S. aureus biofilms respond to macrophages and neutrophils, gene expression patterns were profiled using Affymetrix microarrays. The addition of macrophages to S. aureus static biofilms led to a global suppression of the biofilm transcriptome with a wide variety of genes downregulated. Notably, genes involved in metabolism, cell wall synthesis/structure, and transcription/translation/replication were among the most highly downregulated, which was most dramatic at 1 h compared to 24 h following macrophage addition to biofilms. Unexpectedly, few genes were enhanced in biofilms after macrophage challenge. Unlike coculture with macrophages, coculture of S. aureus static biofilms with neutrophils did not greatly influence the biofilm transcriptome. Collectively, these experiments demonstrate that S. aureus biofilms differentially modify their gene expression patterns depending on the leukocyte subset encountered. PMID:24042108

  6. The Staphylococcus aureus scdA gene: a novel locus that affects cell division and morphogenesis.

    PubMed

    Brunskill, E W; de Jonge, B L; Bayles, K W

    1997-09-01

    A new Staphylococcus aureus gene termed scdA was found upstream of the autolysis regulatory genes, lytS and lytR, and was shown to potentially encode a hydrophilic 25 kDa protein. Analysis of scdA transcription revealed that it is transcribed as a monocistronic message and is lytSR-independent. A role in cell wall metabolism was indicated by examination of the scdA mutant S. aureus KB323, which had a grossly aberrant cellular morphology and formed large cell clusters when grown in liquid culture medium. Furthermore, KB323 exhibited a reduced rate of autolysis and had increased peptidoglycan cross-linking compared to the parental strain, NCTC 8325-4. These data suggest that scdA plays an important role in staphylococcal cell division. PMID:9308171

  7. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  8. Persistence of a Staphylococcus aureus small colony variants (S. aureus SCV) within bovine mammary epithelial cells.

    PubMed

    Atalla, Heba; Gyles, Carlton; Mallard, Bonnie

    2010-07-14

    Persistent bovine Staphylococcus aureus mastitis is attributable to the versatility of this pathogen within the mammary gland environment and to the formation of small colony variants (SCVs) that can survive within host cells. Previous studies had shown that S. aureus SCV Heba3231, isolated from a cow with chronic mastitis, had invaded and persisted in primary bovine aortic endothelial cells but caused minimal deleterious effects. The objective of this study was to investigate the interaction of SCV Heba3231 with bovine mammary epithelial cells (MAC-T cells) compared to its parent strain 3231 and to prototype strain Newbould 305. Monolayer cells were infected with each strain at various multiplicity of infections (MOIs) for 1 and 3.5h, followed by 20 min incubation with lysostaphin. Recovery of the SCV was significantly higher (P<0.05) after 3.8h with MOI of 100 compared to recovery of strains 3231 and Newbould 305. Upon further incubation, viable SCV were detected up to 96 h while 3231 were not isolated at 24h or later. Transmission electron microscopy demonstrated SCV uptake by MAC-T cells following a series of events similar to those for strain 3231. At 24h, multiple SCV were seen within enclosed vacuoles, while the 3231 parent strain was released extracellularly and the monolayer cells were damaged. The ability of SCV Heba3231 to survive inside vacuoles could be related to up-regulation of protective mechanisms. These findings highlight the potential role of bovine mammary epithelial cells and S. aureus SCV in persistent bovine mastitis.

  9. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    PubMed Central

    Li, Xianglu; Fusco, William G.; Seo, Keun S.; Bayles, Kenneth W.; Mosley, Erin E.; McGuire, Mark A.; Bohach, Gregory A.

    2009-01-01

    HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization. PMID:20016671

  10. Action of a Basic Copolymer of Ornithine and Leucine on Cells of Staphylococcus aureus

    PubMed Central

    Shenfeld, Avner; Flowers, Harold M.; Katchalski, Ephraim

    1974-01-01

    A basic, random copolymer of l-ornithine and l-leucine (OL; molar ratios 1:1) was bactericidal to a sensitive (S) strain of Staphylococcus aureus at low concentration. Resistant cells (R) were selected from the culture medium and, after serial transfers to solutions containing increasing amounts of the polymer, grew well in the presence of very high concentrations of it (1,000 μg/ml). S cells bound much more OL than did R cells, but no difference in binding was shown between separated cell walls or cell membranes of S and R. The binding of OL and sensitivity to it were not dependent on the teichoic acid-content of the cells. Bound OL was only partially removed from the cells by a variety of reagents, such as sodium dodecyl sulfate, Triton X-100, dilute trichloroacetic acid, and Ba(OH)2, and the extent of removal was similar for R and S cells. Images PMID:4840430

  11. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  12. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  13. Riccardin C derivatives cause cell leakage in Staphylococcus aureus.

    PubMed

    Morita, Daichi; Sawada, Hiromi; Ogawa, Wakano; Miyachi, Hiroyuki; Kuroda, Teruo

    2015-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major problem in clinical settings, and because it is resistant to most antimicrobial agents, MRSA infections are difficult to treat. We previously reported that synthetic macrocyclic bis(bibenzyl) derivatives, which were originally discovered in liverworts, had anti-MRSA activity. However, the action mechanism responsible was unclear. In the present study, we elucidated the action mechanism of macrocyclic bis(bibenzyl) RC-112 and its partial structure, IDPO-9 (2-phenoxyphenol). Survival experiments demonstrated that RC-112 had a bactericidal effect on MRSA, whereas IDPO-9 had bacteriostatic effects. IDPO-9-resistant mutants exhibited cross-resistance to triclosan, but not to RC-112. The mutation was identified in the fabI, enoyl-acyl carrier protein reductase gene, a target of triclosan. We have not yet isolated the RC-112-resistant mutant. On the other hand, the addition of RC-112, unlike IDPO-9, caused the inflow of ethidium and propidium into S. aureus cells. RC-112-dependent ethidium outflow was observed in ethidium-loaded S. aureus cells. Transmission electron microscopy also revealed that S. aureus cells treated with RC-112 had intracellular lamellar mesosomal-like structures. Intracellular Na+ and K+ concentrations were significantly changed by the RC-112 treatment. These results indicated that RC-112 increased membrane permeability to ethidium, propidium, Na+, and K+, and also that the action mechanism of IDPO-9 was different from those of the other compounds. PMID:26003535

  14. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  15. Polyamines in cell walls of chlorococcalean microalgae.

    PubMed

    Burczyk, Jan; Zych, Maria; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2014-01-01

    Biotechnology of microalgae represents a very attractive alternative as a source of energy and substances of high value when compared with plant cultivation. Cell walls of green microalgae have an extraordinary chemical and mechanical resistance and may impede some steps in the biotechnological/industrial exploitation of algae. The aim of the present contribution was to check the presence of polyamines in the cell walls of chlorococcalean green microalgae. Polyamines are nitrogenous compounds synthesized normally in cells and may affect the properties of the cell wall. Our work included strains either forming or not forming the polymer algaenan, allowing us to conclude that algaenan is not a prerequisite for the presence of polyamines in the cell walls. Polyamines were detected in isolated cell walls of Scenedesmus obliquus, Chlorella fusca, Chlorella saccharophila, and Chlorella vulgaris. Their concentration in isolated cell walls ranged between 0.4 and 8.4 nmol/mg dry weight. PMID:24772826

  16. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  17. Autolysis of Microbial Cells: Salt Activation of Autolytic Enzymes in a Mutant of Staphylococcus aureus

    PubMed Central

    Gilpin, Richard W.; Chatterjee, Anadi N.; Young, Frank E.

    1972-01-01

    The effect of various salts on the autolysis of cell wall of a ribitol teichoic acid-deficient mutant of Staphylococcus aureus H (strain 52A5 carrying tar-1) was compared with the parent strain. In the presence of high concentrations of certain salts such as 1.0 m NaCl, the mutant undergoes autolysis with the release of osmotically sensitive spheroplasts. The parent strain is not affected by these conditions. The stimulation of lysis is related to an activation of N-acylmuramyl-l-alanine amidase. Images PMID:4591480

  18. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae). PMID:22329798

  19. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  20. Natural Paradigms of Plant Cell Wall Degradation

    SciTech Connect

    Wei, H.; Xu, Q.; Taylor, L. E.; Baker, J. O.; Tucker, M. P.; Ding, S. Y.

    2009-01-01

    Natural processes of recycling carbon from plant cell walls are slow but very efficient, generally involving microbial communities and their secreted enzymes. Efficient combinations of microbial communities and enzymes act in a sequential and synergistic manner to degrade plant cell walls. Recent understanding of plant cell wall ultra-structure, as well as the carbon metabolism, ATP production, and ecology of participating microbial communities, and the biochemical properties of their cellulolytic enzymes have led to new perspectives on saccharification of biomass. Microbial communities are dynamic functions of the chemical and structural compositions of plant cell wall components. The primitive 'multicellularity' exhibited by certain cellulolytic microorganisms may play a role in facilitating cell-cell communication and cell-plant cell wall-substrate interaction.

  1. Peptidoglycan-linked protein A promotes T cell-dependent antibody expansion during Staphylococcus aureus infection

    PubMed Central

    Kim, Hwan Keun; Falugi, Fabiana; Missiakas, Dominique M.; Schneewind, Olaf

    2016-01-01

    A hallmark of Staphylococcus aureus disease in humans is persistent infections without development of protective immune responses. Infected patients generate VH3 plasmablast expansions and increased VH3 idiotype Ig; however, the mechanisms for staphylococcal modification of immune responses are not known. We report here that S. aureus-infected mice generate VH3 antibody expansions via a mechanism requiring MHC-restricted antigen presentation to CD4+ T cells and staphylococcal protein A (SpA), a cell wall-anchored surface molecule that binds Fcγ and VH3 variant heavy chains of Ig. VH3 expansion occurred with peptidoglycan-linked SpA from the bacterial envelope but not with recombinant SpA, and optimally required five tandem repeats of its Ig-binding domains. Signaling via receptor-interacting serine/threonine protein kinase 2 (RIPK2) was essential for implementing peptidoglycan-linked SpA superantigen activity. VH3 clan IgG from S. aureus-infected or SpA-treated animals was not pathogen-specific, suggesting that SpA cross-linking of VH3 idiotype B-cell receptors and activation via attached peptidoglycan are the determinants of staphylococcal escape from adaptive immune responses. PMID:27140614

  2. Structure of Plant Cell Walls

    PubMed Central

    Weinstein, Larry; Albersheim, Peter

    1979-01-01

    Wild type Bacillus subtilis, when grown on beet araban, secretes into its culture medium an endo-arabanase and two arabinosidases. An alternate procedure to one previously described (Kaji A, T Saheki 1975 Biochim Biophys Acta 410: 354-360) has been developed for the purification of the endo-arabanase. The purified endo-arabanase is shown to be homogeneous by sodium dodecyl sulfate-urea disc gel electrophoresis (molecular weight ≃ 32,000) and by isoelectric focusing (pI = 9.3). The endo-arabanase, acting on a branched araban substrate, has maximal activity at pH 6.0 and preferentially cleaves 5-linked arabinosyl residues. One of the arabinosidases (molecular weight ≃ 65,000, pI = 5.3) has been purified to the point that it contains only one quantitatively minor contaminant, as shown by sodium dodecyl sulfate-urea disc gel electrophoresis and isoelectric focusing. The purified arabinosidase, acting on p-nitrophenyl-α-l-arabinofuranoside, has maximal activity at pH 6.5, and, when acting on a branched araban substrate, preferentially attacks nonreducing terminal arabinosyl residues linked to the 2 or 3 position of other arabinosyl residues. Neither of the two purified enzymes is capable of hydrolyzing a variety of carbohydrate substrates which lack arabinosidic linkages. The purified endo-arabinase is shown to be capable of releasing arabinosyl oligomers from the walls of suspension-cultured sycamore cells, thereby suggesting its usefulness as a probe in studying the structure of the araban component of primary cell walls. PMID:16660741

  3. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  4. Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase

    PubMed Central

    Sobhanifar, Solmaz; Worrall, Liam James; Gruninger, Robert J.; Wasney, Gregory A.; Blaukopf, Markus; Baumann, Lars; Lameignere, Emilie; Solomonson, Matthew; Brown, Eric D.; Withers, Stephen G.; Strynadka, Natalie C. J.

    2015-01-01

    Unique to Gram-positive bacteria, wall teichoic acids are anionic glycopolymers cross-stitched to a thick layer of peptidoglycan. The polyol phosphate subunits of these glycopolymers are decorated with GlcNAc sugars that are involved in phage binding, genetic exchange, host antibody response, resistance, and virulence. The search for the enzymes responsible for GlcNAcylation in Staphylococcus aureus has recently identified TarM and TarS with respective α- and β-(1–4) glycosyltransferase activities. The stereochemistry of the GlcNAc attachment is important in balancing biological processes, such that the interplay of TarM and TarS is likely important for bacterial pathogenicity and survival. Here we present the crystal structure of TarM in an unusual ternary-like complex consisting of a polymeric acceptor substrate analog, UDP from a hydrolyzed donor, and an α-glyceryl-GlcNAc product formed in situ. These structures support an internal nucleophilic substitution-like mechanism, lend new mechanistic insight into the glycosylation of glycopolymers, and reveal a trimerization domain with a likely role in acceptor substrate scaffolding. PMID:25624472

  5. Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion.

    PubMed

    Atilgan, Erdinc; Magidson, Valentin; Khodjakov, Alexey; Chang, Fred

    2015-08-17

    The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape.

  6. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection.

    PubMed

    Brown, Aisling F; Murphy, Alison G; Lalor, Stephen J; Leech, John M; O'Keeffe, Kate M; Mac Aogáin, Micheál; O'Halloran, Dara P; Lacey, Keenan A; Tavakol, Mehri; Hearnden, Claire H; Fitzgerald-Hughes, Deirdre; Humphreys, Hilary; Fennell, Jérôme P; van Wamel, Willem J; Foster, Timothy J; Geoghegan, Joan A; Lavelle, Ed C; Rogers, Thomas R; McLoughlin, Rachel M

    2015-01-01

    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. PMID:26539822

  7. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection

    PubMed Central

    Lalor, Stephen J.; Leech, John M.; O’Keeffe, Kate M.; Mac Aogáin, Micheál; O’Halloran, Dara P.; Lacey, Keenan A.; Tavakol, Mehri; Hearnden, Claire H.; Fitzgerald-Hughes, Deirdre; Humphreys, Hilary; Fennell, Jérôme P.; van Wamel, Willem J.; Foster, Timothy J.; Geoghegan, Joan A.; Lavelle, Ed C.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2015-01-01

    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. PMID:26539822

  8. Biochemical characterization of evasion from peptidoglycan recognition by Staphylococcus aureus D-alanylated wall teichoic acid in insect innate immunity.

    PubMed

    Kurokawa, Kenji; Gong, Ji-Hee; Ryu, Kyoung-Hwa; Zheng, Lili; Chae, Jun-Ho; Kim, Min-Su; Lee, Bok Luel

    2011-08-01

    We recently reported that D-alanylation of Staphylococcus aureus wall teichoic acid (WTA) mitigates an induction of the Toll-mediated humoral response in Drosophila by interfering with peptidoglycan (PG) recognition by PG recognition protein-SA (PGRP-SA). Here, we investigated the mode of this interference by using an in vitro cell free system from larvae of the coleoptran insect Tenebrio molitor. WTA modification on PG had a potent inhibitory effect on PGRP-SA-mediated Toll proteolytic cascade activation, and the D-alanylation of WTA enhanced its inhibitory effect. Purified D-alanylated WTA released from PG lost its inhibitory action on both Toll cascade activation and PGRP-SA binding to insoluble PG. The inhibition of PGRP-SA binding to PG by D-alanylated WTA took place not only on polymeric PG but also on WTA-attached disaccharide units of monomeric PG. These results suggest that D-alanylation-mediated evasion requires the covalent bonding of D-alanylated WTA to PG, but not net-like cross-linking structure of PG. PMID:21453720

  9. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  10. The cell walls of Chara aspera Willd. (Charophyta) vegetative cells.

    PubMed

    Nyberg, H; Saranpää, P

    1989-01-01

    The ultrastructure of the vegetative cell walls of the charophyte Chara aspera Willd was studied with TEM. Thallus cells, rhizoid bulbil and rhizoidal node cells were investigated. The internodal cells transverse walls contained plasmodesmata. The longitudinal walls of the internodal cells were uniform, fibrillar, with two thin structurally distinct layers with different structure facing the cytoplasm. The outermost layers of internodal, cortical and rhizoid bulbil cells were composed of randomly orientated fibrils. The longitudinal walls of the cortical cells were helicoidal in structure. In the rhizoid bulbil cell walls, six different layers could be distinguished, but their occurrence seemed to depend on the fixation, staining and cutting procedures. A middle lamella and osmophilic deposits were found in the wall between rhizoidal node cells. The cytoplasmic structure of the internodal and cortical cells was not found to differ from other species of Chara. Charasomes were observed only in cortical cells.

  11. Pleiotropic Roles of Polyglycerolphosphate Synthase of Lipoteichoic Acid in Growth of Staphylococcus aureus Cells ▿ †

    PubMed Central

    Oku, Yusuke; Kurokawa, Kenji; Matsuo, Miki; Yamada, Sakuo; Lee, Bok-Luel; Sekimizu, Kazuhisa

    2009-01-01

    Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus ΔltaS mutant could grow at 30°C but not at 37°C. Even at the permissive temperature, ΔltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of ΔltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the ΔltaS mutant at 37°C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the ΔltaS mutation was found to be synthetically lethal with the ΔtagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30°C, suggesting that LTA and WTA compensate for one another in an essential function. PMID:18952789

  12. Polyphosphorylated fungal cell wall glycopeptides

    SciTech Connect

    Bonetti, S.J.; Black, B.; Gander, J.E.

    1987-05-01

    Penicillium charlesii secretes a 65 kDa peptidophosphogalactomannan (pPGM) containing 10 phosphodiester residues and 10 galactofuranosyl-containing galactin chains attached to a linear mannan; the polysaccharides is attached to a 3 kDa seryl- and threonyl-rich peptide. The authors have now isolated and partially characterized a form of pPGM released from mycelia of P. charlesii treated at 50/sup 0/C for 15, 30, 60 or 120 min. Two- to 3-fold more pPGM was released by heat treatment than is secreted. Crude pPGM, released by heat, was fractionated on DE-52 and was fractionated into two major fractions on the basis of its difference in negative charge. /sup 1/H-decoupled /sup 13/C NMR spectroscopy of these two fractions provided spectra very similar to that of secreted pPGM previously reported from this laboratory. /sup 1/H-decoupled /sup 31/P NMR showed major signals at 1.47, and 0.22 ppm and minor signals at 1.32, 1.15, 1.00, 0.91 and 0.76 ppm. These signals are upfield from phosphomonoesters and are in the region observed for (6-O-phosphorylcholine)- and (6-O-phosphorylethanolamine)-..cap alpha..-D-mannopyranosyl residues which are 0.22 and 0.90 ppm, respectively. These polymers contain 30 phosphodiester residues per molecule of 70 kDa mass compared with 10 phosphodiesters in secreted pPGM. Acid phosphatase and alkaline protease were the only lytic enzymes released by heat treatment. The evidence suggests that much of the pPGM is derived from cell walls; and that the polysaccharide is highly phosphorylated.

  13. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  14. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  15. Molecular regulation of plant cell wall extensibility.

    PubMed

    Cosgrove, D J

    1998-05-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized. PMID:11540640

  16. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  17. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  18. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  19. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  20. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network.

  1. Structure of Plant Cell Walls 1

    PubMed Central

    Ishii, Tadashi; Thomas, Jerry; Darvill, Alan; Albersheim, Peter

    1989-01-01

    Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ∼4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells. PMID:16666559

  2. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  3. Identification of Novel Cell Wall Components

    SciTech Connect

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  4. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  5. Planctomycetes do possess a peptidoglycan cell wall

    PubMed Central

    Jeske, Olga; Schüler, Margarete; Schumann, Peter; Schneider, Alexander; Boedeker, Christian; Jogler, Mareike; Bollschweiler, Daniel; Rohde, Manfred; Mayer, Christoph; Engelhardt, Harald; Spring, Stefan; Jogler, Christian

    2015-01-01

    Most bacteria contain a peptidoglycan (PG) cell wall, which is critical for maintenance of shape and important for cell division. In contrast, Planctomycetes have been proposed to produce a proteinaceous cell wall devoid of PG. The apparent absence of PG has been used as an argument for the putative planctomycetal ancestry of all bacterial lineages. Here we show, employing multiple bioinformatic methods, that planctomycetal genomes encode proteins required for PG synthesis. Furthermore, we biochemically demonstrate the presence of the sugar and the peptide components of PG in Planctomycetes. In addition, light and electron microscopic experiments reveal planctomycetal PG sacculi that are susceptible to lysozyme treatment. Finally, cryo-electron tomography demonstrates that Planctomycetes possess a typical PG cell wall and that their cellular architecture is thus more similar to that of other Gram-negative bacteria. Our findings shed new light on the cellular architecture and cell division of the maverick Planctomycetes. PMID:25964217

  6. The Structure of Plant Cell Walls

    PubMed Central

    Bauer, Wolfgang D.; Talmadge, Kenneth W.; Keegstra, Kenneth; Albersheim, Peter

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed “amyloid” xyloglucans. Xyloglucan—or fragments of xyloglucan—and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall. The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of β-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues. PMID:16658281

  7. Effect of salicylic acid on invasion of human vascular endothelial cells by Staphylococcus aureus.

    PubMed

    Park, Wan Beom; Kim, Sung-Han; Cho, Jae Hyun; Bang, Ji Hwan; Kim, Hong Bin; Kim, Nam Joong; Oh, Myoung-don; Choe, Kang Won

    2007-02-01

    Invasion of vascular endothelial cells by Staphylococcus aureus is associated with diverse complications and recurrent infection. Little is known about the effect of salicylic acid, the major metabolite of aspirin, on the interaction between S. aureus and vascular endothelial cells. We examined the adhesion of S. aureus strain 8325-4 cultured with or without salicylic acid to human umbilical vein endothelial cells (HUVECs), and the ability of the strain to invade these cells. Strain 8325-4 cells grown in salicylic acid were significantly less adherent to and invasive in HUVECs. Production of cytokine interleukin (IL)-6 was lower from the HUVECs infected with clinical isolates of S. aureus cultured in salicylic acid compared with those unexposed to salicylic acid. This study raises the possibility of using salicylic acid as an adjuvant therapeutic agent in the treatment of S. aureus bacteremia to prevent its complications or recurrence.

  8. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease.

    PubMed

    Conlon, Brian P

    2014-10-01

    Staphylococcus aureus is an opportunistic pathogen capable of causing a variety of diseases including osteomyelitis, endocarditis, infections of indwelling devices and wound infections. These infections are often chronic and highly recalcitrant to antibiotic treatment. Persister cells appear to be central to this recalcitrance. A multitude of factors contribute to S. aureus virulence and high levels of treatment failure. These include its ability to colonize the skin and nares of the host, its ability to evade the host immune system and its development of resistance to a variety of antibiotics. Less understood is the phenomenon of persister cells and their role in S. aureus infections and treatment outcome. Persister cells occur as a sub-population of phenotypic variants that are tolerant to antibiotic treatment. This review examines the importance of persisters in chronic and relapsing S. aureus infections and proposes methods for their eradication.

  9. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    NASA Astrophysics Data System (ADS)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  10. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    SciTech Connect

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-11-27

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  11. Living cells of Staphylococcus aureus immobilized onto the capillary surface in electrochromatography: a tool for screening of biofilms.

    PubMed

    Chen, Jie; Fallarero, Adyary; Määttänen, Anni; Sandberg, Malena; Peltonen, Jouko; Vuorela, Pia M; Riekkola, Marja-Liisa

    2008-07-01

    Microorganisms attach to nonliving surfaces in many natural, industrial, and medical environments, enveloped within extracellular polymeric substances. The result is a biofilm. Biofilms are reported to exist in 65-80% of bacterial infections refractory to host defenses and antibiotics therapy and are regarded as a central problem in present-day medical microbiology. Understanding of the parameters governing the interaction of antimicrobials with biofilms is thus of great interest in any attempt to increase biocide efficacy. In this work, study was made of the feasibility of using open tubular capillary electrochromatography (CEC) in bacterial biofilm studies with living cells. Staphylococcus aureus was selected as model bacterium. First, S. aureus was shown, under various conditions, to form a biofilm on the inner wall of a fused-silica capillary coated with poly(L-lysine). Optimal conditions for biofilm formation, such as bacterial concentration, growing time, and the stability of the ensemble, were preliminarily defined with conventional 96-microtiter well plates. Continuous flushing of the capillary with fresh cells meant that no growth medium was needed. The presence of biofilm in the capillary was confirmed by atomic force microscopy. Interactions between S. aureus biofilms and different antibiomicrobial agents were studied by capillary electrochromatography. The effect of five antibiotics (penicillin G, oxacillin, fusidic acid, rifampicin, vancomycin) on biofilms was examined in terms of retention factors and reduced mobilities of the antibiotics. The antibiotic susceptibility profile for S. aureus is similar as the result of minimal inhibitory concentrations registered on the 96-microtiter well plates for both planktonic and biofilm cells. The results show, for the first time, that bacterial biofilms can be studied by CEC. The technique allows highly efficient and easy characterization of interactions between S. aureus biofilms and potentially active

  12. An autolysin ring associated with cell separation of Staphylococcus aureus.

    PubMed Central

    Yamada, S; Sugai, M; Komatsuzawa, H; Nakashima, S; Oshida, T; Matsumoto, A; Suginaka, H

    1996-01-01

    atl is a newly discovered autolysin gene in Staphylococcus aureus. The gene product, ATL, is a unique, bifunctional protein that has an amidase domain and a glucosaminidase domain. It undergoes proteolytic processing to generate two extracellular peptidoglycan hydrolases, a 59-kDa endo-beta-N-acetylglucosaminidase and a 62-kDa N-acetylmuramyl-L-alanine amidase. It has been suggested that these enzymes are involved in the separation of daughter cells after cell division. We recently demonstrated that atl gene products are cell associated (unpublished data). The cell surface localization of the atl gene products was investigated by immunoelectron microscopy using anti-62-kDa N-acetylmuramyl-L-alanine amidase or anti-51-kDa endo-beta-N-acetylglucosaminidase immunoglobulin G. Protein A-gold particles reacting with the antigen-antibody complex were found to form a ring structure on the cell surface at the septal region for the next cell division site. Electron microscopic examination of an ultrathin section of the preembedded sample revealed preferential distribution of the gold particles at the presumptive sites for cell separation where the new septa had not been completed. The distribution of the gold particles on the surface of protoplast cells and the association of the gold particles with fibrous materials extending from the cells suggested that some atl gene products were associated with a cellular component extending from the cell membrane, such as lipoteichoic acid. The formation of a ring structure of atl gene products may be required for efficient partitioning of daughter cells after cell division. PMID:8626282

  13. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1984-05-01

    Living bacterial cells of Staphylococcus aureus have been measured from aqueous suspensions taking advantage of the solvent subtraction capabilities of FTIR. All spectral features, between 1800-800 cm -1, of the intact cells could be measured with a reproducibility of better than ±5% when applying strict metabolic control of cell growth and a highly standardized experimental procedure prior to IR measurements. IR bands near 1745, 1656, 1547, 1240 and 1200-1000 cm -1were tentatively assigned to: CO stretching of ester groups, amide I and amide II bands of the various peptides and proteins, asymmetric stretching of phosphate groups and complex vibrational modes resulting from polysaccharidal compounds, respectively. Absorbance subtraction of IR spectra of different intact baterial cells and cell-wall preparations yielded reasonable results on structural variations accompanying: (i) cell growth, (ii) use of different growth media, (iii) chemical treatment of cells and (iv) biochemical isolation processes of cell walls from the intact cells.

  14. Saccharomyces cerevisiae structural cell wall mannoprotein.

    PubMed

    Frevert, J; Ballou, C E

    1985-01-29

    A novel mannoprotein fraction with an average molecular weight of 180 000 has been isolated from Saccharomyces cerevisiae mnn9 mutant cell wall that was solubilized by beta-glucanase digestion. The same material could be extracted from purified wall fragments with 1% sodium dodecyl sulfate. The protein component, 12% by weight, is rich in proline, whereas the carbohydrate, mainly mannose, is about evenly distributed between asparagine and hydroxyamino acids. Endoglucosaminidase H digestion of the isolated mannoprotein reduced its average molecular weight to 150 000, but the mannoprotein, while still embedded in the cell wall, was inaccessible to the enzyme. Biosynthesis and translocation of the mannoprotein were investigated by following incorporation of [3H]proline into this fraction. In the presence of tunicamycin, both mnn9 and wild-type X2180 cells made a mannoprotein fraction with an average molecular weight of 140 000, whereas in the absence of the glycosylation inhibitor, the mnn9 mutant made material with a molecular weight of 180 000 and the mannoprotein made by wild-type cells was too large to penetrate the polyacrylamide gel. Although the cell wall mannoprotein was resistant to heat and proteolytic enzymes, attempts to isolate the carbohydrate-free component failed to yield any characteristic peptide material. PMID:3888262

  15. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  16. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  17. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals.

  18. Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading

    PubMed Central

    Kizaki, Hayato; Omae, Yosuke; Tabuchi, Fumiaki; Saito, Yuki; Sekimizu, Kazuhisa

    2016-01-01

    Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1–4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1–4 and δ-toxin in S. aureus colony spreading. PSMα1–4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1–4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1–4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1–4, and decreased the amount of culture supernatant PSMα1–4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1–4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1–4, but not culture supernatant PSMα1–4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1–4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1–4 binding to the S. aureus cell surface. PMID:27723838

  19. Examination and Disruption of the Yeast Cell Wall.

    PubMed

    Okada, Hiroki; Kono, Keiko; Neiman, Aaron M; Ohya, Yoshikazu

    2016-01-01

    The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption. PMID:27480724

  20. Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression.

    PubMed

    Jiang, Lanxiang; Li, Hongen; Wang, Laiying; Song, Zexin; Shi, Lei; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2016-03-01

    Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections. PMID:26643966

  1. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.

  2. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  3. Cell Wall Heterogeneity in Root Development of Arabidopsis

    PubMed Central

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  4. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    PubMed

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  5. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  6. Measuring in vitro extensibility of growing plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  7. Measuring in-vitro extensibility of growth plant cell walls

    SciTech Connect

    Cosgrove, Daniel

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  8. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    PubMed

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis. PMID:27611066

  9. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    PubMed

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.

  10. Global antibody response to Staphylococcus aureus live-cell vaccination.

    PubMed

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  11. Global antibody response to Staphylococcus aureus live-cell vaccination

    PubMed Central

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M.; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  12. Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan.

    PubMed

    Thimm, Julian C.; Burritt, David J.; Sims, Ian M.; Newman, Roger H.; Ducker, William A.; Melton, Laurence D.

    2002-10-01

    The primary walls of celery (Apium graveolens L.) parenchyma cells were isolated and their polysaccharide components characterized by glycosyl linkage analysis, cross-polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C NMR) and X-ray diffraction. Glycosyl linkage analysis showed that the cell walls consisted of mainly cellulose (43 mol%) and pectic polysaccharides (51 mol%), comprising rhamnogalacturonan (28 mol%), arabinan (12 mol%) and galactan (11 mol%). The amounts of xyloglucan (2 mol%) and xylan (2 mol%) detected in the cell walls were strikingly low. The small amount of xyloglucan present means that it cannot coat the cellulose microfibrils. Solid-state 13C NMR signals were consistent with the constituents identified by glycosyl linkage analysis and allowed the walls to be divided into three domains, based on the rigidity of the polymers. Cellulose (rigid) and rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse sequence and were distinguished by differences in proton spin relaxation time constants. The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray diffraction of the cell walls gave a value for the diameter of approximately 2 nm.

  13. Food applications of bacterial cell wall hydrolases.

    PubMed

    Callewaert, Lien; Walmagh, Maarten; Michiels, Chris W; Lavigne, Rob

    2011-04-01

    Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.

  14. NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus

    PubMed Central

    Kolar, Stacey L.; Nagarajan, Vijayaraj; Oszmiana, Anna; Rivera, Frances E.; Miller, Halie K.; Davenport, Jessica E.; Riordan, James T.; Potempa, Jan; Barber, David S.; Koziel, Joanna; Elasri, Mohamed O.

    2011-01-01

    Staphylococcus aureus possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in S. aureus. In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a lacZ reporter–gene fusion demonstrated that nsaRS expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide m-chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. NsaS mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an nsaS mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an nsaS mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that nsaS mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in nsaS mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in S. aureus and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival. PMID:21565927

  15. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  16. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  17. Cell wall of Fusarium sulphureum; I. Chemical composition of the hyphal wall.

    PubMed

    Barran, L R; Schneider, E F; Wood, P J; Madhosingh, C; Miller, R W

    1975-05-01

    The hyphae wall of Fusarium sulphureum Schlect. (Isolate 1) was isolated and purified. Electron microscopy studies showed that the isolated cell wall consisted of two distinct layers, an outer electron dense layer and a broader electron transparent inner layer. Chemical analysis revealed that the cell wall contained 66% carbohydrate, 7.3% protein, 5.5% lipid and 1.8% ash. The major cell wall component N-acetylglucosamine (39%) was shown by X-ray diffraction analysis to be present as chitin. Glucose constituted 14% of the cell wall, while mannose, galactose, and glucuronic acid, accounted for 15% of the cell wall. Glucuronic acid appears to be predominantly linked to galactose in the intact wall.

  18. The Structure of Plant Cell Walls

    PubMed Central

    Talmadge, Kenneth W.; Keegstra, Kenneth; Bauer, Wolfgang D.; Albersheim, Peter

    1973-01-01

    This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan. The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall. The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan. The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein

  19. Beyond growth: novel functions for bacterial cell wall hydrolases.

    PubMed

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  20. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  1. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  2. Live Staphylococcus aureus Induces Expression and Release of Vascular Endothelial Growth Factor in Terminally Differentiated Mouse Mast Cells.

    PubMed

    Johnzon, Carl-Fredrik; Rönnberg, Elin; Guss, Bengt; Pejler, Gunnar

    2016-01-01

    Mast cells have been shown to express vascular endothelial growth factor (VEGF), thereby implicating mast cells in pro-angiogenic processes. However, the mechanism of VEGF induction in mast cells and the possible expression of VEGF in fully mature mast cells have not been extensively studied. Here, we report that terminally differentiated peritoneal cell-derived mast cells can be induced to express VEGF in response to challenge with Staphylococcus aureus, thus identifying a mast cell-bacteria axis as a novel mechanism leading to VEGF release. Whereas live bacteria produced a robust upregulation of VEGF in mast cells, heat-inactivated bacteria failed to do so, and bacteria-conditioned media did not induce VEGF expression. The induction of VEGF was not critically dependent on direct cell-cell contact between bacteria and mast cells. Hence, these findings suggest that VEGF can be induced by soluble factors released during the co-culture conditions. Neither of a panel of bacterial cell-wall products known to activate toll-like receptor (TLR) signaling promoted VEGF expression in mast cells. In agreement with the latter, VEGF induction occurred independently of Myd88, an adaptor molecule that mediates the downstream events following TLR engagement. The VEGF induction was insensitive to nuclear factor of activated T-cells inhibition but was partly dependent on the nuclear factor kappa light-chain enhancer of activated B cells signaling pathway. Together, these findings identify bacterial challenge as a novel mechanism by which VEGF is induced in mast cells. PMID:27446077

  3. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  4. Cell Wall Loosening in the Fungus, Phycomyces blakesleeanus

    PubMed Central

    Ortega, Joseph K. E.; Truong, Jason T.; Munoz, Cindy M.; Ramirez, David G.

    2015-01-01

    A considerable amount of research has been conducted to determine how cell walls are loosened to produce irreversible wall deformation and expansive growth in plant and algal cells. The same cannot be said about fungal cells. Almost nothing is known about how fungal cells loosen their walls to produce irreversible wall deformation and expansive growth. In this study, anoxia is used to chemically isolate the wall from the protoplasm of the sporangiophores of Phycomyces blakesleeanus. The experimental results provide direct evidence of the existence of chemistry within the fungal wall that is responsible for wall loosening, irreversible wall deformation and elongation growth. In addition, constant-tension extension experiments are conducted on frozen-thawed sporangiophore walls to obtain insight into the wall chemistry and wall loosening mechanism. It is found that a decrease in pH to 4.6 produces creep extension in the frozen-thawed sporangiophore wall that is similar, but not identical, to that found in frozen-thawed higher plant cell walls. Experimental results from frozen-thawed and boiled sporangiophore walls suggest that protein activity may be involved in the creep extension. PMID:27135318

  5. Cell wall-associated kinases and pectin perception.

    PubMed

    Kohorn, Bruce D

    2016-01-01

    The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.

  6. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  7. Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model

    PubMed Central

    Cui, Xizhong; Su, Junwu; Li, Yan; Shiloach, Joseph; Solomon, Steven; Kaufman, Jeanne B.; Mani, Haresh; Fitz, Yvonne; Weng, Jia; Altaweel, Laith; Besch, Virginia; Eichacker, Peter Q.

    2012-01-01

    Objectives The in vivo inflammatory effects of the Bacillus anthracis cell wall are unknown. We therefore investigated these effects in rats and, for comparison, those of known inflammatory stimulants, Staphylococcus aureus cell wall or lipopolysaccharide (LPS). Method and Results Sprague–Dawley rats (n = 103) were challenged with increasing B. anthracis cell wall doses (10, 20, 40, 80, or 160 mg/kg) or diluent (control) as a bolus or 24-h infusion. The three highest bolus doses were lethal (20–64% lethality rates) as were the two highest infused doses (13% with each). Comparisons among lethal or nonlethal doses on other measured parameters were not significantly different, and these were combined for analysis. Over the 24 h after challenge initiation with lethal bolus or infusion, compared to controls, ten inflammatory cytokines and NO levels were increased and circulating neutrophils and platelets decreased (P ≤ 0.05). Changes with lethal doses were greater than changes with nonlethal doses (P ≤ 0.01). Lethal bolus or infusion doses produced hypotension or hypoxemia, respectively (P ≤ 0.05). The effects with B. anthracis cell wall were similar to those of S. aureus cell wall or LPS. However, paradoxically administration of B. anthracis cell wall or LPS decreased the lethality of concurrently administered B. anthracis lethal toxin (P < 0.0001 and 0.04, respectively). Conclusion B. anthracis cell wall has the potential to produce inflammatory injury during anthrax infection clinically. However, understanding why cell wall or LPS paradoxically reduced lethality with lethal toxin may help understand this toxin’s pathogenic effects. PMID:19756496

  8. Cell Wall Invertase in Tobacco Crown Gall Cells 1

    PubMed Central

    Weil, Marion; Rausch, Thomas

    1990-01-01

    The cell wall invertase from an Agrobacterium tumefaciens-transformed Nicotiana tabacum cell line (SR1-C58) was purified. The heterogeneously glycosylated enzyme has the following properties: Mr 63,000, pH optimum at 4.7, Km sucrose 0.6 millimolar (at pH 4.7), pl 9.5. Enzyme activity is inhibited by micromolar concentrations of HgCl2 but is insensitive to H2O2, N-ethylmaleimide and dithiothreitol. Upon transfer of transformed cells from the stationary phase to fresh medium, a cycloheximide- and tunicamycin-sensitive de novo formation of cell wall invertase is demonstrated in the absence or presence of sucrose. While in an auxin mutant (lacking gene 1;SR1-3845) 1 micromolar 1-naphthaleneacetic acid led to a further increased activity, the wild-type transformed cell line (SR1-C58) responded with a decreased activity compared to the control. An analysis of cell wall invertase in and around tumors initiated with Agrobacterium tumefaciens (strain C58) on Nicotiana tabacum stem and Kalanchoë daigremontiana leaves revealed gradients of activity. The results indicate that the auxin-stimulated cell wall invertase is essential for the establishment of the tumor sink. Images Figure 1 PMID:16667892

  9. Staphylococcal Esx Proteins Modulate Apoptosis and Release of Intracellular Staphylococcus aureus during Infection in Epithelial Cells

    PubMed Central

    Korea, Charalampia G.; Balsamo, Giuliana; Pezzicoli, Alfredo; Merakou, Christina; Tavarini, Simona; Bagnoli, Fabio; Serruto, Davide

    2014-01-01

    The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell. PMID:25047846

  10. Staphylococcus aureus Protein A Mediates Interspecies Interactions at the Cell Surface of Pseudomonas aeruginosa

    PubMed Central

    Armbruster, Catherine R.; Wolter, Daniel J.; Mishra, Meenu; Hayden, Hillary S.; Radey, Matthew C.; Merrihew, Gennifer; MacCoss, Michael J.; Burns, Jane; Wozniak, Daniel J.

    2016-01-01

    ABSTRACT While considerable research has focused on the properties of individual bacteria, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis. Staphylococcus aureus frequently coinfects with other pathogens in a range of different infectious diseases. For example, coinfection by S. aureus with Pseudomonas aeruginosa occurs commonly in people with cystic fibrosis and is associated with higher lung disease morbidity and mortality. S. aureus secretes numerous exoproducts that are known to interact with host tissues, influencing inflammatory responses. The abundantly secreted S. aureus staphylococcal protein A (SpA) binds a range of human glycoproteins, immunoglobulins, and other molecules, with diverse effects on the host, including inhibition of phagocytosis of S. aureus cells. However, the potential effects of SpA and other S. aureus exoproducts on coinfecting bacteria have not been explored. Here, we show that S. aureus-secreted products, including SpA, significantly alter two behaviors associated with persistent infection. We found that SpA inhibited biofilm formation by specific P. aeruginosa clinical isolates, and it also inhibited phagocytosis by neutrophils of all isolates tested. Our results indicate that these effects were mediated by binding to at least two P. aeruginosa cell surface structures—type IV pili and the exopolysaccharide Psl—that confer attachment to surfaces and to other bacterial cells. Thus, we found that the role of a well-studied S. aureus exoproduct, SpA, extends well beyond interactions with the host immune system. Secreted SpA alters multiple persistence-associated behaviors of another common microbial community member, likely influencing cocolonization and coinfection with other microbes. PMID:27222468

  11. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    SciTech Connect

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  12. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  13. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

    PubMed Central

    Farha, Maya A.; Czarny, Tomasz L.; Myers, Cullen L.; Worrall, Liam J.; French, Shawn; Conrady, Deborah G.; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C. J.; Brown, Eric D.

    2015-01-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  14. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase.

    PubMed

    Farha, Maya A; Czarny, Tomasz L; Myers, Cullen L; Worrall, Liam J; French, Shawn; Conrady, Deborah G; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C J; Brown, Eric D

    2015-09-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  15. Intracellular Staphylococcus aureus Escapes the Endosome and Induces Apoptosis in Epithelial Cells

    PubMed Central

    Bayles, Kenneth W.; Wesson, Carla A.; Liou, Linda E.; Fox, Lawrence K.; Bohach, Gregory A.; Trumble, W. R.

    1998-01-01

    We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureus mastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureus cells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that the bacteria induced internalization via a mechanism involving membrane pseudopod formation and then escaped into the cytoplasm following lysis of the endosomal membrane. Two hours after the internalization of S. aureus, MAC-T cells exhibited detachment from the matrix, rounding, a mottled cell membrane, and vacuolization of the cytoplasm, all of which are indicative of cells undergoing programmed cell death (apoptosis). By 18 h, the majority of the MAC-T cell population exhibited an apoptotic morphology. Other evidence for apoptosis was the generation of MAC-T cell DNA fragments differing in size by increments of approximately 180 bp and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of the fragmented nuclear DNA of the infected host cells. These results demonstrate that after internalization S. aureus escapes the endosome and induces apoptosis in nonprofessional phagocytes. PMID:9423876

  16. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  17. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions.

    PubMed

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.

  18. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    PubMed Central

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground. PMID:24904623

  19. Disruption of cell walls for enhanced lipid recovery

    DOEpatents

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  20. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  1. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  2. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  3. Compounds in a particular production lot of tryptic soy broth inhibit Staphylococcus aureus cell growth.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Staphylococcus aureus Newman strain and several methicillin-resistant S. aureus (MRSA) clinical isolates were grown on agar plates prepared with conventional lots of tryptic soy broth (TSB). Cell growth of these strains was inhibited on agar plates containing TSB of a particular product lot (lot A), whereas the cell growth of S. aureus RN4220 strain and several other MRSA clinical isolates was not inhibited. The cell growth of a strain of S. epidermidis was also inhibited on agar plates containing TSB of lot A, whereas the cell growth of Bacillus subtilis, Lactococcus lactis, Klebsiella pneumonia, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Escherichia coli was not inhibited. Although cell growth of the Newman strain was inhibited on agar plates containing TSB of lot A that was autoclaved in stainless steel or glass containers, cell growth inhibition was not observed when the medium was autoclaved in polypropylene containers. Compounds that inhibited the cell growth of the Newman strain were extracted from a polypropylene tube that was preincubated with liquid medium prepared from TSB of lot A. These findings suggest that polypropylene-binding compounds in TSB of lot A inhibited the cell growth of S. aureus Newman strain, some MRSA clinical isolates, and S. epidermidis.

  4. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  5. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function. PMID:27552739

  6. Impregnation of softwood cell walls with melamine-formaldehyde resin.

    PubMed

    Gindl, W; Zargar-Yaghubi, F; Wimmer, R

    2003-05-01

    Melamine-formaldehyde (MF) resin impregnation has shown considerable potential to improve a number of wood properties, such as surface hardness and weathering resistance. In this study, selected factors influencing the uptake of MF resin into the cell wall of softwood were studied. Using UV-microspectroscopy, it could be shown that water soluble MF diffused well into the secondary cell wall and the middle lamella. Concentrations as high as 24% (v/v) were achieved after an impregnation of 20 h. High cell wall moisture content, high water content of the resin used for impregnation, and low extractive content are factors which are favourable for MF resin uptake into the cell wall. For dry cell walls, solvent exchange drying improved resin uptake to a similar extent, as was the case when cell walls were soaked in water.

  7. Impregnation of softwood cell walls with melamine-formaldehyde resin.

    PubMed

    Gindl, W; Zargar-Yaghubi, F; Wimmer, R

    2003-05-01

    Melamine-formaldehyde (MF) resin impregnation has shown considerable potential to improve a number of wood properties, such as surface hardness and weathering resistance. In this study, selected factors influencing the uptake of MF resin into the cell wall of softwood were studied. Using UV-microspectroscopy, it could be shown that water soluble MF diffused well into the secondary cell wall and the middle lamella. Concentrations as high as 24% (v/v) were achieved after an impregnation of 20 h. High cell wall moisture content, high water content of the resin used for impregnation, and low extractive content are factors which are favourable for MF resin uptake into the cell wall. For dry cell walls, solvent exchange drying improved resin uptake to a similar extent, as was the case when cell walls were soaked in water. PMID:12507874

  8. Shared catalysis in virus entry and bacterial cell wall depolymerization

    PubMed Central

    Cohen, Daniel N.; Sham, Yuk Y.; Haugstad, Greg D.; Xiang, Ye; Rossmann, Michael G.; Anderson, Dwight L.; Popham, David L.

    2009-01-01

    Summary Bacterial virus entry and cell wall depolymerization require the breakdown of peptidoglycan (PG), the peptide cross-linked polysaccharide matrix that surrounds bacterial cells. Structural studies of lysostaphin, a PG lytic enzyme (autolysin), have suggested that residues in the active site facilitate hydrolysis, but a clear mechanism for this reaction has remained unsolved. The active site residues and a structural pattern of β-sheets are conserved among lysostaphin homologs (such as LytM of Staphylococcus aureus) and the C-terminal domain of gene product 13 (gp13), a protein at the tail tip of the Bacillus subtilis bacteriophage φ29. gp13 activity on PG and muropeptides was assayed using high performance liquid chromatography, and gp13 was found to be a D,D-endopeptidase that cleaved the peptide cross-link. Computational modeling of the B. subtilis cross-linked peptide into the gp13 active site suggested that Asp195 may facilitate scissile bond activation and His247 is oriented to mediate nucleophile generation. This is the first model of a Zn2+-metallopeptidase and its substrate to our knowledge. Residue Asp195 of gp13 was found to be critical for Zn2+-binding and catalysis by substitution mutagenesis with Ala or Cys. Circular dichroism and particle induced X-ray emission spectroscopy showed that the general protein folding and Zn2+-binding was maintained in the Cys mutant but reduced in the Ala mutant. These findings together support a model where the Asp195 and His247 in gp13 and homologous residues in the LytM and lysostaphin active sites facilitate hydrolysis of the peptide substrate that cross-links PG. Thus, these autolysins and phage entry enzymes have a shared chemical mechanism of action. PMID:19361422

  9. (The structure of pectins from cotton suspension culture cell walls)

    SciTech Connect

    Mort, A.

    1990-01-01

    We have made progress on several projects to do with determining the structure of pectins. These include: (1) Devising a new sensitive method to determine the degree of methyl esterification (DOM) of pectins; (2) solubilization of all of RGI from cotton cell walls; (3) solubilization of RGII from cotton cell walls; (4) characterization of xyloglucan from cotton cell walls; and (5) investigation giving an indication of a cross-link between extension and pectin.

  10. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  11. Cell wall degradation in the autolysis of filamentous fungi.

    PubMed

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  12. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis.

    PubMed

    Singh, P K; Kumar, A

    2016-01-01

    Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death, the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1 and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue damage in bacterial endophthalmitis. PMID:27551524

  13. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis

    PubMed Central

    Singh, P K; Kumar, A

    2016-01-01

    Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death, the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1 and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue damage in bacterial endophthalmitis. PMID:27551524

  14. Selective Laser Ablation of Methicillin-Resistant Staphylococcus Aureus with IgG Functionalized Multi-Walled Carbon Nanotubes.

    PubMed

    Mocan, Lucian; Ilie, Ioana; Tabaran, Flaviu A; Iancu, Cornel; Mosteanu, Ofelia; Pop, Teodora; Zdrehus, Claudiu; Bartos, Dana; Mocan, Teodora; Matea, Cristian

    2016-04-01

    Severe infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths each year. One of the main objectives of future antibiotic strategies is to develop new anti-infective agents, which would be highly effective and drug-resistant (antimicrobial resistance being currently exhibited by MRSA), using specific antibodies conjugated to thermally active nanomaterials such as NIR-responsive photothermal contrast agents. Multi-walled carbon nanotubes (MWCNTs) covalently functionalized with immunoglobulin G (IgG, an antagonist of Staphylococcal protein A-SpA, which is a MRSA membrane associated protein) were selectively delivered (at various concentrations and incubation times) into MRSA bacteria. Following treatment, cultures were irradiated using an 808 nm 2 w laser diode. The post irradiation death rate ranged from 39.6% (for 1 mg/L) to 79.2% (for 50 mg/L) at 60 seconds (p < 0.001), while at 30 minutes, the death rate increased from 45.2% (1 mg/L) to 85.72% (50 mg/L), p < 0.001. Irradiated MRSAs treated with MWCNTs alone (control) for 60 seconds and 30 minutes, at concentrations ranging from 1 mg/L to 50 mg/L, resulted in significantly lower death rates (7.1-34.1% for 60 seconds, 11.7-48.8% for 30 minutes). Using IgG molecules bound to MWCNTs, followed by laser irradiation, we obtained a very efficacious nanoshell-mediated laser therapy of individual MRSA agents providing highly localized killing effects for IgG-MWCNTs targeted bacteria.

  15. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

  16. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  17. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  18. Cell wall structure and biogenesis in Aspergillus species.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.

  19. Methamphetamine Alters the Antimicrobial Efficacy of Phagocytic Cells during Methicillin-Resistant Staphylococcus aureus Skin Infection

    PubMed Central

    Mihu, Mircea Radu; Roman-Sosa, Jessica; Varshney, Avanish K.; Eugenin, Eliseo A.; Shah, Bhavikkumar P.; Ham Lee, Hiu; Nguyen, Long N.; Guimaraes, Allan J.; Fries, Bettina C.; Nosanchuk, Joshua D.

    2015-01-01

    ABSTRACT Methamphetamine (METH) is a major drug of abuse in the United States and worldwide. Furthermore, Staphylococcus aureus infections and METH use are coemerging public health problems. S. aureus is the single most important bacterial pathogen in infections among injection drug users, with skin and soft tissue infections (SSTI) being extremely common. Notably, the incidence of SSTI, especially in drug users, is difficult to estimate because such infections are often self-treated. Although there is substantial information on the behavioral and cognitive defects caused by METH in drug users, there is a dearth of knowledge regarding its impact on bacterial infections and immunity. Therefore, we hypothesized that METH exacerbates S. aureus skin infection. Using a murine model of METH administration and wound infection, we demonstrated that METH reduces wound healing and facilitates host-mediated collagen degradation by increased expression and production of matrix metalloproteinase-2 (MMP-2). Additionally, we found that METH induces S. aureus biofilm formation and leads to detrimental effects on the functions of human and murine phagocytic cells, enhancing susceptibility to S. aureus infection. Our findings provide empirical evidence of the adverse impact of METH use on the antimicrobial efficacy of the cells that comprise innate immunity, the initial host response to combat microbial infection. PMID:26507236

  20. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells

    PubMed Central

    Lund, Lisbeth Drozd; Ingmer, Hanne; Frøkiær, Hanne

    2016-01-01

    Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis. PMID:26872029

  1. Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics

    NASA Astrophysics Data System (ADS)

    Kam, Royce; Levine, Herbert

    1997-11-01

    We model a growing cell in a calcium solution as an elastic shell on short time scales. The turgor pressure and elastic properties (Young's modulus, thickness) of the cell wall determine a stressed cell shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a slow (plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fusion of material and elongation. We analyze small perturbations to a circular cell and find an instability related to modulations of the wall thickness, leading to growth rates which peak at a finite wave number.

  2. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  3. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci.

    PubMed Central

    Skov Sørensen, U B; Blom, J; Birch-Andersen, A; Henrichsen, J

    1988-01-01

    The localization of pneumococcal capsular and cell wall antigens was examined by immunoelectron microscopy. C polysaccharide (C-Ps), a common component of all pneumococci, was uniformly distributed on both the inside and outside of the cell walls. The thickness of the C-Ps varied with the strain. Encapsulated strains were covered by varied amounts of capsular polysaccharide concealing the C-Ps of the bacteria so as to render it inaccessible to anti-C-Ps antibodies. In addition to C-Ps, protein antigens were demonstrable on the surface of nonencapsulated pneumococci. The proteins were not masked by the C-Ps layer. An extra layer on the cell walls was conspicuous on electron micrographs of both rough and encapsulated pneumococci. The nature of this extra layer has not been disclosed. F antigen, another common antigen of pneumococci, was uniformly distributed on the surface of the plasma membranes. During the course of the experimental work a reproducible method of gold labeling immunoglobulins was developed. Images PMID:3397179

  4. Abnormal humoral immune response to Staphylococcus aureus in patients with Staphylococcus aureus hyper IgE syndrome.

    PubMed

    Matter, L; Wilhelm, J A; Roth, F; Schopfer, K

    1986-11-01

    Patients with the S. aureus hyper IgE syndrome (SAHIGES) have an abnormal IgE response to cell wall and surface antigens of S. aureus. In this paper we describe the detection of IgE antibodies to soluble antigens of staphylococci (S. aureus and S. epidermidis) and qualitative abnormalities of the IgG response to soluble S. aureus antigens in patients with SAHIGES. These findings may be of pathogenetic importance and help to delineate SAHIGES from other diseases. PMID:3815899

  5. Genes and plant cell walls: a difficult relationship.

    PubMed

    Wojtaszek, P

    2000-08-01

    Chemical information, carried by genes, is one of several types of information important for the functioning of cells and organisms. While genes govern the two-dimensional flow of information, the cell walls are at the basis of a structural, three-dimensional framework of plant form and growth. Recent data show the walls to be a cellular 'organelle' undergoing dynamic changes in response to a plethora of stimuli. In this review, an integrated approach, rooted in the organismal perspective, is taken to consider the role of cell walls in the biology of plants. First, the complexity of molecular and biochemical events leading to the biosynthesis of wall components is described within the framework of its spatial cellular organisation, and the major regulatory check-points are characterised. Second, cell walls form a structural and functional continuum within the whole plant and thus could be defined in relation to the protoplasts that produce them and in relation to the plant itself. Model systems of suspension-cultured cells are used to reveal the existence of a bidirectional exchange of information between the protoplast and its walls. The 'plasticity' of plant cell reactions, seen in defence responses or in changes in wall composition, to e.g. stress, plant growth regulators or chemical agents as well as the role of cell walls and/or wall components in somatic embryogenesis are also discussed. Third, being a continuum within the plant body, the walls fulfil vital functions in plant growth and development. The examples characterised include the determination of cellular polarity and the plane of cell division, cytokinesis, and the role of plasmodesmata in cell-to-cell communication and the formation of functional symplastic domains. Fourth, the exocellular control of morphogenetic processes is described and the potential of cell walls as determinants or reservoirs of positional information is indicated. Particular emphasis is put on the (bio)chemical signals coming

  6. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  7. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  8. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells

    PubMed Central

    Johansson, Maria A.; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  9. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    PubMed

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.

  10. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    PubMed

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  11. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Monnappa, Ajay K.; Dwidar, Mohammed; Seo, Jeong Kon; Hur, Jin-Hoe; Mitchell, Robert J.

    2014-01-01

    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.

  12. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    PubMed Central

    Monnappa, Ajay K.; Dwidar, Mohammed; Seo, Jeong Kon; Hur, Jin-Hoe; Mitchell, Robert J.

    2014-01-01

    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence. PMID:24448451

  13. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  14. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  15. 7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL BASEMENT OFFICE AREA. LOOKING SOUTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  16. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  17. Roemerine Improves the Survival Rate of Septicemic BALB/c Mice by Increasing the Cell Membrane Permeability of Staphylococcus aureus

    PubMed Central

    He, Gonghao; Wang, Chengying; Ma, Chaoyu; Luo, Xiaoxing; Hou, Zheng; Xu, Guili

    2015-01-01

    Staphylococcus aureus is one of the most frequently occurring hospital- and community-associated pathogenic bacteria featuring high morbidity and mortality. The occurrence of methicillin-resistant S. aureus (MRSA) has increased persistently over the years. Therefore, developing novel anti-MRSA drugs to circumvent drug resistance of S. aureus is highly important. Roemerine, an aporphine alkaloid, has previously been reported to exhibit antibacterial activity. The present study aimed to investigate whether roemerine can maintain these activities against S.aureus in vivo and further explore the underlying mechanism. We found that roemerine is effective in vitro against four S. aureus strains as well as in vivo against MRSA insepticemic BALB/c mice. Furthermore, roemerine was found to increase cell membrane permeability in a concentration-dependent manner. These findings suggest that roemerine may be developed as a promising compound for treating S. aureus, especially methicillin-resistant strains of these bacteria. PMID:26606133

  18. On-off switches for secondary cell wall biosynthesis.

    PubMed

    Wang, Huan-Zhong; Dixon, Richard A

    2012-03-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production. PMID:22138968

  19. Signaling role of oligogalacturonides derived during cell wall degradation

    PubMed Central

    Vallarino, José G.; Osorio, Sonia

    2012-01-01

    In addition to the role of the cell wall as a physical barrier against pathogens, some of its constituents, such as pectin-derived oligogalacturonides (OGAs) are essential components to trigger signaling pathways that induce rapid defense responses. Many pathogens directly penetrate the cell wall to access water and nutrients of the plant protoplast, and a rigid cell wall can fend off pathogen attack by forming an impenetrable physical barrier. Thus, cell wall integrity sensing is one mechanism by which plants may detect pathogen attack. Moreover, when the plant-pathogen interaction occurred, OGAs released during cell wall modification can trigger plant defense (e.g., production of reactive oxygen species, production of anti-microbial metabolites and synthesis of pathogenesis-related proteins). This review documents and discusses studies suggesting that OGAs play a dual signaling role during pathogen attack by inducing defense responses and plant architecture adjustment. PMID:22918501

  20. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  1. Collenchyma: a versatile mechanical tissue with dynamic cell walls

    PubMed Central

    Leroux, Olivier

    2012-01-01

    Background Collenchyma has remained in the shadow of commercially exploited mechanical tissues such as wood and fibres, and therefore has received little attention since it was first described. However, collenchyma is highly dynamic, especially compared with sclerenchyma. It is the main supporting tissue of growing organs with walls thickening during and after elongation. In older organs, collenchyma may become more rigid due to changes in cell wall composition or may undergo sclerification through lignification of newly deposited cell wall material. While much is known about the systematic and organographic distribution of collenchyma, there is rather less information regarding the molecular architecture and properties of its cell walls. Scope and conclusions This review summarizes several aspects that have not previously been extensively discussed including the origin of the term ‘collenchyma’ and the history of its typology. As the cell walls of collenchyma largely determine the dynamic characteristics of this tissue, I summarize the current state of knowledge regarding their structure and molecular composition. Unfortunately, to date, detailed studies specifically focusing on collenchyma cell walls have not been undertaken. However, generating a more detailed understanding of the structural and compositional modifications associated with the transition from plastic to elastic collenchyma cell wall properties is likely to provide significant insights into how specific configurations of cell wall polymers result in specific functional properties. This approach, focusing on architecture and functional properties, is likely to provide improved clarity on the controversial definition of collenchyma. PMID:22933416

  2. Staphylococcus aureus-Induced G2/M Phase Transition Delay in Host Epithelial Cells Increases Bacterial Infective Efficiency

    PubMed Central

    Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407

  3. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    PubMed

    Alekseeva, Ludmila; Rault, Lucie; Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  4. Enhanced Monocyte Response and Decreased Central Memory T Cells in Children with Invasive Staphylococcus aureus Infections

    PubMed Central

    Ardura, Monica I.; Banchereau, Romain; Mejias, Asuncion; Di Pucchio, Tiziana; Glaser, Casey; Allantaz, Florence; Pascual, Virginia; Banchereau, Jacques; Chaussabel, Damien; Ramilo, Octavio

    2009-01-01

    Staphylococcus aureus has emerged as a significant pathogen causing severe invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased numbers of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections. PMID:19424507

  5. Structure of plant cell walls: XIX. Isolation and characterization of wall polysaccharides from suspension-cultured Douglas fir cells

    SciTech Connect

    Thomas, J.R.; McNeil, M.; Darvill, A.G.; Albersheim, P.

    1987-03-01

    The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls from 1.0 M LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-..cap alpha..-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-..cap alpha..-1,4-polygalacturonase-treated walls by treatment with an endo-..beta..-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-..beta..-1,4-glucanase-treated walls by 0.5 N NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 25% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall.

  6. Multinet growth in the cell wall of Nitella.

    PubMed

    GREEN, P B

    1960-04-01

    Plant cell walls typically consist of crystalline microfibrils embedded in a non-crystalline matrix. The growing cylindrical Nitella cell wall contains microfibrils predominantly oriented in the transverse direction. The present study has shown that the transversely oriented microfibrils are primarily located toward the inner surface of the wall and that, proceeding outward from the inner surface, the wall contains microfibrils of ever poorer transverse orientation, the fibrils being randomly or axially arranged in the outermost regions of the wall. Because cell expansion is primarily in the axial direction, the texture of the fibrillar elements of the wall can be explained by assuming that new microfibrils of transverse orientation are added only at the inner surface of the wall and that they become passively reoriented to the axial direction during cell elongation. The described structure corresponds to that proposed by Roelofsen and Houwink for cells showing "multi-net growth." The demonstration of a continuous gradient of microfibrillar arrangement and its partial quantitative description was accomplished by the analysis, with the polarized light and interference microscopes, of wedge-like torn edges of developing cell walls which were 1 micron or less in optical thickness.

  7. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  8. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci

    PubMed Central

    de Oliveira, Adilson; Cataneli Pereira, Valéria; Pinheiro, Luiza; Moraes Riboli, Danilo Flávio; Benini Martins, Katheryne; Ribeiro de Souza da Cunha, Maria de Lourdes

    2016-01-01

    The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species

  9. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci.

    PubMed

    de Oliveira, Adilson; Cataneli Pereira, Valéria; Pinheiro, Luiza; Moraes Riboli, Danilo Flávio; Benini Martins, Katheryne; Ribeiro de Souza da Cunha, Maria de Lourdes

    2016-09-01

    The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species

  10. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci.

    PubMed

    de Oliveira, Adilson; Cataneli Pereira, Valéria; Pinheiro, Luiza; Moraes Riboli, Danilo Flávio; Benini Martins, Katheryne; Ribeiro de Souza da Cunha, Maria de Lourdes

    2016-01-01

    The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species

  11. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  12. The plant cell wall: a dynamic barrier against pathogen invasion.

    PubMed

    Underwood, William

    2012-01-01

    Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area.

  13. A Fungal Endoglucanase with Plant Cell Wall Extension Activity1

    PubMed Central

    Yuan, Sheng; Wu, Yajun; Cosgrove, Daniel J.

    2001-01-01

    We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-β-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t0, a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1→3,1→4)-β-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology. PMID:11553760

  14. Fungal Cell Wall Septation and Cytokinesis Are Inhibited by Bleomycins

    PubMed Central

    Moore, Carol W.; McKoy, Judith; Del Valle, Robert; Armstrong, Donald; Bernard, Edward M.; Katz, Norman; Gordon, Ronald E.

    2003-01-01

    When the essential and distinctive cell walls of either pathogenic or nonpathogenic fungi break, cytoplasmic membranes rupture and fungi die. This fungicidal activity was discovered previously on nonproliferating Saccharomyces cerevisiae cells treated briefly with the oxidative tool and anticancer drug family of bleomycins. The present studies investigated effects of bleomycin on growing fungal organisms. These included the medically important Aspergillus fumigatus and Cryptococcus neoformans, as well as the emerging human pathogen and fungal model, S. cerevisiae. Bleomycin had its highest potency against A. fumigatus. Scanning electron microscopy and thin-section transmission electron microscopy were used to study morphological growth characteristics. Killing and growth inhibition were also measured. Long, thin, and segmented hyphae were observed when A. fumigatus was grown without bleomycin but were never observed when the mold was grown with the drug. Bleomycin arrested conidial germination, hyphal development, and the progression and completion of cell wall septation. Similarly, the drug inhibited the construction of yeast cell wall septa, preventing cytokinesis and progression in the cell division cycle of S. cerevisiae. Even when cytoplasms of mother and daughter cells separated, septation and cell division did not necessarily occur. Bizarre cell configurations, abnormally thickened cell walls at mother-daughter necks, abnormal polarized growth, large undivided cells, fragmented cells, and empty cell ghosts were also produced. This is the first report of a fungicidal agent that arrests fungal growth and development, septum formation, and cytokinesis and that also preferentially localizes to cell walls and alters isolated cell walls as well as intact cell walls on nongrowing cells. PMID:14506042

  15. Citrus-derived oil inhibits Staphylococcus aureus growth and alters its interactions with bovine mammary cells.

    PubMed

    Federman, C; Joo, J; Almario, J A; Salaheen, S; Biswas, D

    2016-05-01

    This experiment examined the effects of cold-pressed, terpeneless citrus-derived oil (CDO) on growth of Staphylococcus aureus, which a major cause of contagious bovine mastitis, and invasion of bovine mammary cells (MAC-T). To determine minimum inhibitory concentration, we used the broth dilution method, using CDO concentrations range from 0.0125 to 0.4% with 2-fold dilutions. Growth inhibition was examined by adding 0.00, 0.05, 0.025, 0.0125, and 0.00625% CDO to 10(5) cfu/mL S. aureus in nutrient broth and enumerating colonies after serial dilution. In a 96-well plate, S. aureus (10(7) cfu/mL) was allowed to form a biofilm, treated with 0, 0.025, 0.5, or 1% CDO, and then was measured using a spectrophotometer. Cytotoxic effect on immortalized MAC-T cells was also examined at various concentrations of CDO using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We observed that the minimum inhibitory concentration of CDO to inhibit the growth of S. aureus in vitro was 0.025% CDO. A time kill curve for CDO action on S. aureus over 4h was generated. The CDO completely eliminated S. aureus after 3h of incubation at a concentration of 0.25%, or after 2h of incubation at concentrations of 0.05%. It was also observed that CDO had no effect on preformed biofilms except at a concentration of 0.05%, in which a significant reduction in the measured absorbance was noted. In addition, the association and invasion of S. aureus to MAC-T cells were significantly inhibited after 1h of treatment with CDO. Citrus-derived oil was also able to increase cellular proliferation of MAC-T cells at concentrations up 0.05% and had no effect at a concentration of 0.1% after 1 h. Our data suggests that CDO should be considered for further research as a preventive and therapeutic against bovine mastitis. PMID:26947297

  16. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.

  17. Dynamic microtubules and the texture of plant cell walls.

    PubMed

    Lloyd, Clive

    2011-01-01

    The relationship between microtubules and cell-wall texture has had a fitful history in which progress in one area has not been matched by progress in the other. For example, the idea that wall texture arises entirely from self-assembly, independently of microtubules, originated with electron microscopic analyses of fixed cells that gave no clue to the ability of microtubules to reorganize. Since then, live-cell studies have established the surprising dynamicity of plant microtubules involving collisions, changes in angle, parallelization, and rotation of microtubule tracks. Combined with proof that cellulose synthases do track along shifting microtubules, this offers more realistic models for the dynamic influence of microtubules on wall texture than could have been imagined in the electron microscopic era-the era from which most ideas on wall texture originate. This review revisits the classical literature on wall organization from the vantage point of current knowledge of microtubule dynamics.

  18. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  19. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  20. Measurement of pectin methylation in plant cell walls

    SciTech Connect

    McFeeters, R.F.; Armstrong, S.A.

    1984-01-01

    A procedure was developed to measure the degree of pectin methylation in small samples of isolated cell walls from nonlignified plant tissues or pectin solutions. Galacturonic acid was determined colorimetrically with the 3,5-dimethylphenol reagent. Methylation was measured by base hydrolysis of galacturonic acid methyl esters, followed by gas chromatographic determination of released methanol. Estimates of the precision of analysis of pectin and cell wall samples were made. The coefficient of variation for estimates of the pectin esterification in cell walls isolated from 10-g samples of cucumber tissue ranged from 7.7 to 13.2%.

  1. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  2. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  3. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  4. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  5. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  6. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  7. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  8. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions.

    PubMed

    Geiger, Tobias; Kästle, Benjamin; Gratani, Fabio Lino; Goerke, Christiane; Wolz, Christiane

    2014-02-01

    The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.

  9. Lactic acid bacteria protect human intestinal epithelial cells from Staphylococcus aureus and Pseudomonas aeruginosa infections.

    PubMed

    Affhan, S; Dachang, W; Xin, Y; Shang, D

    2015-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are opportunistic pathogens that cause nosocomial and food-borne infections. They promote intestinal diseases. Gastrointestinal colonization by S. aureus and P. aeruginosa has rarely been researched. These organisms spread to extra gastrointestinal niches, resulting in increasingly progressive infections. Lactic acid bacteria are Gram-positive bacteria that produce lactic acid as the major end-product of carbohydrate fermentation. These bacteria inhibit pathogen colonization and modulate the host immune response. This study aimed to investigate the effects of Lactobacillus acidophilus and Lactobacillus rhamnosus on enteric infections caused by the paradigmatic human pathogens S. aureus ATCC25923 and P. aeruginosa ATCC27853. The effect of whole cells and neutralized cell-free supernatant (CFS) of the lactobacilli on LoVo human carcinoma enterocyte (ATCC CCL-229) infection was analyzed by co-exposure, pre-exposure, and post-exposure studies. Simultaneous application of whole cells and CFS of the lactobacilli significantly eradicated enterocyte infection (P < 0.05); however, this effect was not seen when the whole cells and CFS were added after or prior to the infection (P > 0.05). This result could be attributed to interference by extracellular polymeric substances and cell surface hydrophobicity, which resulted in the development of a pathogen that did not form colonies. Furthermore, results of the plate count and LIVE/ DEAD BacLight bacterial viability staining attributed this inhibition to a non-bacteriocin-like substance, which acted independently of organic acid and H2O2 production. Based on these results, the cell-free supernatant derived from lactobacilli was concluded to restrain the development of S. aureus and P. aeruginosa enteric infections. PMID:26681052

  10. Structural characteristics of developing Nitella internodal cell walls.

    PubMed

    GREEN, P B

    1958-09-25

    The Nilella intermodal cell is formed by a division of the segment cell, the latter being a direct derivative of the shoot apical cell. The internodal cell is remarkable in that it elongates from an initial length of about 20 microns to a mature length of about 60 millimeters. The structures of the apical and segment cells, and the internodal cells in all stages of development were examined with the techniques of interference, polarization, and electron microscopy. The apical and segment cells were found to be isotropic. The upper part of the segment cell, destined to form a node, shows a curious pitted structure that was characteristic of certain node structures. The lower part of the segment cell, destined to become an internodal cell, shows a vague transverse arrangement of fibrils at the inner wall surface. The internodal cells, from the time they are first formed, show negative birefringence and a transverse arrangement of microfibrils at the inner wall surface. The elongation of the internodal cell is characterized by a rise, dip, and rise in both the optical thickness and retardation of the cell wall. The dip in both these variables coincides with the attainment of the maximum relative elongation rate. After the cessation of elongation, wall deposition continues, but the fibrils at .the inner surface of the wall are now seen to occur in fields of nearly parallel microfibrils. These fields, with varying fibrillar directions, may partly overlap each other or may merge with one another. Unlike the growing wall, this wall which is deposited after the end of elongation is isotropic.

  11. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    PubMed

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  12. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  13. Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells

    PubMed Central

    Zhang, Juan; Wang, Lei; Bai, Xiao-Hui; Zhang, Shi-Jie; Ren, Yan-Min; Li, Na; Zhang, Yong-Hui; Zhang, Zhiyong; Gong, Qingguo; Mei, Yide; Xue, Ting; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus. PMID:24901708

  14. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  15. Effects of niacin on Staphylococcus aureus internalization into bovine mammary epithelial cells by modulating NF-κB activation.

    PubMed

    Wei, Zhengkai; Fu, Yunhe; Zhou, Ershun; Tian, Yuan; Yao, Minjun; Li, Yimeng; Yang, Zhengtao; Cao, Yongguo

    2014-01-01

    Niacin is a precursor of coenzymes NAD and NADP and plays a critical role in electron transfer during the metabolic process. In addition to its nutrimental function, niacin has long been used for the treatment of lipid disorders and cardiovascular disease. However, the effect of niacin on Staphylococcus aureus (S. aureus) internalization into bovine mammary epithelial cells (bMEC) remains unclear. Here we sought to examine the effect of niacin on S. aureus internalization into bovine mammary epithelial cells (bMEC) and to investigate the potential mechanism. In this study, the growth of S. aureus supplemented with niacin (0.5-2 mM) was monitored turbidimetrically at 600 nm for 24 h and cell viability was measured by MTT assay. Gentamicin protection assay was carried out to determine the effect of niacin on S. aureus internalization into bMEC. To determine the potential mechanism, tracheal antimicrobial peptide (TAP) and β-defensin (BNBD5) expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The activation of nuclear factor-kappa B (NF-κB) was determined by Western blotting. The results showed that niacin (0.5-2 mM) did not affect S. aureus growth and bMEC viability, whereas it inhibits S. aureus internalization ranging from 13% to 42% and down-regulated the mRNA expression of TAP and BNBD5 compared to the control group. No exactly relationship was discovered between S. aureus internalization into bMEC and antimicrobial peptide expression, while niacin inhibited S. aureus-induced NF-κB activation in a dose manner. These dates suggest that inhibiting NF-κB activation may be the potential mechanism of niacin on modulating S. aureus internalization into bMEC.

  16. Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes.

    PubMed

    Blättner, Sebastian; Das, Sudip; Paprotka, Kerstin; Eilers, Ursula; Krischke, Markus; Kretschmer, Dorothee; Remmele, Christian W; Dittrich, Marcus; Müller, Tobias; Schuelein-Voelk, Christina; Hertlein, Tobias; Mueller, Martin J; Huettel, Bruno; Reinhardt, Richard; Ohlsen, Knut; Rudel, Thomas; Fraunholz, Martin J

    2016-09-01

    Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. PMID:27632173

  17. Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes

    PubMed Central

    Blättner, Sebastian; Das, Sudip; Paprotka, Kerstin; Eilers, Ursula; Krischke, Markus; Kretschmer, Dorothee; Remmele, Christian W.; Dittrich, Marcus; Müller, Tobias; Schuelein-Voelk, Christina; Hertlein, Tobias; Mueller, Martin J.; Huettel, Bruno; Reinhardt, Richard; Ohlsen, Knut; Rudel, Thomas

    2016-01-01

    Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. PMID:27632173

  18. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.

    PubMed

    Reichmann, Nathalie T; Cassona, Carolina Picarra; Gründling, Angelika

    2013-09-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.

  19. Role of the Tet38 Efflux Pump in Staphylococcus aureus Internalization and Survival in Epithelial Cells

    PubMed Central

    Truong-Bolduc, Q. C.; Bolduc, G. R.; Medeiros, H.; Vyas, J. M.; Wang, Y.

    2015-01-01

    We previously identified the protein Tet38 as a chromosomally encoded efflux pump of Staphylococcus aureus that confers resistance to tetracycline and certain unsaturated fatty acids. Tet38 also contributes to mouse skin colonization. In this study, we discovered a novel regulator of tet38, named tetracycline regulator 21 (TetR21), that bound specifically to the tet38 promoter and repressed pump expression. A ΔtetR21 mutant showed a 5-fold increase in tet38 transcripts and an 8-fold increase in resistance to tetracycline and fatty acids. The global regulator MgrA bound to the tetR21 promoter and indirectly repressed the expression of tet38. To further assess the full role of Tet38 in S. aureus adaptability, we tested its effect on host cell invasion using A549 (lung) and HMEC-1 (heart) cell lines. We used S. aureus RN6390, its Δtet38, ΔtetR21, and ΔmgrA mutants, and a Δtet38 ΔtetR21 double mutant. After 2 h of contact, the Δtet38 mutant was internalized in 6-fold-lower numbers than RN6390 in A549 and HMEC-1 cells, and the ΔtetR21 mutant was internalized in 2-fold-higher numbers than RN6390. A slight increase of 1.5-fold in internalization was found for the ΔmgrA mutant. The growth patterns of RN6390 and the ΔmgrA and ΔtetR21 mutants within A549 cells were similar, while no growth was observed for the Δtet38 mutant. These data indicate that the Tet38 efflux pump is regulated by TetR21 and contributes to the ability of S. aureus to internalize and replicate within epithelial cells. PMID:26324534

  20. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  1. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  2. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products.

  3. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level.

  4. Generation of ramoplanin-resistant Staphylococcus aureus.

    PubMed

    Schmidt, John W; Greenough, Adrienne; Burns, Michelle; Luteran, Andrea E; McCafferty, Dewey G

    2010-09-01

    Ramoplanin is a lipoglycodepsipeptide antimicrobial active against clinically important Gram-positive bacteria including methicillin-resistant Staphylococcus aureus. To proactively examine ramoplanin resistance, we subjected S. aureus NCTC 8325-4 to serial passage in the presence of increasing concentrations of ramoplanin, generating the markedly resistant strain RRSA16. Susceptibility testing of RRSA16 revealed the unanticipated acquisition of cross-resistance to vancomycin and nisin. RRSA16 displayed phenotypes, including a thickened cell wall and reduced susceptibility to Triton X-100-induced autolysis, which are associated with vancomycin intermediate-resistant S. aureus strains. Passage of RRSA16 for 18 days in a drug-free medium yielded strain R16-18d with restored antibiotic susceptibility. The RRSA16 isolate may be used to identify the genetic and biochemical basis for ramoplanin resistance and to further our understanding of the evolution of antibiotic cross-resistance mechanisms in S. aureus. PMID:20659164

  5. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  6. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.

  7. TLR2 mediates phagocytosis and autophagy through JNK signaling pathway in Staphylococcus aureus-stimulated RAW264.7 cells.

    PubMed

    Fang, Lei; Wu, Hui-Mei; Ding, Pei-Shan; Liu, Rong-Yu

    2014-04-01

    Toll-like receptor 2 (TLR2) is involved in phagocytosis and autophagy to enhance host innate immune response to bacterial infection. TLR2 has been reported to participate in the recognition of Staphylococcus aureus (S. aureus). However, the role of TLR2 in phagocytosis and autophagy in S. aureus-stimulated macrophages and the underlying mechanisms as yet remain unclear. In the present study, stimulation of mouse macrophage cell line RAW264.7 with S. aureus activated multiple signaling pathways including mitogen-activated protein kinases (MAPKs), myeloid differentiation factor 88 (MyD88), phosphatidylinositide 3-kinase (PI3K) and Rac1 and triggered autophagy process. Knockdown of TLR2 by siRNA significantly reduced phagocytosis and autophagy of macrophages upon S. aureus infection. Interestingly, TLR2 siRNA markedly attenuated S. aureus-induced phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 or extracellular regulated protein kinase (ERK) in macrophages. Similarly, SP600125, a JNK inhibitor, also down-regulated phagocytosis and autophagy in S. aureus-stimulated macrophages. Furthermore, TLR2 siRNA and SP600125 simultaneous treatment showed similar phagocytosis and autophagy compared to that in TLR2 siRNA treatment alone. Collectively, our results indicate that TLR2 may be critical for phagocytosis and autophagy through JNK signaling pathway, and provide an underlying mechanistic link between innate immune receptor and induction of phagocytosis and autophagy in S. aureus-stimulated macrophages.

  8. The Phosphoinositide-3-Kinase–Akt Signaling Pathway Is Important for Staphylococcus aureus Internalization by Endothelial Cells

    PubMed Central

    Oviedo-Boyso, Javier; Cortés-Vieyra, Ricarda; Huante-Mendoza, Alejandro; Yu, Hong B.; Valdez-Alarcón, Juan J.; Bravo-Patiño, Alejandro; Cajero-Juárez, Marcos; Finlay, B. Brett; Baizabal-Aguirre, Víctor M.

    2011-01-01

    Internalization of Staphylococcus aureus in bovine endothelial cells (BEC) is increased by tumor necrosis factor alpha stimulation and NF-κB activation. Because the phosphoinositide-3-kinase (PI3K)–Akt signaling pathway also modulates NF-κB activity, we considered whether the internalization of S. aureus by BEC is associated with the activity of PI3K and Akt. We found a time- and multiplicity of infection-dependent phosphorylation of Akt on Ser473 in BEC infected with S. aureus. This phosphorylation was inhibited by LY294002 (LY), indicating the participation of PI3K. Inhibition of either PI3K with LY or wortmannin, or Akt with SH-5, strongly reduced the internalization of S. aureus. Transfection of BEC with a dominant-negative form of the Akt gene significantly decreased S. aureus internalization, whereas transfection with the constitutively active mutant increased the number of internalized bacterium. Inhibition of PDK1 activity with OSU-03012 did not affect the level of S. aureus internalization, demonstrating that phosphorylation of Akt on Thr308 is not important for this process. Compared to the untreated control, the adherence of S. aureus to the surface of BEC was unaltered when cells were transfected or incubated with the pharmacological inhibitors. Furthermore, Akt activation by internalized S. aureus triggered a time-dependent phosphorylation of glycogen synthase kinase-3α (GSK-3α) on Ser21 and GSK-3β on Ser9 that was partially inhibited with SH-5. Finally, treatment of BEC with LY prior to S. aureus infection inhibited the NF-κB p65 subunit phosphorylation on Ser536, indicating the involvement of PI3K. These results suggest that PI3K-Akt activity is important for the internalization of S. aureus and phosphorylation of GSK-3α, GSK-3β, and NF-κB. PMID:21844240

  9. A thin layer electrochemical cell for disinfection of water contaminated with Staphylococcus aureus

    PubMed Central

    Gusmão, Isabel C. P.; Moraes, Peterson B.; Bidoia, Ederio D.

    2009-01-01

    A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm-2 (3 A) or 25 mA cm-2 (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloride-free to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h-1. At 500 L h-1 and 75 mA cm-2 the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100% inactivation for S. aureus was observed at 5.6 V and 75 mA cm-2 after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water. PMID:24031410

  10. A thin layer electrochemical cell for disinfection of water contaminated with Staphylococcus aureus.

    PubMed

    Gusmão, Isabel C P; Moraes, Peterson B; Bidoia, Ederio D

    2009-07-01

    A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm(-2) (3 A) or 25 mA cm(-2) (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloride-free to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h(-1). At 500 L h(-1) and 75 mA cm(-2) the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100% inactivation for S. aureus was observed at 5.6 V and 75 mA cm(-2) after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water. PMID:24031410

  11. Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds

    PubMed Central

    Herman-Bausier, Philippe; El-Kirat-Chatel, Sofiane; Foster, Timothy J.

    2015-01-01

    ABSTRACT Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet established. Here, we use single-cell and single-molecule atomic force microscopy to unravel the mechanism by which FnBPA mediates intercellular adhesion. We show that FnBPA is responsible for specific cell-cell interactions that involve the FnBPA A domain and cause microscale cell aggregation. We demonstrate that the strength of FnBPA-mediated adhesion originates from multiple low-affinity homophilic interactions between FnBPA A domains on neighboring cells. Low-affinity binding by means of FnBPA may be important for biofilm dynamics. These results provide a molecular basis for the ability of FnBPA to promote cell accumulation during S. aureus biofilm formation. We speculate that homophilic interactions may represent a generic strategy among staphylococcal cell surface proteins for guiding intercellular adhesion. As biofilm formation by MRSA strains depends on proteins rather than polysaccharides, our approach offers exciting prospects for the design of drugs or vaccines to inhibit protein-dependent intercellular interactions in MRSA biofilms. PMID:26015495

  12. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions.

    PubMed

    Münch, Daniela; Müller, Anna; Schneider, Tanja; Kohl, Bastian; Wenzel, Michaela; Bandow, Julia Elisabeth; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano; Wimmer, Reinhard; Sahl, Hans-Georg

    2014-04-25

    The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell. PMID:24627484

  13. The Permeability of Plant Cell Walls as Measured by Gel Filtration Chromatography

    NASA Astrophysics Data System (ADS)

    Tepeer, Mark; Taylor, Iain E. P.

    1981-08-01

    The permeability of plant cell walls to macromolecules may limit the ability of enzymes to alter the biochemical and physical properties of the wall. Proteins of molecular weight up to 60,000 can permeate a substantial portion of the cell wall. Measurements of wall permeability in which cells are exposed to hypertonic solutions of macromolecules may seriously underestimate wall permeability.

  14. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  15. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  16. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls.

    PubMed

    Smith, B G; Harris, P J

    2001-03-01

    The ester-linkage of ferulic acid (mainly E) to polysaccharides in primary cell walls of pineapple fruit (Ananas comosus) (Bromeliaceae) was investigated by treating a cell-wall preparation with 'Driselase' which contains a mixture of endo- and exo-glycanases, but no hydroxycinnamoyl esterase activity. The most abundant feruloyl oligosaccharide released was O-[5-O-(E-feruloyl)-alpha-L-arabinofuranosyl](1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX). This indicated that the ferulic acid is ester-linked to glucuronoarabinoxylans in the same way as in the primary walls of grasses and cereals (Poaceae). Glucuronoarabinoxylans are the major non-cellulosic polysaccharides in the pineapple cell walls.

  17. Live cell imaging of the cytoskeleton and cell wall enzymes in plant cells.

    PubMed

    Sampathkumar, Arun; Wightman, Raymond

    2015-01-01

    The use of live imaging techniques to visualize the dynamic changes and interactions within plant cells has given us detailed information on the function and organization of the cytoskeleton and cell wall associated proteins. This information has grown with the constant improvement in imaging hardware and molecular tools. In this chapter, we describe the procedure for the preparation and live visualization of fluorescent protein fusions associated with the cytoskeleton and the cell wall in Arabidopsis. PMID:25408450

  18. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  19. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  20. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  1. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis. PMID:22864200

  2. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  3. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  4. SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription

    PubMed Central

    Windham, Ian H.; Chaudhari, Sujata S.; Bose, Jeffrey L.; Thomas, Vinai C.

    2016-01-01

    ABSTRACT The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cid

  5. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  6. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  7. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  8. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus.

    PubMed

    Yu, Simiao; Zhang, Hua; Yao, Di; Liu, Wei; Wang, Xintong; Chen, Xiaoting; Wei, Yuhua; Zhang, Zhenghai; Wang, Jiannan; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Cui, Yudong

    2015-12-01

    Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.

  9. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  10. COAGULASE-NEGATIVE MUTANTS OF STAPHYLOCOCCUS AUREUS: GENETIC STUDIES.

    PubMed

    KORMAN, R Z

    1963-09-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Coagulase-negative mutants of Staphylococcus aureus: genetic studies. J. Bacteriol. 86:363-369. 1963.-The behavior in mutation and transduction of pleiotropic coagulase-negative mutants of Staphylococcus aureus PS 53 (NCTC 8511) was analyzed. Coagulase-positive colonies were recovered, as well as a novel phenotype resistant to some cell-wall inhibitors and differing in sugar fermentation pattern. The hypothesis that the coagulase-negative strains differ from the original propagating strain in the structure or organization of the cell wall is discussed.

  11. Characterization of rhamnogalacturonan I from cotton suspension culture cell walls

    SciTech Connect

    Not Available

    1991-01-01

    Progress has been made on the project of determining the structure of pectins. From recent progress, a covalent crosslink between rhamnogalacturonan I (RGI) and xyloglucan was hypothesized and a structure for RGI was proposed. The development of a method to determine the distribution of methyl esterification with pectins also progressed. The degree of methyl esterification of cotton cotyledon cell walls was compared to that of cotton suspension cultures. Cotyledon wall were found to have {approximately}55% of the galacturonic acid esterified whereas suspension culture wall were only about 14% methyl esterified. 10 refs. (SM)

  12. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    PubMed

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  13. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    PubMed

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation.

  14. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.

  15. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions. PMID:12223827

  16. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  17. Force and compliance: rethinking morphogenesis in walled cells.

    PubMed

    Harold, Franklin M

    2002-12-01

    In the turgid cells of plants, protists, fungi, and bacteria, walls resist swelling; they also confer shape on the cell. These two functions are not unrelated: cell physiologists have generally agreed that morphogenesis turns on the deformation of existing wall and the deposition of new wall, while turgor pressure produces the work of expansion. In 1990, I summed up consensus in a phrase: "localized compliance with the global force of turgor pressure." My purpose here is to survey the impact of recent discoveries on the traditional conceptual framework. Topics include the recognition of a cytoskeleton in bacteria; the tide of information and insight about budding in yeast; the role of the Spitzenkörper in hyphal extension; calcium ions and actin dynamics in shaping a tip; and the interplay of protons, expansins and cellulose fibrils in cells of higher plants.

  18. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    SciTech Connect

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly.

  19. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields.

    PubMed

    Zituni, Dunya; Schütt-Gerowitt, Heidi; Kopp, Marion; Krönke, Martin; Addicks, Klaus; Hoffmann, Christian; Hellmich, Martin; Faber, Franz; Niedermeier, Wilhelm

    2014-03-01

    Electrical potentials up to 800 mV can be observed between different metallic dental restorations. These potentials produce fields in the mouth that may interfere with microbial communities. The present study focuses on the impact of different electric field strengths (EFS) on the growth of Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) in vitro. Cultures of S. aureus and E. coli in fluid and gel medium were exposed to different EFS. Effects were determined by calculation of viable counts and measurement of inhibition zones. In gel medium, anodic inhibition zones for S. aureus were larger than those for E. coli at all field strength levels. In fluid medium, the maximum decrease in the viable count of S. aureus cells was at 10 V⋅m(-1). Field-treated S. aureus cells presented ruptured cell walls and disintegrated cytoplasm. Conclusively, S. aureus is more sensitive to increasing electric field strength than E. coli.

  20. 15. View of interior, north wall of hot cell featuring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View of interior, north wall of hot cell featuring radioactive materials containment box, facing east - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  1. Brachypodium distachyon grain: characterization of endosperm cell walls.

    PubMed

    Guillon, Fabienne; Bouchet, Brigitte; Jamme, Frédéric; Robert, Paul; Quéméner, Bernard; Barron, Cécile; Larré, Colette; Dumas, Paul; Saulnier, Luc

    2011-01-01

    The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-β-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-β-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.

  2. 47. ARAI. Interior view of operating wall of hot cell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. ARA-I. Interior view of operating wall of hot cell in ARA-626. Note stands for operators at viewing windows. Manipulators with hand grips extend cables and other controls into hot cell through ducts above windows. Ineel photo no. 81-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  3. The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens

    PubMed Central

    Lacey, Keenan A.; Geoghegan, Joan A.; McLoughlin, Rachel M.

    2016-01-01

    Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs. PMID:26901227

  4. Membrane-wall attachments in plasmolysed plant cells.

    PubMed

    Lang, I; Barton, D A; Overall, R L

    2004-12-01

    Field emission scanning electron microscopy of plasmolysed Tradescantia virginiana leaf epidermal cells gave novel insights into the three-dimensional architecture of Hechtian strands, Hechtian reticulum, and the inner surface of the cell wall without the need for extraction. At high magnification, we observed fibres that pin the plasma membrane to the cell wall after plasmolysis. Treatment with cellulase caused these connecting fibres to be lost and the pinned out plasma membrane of the Hechtian reticulum to disintegrate into vesicles with diameters of 100-250 nm. This suggests that the fibres may be cellulose. After 4 h of plasmolysis, a fibrous meshwork that labelled with anti-callose antibodies was observed within the space between the plasmolysed protoplast and the cell wall by field emission scanning electron microscopy. Interestingly, macerase-pectinase treatment resulted in the loss of this meshwork, suggesting that it was stabilised by pectins. We suggest that cellulose microfibrils extending from strands of the Hechtian reticulum and entwining into the cell wall matrix act as anchors for the plasma membrane as it moves away from the wall during plasmolysis.

  5. Purification and characterization of a soybean cell wall protein

    SciTech Connect

    San Francisco, S.; Tierney, M.L. )

    1989-04-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo {sup 3}H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible.

  6. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    SciTech Connect

    Dugger, W.M.; Bartnicki-Garcia, S.

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  7. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells.

    PubMed

    Bauer, W D; Talmadge, K W; Keegstra, K; Albersheim, P

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed "amyloid" xyloglucans.Xyloglucan-or fragments of xyloglucan-and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall.The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of beta-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues.

  8. Cholecalciferol (vitamin D) differentially regulates antimicrobial peptide expression in bovine mammary epithelial cells: implications during Staphylococcus aureus internalization.

    PubMed

    Téllez-Pérez, Ana Dolores; Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2012-11-01

    Vitamin D has immunomodulatory functions regulating the expression of host defense genes. The aim of this study was to determine the effect of cholecalciferol (vitamin D3) on S. aureus internalization into bovine mammary epithelial cells (bMEC) and antimicrobial peptide (AP) mRNA expression. Cholecalciferol (1-200 nM) did not affect S. aureus growth and bMEC viability; but it reduced bacterial internalization into bMEC (15-74%). Also, bMEC showed a basal expression of all AP genes evaluated, which were induced by S. aureus. Cholecalciferol alone or together with bacteria diminished tracheal antimicrobial peptide (TAP) and bovine neutrophil β-defensin (BNBD) 5 mRNA expression; while alone induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine psoriasin (S100A7), which was inhibited in the presence of S. aureus. This compound (50 nM) increased BNBD10 mRNA expression coinciding with the greatest reduction in S. aureus internalization. Genes of vitamin D pathway (25-hydroxylase and 1 α-hydroxylase) show basal expression, which was induced by cholecalciferol or bacteria. S. aureus induced vitamin D receptor (VDR) mRNA expression, but not in the presence of cholecalciferol. In conclusion, cholecalciferol can reduce S. aureus internalization and differentially regulates AP expression in bMEC. Thus, vitamin D could be an effective innate immunity modulator in mammary gland, which leads to a better defense against bacterial infection.

  9. Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection.

    PubMed

    Zhao, Yun-Tao; Guo, Jing-Hui; Wu, Zhong-Luan; Xiong, Yuan; Zhou, Wen-Liang

    2008-08-15

    The epithelium is an active participant in the host response to infection. We hypothesized that epididymal epithelia play a role in the innate immune responses by sensing the presence of pathogens, expressing and secreting inflammatory cytokines that recruit inflammatory cells in response to invading pathogens. Our results indicated that TNF-alpha and IL-1beta could be secreted by the primary cultured rat epididymal cauda epithelia infected with Staphylococcus aureus. Epididymal epithelial-induced nitric oxide synthase (iNOS) expression was up-regulated after S. aureus infection and nitric oxide (NO) was also found to be produced significantly. NF-kappaB inhibitor BAY11-7082 inhibited TNF-alpha secretion completely and p38 mitogen-activated protein kinases (MAPKs) inhibitor SB203580 decreased TNF-alpha secretion partly, indicating that NF-kappaB and p38 signal pathways were involved in this inflammation response. Toll-like receptor (TLR)-2 and -4 were shown to be expressed in primary cultured rat epididymal epithelia. After infection the level of TLR2 expression was up-regulated rather than TLR4. These results demonstrated that epididymal epithelium have an innate immune response through activation of p38 MAPK and NF-kappaB after TLR2 activation by S. aureus infection.

  10. Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus

    PubMed Central

    Bekeredjian-Ding, Isabelle; Greil, Johann; Ammann, Sandra; Parcina, Marijo

    2014-01-01

    Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination. PMID:24904586

  11. Cell Wall Alterations in the Arabidopsis emb30 Mutant

    PubMed Central

    Shevell, Diane E.; Kunkel, Tim; Chua, Nam-Hai

    2000-01-01

    The Arabidopsis EMB30 gene is essential for controlling the polarity of cell growth and for normal cell adhesion during seedling development. In this article, we show that emb30 mutations also affect the growth of undifferentiated plant cells and adult tissues. EMB30 possesses a Sec7 domain and, based on similarities to other proteins, presumably functions in the secretory pathway. The plant cell wall depends on the secretory pathway to deliver its complex polysaccharides. We show that emb30 mutants have a cell wall defect that sometimes allows material to be deposited into the interstitial space between cells instead of being restricted to cell corners. In addition, pectin, a complex polysaccharide important for cell adhesion, appears to be abnormally localized in emb30 plants. In contrast, localization of epitopes associated with xyloglucan or arabinogalactan was similar in wild-type and emb30 tissues, and the localization of a marker molecule to vacuoles appeared normal. Therefore, emb30 mutations do not cause a general defect in the secretory pathway. Together, these results suggest that emb30 mutations result in an abnormal cell wall, which in turn may account for the defects in cell adhesion and polar cell growth control observed in the mutants. PMID:11090208

  12. Cell growth pattern and wall microfibrillar arrangement: experiments with nitella.

    PubMed

    Gertel, E T; Green, P B

    1977-08-01

    In cylindrical cells growing throughout their length, over-all transverse reinforcement of the wall by microfibrils is believed to be required for cell elongation. The multinet theory states that in such cells microfibrils are deposited at the inner surface of the wall with transverse orientation and are then passively reoriented toward the longitudinal direction by the predominant longitudinal strain (surface expension). In the present study young Nitella cells were physically forced to grow in highly abnormal patterns: in length only, in girth only, or with localized suppression of growth. Subsequent gradients of microfibrillar arrangement within the wall cross-section were measured with polarized light and interference microscopes. The novel wall structures produced were in all cases explainable by passive reorientation, i.e. by the multinet theory. The study also showed that orientation of synthesis remains insensitive to several of the physical manipulations that strongly influence the passive behavior of wall microfibrils. Only the localized complete suppression of surface growth led to the deposition of nontransverse cellulose. These results suggest that the presence of strain is needed for continued oriented synthesis, but that the directional aspect of strain is not an "instructional" agent continuously guiding the orientation of synthesis, once this orientation has been established.

  13. Cell wall integrity signalling in human pathogenic fungi.

    PubMed

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  14. Freezing stresses and hydration of isolated cell walls.

    PubMed

    Yoon, Yonghyeon; Pope, Jim; Wolfe, Joe

    2003-06-01

    The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.

  15. A new method for extraction of pectin from cell walls

    SciTech Connect

    Maness, N.O.; Mort, A.J. )

    1991-05-01

    Pectin is often extracted from plant tissues using the Ca{sup ++} chelators ethylenediamine tetraacetate (EDTA) or cyclohexane-trans-1,2 diamine tetraacetate (CDTA). While these chelators are effective in solubilizing pectin, even after extensive dialysis against distilled water, EDTA or CDTA remains associated with the pectin. The authors have found that if 500 mM imidazole buffer, pH 7.0 is substituted for 50 mM CDTA, pH 6.5, and for equivalent extraction periods, an equivalent amount of pectin with the same sugar composition is extracted. But, the imidazole buffer can be dialyzed away completely into distilled water. Their alternative procedure for extraction of pectin from cell walls will be presented. Utilization of the procedure for extraction of whole cell walls or cell walls pretreated with liquid hydrogen fluoride is discussed.

  16. Transcriptional wiring of cell wall-related genes in Arabidopsis.

    PubMed

    Mutwil, Marek; Ruprecht, Colin; Giorgi, Federico M; Bringmann, Martin; Usadel, Björn; Persson, Staffan

    2009-09-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the corresponding proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of analyses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  17. Self-enhanced targeted delivery of a cell wall- and membrane-active antibiotics, daptomycin, against staphylococcal pneumonia.

    PubMed

    Jiang, Hong; Xiong, Meimei; Bi, Qiuyan; Wang, Ying; Li, Chong

    2016-07-01

    Considering that some antibacterial agents can identify the outer structure of pathogens like cell wall and/or cell membrane, we explored a self-enhanced targeted delivery strategy by which a small amount of the antibiotic molecules were modified on the surface of carriers as targeting ligands of certain bacteria while more antibiotic molecules were loaded inside the carriers, and thus has the potential to improve the drug concentration at the infection site, enhance efficacy and reduce potential toxicity. In this study, a novel targeted delivery system against methicillin-resistant Staphylococcus aureus (MRSA) pneumonia was constructed with daptomycin, a lipopeptide antibiotic, which can bind to the cell wall of S. aureus via its hydrophobic tail. Daptomycin was conjugated with N-hydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine to synthesize a targeting compound (Dapt-PEG-DSPE) which could be anchored on the surface of liposomes, while additional daptomycin molecules were encapsulated inside the liposomes. These daptomycin-modified, daptomycin-loaded liposomes (DPD-L[D]) showed specific binding to MRSA as detected by flow cytometry and good targeting capabilities in vivo to MRSA-infected lungs in a pneumonia model. DPD-L[D] exhibited more favorable antibacterial efficacy against MRSA than conventional PEGylated liposomal daptomycin both in vitro and in vivo. Our study demonstrates that daptomycin-modified liposomes can enhance MRSA-targeted delivery of encapsulated antibiotic, suggesting a novel drug delivery approach for existing antimicrobial agents. PMID:27471672

  18. Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors

    PubMed Central

    Fernandes, Chantal; Anjos, Jorge; Walker, Louise A.; Silva, Branca M. A.; Cortes, Luísa; Mota, Marta; Munro, Carol A.; Gow, Neil A. R.

    2014-01-01

    The present work reports the effects of caspofungin, a β-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting β-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the β-glucan synthase inhibitor against this fungus. PMID:24614372

  19. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  20. Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD-1/PD-L1 axis.

    PubMed

    Rabe, Hardis; Nordström, Inger; Andersson, Kerstin; Lundell, Anna-Carin; Rudin, Anna

    2014-03-01

    The gut microbiota provides an important stimulus for the induction of regulatory T (Treg) cells in mice, whether this applies to newborn children is unknown. In Swedish children, Staphylococcus aureus has become a common early colonizer of the gut. Here, we sought to study the effects of bacterial stimulation on neonatal CD4(+) T cells for the induction of CD25(+) CD127(low) Treg cells in vitro. The proportion of circulating CD25(+) CD127(low) Treg cells and their expression of FOXP3, Helios and CTLA-4 was examined in newborns and adults. To evaluate if commensal gut bacteria could induce Treg cells, CellTrace violet-stained non-Treg cells from cord or peripheral blood from adults were co-cultured with autologous CD25(+) CD127(low) Treg cells and remaining mononuclear cells and stimulated with S. aureus. Newborns had a significantly lower proportion of CD25(+) CD127(low) Treg cells than adults, but these cells were Helios(+) and CTLA-4(+) to a higher extent than in adults. FOXP3(+) CD25(+) CD127(low) T cells were induced mainly in neonatal CellTrace-stained non-Treg cells after stimulation with S. aureus. In cell cultures from adults, S. aureus induced CD25(+) CD127(low) T cells only if sorted naive CD45RA(+) non-Treg cells were used, but these cells expressed less FOXP3 than those induced from newborns. Sorted neonatal CD25(+) CD127(low) T cells from S. aureus-stimulated cultures were still suppressive. Finally, blocking PD-L1 during stimulation reduced the induction of FOXP3(+) CD25(+) CD127(low) T cells. These results suggest that newborns have a higher proportion of circulating thymically derived Helios(+) Treg cells than adults and that S. aureus possess an ability to convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) Treg cells via the PD-1/PD-L1 axis.

  1. MECHANISM OF CELL WALL PENETRATION BY VIRUSES

    PubMed Central

    Puck, Theodore T.; Lee, Howard H.

    1954-01-01

    Treatment of radioactively labelled host cells with T1 or T2 bacteriophages induces a leakage of cellular P and S into the medium. Evidence is presented showing that this increased cell permeability is not the result of complete lysis of a small fraction of the cells, but rather is made up of contributions from all or most of the infected population. This leakage of cellular constituents exhibits the following characteristics: (a) Infection of a cell with a single virus suffices to evoke the reaction; (b) Increasing the multiplicity up to 7 to 8 virus particles per cell does not affect the extent of leakage produced; (c) Some leakage does occur at 0°C., but much less than at 37°C.; (d) Infection by T1 virus results in a smaller amount of leakage than in the case of T2, but the pattern of response to varying virus multiplicity is the same; (e) The P resulting from such leakage contains no DNA and chemically resembles that which elutes in smaller amounts from uninfected cells; (f) At 37°C. the virus-induced leakage reaction appears within a matter of seconds, and usually decreases after 2 to 3 minutes; (g) The reaction is inhibited by 0.025 M Mg++. Theoretical considerations are presented suggesting the place of this reaction in the sequence of events constituting the virus penetration reaction; its relationship to the phenomenon of lysis-from-without; and its resemblance to the leakage reaction produced by electrostatic binding of ionized compounds to cell surfaces. The existence of similar effects in avian-mammalian virus systems is noted. PMID:13163323

  2. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  3. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components. PMID:26223789

  4. Staphylococcus aureus toxins.

    PubMed

    Otto, Michael

    2014-02-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the host. This review will give an overview over S. aureus toxins focusing on recent advances in our understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions.

  5. Anammox Planctomycetes have a peptidoglycan cell wall

    PubMed Central

    van Teeseling, Muriel C.F.; Mesman, Rob J.; Kuru, Erkin; Espaillat, Akbar; Cava, Felipe; Brun, Yves V.; VanNieuwenhze, Michael S.; Kartal, Boran; van Niftrik, Laura

    2015-01-01

    Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria. PMID:25962786

  6. Genetic control of rat T-cell response to Staphylococcus aureus enterotoxins (SE).

    PubMed Central

    Fu, Y; Villas, P A; Blankenhorn, E P

    1991-01-01

    Rat T cells, like those of mouse and human origin, respond strongly to superantigens (SAg) derived from Staphylococcus aureus enterotoxins A and B (SEA, SEB). Lewis and ACI are high responders, whereas Brown Norway (BN) is a low responder. Congenic and back-cross rat studies indicate that the degree of responsiveness is controlled by at least one non-MHC gene. The action of these genes may reside in the antigen-presenting cells (APC), since both Sephadex G10 non-adherent BN spleen cells and purified BN T cells in the presence of Lewis APC can respond well to SE. Responses to concanavalin A (Con A) and SEA generally segregate together in back-cross rats. Surprisingly, the degree of responsiveness to Con A and SEA is not correlated with the susceptibility to experimental allergic encephalomyelitis (EAE) either in independently derived inbred rat strains or in (Lewis x BN) x BN back-cross rats. PMID:1769696

  7. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  8. Wood Contains a Cell-Wall Structural Protein

    NASA Astrophysics Data System (ADS)

    Bao, Wuli; O'Malley, David M.; Sederoff, Ronald R.

    1992-07-01

    A pine extensin-like protein (PELP) has been localized in metabolically active cells of differentiating xylem and in mature wood of loblolly pine (Pinus taeda L.). This proline-rich glycosylated protein was purified from cell walls of differentiating xylem by differential solubility and gel electrophoresis. Polyclonal rabbit antibodies were raised against the deglycosylated purified protein (dPELP) and purified antibody was used for immunolocalization. Immunogold and alkaline phosphatase secondary antibody staining both show antigen in secondary cell walls of earlywood and less staining in latewood. Immunoassays of milled dry wood were developed and used to show increased availability of antigen after hydrogen fluoride or cellulase treatment and decreased antigen after chlorite treatment. The specificity of the antigen-antibody reaction was confirmed by competition assays and by preadsorption of antibody to the purified protein. We propose that extensin-like protein is present in xylem cell walls during lignification and that the protein remains as a structural component of cell walls in wood for many years after xylogenesis. We suggest that such structural proteins play important roles in the differentiation of xylem and thereby could affect the properties of wood.

  9. Extracellular proteases modify cell wall turnover in Bacillus subtilis.

    PubMed Central

    Jolliffe, L K; Doyle, R J; Streips, U N

    1980-01-01

    The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases. Images PMID:6102558

  10. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity.

    PubMed

    Choi, Seng Jin; Kim, Min-Hye; Jeon, Jinseong; Kim, Oh Youn; Choi, Youngwoo; Seo, Jihye; Hong, Sung-Wook; Lee, Won-Hee; Jeon, Seong Gyu; Gho, Yong Song; Jee, Young-Koo; Kim, Yoon-Keun

    2015-01-01

    Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.

  11. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Baranwal, Shivani; Thakare, Mayur Jankiram; Tomar, Raghuvir S

    2015-01-01

    Yeast repressor activator protein (Rap1p) is involved in genomic stability and transcriptional regulation. We explored the function of Rap1p in yeast physiology using Rap1p truncation mutants. Our results revealed that the N-terminal truncation of Rap1p (Rap1ΔN) leads to hypersensitivity towards elevated temperature and cell-wall perturbing agents. Cell wall analysis showed an increase in the chitin and glucan content in Rap1ΔN cells as compared with wild type cells. Accordingly, mutant cells had a twofold thicker cell wall, as observed by electron microscopy. Furthermore, Rap1ΔN cells had increased levels of phosphorylated Slt2p, a MAP kinase of the cell wall integrity pathway. Mutant cells also had elevated levels of cell wall integrity response transcripts. Taken together, our findings suggest a connection between Rap1p and cell wall homeostasis.

  12. Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening.

    PubMed

    Mina, Elin G; Marques, Cláudia N H

    2016-01-01

    Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response. PMID:27506163

  13. Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening

    PubMed Central

    Mina, Elin G.; Marques, Cláudia N. H.

    2016-01-01

    Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response. PMID:27506163

  14. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  15. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  16. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells.

    PubMed

    Deng, Yi; Sun, Mingzhai; Shaevitz, Joshua W

    2011-10-01

    We study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E=23±8  MPa and 49±20  MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3  kPa.

  17. Direct Measurement of Cell Wall Stress Stiffening and Turgor Pressure in Live Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Sun, Mingzhai; Shaevitz, Joshua W.

    2011-10-01

    We study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E=23±8MPa and 49±20MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3kPa.

  18. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.

    PubMed

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.

  19. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model

    PubMed Central

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10. PMID:26230498

  20. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  1. Medicago truncatula as a Model for Dicot Cell Wall Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strong interest in renewable energy has promoted an upsurge of research on plant cell wall traits that influence the availability of lignocellulosic-derived sugars for fermentation in production of biofuels. We have initiated a genome-wide transcript profiling study using the model legume Medicago t...

  2. Roles of cell wall peroxidases in plant development.

    PubMed

    Francoz, Edith; Ranocha, Philippe; Nguyen-Kim, Huan; Jamet, Elisabeth; Burlat, Vincent; Dunand, Christophe

    2015-04-01

    Class III peroxidases (CIII Prxs) are plant specific proteins. Based on in silico prediction and experimental evidence, they are mainly considered as cell wall localized proteins. Thanks to their dual hydroxylic and peroxidative cycles, they can produce ROS as well as oxidize cell wall aromatic compounds within proteins and phenolics that are either free or linked to polysaccharides. Thus, they are tightly associated to cell wall loosening and stiffening. They are members of large multigenic families, mostly due to an elevated rate of gene duplication in higher plants, resulting in a high risk of functional redundancy between them. However, proteomic and (micro)transcriptomic analyses have shown that CIII Prx expression profiles are highly specific. Based on these omic analyses, several reverse genetic studies have demonstrated the importance of the spatio-temporal regulation of their expression and ability to interact with cell wall microdomains in order to achieve specific activity in vivo. Each CIII Prx isoform could have specific functions in muro and this could explain the conservation of a high number of genes in plant genomes.

  3. Polymer mobility in cell walls of cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  4. Imaging of plant cell walls by confocal Raman microscopy.

    PubMed

    Gierlinger, Notburga; Keplinger, Tobias; Harrington, Michael

    2012-09-01

    Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ∼10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.

  5. Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...

  6. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis.

    PubMed

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. PMID:27304077

  7. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    PubMed

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure.

  8. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    PubMed

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  9. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis

    PubMed Central

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. DOI: http://dx.doi.org/10.7554/eLife.14590.001 PMID:27304077

  10. Biosynthesis and assembly of cell wall polysaccharides in cereal grasses

    SciTech Connect

    Carpita, N.C.

    1991-04-01

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initial downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.

  11. Use of bovine primary mammary epithelial cells for the comparison of adherence and invasion ability of Staphylococcus aureus strains.

    PubMed

    Hensen, S M; Pavicić, M J; Lohuis, J A; Poutrel, B

    2000-03-01

    Adherence and invasion of epithelial cells are thought to play a role in the pathogenesis of Staphylococcus aureus mastitis. A cell culture model with primary mammary epithelial cells originating from the secretory tissue from the bovine udder was used to study adherence and invasion of S. aureus. The cells were characterized with antibodies against several cell markers that had been validated on histologic cryostat sections of bovine mammary tissue. All cells stained positively with the anticytokeratin antibodies, which are restricted to epithelial cells. The cell cultures contained a small number of alpha-smooth-muscle-actin positive cells (< 1%), probably myoepithelial cells. The use of bovine primary mammary epithelial cells and bovine S. aureus isolates, which were cultured in milk serum, results in a system similar to in vivo. Strain differences for adherence and invasion of S. aureus strains cultured in milk serum were studied. In addition, the correlation between adherence and invasion was evaluated. The number of adhered and invaded bacteria was strain dependent. The percentage of adherence after 5 min of incubation was correlated to the percentage of adherence after 3 h of incubation (r = 0.94; Pearson's correlation test). Fourteen of the 20 strains were able to invade epithelial cells. The percentage of invasion was correlated to the percentage of adherence after 5 min and to the percentage adherence after 3 h (r = 0.95 and 0.90, respectively; Pearson's correlation test). Results indicate that strain differences of adherence and invasion exist for S. aureus and that the invasion is a post adherence event.

  12. Optimization of the RNeasy Mini Kit to obtain high-quality total RNA from sessile cells of Staphylococcus aureus.

    PubMed

    Beltrame, C O; Côrtes, M F; Bandeira, P T; Figueiredo, A M S

    2015-12-01

    Biofilm formed by Staphylococcus aureus is considered an important virulence trait in the pathogenesis of infections associated with implantable medical devices. Gene expression analyses are important strategies for determining the mechanisms involved in production and regulation of biofilm. Obtaining intact RNA preparations is the first and most critical step for these studies. In this article, we describe an optimized protocol for obtaining total RNA from sessile cells of S. aureus using the RNeasy Mini Kit. This method essentially consists of a few steps, as follows: 1) addition of acetone-ethanol to sessile cells, 2) lysis with lysostaphin at 37°C/10 min, 3) vigorous mixing, 4) three cycles of freezing and thawing, and 5) purification of the lysate in the RNeasy column. This simple pre-kit procedure yields high-quality total RNA from planktonic and sessile cells of S. aureus.

  13. Identification and Characterization of a Monofunctional Glycosyltransferase from Staphylococcus aureus

    PubMed Central

    Wang, Q. May; Peery, Robert B.; Johnson, Robert B.; Alborn, William E.; Yeh, Wu-Kuang; Skatrud, Paul L.

    2001-01-01

    A gene (mgt) encoding a monofunctional glycosyltransferase (MGT) from Staphylococcus aureus has been identified. This first reported gram-positive MGT shared significant homology with several MGTs from gram-negative bacteria and the N-terminal glycosyltransferase domain of class A high-molecular-mass penicillin-binding proteins from different species. S. aureus MGT contained an N-terminal hydrophobic domain perhaps involved with membrane association. It was expressed in Escherichia coli cells as a truncated protein lacking the hydrophobic domain and purified to homogeneity. Analysis by circular dichroism revealed that secondary structural elements of purified truncated S. aureus MGT were consistent with predicted structural elements, indicating that the protein might exhibit the expected folding. In addition, purified S. aureus MGT catalyzed incorporation of UDP-N-acetylglucosamine into peptidoglycan, proving that it was enzymatically active. MGT activity was inhibited by moenomycin A, and the reaction product was sensitive to lysozyme treatment. Moreover, a protein matching the calculated molecular weight of S. aureus MGT was identified from an S. aureus cell lysate using antibodies developed against purified MGT. Taken together, our results suggest that this enzyme is natively present in S. aureus cells and that it may play a role in bacterial cell wall biosynthesis. PMID:11466281

  14. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  15. Assembling of the Mycobacterium tuberculosis Cell Wall Core.

    PubMed

    Grzegorzewicz, Anna E; de Sousa-d'Auria, Célia; McNeil, Michael R; Huc-Claustre, Emilie; Jones, Victoria; Petit, Cécile; Angala, Shiva Kumar; Zemanová, Júlia; Wang, Qinglan; Belardinelli, Juan Manuel; Gao, Qian; Ishizaki, Yoshimasa; Mikušová, Katarína; Brennan, Patrick J; Ronning, Donald R; Chami, Mohamed; Houssin, Christine; Jackson, Mary

    2016-09-01

    The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.

  16. Structure of Plant Cell Walls: XI. GLUCURONOARABINOXYLAN, A SECOND HEMICELLULOSE IN THE PRIMARY CELL WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS.

    PubMed

    Darvill, J E; McNeil, M; Darvill, A G; Albersheim, P

    1980-12-01

    The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.

  17. Inhibitory Effect of Lactobacillus plantarum Extracts on HT-29 Colon Cancer Cell Apoptosis Induced by Staphylococcus aureus and Its Alpha-Toxin.

    PubMed

    Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Chung, Dae Kyun

    2015-11-01

    Staphylococcus aureus plays an important role in sepsis, septic shock, pneumonia, and wound infections. Here, we demonstrate that Lactobacillus plantarum extracts inhibited S. aureusinduced cell death of a human epithelial cell line, HT-29. In particular, we have shown that S. aureus-induced cell death was abolished by neutralization of α-toxin, indicating that α-toxin is the major mediator of S. aureus-induced cell death. DNA fragmentation experiment and caspase assay revealed that the S. aureus-induced cell death was apoptosis. L. plantarum extracts inhibited the generation of effector caspase-3 and the initiator caspase-9 in S. aureusor α-toxin-induced cell death. Moreover, expression of Bcl-2, an anti-apoptotic protein, was activated in L. plantarum extract-treated cells as compared with the S. aureus- or α-toxintreated only cells. Furthermore, S. aureus-induced apoptosis was efficiently inhibited by lipoteichoic acid and peptidoglycan of L. plantarum. Together, our results suggest that L. plantarum extracts can inhibit the S. aureus-mediated apoptosis, which is associated with S. aureus spreading, in intestinal epithelial cells, and may provide a new therapeutic reagent to treat bacterial infections.

  18. CD4 T Cell Antigens from Staphylococcus aureus Newman Strain Identified following Immunization with Heat-Killed Bacteria

    PubMed Central

    Lawrence, Paulraj K.; Rokbi, Bachra; Arnaud-Barbe, Nadège; Sutten, Eric L.; Norimine, Junzo; Lahmers, Kevin K.

    2012-01-01

    Staphylococcus aureus is a commensal bacterium associated with the skin and mucosal surfaces of humans and animals that can also cause chronic infection. The emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA) and strains causing chronic intramammary infections (IMI) in cows results in severe human and livestock infections. Conventional approaches to vaccine development have yielded only a few noneffective vaccines against MRSA or IMI strains, so there is a need for improved vaccine development. CD4 T lymphocytes are required for promoting gamma interferon (IFN-γ) mediated immunoglobulin isotype switching in B lymphocytes to produce high-affinity IgG antibodies and IFN-γ-mediated phagocyte activation for an effective resolution of bacterial infection. However, the lack of known CD4 T cell antigens from S. aureus has made it difficult to design effective vaccines. The goal of this study was to identify S. aureus proteins recognized by immune CD4 T cells. Using a reverse genetics approach, 43 antigens were selected from the S. aureus Newman strain. These included lipoproteins, proteases, transcription regulators, an alkaline shock protein, conserved-domain proteins, hemolysins, fibrinogen-binding protein, staphylokinase, exotoxin, enterotoxin, sortase, and protein A. Screening of expressed proteins for recall T cell responses in outbred, immune calves identified 13 proteins that share over 80% sequence identity among MRSA or IMI strains. These may be useful for inclusion in a broadly protective multiantigen vaccine against MRSA or IMI. PMID:22323557

  19. Cell-Wall Polysaccharides of Developing Flax Plants.

    PubMed Central

    Gorshkova, T. A.; Wyatt, S. E.; Salnikov, V. V.; Gibeaut, D. M.; Ibragimov, M. R.; Lozovaya, V. V.; Carpita, N. C.

    1996-01-01

    Flax (Linum usitatissimum L.) fibers originate from procambial cells of the protophloem and develop in cortical bundles that encircle the vascular cylinder. We determined the polysaccharide composition of the cell walls from various organs of the developing flax plant, from fiber-rich strips peeled from the stem, and from the xylem. Ammonium oxalate-soluble polysaccharides from all tissues contained 5-linked arabinans with low degrees of branching, rhamnogalacturonans, and polygalacturonic acid. The fiber-rich peels contained, in addition, substantial amounts of a buffer-soluble, 4-linked galactan branched at the 0-2 and 0-3 positions with nonreducing terminal-galactosyl units. The cross-linking glycans from all tissues were (fucogalacto)xyloglucan, typical of type-I cell walls, xylans containing (1->)-[beta]-D-xylosyl units branched exclusively at the xylosyl O-2 with t-(4-O-methyl)-glucosyluronic acid units, and (galacto)glucomannans. Tissues containing predominantly primary cell wall contained a larger proportion of xyloglucan. The xylem cells were composed of about 60% 4-xylans, 32% cellulose, and small amounts of pectin and the other cross-linking polysaccharides. The noncellulosic polysaccharides of flax exhibit an uncommonly low degree of branching compared to similar polysaccharides from other flowering plants. Although the relative abundance of the various noncellulosic polysaccharides varies widely among the different cell types, the linkage structure and degree of branching of several of the noncellulosic polysaccharides are invariant. PMID:12226214

  20. Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance

    PubMed Central

    2012-01-01

    Background The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation. Results In this study we identified a previously undescribed 73.5 kDa cell wall-anchored protein of S. saprophyticus, encoded on plasmid pSSAP2 of strain MS1146, which we termed S. saprophyticus surface protein F (SssF). The sssF gene is highly prevalent in S. saprophyticus clinical isolates and we demonstrate that the SssF protein is expressed at the cell surface. However, unlike all other characterised cell wall-anchored proteins of S. saprophyticus, we were unable to demonstrate a role for SssF in adhesion. SssF shares moderate sequence identity to a surface protein of Staphylococcus aureus (SasF) recently shown to be an important mediator of linoleic acid resistance. Using a heterologous complementation approach in a S. aureus sasF null genetic background, we demonstrate that SssF is associated with resistance to linoleic acid. We also show that S. saprophyticus strains lacking sssF are more sensitive to linoleic acid than those that possess it. Every staphylococcal genome sequenced to date encodes SssF and SasF homologues. Proteins in this family share similar predicted secondary structures consisting almost exclusively of α-helices in a probable coiled-coil formation. Conclusions Our data indicate that SssF is a newly described and highly prevalent surface-localised protein of S. saprophyticus that contributes to resistance against the antibacterial effects of linoleic acid. SssF is a member of a protein family widely disseminated

  1. Nucleated assembly of Chlamydomonas and Volvox cell walls.

    PubMed

    Adair, W S; Steinmetz, S A; Mattson, D M; Goodenough, U W; Heuser, J E

    1987-11-01

    The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria. PMID:3680387

  2. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    NASA Astrophysics Data System (ADS)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  3. Engineering of plant cell walls for enhanced biofuel production.

    PubMed

    Loqué, Dominique; Scheller, Henrik V; Pauly, Markus

    2015-06-01

    The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.

  4. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    PubMed Central

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays. PMID:25717323

  5. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  6. Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

    PubMed Central

    Boudreau, Marc A.; Fisher, Jed. F.; Mobashery, Shahriar

    2012-01-01

    Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria is discussed, followed by muropeptide sensing by eukaryotes as a crucial event to the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion. PMID:22409164

  7. Resistance to antibiotics targeted to the bacterial cell wall

    PubMed Central

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-01-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed. PMID:24375653

  8. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    SciTech Connect

    Peng, Zhaohua PEng; Ronald, Palmela; Wang, Guo-Liang

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  9. Phenotypic Modifications in Staphylococcus aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin

    PubMed Central

    Gonçalves, Fábio D. A.; de Carvalho, Carla C. C. R.

    2016-01-01

    Bacterial cells are known to change the fatty acid (FA) composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC) cells in a larger number than that of possible persister cells. The analysis of the FA composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated FAs, a significant reduced percentage of branched FAs and an increased iso/anteiso branched FA ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8–24 h presented an increased branched/saturated and lower iso/anteiso branched FA ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same FA composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level. PMID:26834731

  10. Phenotypic Modifications in Staphylococcus aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin.

    PubMed

    Gonçalves, Fábio D A; de Carvalho, Carla C C R

    2016-01-01

    Bacterial cells are known to change the fatty acid (FA) composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC) cells in a larger number than that of possible persister cells. The analysis of the FA composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated FAs, a significant reduced percentage of branched FAs and an increased iso/anteiso branched FA ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8-24 h presented an increased branched/saturated and lower iso/anteiso branched FA ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same FA composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level. PMID:26834731

  11. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. PMID:25735403

  12. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  13. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  14. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells.

    PubMed

    Pereyra, Elizabet A L; Picech, Florencia; Renna, María S; Baravalle, Celina; Andreotti, Carolina S; Russi, Romina; Calvinho, Luis F; Diez, Cristina; Dallard, Bibiana E

    2016-02-01

    Staphylococcus aureus is one of the most prevalent pathogens isolated from bovine mastitis, causing chronic intramammary infections (IMI) that limit profitable dairying. The course of infection is often associated with factors both related to the host and the bacterium. Aims of this study were to select S. aureus isolates from bovine IMI with different genotypic profiles harboring genes involved in adherence and biofilm production, to determine the behavior of these strains in contact with bovine mammary epithelial cells (MAC-T) and the expression of those genes during bacterial-cell early interactions. The genetic diversity of 20 S. aureus strains that were isolated from milk samples taken from cows with persistent-P and non-persistent-NP IMI was high, discriminated into 13 fingerprint groups. The occurrence of genes coding for S. aureus surface proteins (clfA, clfB, fnbA, fnbB, fib, cna) and biofilm formation (icaA, icaD, icaC, bap) and in vitro biofilm-forming ability was not related to strain clinical origin (NP or P). Internalization of S. aureus into MAC-T cells was strain-dependent and internalized bacteria overexpressed adherence and biofilm-forming genes compared with those that remained in the supernatant of co-cultures; particularly those genes encoding FnBPs and IcaD. Strains yielding highest invasion percentages were those able to overexpress fnBP, irrespectively of the presence of other evaluated genes. Strains from NP IMI showed a greater multiplication capacity in vitro compared with strains from P IMI. These results provide new insights about S. aureus differential gene expression of adhesion-internalization factors during early interaction with mammary epithelial cells.

  15. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation.

    PubMed

    Hayot, Céline M; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A

    2012-04-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.

  16. Prolonged growth of a clinical Staphylococcus aureus strain selects for a stable small-colony-variant cell type.

    PubMed

    Bui, Long M G; Hoffmann, Peter; Turnidge, John D; Zilm, Peter S; Kidd, Stephen P

    2015-02-01

    An undetermined feature of Staphylococcus aureus pathogenesis is its persistence and then relapse of disease. This has been explained by its switch to alternative lifestyles, mainly as biofilm or small-colony variants (SCVs). Studying the native characteristics of SCVs has been problematic due to their reversion to the parental lifestyle. We have observed that for a number of S. aureus strains as they switch to an SCV lifestyle, there is the formation of an extracellular matrix. We focused our analysis on one strain, WCH-SK2. For bacterial survival in the host, the combination of low nutrients and the prolonged time frame forms a stress that selects for a specific cell type from the population. In this context, we used steady-state growth conditions with low nutrients and a controlled low growth rate for a prolonged time and with methylglyoxal. These conditions induced S. aureus WCH-SK2 into a stable SCV cell type; the cells did not revert after subculturing. Analysis revealed these cells possessed a metabolic and surface profile that was different from those of previously described SCVs or biofilm cells. The extracellular matrix was protein and extracellular DNA but not polysaccharide. The SCV cells induced expression of certain surface proteins (such as Ebh) and synthesis of lantibiotics while downregulating factors that stimulate the immune response (leucocidin, capsule, and carotenoid). Our data reveal cell heterogeneity within an S. aureus population and under conditions that resemble long-term survival in the host have identified a previously unnoticed S. aureus cell type with a distinctive metabolic and molecular profile. PMID:25385795

  17. Prolonged Growth of a Clinical Staphylococcus aureus Strain Selects for a Stable Small-Colony-Variant Cell Type

    PubMed Central

    Bui, Long M. G.; Hoffmann, Peter; Turnidge, John D.; Zilm, Peter S.

    2014-01-01

    An undetermined feature of Staphylococcus aureus pathogenesis is its persistence and then relapse of disease. This has been explained by its switch to alternative lifestyles, mainly as biofilm or small-colony variants (SCVs). Studying the native characteristics of SCVs has been problematic due to their reversion to the parental lifestyle. We have observed that for a number of S. aureus strains as they switch to an SCV lifestyle, there is the formation of an extracellular matrix. We focused our analysis on one strain, WCH-SK2. For bacterial survival in the host, the combination of low nutrients and the prolonged time frame forms a stress that selects for a specific cell type from the population. In this context, we used steady-state growth conditions with low nutrients and a controlled low growth rate for a prolonged time and with methylglyoxal. These conditions induced S. aureus WCH-SK2 into a stable SCV cell type; the cells did not revert after subculturing. Analysis revealed these cells possessed a metabolic and surface profile that was different from those of previously described SCVs or biofilm cells. The extracellular matrix was protein and extracellular DNA but not polysaccharide. The SCV cells induced expression of certain surface proteins (such as Ebh) and synthesis of lantibiotics while downregulating factors that stimulate the immune response (leucocidin, capsule, and carotenoid). Our data reveal cell heterogeneity within an S. aureus population and under conditions that resemble long-term survival in the host have identified a previously unnoticed S. aureus cell type with a distinctive metabolic and molecular profile. PMID:25385795

  18. Chemical modification of the surfaces of bacterial cell walls.

    PubMed

    Neihof, R A; Echols, W H

    1978-01-01

    The surfaces of the isolated cell walls of four bacterial species were studied by microelectrophoresis following chemical treatments intended to remove specific charged groups. Acid-base titrations of the walls were used to assess specificity and extent of the modifications. Carboxyl groups were specifically and completely modified by activation with a water-soluble carbodiimide and subsequent reaction with a nucleophile, such as glycinamide, to give an uncharged pH-stable product. Aqueous media and mild reaction conditions make the method suitable for modifying carboxyl groups on cell surfaces too labile to withstand the harsh conditions required for conventional esterification reactions. Use of the carbodiimide-mediated reaction for discharging carboxyl groups, along with fluorodinitrobenzene for discharging amino groups and extraction procedures for removing constituents carrying phosphoester groups (teichoic acids), made it possible to obtain information about the spatial arrangement of charged groups on the wall surfaces. Removal of the exterior negative charge dominating wall surfaces allowed underlying amino groups to become electrokinetically effective and, in the case of E. coli, also revealed a lipophilic region with an affinity for a cationic surfactant.

  19. Cell Wall Architecture of the Elongating Maize Coleoptile1

    PubMed Central

    Carpita, Nicholas C.; Defernez, Marianne; Findlay, Kim; Wells, Brian; Shoue, Douglas A.; Catchpole, Gareth; Wilson, Reginald H.; McCann, Maureen C.

    2001-01-01

    The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans (GAXs), and mixed-linkage β-glucans, together with smaller amounts of xyloglucans, glucomannans, pectins, and a network of polyphenolic substances. Chemical imaging by Fourier transform infrared microspectroscopy revealed large differences in the distributions of many chemical species between different tissues of the maize (Zea mays) coleoptile. This was confirmed by chemical analyses of isolated outer epidermal tissues compared with mesophyll-enriched preparations. Glucomannans and esterified uronic acids were more abundant in the epidermis, whereas β-glucans were more abundant in the mesophyll cells. The localization of β-glucan was confirmed by immunocytochemistry in the electron microscope and quantitative biochemical assays. We used field emission scanning electron microscopy, infrared microspectroscopy, and biochemical characterization of sequentially extracted polymers to further characterize the cell wall architecture of the epidermis. Oxidation of the phenolic network followed by dilute NaOH extraction widened the pores of the wall substantially and permitted observation by scanning electron microscopy of up to six distinct microfibrillar lamellae. Sequential chemical extraction of specific polysaccharides together with enzymic digestion of β-glucans allowed us to distinguish two distinct domains in the grass primary wall. First, a β-glucan-enriched domain, coextensive with GAXs of low degrees of arabinosyl substitution and glucomannans, is tightly associated around microfibrils. Second, a GAX that is more highly substituted with arabinosyl residues and additional glucomannan provides an interstitial domain that interconnects the β-glucan-coated microfibrils. Implications for current models that attempt to explain the biochemical and biophysical mechanism of wall loosening during cell growth are discussed. PMID:11598229

  20. (Rapid regulatory control of plant cell expansion and wall relaxation)

    SciTech Connect

    Cosgrove, D.J.

    1990-01-01

    This section presents a brief overview of accomplishments related to this project in the past 3-year period. Our work has focused on the basic mechanisms of plant cell expansion, particularly on the interrelations of water and solute transport with cell wall relaxation and expansion. To study these processes, we have developed new methods and used these methods to analyze the dynamic behavior of growth processes and to examine how various agents (GA, drought, light, genetic lesions) alter the growth machinery of the cell.

  1. Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains.

    PubMed

    Cafiso, Viviana; Bertuccio, Taschia; Spina, Daniela; Purrello, Simona; Campanile, Floriana; Di Pietro, Cinzia; Purrello, Michele; Stefani, Stefania

    2012-01-01

    Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in h

  2. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  3. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  4. Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces

    PubMed Central

    Chen, Yun; Harapanahalli, Akshay K.; Busscher, Henk J.; Norde, Willem

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force. PMID:24212582

  5. Decreased number and bactericidal activity against Staphylococcus aureus of the resident cells in milk of dairy cows during early lactation.

    PubMed

    Dosogne, H; Vangroenweghe, F; Barrio, B; Rainard, P; Burvenich, C

    2001-11-01

    Phagocytic and bactericidal activity of polymorphonuclear neutrophil leukocytes (PMN) isolated from blood and milk, against Staphylococcus aureus, was compared between groups of six healthy dairy cows in early, mid- and late lactation using a bacteriological assay. PMN were isolated from blood with a high degree of purity, but the cells isolated from milk contained variable amounts of macrophages (Mphi) and lymphocytes (L). The results were therefore calculated using the percentage PMN in order to evaluate phagocytosis and killing by PMN only. Blood PMN phagocytosed 82% Staph. aureus and milk PMN 43% on average and there was no significant difference between the different stages of lactation. The bactericidal activity of blood PMN against Staph. aureus was 36+/-8% in early lactation (significantly different from mid lactation, P < 0.05), 64+/-10% in mid lactation and 53+/-6% in late lactation. Milk PMN killed only 6+/-3% Staph. aureus in early lactation (significantly different from mid lactation, P < 0.01), 27+/-3% in mid lactation and 20+/-9% Staph. aureus in late lactation. The ratio of the bactericidal activity of milk to blood PMN was 0.08, 0.43 and 0.22 in early, mid- and late lactation, respectively. In addition to the decreased function. the number of cells in milk (somatic cell count, SCC) was also 60% lower in early lactation than in mid lactation cows (P < 0.01). Our results suggest an impairment of blood and milk-resident PMN bactericidal activity against Staph. aureus and a decreased number of milk-resident PMN in dairy cows at the onset of lactation.

  6. Compounds active against cell walls of medically important fungi.

    PubMed Central

    Hector, R F

    1993-01-01

    A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development. PMID:8457977

  7. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  8. Cytoplasmic streaming in plant cells: the role of wall slip.

    PubMed

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  9. Plant cell walls: Protecting the barrier from degradation by microbial enzymes.

    PubMed

    Lagaert, Stijn; Beliën, Tim; Volckaert, Guido

    2009-12-01

    Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.

  10. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  11. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  12. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  13. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.

  14. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  15. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  16. Enzyme Amplified Detection of Microbial Cell Wall Components

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  17. Life behind cell walls: paradigm lost, paradigm regained.

    PubMed

    Lamport, D T

    2001-09-01

    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  18. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  19. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  20. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

  1. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded. PMID:11729262

  2. Lignin variability in plant cell walls: contribution of new models.

    PubMed

    Neutelings, Godfrey

    2011-10-01

    Lignin is a major component of certain plant cell walls. The enzymes and corresponding genes associated with the metabolic pathway leading to the production of this complex phenolic polymer have been studied for many years now and are relatively well characterized. The use of genetically modified model plants (Arabidopsis, tobacco, poplar.) and mutants has contributed greatly to our current understanding of this process. The recent utilisation and/or development of a number of dedicated genomic and transcriptomic tools for other species opens new perspectives for advancing our knowledge of the biological role of this important polymer in less typical situations and/or species. In this context, studies on the formation of hypolignified G-type fibres in angiosperm tension wood, and the natural hypolignification of secondary cell walls in plant bast fibre species such as hemp (Cannabis sativa), flax (Linum usitatissimum) or ramie (Boehmeria nivea) are starting to provide novel information about how plants control secondary cell wall formation. Finally, other biologically interesting species for which few molecular resources currently exist could also represent interesting future models.

  3. Progress toward the tomato fruit cell wall proteome

    PubMed Central

    Ruiz-May, Eliel; Rose, Jocelyn K. C.

    2013-01-01

    The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review, we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion. PMID:23755055

  4. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    PubMed

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  5. Purification of alpha-toxin from Staphylococcus aureus and application to cell permeabilization

    SciTech Connect

    Lind, I.; Ahnert-Hilger, G.; Fuchs, G.; Gratzl, M.

    1987-07-01

    Crude alpha-toxin was produced by Staphylococcus aureus, strain Wood 46. The amount of exotoxin was monitored during growth and all subsequent purification steps by determination of its hemolytic activity against rabbit erythrocytes. The culture supernatant was treated with ammonium sulfate (75% saturation). The resulting precipitate was dialyzed and subjected to cation-exchange chromatography. The fractions containing the hemolytic activity were further purified by gel chromatography. The final product was enriched by a factor of 8.5 compared to the crude toxin. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified toxin exhibited one major band. It caused the release of /sup 86/Rb+ and ATP from rat insulinoma (RIN A2) as well as pheochromocytoma cells (PC12) in culture, indicating efficient permeabilization of their plasma membranes for small molecules.

  6. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  7. Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall).

    PubMed Central

    Hu, H.; Brown, P. H.

    1994-01-01

    B deficiency results in a rapid inhibition of plant growth, and yet the form and function of B in plants remains unclear. In this paper we provide evidence that B is chemically localized and structurally important in the cell wall of plants. The localization and chemical fractionation of B was followed in squash plants (Curcurbita pepo L.) and cultured tobacco cells (Nicotiana tabacum) grown in B-replete or B-deficient medium. As squash plants and cultured tobacco cells became deficient, an increasingly large proportion of cellular B was found to be localized in the cell wall. Cytoplasmic B concentrations were reduced to essentially zero as plants became deficient, whereas cell wall B concentration remained at or above 10 [mu]g B/g cell wall dry weight in all experiments. Chemical and enzymic fractionation studies suggest that the majority of cell B is associated with pectins within the cell wall. Physical analysis of B-deficient tissue indicates that cell wall plastic extensibility is greatly reduced under B deficiency, and anatomical observations indicate that B deficiency impairs normal cell elongation in growing plant tissue. In plants in which B deficiency had inhibited all plant growth, tissues remained green and did not show any additional visible symptoms for at least 1 week with no additional B. This occurred even though cytoplasmic B had been reduced to extremely low levels (<0.2 [mu]g/g). This suggests that B in these species is largely associated with the cell wall and that any cytoplasmic role for B is satisfied by very low concentrations of B. The localization of B in the cell wall, its association with cell wall pectins, and the contingent effects of B on cell wall extensibility suggest that B plays a critical, although poorly defined, role in the cell wall structure of higher plants. PMID:12232235

  8. Resynthesis of sphingomyelin from plasma-membrane phosphatidylcholine in BHK cells treated with Staphylococcus aureus sphingomyelinase.

    PubMed Central

    Allan, D; Quinn, P

    1988-01-01

    About 60-65% of the total sphingomyelin in intact BHK cells is in a readily accessible pool which is rapidly degraded by Staphylococcus aureus sphingomyelinase. No more sphingomyelin is broken down in cells which have been fixed with glutaraldehyde or lysed with streptolysin O, suggesting that all the sphingomyelin which is available to the enzyme is on the cell surface. The inaccessible pool of sphingomyelin does not equilibrate with the plasma-membrane pool, even after prolonged incubation. Experiments using [3H]-choline show that much more phosphocholine is released from the intact cells treated with sphingomyelinase than can be accounted for by breakdown of the original cell-surface pool of sphingomyelin; the excess appears to be a consequence of the breakdown of sphingomyelin newly resynthesized at the expense of a pool of phosphatidylcholine which represents about 8% of total cell phosphatidylcholine and may reside in the plasma membrane. This would be consistent with resynthesis of cell-surface sphingomyelin by the phosphatidylcholine: ceramide phosphocholinetransferase pathway, which has previously been shown to be localized in the plasma membrane. However, in [3H]palmitate-labelled cells there appeared to be no accumulation of the diacylglycerol expected to be produced by this reaction, and no enhanced synthesis of phosphatidate or phosphatidylinositol; instead there was an increased synthesis of triacylglycerol. A similar increase in labelling of triacylglycerol was seen in enzyme-treated cells where the sphingomyelinase was subsequently removed, allowing resynthesis of sphingomyelin which occurred at a rate of about 25% of total sphingomyelin/h. Treatment of BHK cells with sphingomyelinase caused no change in the rates of fluid-phase endocytosis or exocytosis as measured with [3H]inulin. PMID:2848498

  9. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation

    PubMed Central

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends. PMID:27570321

  10. Evidence for 'silicon' within the cell walls of suspension-cultured rice cells.

    PubMed

    He, Congwu; Wang, Lijun; Liu, Jian; Liu, Xin; Li, Xiuli; Ma, Jie; Lin, Yongjun; Xu, Fangsen

    2013-11-01

    Despite the ubiquity and beneficial role of silicon (Si) in plant biology, structural and chemical mechanisms operating at the single-cell level have not been extensively studied. To obtain insights regarding the effect of Si on individual cells, we cultivated suspended rice (Oryza sativa) cells in the absence and presence of Si and analyzed single cells using a combination of physical techniques including atomic force microscopy (AFM). Si is naturally present as a constituent of the cell walls, where it is firmly bound to the cell wall matrix rather than occurring within intra- or extracellular silica deposition, as determined by using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS). This species of Si, linked with the cell wall matrix, improves the structural stability of cell walls during their expansion and subsequent cell division. Maintaining cell shape is thereby enhanced, which may be crucial for the function and survival of cells. This study provides further evidence that organosilicon is present in plant cell walls, which broadens our understanding of the chemical nature of 'anomalous Si' in plant biology.

  11. Stress analysis for wall structure in mobile hot cell design

    NASA Astrophysics Data System (ADS)

    Bahrin, Muhammad Hannan; Rahman, Anwar Abdul; Hamzah, Mohd Arif; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-01

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  12. Interleukin-12 promotes myeloid-derived suppressor cell (MDSC) recruitment and bacterial persistence during S. aureus orthopedic implant infection

    PubMed Central

    Scherr, Tyler D.; Hartman, Curtis W.; Garvin, Kevin L.; Kielian, Tammy

    2015-01-01

    Staphylococcus aureus (S. aureus) is a leading cause of human prosthetic joint infections (PJIs) typified by biofilm formation. We recently identified a critical role for myeloid-derived suppressor cells (MDSCs) in S. aureus biofilm persistence. Pro-inflammatory signals induce MDSC recruitment and activation in tumor models; however, the mechanisms responsible for MDSC homing to sites of biofilm infection are unknown. Here we report that several cytokines (IL-12p40, IL-1β, TNF-α, and G-CSF) and chemokines (CXCL2, CCL5) were significantly elevated in a mouse model of S. aureus PJI. This coincided with significantly increased MDSC infiltrates concomitant with reduced monocyte, macrophage, and T cell influx compared with uninfected animals. Of the cytokines detected, IL-12 was of particular interest based on its ability to possess either pro- or anti-inflammatory effects mediated through p35-p40 heterodimers or p40 homodimers, respectively. MDSC recruitment was significantly reduced in both p40 and p35 KO mice, which resulted in enhanced monocyte and neutrophil influx and bacterial clearance. Adoptive transfer of wild type MDSCs into infected p40 KO animals worsened disease outcome, as evidenced by the return of S. aureus burdens to levels typical of wild type mice. Tissues obtained from patients undergoing revision surgery for PJI revealed similar patterns of immune cell influx, with increased MDSC-like cells and significantly fewer T cells compared with aseptic revisions. These findings reveal a critical role for IL-12 in shaping the anti-inflammatory biofilm milieu by promoting MDSC recruitment. PMID:25762781

  13. Effect of irradiation on kinetic behavior of Salmonella Typhimurium and Staphylococcus aureus in lettuce and damage of bacterial cell envelope

    NASA Astrophysics Data System (ADS)

    Shim, Won-Bo; Je, Gil-Soo; Kim, Kyeongyeol; Mtenga, Adelard B.; Lee, Won-Gyeong; Song, Jeong-Un; Chung, Duck-Hwa; Yoon, Yohan

    2012-05-01

    This study evaluated effect of gamma irradiation on survival of Salmonella Typhimurium and Staphylococcus aureus on lettuce and damage of cell envelope. S. Typhimurium and S. aureus were inoculated on red leaf lettuce, and they were irradiated at 0, 0.5, 1, 1.5, 2, 2.5, and 3 kGy, and the samples were then stored at 7 and 25 °C for 7 days. Survival of S. Typhimurium and S. aureus were enumerated on xylose lysine deoxycholate agar and Baird-Parker agar, respectively. D10 value (dose required to reduce 1 log CFU/leaf) was calculated, and kinetic parameters (maximum specific growth rate; μmax and lag phase duration; LPD) were calculated by the modified Gompertz model. In addition, cell envelope damage of the pathogens was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). D10 values were 0.35 and 0.33 kGy for S. Typhimurium and S. aureus, respectively. During storage at 7 °C, S. Typhimurium and S. aureus had significant (P<0.05) growth only on non-irradiated samples up to about 2.5 and 4 log CFU/leaf at 0.42 and 1.28 log CFU/leaf/day of μmax, respectively. At 25 °C, cell counts of S. Typhimurium and S. aureus on the samples irradiated at 0 and 0.5 kGy increased (P<0.05) up to 3-6 log CFU/leaf. The μmax of both pathogens were higher in 0 kGy (1.08-2.27 log CFU/leaf/day) and 0.5 kGy (0.58-0.92 log CFU/leaf/day), and LPDs ranged from 1.53 to 3.14 day. SEM and TEM observations showed that cells irradiated at 1.5 and 3 kGy showed disrupted cell membrane. These results indicate that gamma irradiation could be a useful decontamination technology to improve food safety of lettuce by destroying cells of S. Typhimurium and S. aureus.

  14. Single-cell analysis reveals new subset markers of murine peritoneal macrophages and highlights macrophage dynamics upon Staphylococcus aureus peritonitis.

    PubMed

    Accarias, Solène; Genthon, Clémence; Rengel, David; Boullier, Séverine; Foucras, Gilles; Tabouret, Guillaume

    2016-07-01

    Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity. PMID:27220602

  15. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    PubMed

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  16. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs) with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.). Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants. PMID:26640782

  17. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  18. Enzymology and molecular biology of cell wall biosynthesis. Progress report

    SciTech Connect

    Ray, P.M.

    1993-03-20

    In order to be able to explore the control of cell wall polysaccharide synthesis at the molecular level, which inter alia might eventually lead to means for useful modification of plant biomass polysaccharide production, the immediate goals of this project are to identify polypeptides responsible for wall polysaccharide synthase activities and to obtain clones of the genes that encode them. We are concentrating on plasma membraneassociated (1,3)-{beta}-glucan synthase (glucan synthase-II or GS-II) and Golgi-associated (1,4)-{beta}-glucan synthase (glucan synthase-I or GS-I), of growing pea stem tissue. Our progress has been much more rapid with respect to GS-II than regarding GS-I.

  19. Cell wall pH and auxin transport velocity

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  20. Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea.

    PubMed

    Niu, Xin; Liu, Zhonghua; Zhou, Yajun; Wang, Jun; Zhang, Wenming; Yuan, Sheng

    2015-10-01

    A large amount of granular protrusions overlie the outer cell wall surfaces in both elongating and non-elongating stipe regions but overlie the inner cell wall surfaces only in non-elongating stipe regions. Removal of granular protrusions using alkali, amorphous materials overlying on both the inner and outer cell wall surfaces were explored in the non-elongating stipe regions. β-1,3-Glucanase treatment not only removed above those granular protrusions and underlying amorphous materials on the wall surfaces but also removed wall matrices embedding chitin microfibrils on the cell walls of most stipe regions, except for the outer cell wall surfaces of the non-elongating stipe regions where most of the wall matrices remained. The chitin microfibrils were closely and transversely arranged on both the inner and outer cell wall surfaces in the elongating apical stipe region, whereas they were loosely and transversely arranged on the inner cell wall surfaces and further became sparser and even randomly arranged on the outer cell wall surface in the non-elongating stipe regions. We propose that the surface deposition of granular protrusions and amorphous materials and the change of microfibril architecture and wall matrices may cause loss of wall plasticity and cessation of stipe elongation.

  1. Change in wall composition of transfer and aleurone cells during wheat grain development.

    PubMed

    Robert, P; Jamme, F; Barron, C; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2011-02-01

    In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1-3)(1-4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1-3)(1-4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1-3)(1-4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.

  2. Measuring the Mechanical Properties of Plant Cell Walls.

    PubMed

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J; Grossniklaus, Ueli

    2015-03-25

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM).

  3. Measuring the Mechanical Properties of Plant Cell Walls

    PubMed Central

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J.; Grossniklaus, Ueli

    2015-01-01

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM). PMID:27135321

  4. Measuring the Mechanical Properties of Plant Cell Walls.

    PubMed

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J; Grossniklaus, Ueli

    2015-01-01

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM). PMID:27135321

  5. Prolactin stimulates the internalization of Staphylococcus aureus and modulates the expression of inflammatory response genes in bovine mammary epithelial cells.

    PubMed

    Gutiérrez-Barroso, Angelina; Anaya-López, José L; Lara-Zárate, Leticia; Loeza-Lara, Pedro D; López-Meza, Joel E; Ochoa-Zarzosa, Alejandra

    2008-01-15

    The incidence of mastitis in dairy cattle is highest at the drying off period and parturition, which are characterized by high levels of the lactogenic hormone prolactin (PRL). One of the most frequently isolated contagious pathogens causing mastitis is Staphylococcus aureus. However, the role of PRL on S. aureus infection in mammary epithelium has not been studied. In this work we evaluated the effect of bovine PRL (bPRL) on S. aureus internalization in a primary culture of bovine mammary epithelial cells (bMEC) and on the expression of cytokine and innate immune response genes. Our data show that 5ng/mL bPRL enhances approximately 3-fold the internalization of S. aureus (ATCC 27543) into bMEC. By RT-PCR analysis, we showed that bPRL is able to up-regulate the expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and inducible nitric oxide synthase (iNOS) mRNAs. However, bPRL together with S. aureus did not modify the expression of TNF-alpha and iNOS mRNAs, while it down-regulated the expression of beta-defensin and IL-1beta mRNAs, as well as nitric oxide production, suggesting that infection and bPRL together can inhibit elements of the host immune response. To our knowledge, this is the first report that shows a role of bPRL during the internalization of S. aureus into bMEC. PMID:17988748

  6. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  7. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers.

    PubMed

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin; Oskarsson, Agneta

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7-0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport

  8. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    SciTech Connect

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  9. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls.

    PubMed

    Hervé, Cécile; Marcus, Susan E; Knox, J Paul

    2011-01-01

    Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking -phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.

  10. Comparative structure and biomechanics of plant primary and secondary cell walls.

    PubMed

    Cosgrove, Daniel J; Jarvis, Michael C

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current "cartoons" of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques.

  11. Comparative structure and biomechanics of plant primary and secondary cell walls

    PubMed Central

    Cosgrove, Daniel J.; Jarvis, Michael C.

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current “cartoons” of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques. PMID:22936943

  12. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of cell wall network structure model

    SciTech Connect

    Yi, Hojae; Puri, Virendra M.

    2012-11-01

    A primary plant cell wall network was computationally modeled using the finite element approach to study the hypothesis of hemicellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mechanisms of the growing cell wall. A computational primary cell wall network fragment (10 × 10 μm) comprising typical compositions and properties of CMFs and HC was modeled with well-aligned CMFs. The tethering of HC to CMFs is modeled in accordance with the strength of the hydrogen bonding by implementing a specific load-bearing connection (i.e. the joint element). The introduction of the CMF-HC interaction to the computational cell wall network model is a key to the quantitative examination of the mechanical consequences of cell wall structure models, including the tethering HC model. When the cell wall network models with and without joint elements were compared, the hydrogen bond exhibited a significant contribution to the overall stiffness of the cell wall network fragment. When the cell wall network model was stretched 1% in the transverse direction, the tethering of CMF-HC via hydrogen bonds was not strong enough to maintain its integrity. When the cell wall network model was stretched 1% in the longitudinal direction, the tethering provided comparable strength to maintain its integrity. This substantial anisotropy suggests that the HC tethering with hydrogen bonds alone does not manifest sufficient energy to maintain the integrity of the cell wall during its growth (i.e. other mechanisms are present to ensure the cell wall shape).

  13. Proteomic Analysis of Cell Walls of Two Developmental Stages of Alfalfa Stems

    PubMed Central

    Verdonk, Julian C.; Hatfield, Ronald D.; Sullivan, Michael L.

    2012-01-01

    Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g., crosslinking) of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible) and basal alfalfa stems (more mature, less digestible) was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach. PMID:23248635

  14. Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains.

    PubMed

    Simelyte, E; Rimpiläinen, M; Lehtonen, L; Zhang, X; Toivanen, P

    2000-06-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall. PMID:10816508

  15. Molecular characteristics of Staphylococcus aureus associated with chronic rhinosinusitis.

    PubMed

    Thunberg, Ulrica; Hugosson, Svante; Monecke, Stefan; Ehricht, Ralf; Söderquist, Bo

    2015-01-01

    The anterior nares have been regarded as the major carriage site of Staphylococcus aureus. From here, the organism can spread to other parts of the body where it might act as harmless commensal or cause mild to severe infections. Nasal sinuses are normally sterile, but in patients with chronic rhinosinusitis (CRS), the finding of S. aureus in maxillary sinus cultures is common. Isolates were obtained from the nares and maxillary sinus of patients with CRS and the nares of healthy controls. A significantly higher frequency of S. aureus was found in nares samples from patients (24/42) compared to controls (16/57) (p = 0.004). There is no consensus regarding whether S. aureus is a relevant pathogen in CRS. A DNA microarray was used to investigate the prevalence of S. aureus virulence genes with focus on staphylococcal enterotoxins, toxic shock syndrome toxin-1, agr types, and cell wall-associated proteins. The genotyping of S. aureus isolates revealed only small and non-significant differences in gene prevalence between isolates collected from patients with CRS and those collected from healthy nasal carriers. This study provides an increased knowledge of the genetic pattern of virulence genes among S. aureus collected in CRS. PMID:25131615

  16. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    PubMed

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  17. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata.

    PubMed

    Tanaka, Yutaka; Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  18. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  19. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  20. Chemical structure, conjugation, and cross-reactivity of Bacillus pumilus Sh18 cell wall polysaccharide.

    PubMed

    Kubler-Kielb, Joanna; Coxon, Bruce; Schneerson, Rachel

    2004-10-01

    Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy-alpha-galactopyranose (13%) and 2-acetamido-2-deoxy-alpha-glucopyranose (6%) on position O-2, were found. A minor component was established to be a polymer of -->3-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-1-->4-ribitol-1-OPO3-->. The ratios of the three components were 56, 34, and 10 mol%, respectively. The Sh18 CWP was covalently bound to carrier proteins, and the immunogenicity of the resulting conjugates was evaluated in mice. Two methods of conjugation were compared: (i) binding of 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-activated hydroxyl groups of the CWP to adipic acid dihydrazide (ADH)-derivatized protein, and (ii) binding of the carbodiimide-activated terminal phosphate group of the CWP to ADH-derivatized protein. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with the homologous polysaccharide and with a number of other bacterial polysaccharides containing ribitol and glycerol phosphates, including H. influenzae types a and b and strains of Staphylococcus aureus and Staphylococcus epidermidis. PMID:15466043

  1. Pneumococcal cell wall phosphorylcholine elicits polyclonal antibody secretion in mice.

    PubMed

    Bach, M A; Beckmann, E; Levitt, D

    1984-07-01

    Immunization of mice with phosphorylcholine (PC)-bearing Staphylococcus pneumoniae Type 2, strain 36a (R36a) results in both a PC-specific and a polyclonal increase in splenic plaque-forming cells. The polyclonal increase was observed in all strains tested, including those bearing an X-linked immune defect resulting in an undetectable anti-PC immune response. The magnitude of the polyclonal response is directly related to the amount of bacterial surface PC as detected by enzyme-linked immunosorbent assay. Congenitally athymic (nude) mice mount an anti-PC plaque-forming cell response after R36a immunization but fail to produce a significant polyclonal response. From our results it appears that PC on the cell wall of a bacterium acts both as a polyclonal activator and a specific antigen, stimulating each by different mechanisms.

  2. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  3. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    SciTech Connect

    Zhu, Fei Yue, Wanfu; Wang, Yongxia

    2014-10-01

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at one hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.

  4. Ultrastructure of the cell wall of Bacillus polymyxa.

    PubMed

    Nermut, M V; Murray, R G

    1967-06-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer "dense" layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required "hot" formamide for its removal. A survey of species was not made.

  5. A radioimmunoassay for lignin in plant cell walls

    SciTech Connect

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A {beta}-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 {eta}g/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. {sup 125}I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO{sub 2} delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed.

  6. Ultrastructure of the Cell Wall of Bacillus polymyxa

    PubMed Central

    Nermut, M. V.; Murray, R. G. E.

    1967-01-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer “dense” layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required “hot” formamide for its removal. A survey of species was not made. Images PMID:6025307

  7. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  8. Mass Spectrometry for Characterizing Plant Cell Wall Polysaccharides

    PubMed Central

    Bauer, Stefan

    2012-01-01

    Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns. PMID:22645587

  9. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2011-11-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  10. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2012-03-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  11. Impact of the Maturation of Human Primary Bone-Forming Cells on Their Behavior in Acute or Persistent Staphylococcus aureus Infection Models

    PubMed Central

    Josse, Jérôme; Guillaume, Christine; Bour, Camille; Lemaire, Flora; Mongaret, Céline; Draux, Florence; Velard, Frédéric; Gangloff, Sophie C.

    2016-01-01

    Staphylococcus aureus is one of the most frequently involved pathogens in bacterial infections such as skin abscess, pneumonia, endocarditis, osteomyelitis, and implant-associated infection. As for bone homeostasis, it is partly altered during infections by S. aureus by the induction of various responses from osteoblasts, which are the bone-forming cells responsible for extracellular matrix synthesis and its mineralization. Nevertheless, bone-forming cells are a heterogeneous population with different stages of maturation and the impact of the latter on their responses toward bacteria remains unclear. We describe the impact of S. aureus on two populations of human primary bone-forming cells (HPBCs) which have distinct maturation characteristics in both acute and persistent models of interaction. Cell maturation did not influence the internalization and survival of S. aureus inside bone-forming cells or the cell death related to the infection. By studying the expression of chemokines, cytokines, and osteoclastogenic regulators by HPBCs, we observed different profiles of chemokine expression according to the degree of cell maturation. However, there was no statistical difference in the amounts of proteins released by both populations in the presence of S. aureus compared to the non-infected counterparts. Our findings show that cell maturation does not impact the behavior of HPBCs infected with S. aureus and suggest that the role of bone-forming cells may not be pivotal for the inflammatory response in osteomyelitis. PMID:27446812

  12. Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan.

    PubMed

    Chen, Li-Chen; Chiang, Wen-Dee; Chen, Wei-Chiuan; Chen, Hui-Huang; Huang, Yao-Wen; Chen, Wei-Jung; Lin, Shih-Bin

    2012-12-15

    Low molecular weight chitosan (LMWC) and nisin, recognized as cationic antibacterial agents (CAAs), inhibit bacterial growth by interacting with the anionically charged cell wall. In this study, alanine uptake significantly reduced the anionic cell surface charge, as determined by the zeta potential (ZP) measurements, of Staphylococcus aureus, resulting from the incorporation of d-alanine into the cell wall. Minimum inhibitory concentration (MIC) tests and growth inhibition curves revealed that LMWC and nisin possessed inverse antibacterial activity against three strains of S. aureus, depending on the strains' net charge. A twofold reduction in the MIC value of nisin was obtained against S. aureus, inoculated in a 1.0% d- or l-alanine-augmented trypticase soy broth medium. A flocculation test demonstrated that neutralizing the anionic surface charge using d-alanine reduced the adsorption of S. aureus onto LMWC. Furthermore, the reduced surface net charge could enhance the colonization capacity of S. aureus on glass. PMID:22980819

  13. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells

    PubMed Central

    Askarian, Fatemeh; Ajayi, Clement; Hanssen, Anne-Merethe; van Sorge, Nina M.; Pettersen, Ingvild; Diep, Dzung B.; Sollid, Johanna U. E.; Johannessen, Mona

    2016-01-01

    Staphylococcus aureus is known as a frequent colonizer of the skin and mucosa. Among bacterial factors involved in colonization are adhesins such as the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Serine aspartate repeat containing protein D (SdrD) is involved in adhesion to human squamous cells isolated from the nose. Here, we identify Desmoglein 1 (Dsg1) as a novel interaction partner for SdrD. Genetic deletion of sdrD in S. aureus NCTC8325-4 through allelic replacement resulted in decreased bacterial adherence to Dsg1- expressing HaCaT cells in vitro. Complementary gain-of-function was demonstrated by heterologous expression of SdrD in Lactococcus lactis, which increased adherence to HaCaT cells. Also ectopic expression of Dsg1 in HEK293 cells resulted in increased adherence of S. aureus NCTC8325-4 in vitro. Increased adherence of NCTC8325-4, compared to NCTC8325-4ΔsdrD, to the recombinant immobilized Dsg1 demonstrated direct interaction between SdrD and Dsg1. Specificity of SdrD interaction with Dsg1 was further verified using flow cytometry and confirmed binding of recombinant SdrD to HaCaT cells expressing Dsg1 on their surface. These data demonstrate that Dsg1 is a host ligand for SdrD. PMID:26924733

  14. BDCA1-positive dendritic cells (DCs) represent a unique human myeloid DC subset that induces innate and adaptive immune responses to Staphylococcus aureus Infection.

    PubMed

    Jin, Jun-O; Zhang, Wei; Du, Jiang-Yuan; Yu, Qing

    2014-11-01

    Staphylococcus aureus bloodstream infection (bacteremia) is a major cause of morbidity and mortality and places substantial cost burdens on health care systems. The role of peripheral blood dendritic cells (PBDCs) in the immune responses against S. aureus infection has not been well characterized. In this study, we demonstrated that BDCA1(+) myeloid DCs (mDCs) represent a unique PBDC subset that can induce immune responses against S. aureus infection. BDCA1(+) mDCs could engulf S. aureus and strongly upregulated the expression of costimulatory molecules and production of proinflammatory cytokines. Furthermore, BDCA1(+) mDCs expressed high levels of major histocompatibility complex (MHC) class I and II molecules in response to S. aureus and greatly promoted proliferation and gamma interferon (IFN-γ) production in CD4 and CD8 T cells. Moreover, BDCA1(+) mDCs expressed higher levels of Toll-like receptor 2 (TLR-2) and scavenger receptor A (SR-A) than those on CD16(+) and BDCA3(+) mDCs, and these two receptors were both required for the recognition of S. aureus and the subsequent activation of BDCA1(+) mDCs. Finally, BDCA1(+) mDC-mediated immune responses against S. aureus were dependent on MyD88 signaling pathways. These results demonstrate that human BDCA1(+) mDCs represent a unique subset of mDCs that can respond to S. aureus to undergo maturation and activation and to induce Th1 and Tc1 immune responses. PMID:25114114

  15. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions.

    PubMed

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-07-07

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy.

  16. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    PubMed Central

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  17. Heterogeneity in the chemistry, structure and function of plant cell walls.

    PubMed

    Burton, Rachel A; Gidley, Michael J; Fincher, Geoffrey B

    2010-10-01

    Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.

  18. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    SciTech Connect

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  19. Self-Protection against Cell Wall Hydrolysis in Streptococcus milleri NMSCC 061 and Analysis of the Millericin B Operon

    PubMed Central

    Beukes, Mervyn; Hastings, John W.

    2001-01-01

    Streptococcus milleri NMSCC 061 produces an endopeptidase, millericin B, which hydrolyzes the peptide moiety of susceptible cell wall peptidoglycan. The nucleotide sequence of a 4.9-kb chromosomal region showed three open reading frames (ORFs) and a putative tRNALeu sequence. The three ORFs encode a millericin B preprotein (MilB), a putative immunity protein (MilF), and a putative transporter protein (MilT). The milB gene encodes a 277-amino-acid preprotein with an 18-amino-acid signal peptide with a consensus IIGG cleavage motif. The predicted protein encoded by milT is homologous to ABC (ATP-binding cassette) transporters of several bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. These similarities strongly suggest that the milT gene product is involved in the translocation of millericin B. The gene milF encodes a protein of 302 amino acids that shows similarities to the FemA and FemB proteins of Staphylococcus aureus, which are involved in the addition of glycine to a pentapeptide peptidoglycan precursor. Comparisons of the cell wall mucopeptide of S. milleri NMSCC 061(resistant to lysis by millericin B) and S. milleri NMSCC 051(sensitive) showed a single amino acid difference. Serial growth of S. milleri NMSCC 051 in a cell wall minimal medium containing an increased concentration of leucine resulted in the in vivo substitution of leucine for threonine in the mucopeptide of the cell wall. A cell wall variant of S. milleri NMSCC 051 (sensitive) that contained an amino acid substitution (leucine for threonine) within its peptidoglycan cross bridge showed partial susceptibility to millericin B. The putative tRNALeu sequence located upstream of milB may be a cell wall-specific tRNA and could together with the milF protein, play a potential role in the addition of leucine to the pentapeptide peptidoglycan precursor and thereby, contributing to self-protection to millericin B in the producer

  20. Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon.

    PubMed

    Beukes, M; Hastings, J W

    2001-09-01

    Streptococcus milleri NMSCC 061 produces an endopeptidase, millericin B, which hydrolyzes the peptide moiety of susceptible cell wall peptidoglycan. The nucleotide sequence of a 4.9-kb chromosomal region showed three open reading frames (ORFs) and a putative tRNA(Leu) sequence. The three ORFs encode a millericin B preprotein (MilB), a putative immunity protein (MilF), and a putative transporter protein (MilT). The milB gene encodes a 277-amino-acid preprotein with an 18-amino-acid signal peptide with a consensus IIGG cleavage motif. The predicted protein encoded by milT is homologous to ABC (ATP-binding cassette) transporters of several bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. These similarities strongly suggest that the milT gene product is involved in the translocation of millericin B. The gene milF encodes a protein of 302 amino acids that shows similarities to the FemA and FemB proteins of Staphylococcus aureus, which are involved in the addition of glycine to a pentapeptide peptidoglycan precursor. Comparisons of the cell wall mucopeptide of S. milleri NMSCC 061(resistant to lysis by millericin B) and S. milleri NMSCC 051(sensitive) showed a single amino acid difference. Serial growth of S. milleri NMSCC 051 in a cell wall minimal medium containing an increased concentration of leucine resulted in the in vivo substitution of leucine for threonine in the mucopeptide of the cell wall. A cell wall variant of S. milleri NMSCC 051 (sensitive) that contained an amino acid substitution (leucine for threonine) within its peptidoglycan cross bridge showed partial susceptibility to millericin B. The putative tRNA(Leu) sequence located upstream of milB may be a cell wall-specific tRNA and could together with the milF protein, play a potential role in the addition of leucine to the pentapeptide peptidoglycan precursor and thereby, contributing to self-protection to millericin B in the

  1. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  2. Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes.

    PubMed

    Ochoa-Zarzosa, Alejandra; Villarreal-Fernández, Edith; Cano-Camacho, Horacio; López-Meza, Joel E

    2009-07-01

    A distinctive feature of bovine milk fat is the presence of butyrate, molecule with recognized antimicrobial and antiinflammatory properties. Bovine mastitis is a pathology characterized by inflammatory and infectious processes; however, the role of sodium butyrate on Staphylococcus aureus infection in mammary epithelium has not been studied. In this work we assess the role of sodium butyrate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus responsible of mastitis and on the expression of antimicrobial peptide genes. Our data show that sodium butyrate (0.25-0.5mM) reduces approximately 50% the internalization of S. aureus (ATCC 27543) into bMEC. By RT-PCR analysis, we showed that sodium butyrate is able to up-regulate the expression of tracheal antimicrobial peptide (TAP), beta-defensin and inducible nitric oxide synthase (iNOS) mRNAs, as well as nitric oxide production. Also, sodium butyrate and infection increased acetylation of histone H3 in bMEC. These results indicate that sodium butyrate could be effective to modulate innate immune gene expression in mammary gland that leads to a better defense against bacterial infection. To our knowledge, this is the first report that shows a role of sodium butyrate during the internalization of S. aureus into bMEC. PMID:19393738

  3. Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization

    PubMed Central

    Medina-Estrada, Ivan; López-Meza, Joel E.

    2016-01-01

    17β-Estradiol (E2), the predominant sexual hormone in females, is associated with the modulation of the innate immune response (IIR), and changes in its levels at parturition are related to intramammary infections, such as mastitis. In bovine mammary epithelial cells (bMECs), E2 regulates differentiation and proliferation, but its immunomodulatory functions have not been explored. Staphylococcus aureus is the predominant pathogen causing mastitis, which can persist intracellularly in bMECs. The aim of this work was to analyze whether E2 modulates the IIR of bMECs during S. aureus internalization. bMECs treated with E2 (50 pg/mL, 24 h) reduced bacteria internalization (~50%). The host receptors α5β1 and TLR2 do not participate in this reduction. However, E2 activates ERα and modulates the IIR reducing the S. aureus induced-mRNA expression of TNF-α (~50%) and IL-1β (90%). E2 also decreased the secretion of these cytokines as well as IL-6 production; however, in infected bMECs, E2 induced the secretion of IL-1β. Furthermore, E2 upregulates the expression of the antimicrobial peptides DEFB1, BNBD5, and psoriasin S100A7 (~5-, 3-, and 6-fold, resp.). In addition, E2 induced the production of antimicrobial compounds in bMEC culture medium, which, together with the modulation of the IIR, could be related to the reduction of S. aureus internalization. PMID:27034592

  4. Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes.

    PubMed

    Ochoa-Zarzosa, Alejandra; Villarreal-Fernández, Edith; Cano-Camacho, Horacio; López-Meza, Joel E

    2009-07-01

    A distinctive feature of bovine milk fat is the presence of butyrate, molecule with recognized antimicrobial and antiinflammatory properties. Bovine mastitis is a pathology characterized by inflammatory and infectious processes; however, the role of sodium butyrate on Staphylococcus aureus infection in mammary epithelium has not been studied. In this work we assess the role of sodium butyrate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus responsible of mastitis and on the expression of antimicrobial peptide genes. Our data show that sodium butyrate (0.25-0.5mM) reduces approximately 50% the internalization of S. aureus (ATCC 27543) into bMEC. By RT-PCR analysis, we showed that sodium butyrate is able to up-regulate the expression of tracheal antimicrobial peptide (TAP), beta-defensin and inducible nitric oxide synthase (iNOS) mRNAs, as well as nitric oxide production. Also, sodium butyrate and infection increased acetylation of histone H3 in bMEC. These results indicate that sodium butyrate could be effective to modulate innate immune gene expression in mammary gland that leads to a better defense against bacterial infection. To our knowledge, this is the first report that shows a role of sodium butyrate during the internalization of S. aureus into bMEC.

  5. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  6. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  7. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    PubMed Central

    Domozych, David S.

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium’s fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies. PMID:27135519

  8. Detection of cell surface rubella virus antigens in Vero cells with Staphylococcus aureus rich in protein A.

    PubMed

    Montero, M T; Ortega, E; Gómez, B

    1988-12-01

    The presence of cell surface rubella antigen was used to verify and monitor viral replication in Vero cell monolayers. Viral antigen was observed in infected cells by the adherence of Staphylococcus aureus sensitized with immune anti-rubella sera. The staphylococci specifically bound to infected cells were Gram-stained and observed using light microscopy. The minimum titer of IgG antiviral hemagglutinin required for sensitizing the bacteria was 3.9 IU/ml. The specificity of the assay was demonstrated by treating the infected cells with bacteria sensitized with normal sera, by treating the mock-infected cells with staphylococci sensitized with either immune or normal sera, and by sensitizing the bacteria with immune sera from which anti-rubella antibodies had been removed. Viral antigens were detected from day 2-9 post-infection. The sensitivity of the assay in verifying and monitoring viral propagation was comparable to the titration of viral particles of hemagglutination. The assay is specific, rapid, simple and can be performed in laboratories with minimal equipment.

  9. Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus.

    PubMed

    Rohinishree, Yadahalli Shrihari; Negi, Pradeep Singh

    2016-02-01

    Staphylococcus aureus is one of the most significant clinical pathogen, as it causes infections to humans and animals. Even though several antibiotics and other treatments have been used to control S. aureus infections and intoxication, bacterium is able to adapt, survive and produces exotoxins. Licorice (Glycyrrhiza glabra L.) has been used traditionally in various medicinal (antimicrobial) preparations, and Glycyrrhizic acid (GA) is the major active constituents present in it. In the present investigation the effect of licorice extract on methicillin susceptible S. aureus (FRI 722) and methicillin resistant S. aureus (ATCC 43300) growth and toxin production was studied. The MIC of licorice extract was found to be 0.25 and 2.5 mg GA ml(-1) against S. aureus FRI 722 and S. aureus ATCC 43300, respectively. Inhibition of biofilm formation was observed even at very low concentration (25 μg GA ml(-1)). Gradual decrease in expression and production of exotoxins such as α and β hemolysins and enterotoxin B was observed with the increasing concentrations of licorice extract, however, suboptimal concentration induced the expression of some of the virulence genes. This study indicated efficacy of licorice extract in controlling growth and pathogenicity of both methicillin susceptible and methicillin resistant S. aureus, however, the mechanisms of survival and toxin production at suboptimal concentration needs further study. PMID:27162389

  10. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots.

    PubMed

    Inoue, Hiroshi; Fukuoka, Daisuke; Tatai, Yuri; Kamachi, Hiroyuki; Hayatsu, Manabu; Ono, Manami; Suzuki, Suechika

    2013-01-01

    Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb(2+) and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb(2+) and the cell wall fragments. Our data show that Pb(2+) binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 10(8). The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.

  11. Biosynthesis of non-cellulosic polysaccharides of plant cell walls.

    PubMed

    Dhugga, Kanwarpal S

    2012-02-01

    Enzymes that make the polymer backbones of plant cell wall polysaccharides have proven to be recalcitrant to biochemical purification. Availability of mutational genetics and genomic tools paved the way for rapid progress in identifying genes encoding various cell wall glycan synthases. Mutational genetics, the primary tool used in unraveling cellulose biosynthesis, was ineffective in assigning function to any of the hemicellulosic, polymerizing glycan synthases. A combination of comparative genomics and functional expression in a heterologous system allowed identification of various cellulose synthase-like (Csl) sequences as being involved in the formation of β-1,4-mannan, β-1,4-glucan, and mixed-linked glucan. A number of xylose-deficient mutants have led to a variety of genes, none of which thus far possesses the motifs known to be conserved among polymerizing β-glycan synthases. Except for xylan synthase, which appears to be an agglomerate of proteins just like cellulose synthase, Golgi glycan synthases already identified suggest that the catalytic polypeptide by itself is sufficient for enzyme activity, most likely as a homodimer. Several of the Csl genes remain to be assigned a function. The possibility of the involvement of various Csl genes in making more than one product remains.

  12. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    SciTech Connect

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  13. The toughness of secondary cell wall and woody tissue

    PubMed Central

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the intercept toughness of these woods and other plant tissues/materials to a relative density of 1.0 predicted a toughness of 3.45kJ m-2 , which we identify with the intrinsic toughness of the cell wall. This quantity appears to predict published results from KIC tests on woods and is related to the propensity for crack deflection. The slope of the relationship between section thickness and toughness, describing the work of plastic buckling of cells, was not proportional to relative density, the lightest (balsa) and heaviest (lignum vitae) woods fracturing with less plastic work than predicted. The size of the plastic zone around the crack tip was estimated to be 0.5mm in size. From this, the hypothetical overall toughness of a thick (greater than 1 mm) block of solid cell wall material was calculated as 39.35 kJ m-2, due to both cell wall resistance (10 per cent) and the plastic buckling of cells (90 per cent). This value successfully predicts the toughness of most commercial woods (of relative densities between 0.2 and 0.8) from 'work area' tests in tension and bending. Though density was the most important factor, both fibre width/fibre length (in hardwoods) and lignin/cellulose ratios were negatively correlated with the work of plastic buckling, after correcting for density. At low densities the work of plastic buckling in the longitudinal radial (LR) direction exceeded that in longitudinal tangential (LT), but the reverse was true for relative densities above 0.25. This could

  14. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  15. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  16. Rapid regulatory control of plant cell expansion and wall relaxation

    SciTech Connect

    Cosgrove, D.J.

    1991-08-14

    The aim of this project is to elucidate the biophysical and cellular mechanisms that control plant cell expansion. At present we are attempting to characterize the kinetics of the system(s) responsible for regulatory and compensatory behavior of growing cells and tissues. This work is significantly because it indicates that biochemical loosening and biophysical stress relaxation of the wall are part of a feedback loop controlling growth. This report briefly summarizes the efforts and results of the past 12 months. In large part, we have been trying to analyze the nature of growth rate noise,'' i.e. spontaneous and often erratic variations in growth rate. We are obtaining evidence that such noise'' is not random, but rather reveals an underlying growth mechanism with complex dynamics.

  17. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  18. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  19. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  20. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy.

    PubMed

    Sant'Anna, Celso; Costa, Lilian T; Abud, Yuri; Biancatto, Lucas; Miguens, Flávio Costa; de Souza, Wanderley

    2013-08-01

    Lignocellulosic plant cell wall is considered a potential source for second generation biofuels. The plant cell wall is a highly complex structure mainly composed of cellulose, hemicelluloses, and lignin that form a network of crosslinked fibers. The structural organization of the sugarcane cell wall has not been previously analyzed in detail, and this analysis is a prerequisite for further studies on the recalcitrance and deconstruction of its biomass. In this work, cellulose and lignin localization were investigated by confocal laser scanning microscopy. In addition, the internode sugarcane cell wall structural organization was analyzed by electron microscopy. Internode stem anatomy showed a typical monocot structure consisting of epidermis, hypoderm, and vascular bundles scattered throughout ground parenchyma tissue and surrounded by sclerenchyma fibers. Confocal images of safranin labeled sugarcane showed that lignin distribution was predominant in the vessel elements, cell wall corners (CC), and middle lamella (ML), while cellulose-rich cell walls were randomly distributed in the ML and organized in the other cell wall layers. KMnO4 cytochemistry revealed that lignin was predominantly distributed in secondary cell walls, ML and CC. Cell wall sublayers (S1, S2, and S3) were identified and measured by transmission electron microscopy. Our results provide insights that may help further understanding of sugarcane cell wall organization, which is crucial for the research and technology of plant-based biofuel production. PMID:23733560

  1. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

    PubMed Central

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine. PMID:26895191

  2. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection.

    PubMed

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine. PMID:26895191

  3. Reduction in Young`s modulus of aluminum foams due to cell wall curvature and corrugation

    SciTech Connect

    Sanders, W.; Gibson, L.J.

    1998-12-31

    Measurements of the Young`s modulus and compressive strength of several closed-cell aluminum foams indicate that they are lower than expected from models for foam behavior. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young`s modulus and compressive strength by up to 70%. In this paper the authors report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.

  4. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  5. Adaptations of higher plant cell walls to water loss: drought vs desiccation.

    PubMed

    Moore, John P; Vicré-Gibouin, Mäite; Farrant, Jill M; Driouich, Azeddine

    2008-10-01

    Water-deficit stress poses unique challenges to plant cells dependent on a hydrostatic skeleton and a polysaccharide-rich cell wall for growth and development. How the plant cell wall is adapted to loss of water is of interest in developing a general understanding of water stress tolerance in plants and of relevance in strategies related to crop improvement. Drought tolerance involves adaptations to growth under reduced water potential and the concomitant restructuring of the cell wall that allow growth processes to occur at lower water contents. Desiccation tolerance, by contrast, is the evolution of cell walls that are capable of losing the majority of cellular water without suffering permanent and irreversible damage to cell wall structure and polymer organization. This minireview highlights common features and differences between these two water-deficit responses observed in plants, emphasizing the role of the cell wall, while suggesting future research avenues that could benefit fundamental understanding in this area.

  6. The connection of cytoskeletal network with plasma membrane and the cell wall.

    PubMed

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-04-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

  7. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance.

    PubMed

    Dörr, Tobias; Alvarez, Laura; Delgado, Fernanda; Davis, Brigid M; Cava, Felipe; Waldor, Matthew K

    2016-01-12

    The bacterial cell wall is critical for maintenance of cell shape and survival. Following exposure to antibiotics that target enzymes required for cell wall synthesis, bacteria typically lyse. Although several cell envelope stress response systems have been well described, there is little knowledge of systems that modulate cell wall synthesis in response to cell wall damage, particularly in Gram-negative bacteria. Here we describe WigK/WigR, a histidine kinase/response regulator pair that enables Vibrio cholerae, the cholera pathogen, to survive exposure to antibiotics targeting cell wall synthesis in vitro and during infection. Unlike wild-type V. cholerae, mutants lacking wigR fail to recover following exposure to cell-wall-acting antibiotics, and they exhibit a drastically increased cell diameter in the absence of such antibiotics. Conversely, overexpression of wigR leads to cell slimming. Overexpression of activated WigR also results in increased expression of the full set of cell wall synthesis genes and to elevated cell wall content. WigKR-dependent expression of cell wall synthesis genes is induced by various cell-wall-acting antibiotics as well as by overexpression of an endogenous cell wall hydrolase. Thus, WigKR appears to monitor cell wall integrity and to enhance the capacity for increased cell wall production in response to damage. Taken together, these findings implicate WigKR as a regulator of cell wall synthesis that controls cell wall homeostasis in response to antibiotics and likely during normal growth as well.

  8. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers.

    PubMed

    Yang, Shijia; Ouyang, Hui; Su, Xiaoxiao; Gao, Hongfei; Kong, Weijun; Wang, Mengyao; Shu, Qi; Fu, Zhifeng

    2016-04-15

    Vancomycin, which has a strong antibacterial effect to Gram-positive bacteria, was adopted as one molecular recognition agent for bacterial detection. Magnetic beads (MBs) were functionalized with this antibiotic to effectively concentrate Staphylococcus aureus (S. aureus). In addition, alkaline phosphatase (ALP)-tagged rabbit immunoglobulin G (ALP-IgG) was used as the second recognition agent to improve the specificity based on the binding between the Fc region of rabbit IgG and protein A in the cell wall of S. aureus. MBs-concentrated sandwich complex of vancomycin/S. aureus/ALP-IgG was formed with a one-step incubation protocol. Then ALP chemiluminescent reaction was triggered by injecting substrate solution to quantitate S. aureus. Based on the sandwich molecular recognition mechanism and MBs concentration, an ultrasensitive, specific and rapid method was developed for S. aureus detection. The linear range for S. aureus detection was 12-1.2 × 10(6)CFU mL(-1), with a very low detection limit of 3.3 CFU mL(-1). The whole detection process could be completed in 75 min. Other Gram-positive bacteria and Gram-negative bacteria, including Escherichia coli, Salmonella, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus cereus and Bacillus subtilis, showed negligible interference to S. aureus detection. This method was successfully used to quantitate S. aureus in lake water, milk, human urine and human saliva with acceptable recoveries ranging from 70.0% to 116.7%.

  9. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  10. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  11. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-01-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices. PMID:26899567

  12. Fractionation and Structural Characterization of Arabinogalactan-Proteins from the Cell Wall of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1995-01-01

    Arabinogalactan-proteins (AGPs) have been purified from Paul's Scarlet rose (Rosa sp.) cell walls. As estimated by gel permeation chromatography, the apparent molecular masses of the two major cell-wall AGP fractions were 130 and 242 kD. Since the 130-kD AGP had a ratio of arabinose/glucuronic acid that was 12 times higher than that of the 242-kD AGP, the fractions were named cell-wall AGP1 (CW-AGP1) and glucuronogalactan-protein (GGP), respectively. CW-AGP1 and GGP contained predominantly t-arabinofuranosyl residues; 3-linked, 6-linked, and 3,6-branched galactopyranosyl residues; and 4-linked and t-glucuronopyranosyl residues. The 1H-nuclear magnetic resonance spectra of CW-AGP1 and GGP showed that the arabinofuranosyl and galactopyranosyl residues were predominantly in [alpha]- and [beta]-anomeric configuration, respectively, and that GGP contained a few O-acetyl residues. The protein moieties of CW-AGP1 and GGP were both rich in hydroxyproline and alanine but differed in the percentage of various amino acids, including hydroxyproline, alanine, serine, and glycine. Cell-wall AGPs bound to ([beta]-D-glucosyl)3 Yariv phenylglycoside, but the stoichiometry of binding was about 6 times greater in GGP than in other Rosa AGPs. GGP seems to be peculiar to the cell wall, since no similar molecule was found in the culture medium. PMID:12228648

  13. The plant cell wall in the feeding sites of cyst nematodes

    PubMed Central

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium. PMID:24678316

  14. Nanoindentation techniques for the cell walls of wood

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph Eugene

    There is a recognized need in forest products research to better understand how the mechanical properties of wood derive from the basic polymer components that make up the wood. For development of new engineered wood products there is the need to understand how chemical additives and adhesives interact with wood polymers and influence properties at the cellular level. To meet these needs I have developed nanoindentation techniques for probing the mechanical properties of the cell walls in wood. There are two, key results of this research. The first is a newly invented structural compliance method for isolating the properties of local regions within materials and excluding artifacts brought about by neighboring edges including free edges and interfaces between dissimilar cell wall layers. The second consists of methods to obtain viscoplastic and viscoelastic data over as wide a range of deformation rate as possible. The broadband nanoindentation creep (BNC) technique assesses the viscoplastic properties over 5 orders of magnitude in deformation rate (-10-4 to 10 s-1). Viscoelastic measurements can be made with unloading times ranging from 0.01 to 100 s, resulting in viscoelastic data that span four orders of magnitude in frequency or inverse time (˜10-3 to 10 s-1). To demonstrate the efficacy of these techniques, experiments are performed on a range of materials including fused silica, silicon, molybdenum, siliconon-insulator layered specimen, poly (methylmetacrylate), polycarbonate, polystyrene, wood cells in loblolly pine (Pinus taeda ), and a polypropylene-wood composite. Finally, the structural compliance method and BNC are combined to explore polymeric methylene diphenyl diisocyanate (pMDI)-wood interactions. The data suggest that pMDI polymerizes in situ to create an interpenetrating polymer network.

  15. Role of calcium in the mechanical strength of soybean hypocotyl cell walls

    SciTech Connect

    Virk, S.S.; Cleland, R.E.

    1986-04-01

    Calcium ions inhibit auxin-induced growth in both dicot stems and coleoptiles. In coleoptiles calcium does not directly stiffen cell walls. The authors have tested here whether calcium might alter the mechanical strength of a dicot cell wall, the soybean hypocotyl. Sections were longitudinally bisected, boiled or frozen-thawed, incubated in solutions and then the mechanical strength was determined with an Instron. The calcium content was also measured. Removal of calcium by EGTA or by acidic buffers such as K-Pi-citrate resulted in a proportional increase in wall extensibility. Addition of calcium, on the other hand, stiffened the walls. These changes were reversible. It was concluded that calcium crosslinks make a significant contribution to the strength of dicot stem cell walls, and that in vivo, removal of calcium from the wall by uptake into the cell could result in wall loosening and thus enhanced growth.

  16. Identifying cytoplasmic input to the cell wall of growing Chara corallina.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2006-01-01

    Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) with that in living cells (input occurring). Cell walls were isolated from growing internodes of Chara corallina and filled with pressurized oil to control turgor pressure while elongation was monitored. Turgor pressure in living cells was similarly controlled and monitored by adding/removing cell solution. Temperature was varied in some experiments. At all pressures and temperatures, isolated walls displayed turgor-driven growth indistinguishable in every respect from that in living cells, except the rate decelerated in the isolated walls while the living cells grew rapidly. The growth in the isolated walls was highly responsive to temperature, in contrast to the elastic extension that has been shown to be insensitive to similar temperatures. Consequently, strong intermolecular bonds were responsible for growth and weak bonds for elastic extension. Boiling the walls gave the same results, indicating that enzyme activities were not controlling these bonds. However, pectin added to isolated walls reversed their growth deceleration and returned the rate to that in the living cells. The pectin was similar to that normally produced by the cytoplasm and deposited in the wall, suggesting that continued cytoplasmic input of pectin may play a role in sustaining turgor-driven growth in Chara.

  17. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously.

    PubMed

    Cho, Hongbaek; Wivagg, Carl N; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D A; Suh, Hyunsuk; Marto, Jarrod A; Garner, Ethan C; Bernhardt, Thomas G

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume that class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery, as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, shape, elongation, division, sporulation (SEDS)-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  18. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature

    PubMed Central

    Lucas, Marcel; Wagner, Greg L.; Nishiyama, Yoshiharu; Hanson, Leif; Samayam, Indira P.; Schall, Constance A.; Langan, Paul; Rector, Kirk D.

    2012-01-01

    Time-resolved autofluorescence, Raman microspectroscopy, and scanning microprobe X-ray diffraction were combined in order to characterize lignocellulosic biomass from poplar trees and how it changes during treatment with the ionic liquid 1-n-ethyl-3-methylimidazolium acetate (EMIMAC) at room temperature. The EMIMAC penetrates the cell wall from the lumen, swelling the cell wall by about a factor of two towards the empty lumen. However, the middle lamella remains unchanged, preventing the cell wall from swelling outwards. During this swelling, most of the cellulose microfibrils are solubi-lized but chain migration is restricted and a small percentage of microfibrils persist. When the EMIMAC is expelled, the cellulose recrystallizes as microfibrils of cellulose I. There is little change in the relative chemical composition of the cell wall after treatment. The action of EMIMAC on the poplar cell wall at room temperature would therefore appear to be a reversible swelling and a reversible decrystallization of the cell wall. PMID:21247757

  19. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2013-12-26

    Efficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure. We address the effect of hemicellulose composition on primary cell wall assembly forces by using the 3D-RISM-KH molecular theory of solvation, which provides statistical-mechanical sampling and molecular picture of hemicellulose arrangement around cellulose. We show that hemicellulose branches of arabinose, glucuronic acid, and especially glucuronate strengthen the primary cell wall by strongly coordinating to hydrogen bond donor sites on the cellulose surface. We reveal molecular forces maintaining the cell wall structure and provide directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. PMID:24274712

  20. Relating the mechanics of the primary plant cell wall to morphogenesis.

    PubMed

    Bidhendi, Amir J; Geitmann, Anja

    2016-01-01

    Regulation of the mechanical properties of the cell wall is a key parameter used by plants to control the growth behavior of individual cells and tissues. Modulation of the mechanical properties occurs through the control of the biochemical composition and the degree and nature of interlinking between cell wall polysaccharides. Preferentially oriented cellulose microfibrils restrict cellular expansive growth, but recent evidence suggests that this may not be the trigger for anisotropic growth. Instead, non-uniform softening through the modulation of pectin chemistry may be an initial step that precedes stress-induced stiffening of the wall through cellulose. Here we briefly review the major cell wall polysaccharides and their implication for plant cell wall mechanics that need to be considered in order to study the growth behavior of the primary plant cell wall.

  1. Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem1[W][OPEN

    PubMed Central

    Schuetz, Mathias; Benske, Anika; Smith, Rebecca A.; Watanabe, Yoichiro; Tobimatsu, Yuki; Ralph, John; Demura, Taku; Ellis, Brian; Samuels, A. Lacey

    2014-01-01

    Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition. PMID:25157028

  2. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    NASA Astrophysics Data System (ADS)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts