Sample records for auroral distribution implications

  1. Rocket measurement of auroral partial parallel distribution functions

    NASA Astrophysics Data System (ADS)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  2. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  3. Wave particle interactions in Jupiter's magnetosphere: Implications for auroral and magnetospheric particle distributions

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Schreiner, Anne; Barry, Mauk; Clark, George; Kollman, Peter

    2017-04-01

    We investigate the occurrence and the role of wave particle interaction processes, i.e., Landau and cyclotron damping, in Jupiter's magnetosphere. Therefore we calculate kinetic length and temporal scales, which we cross-compare at various regions within Jupiter's magnetosphere. Based on these scales, we investigate the roles of possible wave particle mechanisms in each region, e.g., Jupiter's plasma sheet, the auroral acceleration region and the polar ionosphere. We thereby consider that the magnetospheric regions are coupled through convective transport, Alfven and other wave modes. We particularly focus on the role of kinetic Alfven waves in contributing to Jupiter's aurora. Our results will aid the interpretation of particle distribution functions measured by the JEDI instrument onboard the JUNO spacecraft.

  4. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification

    NASA Astrophysics Data System (ADS)

    Yang, Qiuju; Hu, Ze-Jun

    2018-03-01

    Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.

  5. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  6. Extremely Nonthermal Monoenergetic Precipitation in the Auroral Acceleration Region: In Situ Observations

    NASA Astrophysics Data System (ADS)

    Hatch, S.; Chaston, C. C.; Labelle, J. W.

    2017-12-01

    We report in situ measurements through the auroral acceleration region that reveal extremely nonthermal monoenergetic electron distributions. These auroral primaries are indicative of source populations in the plasma sheet well described as kappa distributions with κ ≲ 2. We show from observations and modeling how this large deviation from Maxwellian form may modify the acceleration potential required to drive current closure through the auroral ionosphere.

  7. Kilometric radiation power flux dependence on area of discrete aurora

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Burch, J. L.; Gurnett, D. A.; Anderson, R. R.; Sheehan, R. E.

    1989-01-01

    Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism.

  8. Two-dimensional quasineutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1985-01-01

    Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations.

  9. Problem of Auroral Oval Mapping and Multiscale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Stepanova, Marina; Kirpichev, Igor; Vovchenko, Vadim; Vorobjev, Viachislav; Yagodkina, Oksana

    The problem of the auroral oval mapping to the equatorial plane is reanalyzed taking into account the latest results of the analysis of plasma pressure distribution at low altitudes and at the equatorial plane. Statistical pictures of pressure distribution at low latitudes are obtained using data of DMSP observations. We obtain the statistical pictures of pressure distribution at the equatorial plane using data of THEMIS mission. Results of THEMIS observations demonstrate the existence of plasma ring surrounding the Earth at geocentric distances from ~6 till ~12Re. Plasma pressure in the ring is near to isotropic and its averaged values are larger than 0.2 nPa. We take into account that isotropic plasma pressure is constant along the field line and that the existence of field-aligned potential drops in the region of the acceleration of auroral electrons leads to pressure decrease at low altitudes. We show that most part of quite time auroral oval does not map to the real plasma sheet. It maps to the surrounding the Earth plasma ring. We also show that transverse currents in the plasma ring are closed inside the magnetosphere forming the high latitude continuation of the ordinary ring current. The obtained results are used for the explanation of ring like form of the auroral oval. We also analyze the processes of the formation of multiscale auroral structures including thin auroral arcs and discuss the difficulties of the theories of alfvenic acceleration of auroral electrons.

  10. The role of lower-hybrid-wave collapse in the auroral ionosphere.

    PubMed

    Schuck, P W; Ganguli, G I; Kintner, P M

    2002-08-05

    In regions where lower-hybrid solitary structures (LHSS) are observed, the character of auroral lower-hybrid turbulence (LHT) (0-20 kHz) is investigated using the amplitude probability distribution of the electric field. The observed probability distributions are accurately described by a Rayleigh distribution with two degrees of freedom. The statistics of the LHT exhibit no evidence of the global modulational instability or self-similar wave collapse. We conclude that nucleation and resonant scattering in preexisting density depletions are the processes responsible for LHSS in auroral LHT.

  11. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  12. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  13. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  14. Electron Pitch Angle Distributions Along Field Lines Connected to the Auroral Region from 25 to 1.2 RJ Measured by the Jovian Auroral Distributions Experiment-Electrons (JADE-E) on Juno

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Chae, K.; Clark, G. B.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Hue, V.; Hospodarsky, G. B.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Ranquist, D. A.; Reno, M. L.; Saur, J.; Szalay, J.; Thomsen, M. F.; Valek, P. W.; Wilson, R. J.

    2017-12-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides critical in situ measurements of electrons and ions needed to understand the plasma distributions and processes that fill the Jovian magnetosphere and ultimately produce Jupiter's bright and dynamic aurora. JADE is an instrument suite that includes two essentially identical electron sensors (JADE-Es) and a single ion sensor (JADE-I). JADE-E measures electron energy distributions from 0.1 to 100 keV and provides detailed electron pitch angle distributions (PAD) at 7.5° resolution. Juno's trajectories in the northern hemisphere have allowed JADE to sample electron energy and pitch angle distributions on field lines connected to the auroral regions from as close as 1.2 RJ all the way to distances greater than 25 RJ. Here, we report on the evolution of these distributions. Specifically, the PADs change from mostly uniform at distances greater than 20 RJ, to butterfly from 18 to 12 RJ, to field aligned or pancake, depending on the energy, closer to Jupiter. Below 1.5 RJ, electron beams and loss cones are observed.

  15. Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations

    NASA Astrophysics Data System (ADS)

    Li, W.; Thorne, R. M.; Ma, Q.; Zhang, X.-J.; Gladstone, G. R.; Hue, V.; Valek, P. W.; Allegrini, F.; Mauk, B. H.; Clark, G.; Kurth, W. S.; Hospodarsky, G. B.; Connerney, J. E. P.; Bolton, S. J.

    2017-10-01

    Juno observed the low-altitude polar region during perijove 1 on 27 August 2016 for the first time. Auroral intensity and false-color maps from the Ultraviolet Spectrograph (UVS) instrument show extensive diffuse aurora observed equatorward of the main auroral oval. Juno passed over the diffuse auroral region near the System III longitude of 120°-150° (90°-120°) in the northern (southern) hemisphere. In the region where these diffuse auroral emissions were observed, the Jupiter Energetic Particle Detector Instrument (JEDI) and Jovian Auroral Distributions Experiment (JADE) instruments measured nearly full loss cone distributions for the downward going electrons over energies of 0.1-700 keV but very few upward going electrons. The false-color maps from UVS indicate more energetic electron precipitation at lower latitudes than less energetic electron precipitation, consistent with observations of precipitating electrons measured by JEDI and JADE. The comparison between particle and aurora measurements provides first direct evidence that these precipitating energetic electrons are mainly responsible for the diffuse auroral emissions at Jupiter.

  16. Relationships between particle precipitation and auroral forms

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Winningham, J. D.

    1978-01-01

    The paper discusses recent measurements pertaining to the relationship between high-latitude particle (electron) precipitation and auroras. The discussion covers three topics: the large-scale relationships between auroral forms and the particle populations of the magnetosphere as determined from satellite measurements; (2) the relationship between satellite and sounding-rocket observations, particularly field-aligned pitch-angle distributions and upward field-aligned currents measured in the vicinity of auroral forms; and (3) recent results on the interaction of auroral electrons with the atmosphere.

  17. Magnetosphere - ionosphere coupling process in the auroral region estimated from auroral tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Ogawa, Y.; Kadokura, A.; Gustavsson, B.; Kauristie, K.; Whiter, D. K.; Enell, C. F. T.; Brandstrom, U.; Sergienko, T.; Partamies, N.; Kozlovsky, A.; Miyaoka, H.; Kosch, M. J.

    2016-12-01

    We have studied the magnetosphere - ionosphere coupling process by using multiple auroral images and the ionospheric data obtained by a campaign observation with multi-point imagers and the EISCAT UHF radar in Northern Europe. We observed wavy structure of discrete arcs around the magnetic zenith at Tromso, Norway, from 22:00 to 23:15 UT on March 14, 2015, followed by auroral breakup, poleward expansion, and pulsating auroras. During this interval, the monochromatic (427.8nm) images were taken at a sampling interval of 2 seconds by three EMCCD imagers and at an interval of 10 seconds by totally six imagers. The EISCAT UHF radar at Tromso measured the ionospheric parameters along the magnetic field line from 20 to 24 UT. We applied the tomographic inversion technique to these data set to retrieve 3D distribution of the 427.8nm emission, that enabled us to obtain the following quantities for the auroras that change from moment to moment; (1) the relation between the 427.8nm emission and the electron density enhancement along the field line, (2) the horizontal distribution of energy flux of auroral precipitating electrons, and (3) the horizontal distribution of height-integrated ionospheric conductivity. By combining those with the ionospheric equivalent current estimated from the ground-based magnetometer network, we discuss the current system of a sequence of the auroral event in terms of the magnetosphere-ionosphere coupling.

  18. Determination of auroral electrostatic potentials using high- and low-altitude particle distributions

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.

    1988-01-01

    The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.

  19. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  20. Mesoscale thermospheric wind in response to nightside auroral brightening

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Zou, Y.; Gabrielse, C.; Lyons, L. R.; Varney, R. H.; Conde, M.; Hampton, D. L.; Mende, S. B.

    2017-12-01

    Although high-latitude ionospheric flows and thermospheric winds in the F-region are overall characterized by two-cell patterns over a global scale ( 1000 km), intense energy input from the magnetosphere often occurs in a mesoscale ( 100 km) and transient manner ( 10 min). Intense mesoscale energy input would drive enhanced mesoscale winds, whose properties are closely associated with auroral arcs and associated ionospheric flows. However, how thermospheric winds respond to and distribute around mesoscale magnetospheric input has not been characterized systematically. This presentation addresses how mesoscale winds distribute around quasi-steady arcs, evolve and distribute around transient arcs, and vary with geomagnetic and solar activity. We use Scanning Doppler Imagers (SDIs), all-sky imagers and PFISR over Alaska. A channel of azimuthal neutral wind is often found associated with localized flow channels adjacent to quasi-steady discrete aurora. The wind speed dynamically changes after a short time lag (a few tens of minutes) from auroral brightenings, including auroral streamers and intensifications on preexisting auroral arcs. This is in contrast to a much longer time lag ( 1 hour) reported previously. During a storm main phase, a coherent equatorward motion of the Harang discontinuity was seen in plasma flow, aurora and neutral wind, with a few degrees of equatorward displacement of the neutral wind Harang, which is probably due to the inertia. These results suggest that a tight M-I-T connection exists under the energy input of assorted auroral arcs and that mesoscale coupling processes are important in M-I-T energy transfer.

  1. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    NASA Astrophysics Data System (ADS)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  2. Electron currents associated with an auroral band

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  3. Auroral electron distribution function

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Dusenbery, P. B.; Thomas, B. J.; Arnoldy, R. L.

    1978-01-01

    During a rocket flight over an active aurora, electron velocity distribution is studied in the 15-25 keV range. The results are then compared to optical observations made by all-sky cameras and a television system. A broad plateau produced by downcoming electrons was observed. Smaller plateaus were seen when the rocket was south of arcs evident in all-sky camera photographs. By extending to higher energies when the rocket passed out of auroral forms, the plateaus appeared to broaden. When the rocket left an arc or entered weak diffuse auroral structures, the plateaus shrank as the more energetic portions faded. When field-aligned rays were observed within the arcs, the plateau's high-velocity cutoff was found to fluctuate. The results indicate that the auroral plasma was very unstable above the rocket. It is suggested that plateaus are produced as an unstable plasma evolves toward a quasi-equilibrium state.

  4. Using Wave and Energetic Particle Observation on Juno to Investigate Low Altitude Magnetospheric Process on Jupiter.

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Li, W.; Ma, Q.; Zhang, X.

    2017-12-01

    The Juno spacecraft has now made several passes across the polar regions and low altitude equatorial region in the Jovian upper atmosphere. Here we report on a recent analysis of unique Landau resonant wave-particle interactions between low frequency waves and energetic particles which leads to characteristic butterfly distributions in the sub-auroral upper atmosphere of Jupiter. We also report on the characteristics of diffuse auroral precipitation observed by the JEDI and JADE energetic particle detectors equatorward of the main auroral oval, and relate this to remote sensing of the Jovian aurora by the UVS instrument on Juno. The loss cone distributions, measured by the JEDI particle detector, have also been used to investigate the spatial distribution of low altitude anomalies in the Jovian magnetic field.

  5. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  6. Latitudinal Variations of Auroral-Zone Ionization Distribution.

    DTIC Science & Technology

    1983-02-01

    CONTRACT OR GRANT NUMBER(s) Robert M. Robinson F49620-80-C-0014 Roland T. Tsunoda 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT...scanned. A. Auroral Zone Ionospheric Conductivity A key element in modelling the magnetosphere-ionosphere circuit is the auroral zone ionospheric...while the maximum conductivity for the evening eastward electro- jet was less than 20 mho in our data set . In other words, both the south- ward field and

  7. Excitation of whistler waves by reflected auroral electrons

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Ziebell, L. F.; Freund, H. P.

    1983-01-01

    Excitation of electron waves and whistlers by reflected auroral electrons which possess a loss-cone distribution is investigated. Based on a given magnetic field and density model, the instability problem is studied over a broad region along the auroral field lines. This region covers altitudes ranging from one quarter of an earth radius to five earth radii. It is found that the growth rate is significant only in the region of low altitude, say below the source region of the auroral kilometric radiation. In the high altitude region the instability is insignificant either because of low refractive indices or because of small loss cone angles.

  8. Sounding rocket study of auroral electron precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation wasmore » found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984.« less

  9. Auroral research at the Tromsø Northern Lights Observatory: the Harang directorship, 1928-1946

    NASA Astrophysics Data System (ADS)

    Egeland, Alv; Burke, William J.

    2016-03-01

    The Northern Lights Observatory in Tromsø began as Professor Lars Vegard's dream for a permanent facility in northern Norway, dedicated to the continuous study of auroral phenomenology and dynamics. Fortunately, not only was Vegard an internationally recognized spectroscopist, he was a great salesman and persuaded the Rockefeller Foundation that such an observatory represented an important long-term investment. A shrewd judge of talent, Vegard recognized the scientific and managerial skills of Leiv Harang, a recent graduate from the University of Oslo, and recommended that he become the observatory's first director. In 1929, subsequent to receiving the Rockefeller Foundation grant, the University of Oslo established a low temperature laboratory to support Vegard's spectroscopic investigations. This paper follows the scientific accomplishments of observatory personnel during the 18 years of Harang's directorship. These include: identifying the chemical sources of auroral emissions, discovering the Vegard-Kaplan bands, quantifying height distributions of different auroral forms, interpreting patterns of magnetic field variations, remotely probing auroral electron distribution profiles in the polar ionosphere, and monitoring the evolving states of the ozone layer. The Rockefeller Foundation judges got it right: the Tromsø Nordlysobservatoriet was, and for decades remained, an outstanding scientific investment.

  10. Surface Charging in the Auroral Zone on the DMSP Spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    1998-11-01

    A recent anomaly on the DMSP F13 spacecraft was attributed to an electrical malfunction caused by an electrostatic discharge on the vehicle associated with surface charging. It occurred during an intense energetic electron precipitation event (an auroral arc) within a region of very low plasma density in the auroral zone. A study of 1.5 year's worth of DMSP data from three satellites acquired during the recent minimum in the solar cycle has shown that such charging was a common occurrence with 704 charging events found. This is the result of significantly reduced background plasma densities associated with the solar minimum; smaller than ever previously experienced by the DMSP spacecraft. At times, the spacecraft charged for periods of 10s of seconds as they skimmed along an auroral arc instead of cutting across it. We show examples of the observed plasma density and the precipitating electron and ion spectra associated with the charging, and the MLT distribution and the seasonal distribution of the events. The preponderance of events occurred in the premidnight and morning sectors with two types of electron spectra being observed: a sharply peaked distribution indicative of field-aligned acceleration in the premidnight sector and a very hard distribution in the morning sector.

  11. The analysis of a rocket tomography measurement of the N2+3914A emission and N2 ionization rates in an auroral arc

    NASA Technical Reports Server (NTRS)

    Mcdade, Ian C.

    1991-01-01

    Techniques were developed for recovering two-dimensional distributions of auroral volume emission rates from rocket photometer measurements made in a tomographic spin scan mode. These tomographic inversion procedures are based upon an algebraic reconstruction technique (ART) and utilize two different iterative relaxation techniques for solving the problems associated with noise in the observational data. One of the inversion algorithms is based upon a least squares method and the other on a maximum probability approach. The performance of the inversion algorithms, and the limitations of the rocket tomography technique, were critically assessed using various factors such as (1) statistical and non-statistical noise in the observational data, (2) rocket penetration of the auroral form, (3) background sources of emission, (4) smearing due to the photometer field of view, and (5) temporal variations in the auroral form. These tests show that the inversion procedures may be successfully applied to rocket observations made in medium intensity aurora with standard rocket photometer instruments. The inversion procedures have been used to recover two-dimensional distributions of auroral emission rates and ionization rates from an existing set of N2+3914A rocket photometer measurements which were made in a tomographic spin scan mode during the ARIES auroral campaign. The two-dimensional distributions of the 3914A volume emission rates recoverd from the inversion of the rocket data compare very well with the distributions that were inferred from ground-based measurements using triangulation-tomography techniques and the N2 ionization rates derived from the rocket tomography results are in very good agreement with the in situ particle measurements that were made during the flight. Three pre-prints describing the tomographic inversion techniques and the tomographic analysis of the ARIES rocket data are included as appendices.

  12. Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1986-01-01

    Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.

  13. Changes in the Martian atmosphere induced by auroral electron precipitation

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.; Bisikalo, D. V.; Gérard, J.-C.; Hubert, B.

    2017-09-01

    Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.

  14. Double structure of ionospheric conductivity in the midnight auroral oval during a substorm

    NASA Astrophysics Data System (ADS)

    Kotikov, A. L.; Shishkina, E. M.; Troshichev, O. A.; Sergienko, T. I.

    1995-02-01

    Measurements of precipitating particles on board Defense Meteorological Satellite Program (DMSP) F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64-68 deg, and the other is a narrow band at latitudes 70-73 deg. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons E(sub e) greater than 5 keV in the high conductance region.

  15. Short-term dynamics of the high-latitude auroral distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphree, J.S.; Elphinstone, R.D.; Cogger, L.L.

    During two consecutive orbits of the Viking satellite on March 24, 1986, UV observations of the northern hemisphere auroral distribution revealed rapid growth and decay of large-scale polar arcs. Evolution of these features occurred from the nightside auroral distribution (to which they are optically connected) toward the dayside. The connection on the dayside was short-lived ({approx} 2 min) and the arc retreated at similar speeds to its development ({approx} 5 km/s). Time scales for growth (at least to the level of the sensitivity of the instrument) can also be less than 1 min. Examples of arc occurrences during a half-hourmore » time period show that arcs can extend from the nightside to the dayside and disappear and another extended arc can appear at a widely separated position. These types of dynamic polar features appear consistent with the dynamic energization and precipitation of boundary layer electrons at high latitudes.« less

  16. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rufai, O. R., E-mail: rrufai@csir.co.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulsemore » duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.« less

  17. Mirror instability and origin of morningside auroral structure

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.

    1983-01-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  18. Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC

    NASA Technical Reports Server (NTRS)

    Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.

    1995-01-01

    Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.

  19. Effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1981-01-01

    A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.

  20. Spacecraft Charging Hazards In Low-earth Orbit

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.

    The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.

  1. Acceleration of auroral electrons in parallel electric fields

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Walker, D. N.; Arnoldy, R. L.

    1976-01-01

    Rocket observations of auroral electrons are compared with the predictions of a number of theoretical acceleration mechanisms that involve an electric field parallel to the earth's magnetic field. The theoretical models are discussed in terms of required plasma sources, the location of the acceleration region, and properties of necessary wave-particle scattering mechanisms. We have been unable to find any steady state scatter-free electric field configuration that predicts electron flux distributions in agreement with the observations. The addition of a fluctuating electric field or wave-particle scattering several thousand kilometers above the rocket can modify the theoretical flux distributions so that they agree with measurements. The presence of very narrow energy peaks in the flux contours implies a characteristic temperature of several tens of electron volts or less for the source of field-aligned auroral electrons and a temperature of several hundred electron volts or less for the relatively isotropic 'monoenergetic' auroral electrons. The temperature of the field-aligned electrons is more representative of the magnetosheath or possibly the ionosphere as a source region than of the plasma sheet.

  2. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  3. Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.; Russell, C. T.; Smith, E. J.; Lepping, R. P.

    1985-01-01

    The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec.

  4. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  5. Jovian ultraviolet auroral activity, 1981-1991

    NASA Technical Reports Server (NTRS)

    Livengood, T. A.; Moos, H. W.; Ballester, G. E.; Prange, R. M.

    1992-01-01

    IUE observations of H2 UV emissions for the 1981-1991 period are presently used to investigate the auroral brightness distribution on the surface of Jupiter. The brightness, which is diagnostic of energy input to the atmosphere as well as of magnetospheric processes, is determined by comparing model-predicted brightnesses against empirical ones. The north and south aurorae appear to be correlated in brightness and in variations of the longitude of peak brightness. There are strong fluctuations in all the parameters of the brightness distribution on much shorter time scales than those of solar maximum-minimum.

  6. Observations of Magnetosphere-Ionosphere Coupling Processes in Jupiter's Downward Auroral Current Region

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Mauk, B.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bunce, E. J.; Connerney, J. E. P.; Ebert, R. W.; Gershman, D. J.; Gladstone, R.; Haggerty, D. K.; Hospodarsky, G. B.; Kotsiaros, S.; Kollmann, P.; Kurth, W. S.; Levin, S.; McComas, D. J.; Paranicas, C.; Rymer, A. M.; Saur, J.; Szalay, J. R.; Tetrick, S.; Valek, P. W.

    2017-12-01

    Our view and understanding of Jupiter's auroral regions are ever-changing as Juno continues to map out this region with every auroral pass. For example, since last year's Fall AGU and the release of publications regarding the first perijove orbit, the Juno particles and fields teams have found direct evidence of parallel potential drops in addition to the stochastic broad energy distributions associated with the downward current auroral acceleration region. In this region, which appears to exist in an altitude range of 1.5-3 Jovian radii, the potential drops can reach as high as several megavolts. Associated with these potentials are anti-planetward electron angle beams, energetic ion conics and precipitating protons, oxygen and sulfur. Sometimes the potentials within the downward current region are structured such that they look like the inverted-V type distributions typically found in Earth's upward current region. This is true for both the ion and electron energy distributions. Other times, the parallel potentials appear to be intermittent or spatially structured in a way such that they do not look like the canonical diverging electrostatic potential structure. Furthermore, the parallel potentials vary grossly in spatial/temporal scale, peak voltage and associated parallel current density. Here, we present a comprehensive study of these structures in Jupiter's downward current region focusing on energetic particle measurements from Juno-JEDI.

  7. Statistical survey of pitch angle distributions in core (0-50 eV) ions from Dynamics Explorer 1: Outflow in the auroral zone, polar cap, and cusp

    NASA Technical Reports Server (NTRS)

    Giles, B. L.; Chappell, C. R.; Moore, T. E.; Comfort, R. H.; Waite, J. H., Jr.

    1994-01-01

    Core (0-50 eV) ion pitch angle measurements from the retarding ion mass spectrometer on Dynamics Explorer 1 are examined with respect to magnetic disturbance, invariant latitude, magnetic local time, and altitude for ions H(+), He(+), O(+), M/Z = 2 (D(+) or He(++)), and O(++). Included are outflow events in the auroral zone, polar cap, and cusp, separated into altitude regions below and above 3 R(sub E). In addition to the customary division into beam, conic, and upwelling distributions, the high-latitude observations fall into three categories corresponding to ion bulk speeds that are (1) less than, (2) comparable to, or (3) faster than that of the spacecraft. This separation, along with the altitude partition, serves to identify conditions under which ionospheric source ions are gravita- tionally bound and when they are more energetic and able to escape to the outer magnetosphere. Features of the cleft ion fountain inferred from single event studies are clearly identifiable in the statistical results. In addition, it is found that the dayside pre-noon cleft is a dayside afternoon cleft, or auroral zone, becomes an additional source for increased activity. The auroral oval as a whole appears to be a steady source of escape velocity H(+), a steady source of escape velocity He(+) ions for the dusk sector, and a source of escape velocity heavy ions for dusk local times primarily during increased activity. The polar cap above the auroral zone is a consistent source of low-energy ions, although only the lighter mass particles appear to have sufficient velocity, on average, to escape to higher altitudes. The observations support two concepts for outflow: (1) The cleft ion fountain consists of ionospheric plasma of 1-20 eV energy streaming upward into the magnetosphere where high-latitude convection electric fields cause poleward dispersion. (2) The auroral ion fountain involves field-aligned beams which flow out along auroral latitude field lines; and, in addition, for late afternoon local times, they experience additional acceleration such that the ion energy distribution tends to exceed the detection range of the instrument (greater than 50-60 eV).

  8. Characteristics of spacecraft charging in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    2012-07-01

    It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.

  9. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less

  10. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; hide

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  11. High Altitude Plasma Instrument (HAPI) data analysis

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The objectives of the Dynamics Explorer mission are to investigate the coupling of energy, mass, and momentum among the earth's magnetosphere, ionosphere, and upper atmosphere. At launch, on August 3, 1981, DE-1 was placed into an elliptical polar orbit having an apogee of 23,130 km to allow global auroral imaging and crossings of auroral field lines at altitudes of several thousand kilometers. At the same time DE-2 was placed into a polar orbit, coplanar with that of DE-1 but with a perigee altitude low enough (309 km) for neutral measurements and an apogee altitude of 1012 km. The DE-1 High Altitude Plasma Instrument (HAPI) provided data on low and medium energy electrons and ions from August 13, 1981 until December 1, 1981, when a high-voltage failure occured. Analysis of HAPI data for the time period of this contract has produced new results on the source mechanisms for electron conical distributions, particle acceleration phenomena in auroral acceleration regions, Birkeland currents throughout the nightside auroral regions, the source region for auroral kilometric radiation (AKR), and plasma injection phenomena in the polar cusp.

  12. The Poleward Boundary Intensification (PBI) of Auroral Emission: Its Dynamics and Associated Field-aligned Current System

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Motoba, T.; Gjerloev, J. W.

    2016-12-01

    The poleward boundary intensification (PBI) of aurora emission is often addressed in terms of distant reconnection. Recently, however, Ohtani and Yoshikawa [2016] proposed that the PBIs, at least at the initial stage of their formation, are actually the effect of ionospheric polarization in the presence of the enhanced convection in the polar cap and conductance gradient at the poleward boundary of the auroral oval. Whereas the ionospheric polarization itself is a transient process, it is known that the PBIs occasionally extend longitudinally suggesting that a 3D current system forms subsequently, which electrodynamically couples the magnetosphere and ionosphere. In the present study we observationally examine the associated field-aligned current (FAC) observed by the SWARM satellites and compare its characteristics with ground all-sky images. It is found that complex signatures of FACs as suggested by magnetic disturbances reflect the spatial structure of aurora (e.g., location and orientation), whereas the overall motion of PBIs is well explained in terms of the background convection suggested by the FAC distribution. We shall discuss the implications of these results for the responsible evolution process of the PBIs.

  13. The auroral current circuit and field-aligned currents observed by FAST

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.

    FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.

  14. The first year of observations of Jupiter's magnetosphere from Juno's Jovian Auroral Distributions Experiment (JADE)

    NASA Astrophysics Data System (ADS)

    Valek, P. W.; Allegrini, F.; Angold, N. G.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Loeffler, C. E.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Reno, M. L.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Wilson, R. J.

    2017-12-01

    Juno observations of the Jovian plasma environment are made by the Jovian Auroral Distributions Experiment (JADE) which consists of two nearly identical electron sensors - JADE-E - and an ion sensor - JADE-I. JADE-E measures the electron distribution in the range of 100 eV to 100 keV and uses electrostatic deflection to measure the full pitch angle distribution. JADE-I measures the composition separated energy per charge in the range of 10 eV / q to 46 keV / q. The large orbit - apojove 110 Rj, perijove 1.05 Rj - allows JADE to periodically cross through the magnetopause into the magnetosheath, transverse the outer, middle, and inner magnetosphere, and measures the plasma population down to the ionosphere. We present here in situ plasma observations of the Jovian magnetosphere and topside ionosphere made by the JADE instrument during the first year in orbit. Dawn-side crossings of the plasmapause have shown a general dearth of heavy ions except during some intervals at lower magnetic latitudes. Plasma disk crossings in the middle and inner magnetosphere show a mixture of heavy and light ions. During perijove crossings at high latitudes when Juno was connected to the Io torus, JADE-I observed heavy ions with energies consistent with a corotating pickup population. In the auroral regions the core of the electron energy distribution is generally from about 100 eV when on field lines that are connected to the inner plasmasheet, several keVs when connected to the outer plasmasheet, and tens of keVs when Juno is over the polar regions. JADE has observed upward electron beams and upward loss cones, both in the north and south auroral regions, and downward electron beams in the south. Some of the beams are of short duration ( 1 s) implying that the magnetosphere has a very fine spatial and/or temporal structure within the auroral regions. Joint observations with the Waves instrument have demonstrated that the observed loss cone distributions provide sufficient growth rates to drive the cyclotron maser instability. The high velocity of the Juno spacecraft near perijove ( 50 km/s) allows observations for of very low energy ions in the spacecraft ram direction, down to below 1 eV/q for protons.

  15. An empirical model of the auroral oval derived from CHAMP field-aligned current signatures - Part 2

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Lühr, H.

    2014-06-01

    In this paper we introduce a new model for the location of the auroral oval. The auroral boundaries are derived from small- and medium-scale field-aligned current (FAC) based on the high-resolution CHAMP (CHAllenging Minisatellite Payload) magnetic field observations during the years 2000-2010. The basic shape of the auroral oval is controlled by the dayside merging electric field, Em, and can be fitted well by ellipses at all levels of activity. All five ellipse parameters show a dependence on Em which can be described by quadratic functions. Optimal delay times for the merging electric field at the bow shock are 30 and 15 min for the equatorward and poleward boundaries, respectively. A comparison between our model and the British Antarctic Survey (BAS) auroral model derived from IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) optical observations has been performed. There is good agreement between the two models regarding both boundaries, and the differences show a Gaussian distribution with a width of ±2° in latitude. The difference of the equatorward boundary shows a local-time dependence, which is 1° in latitude poleward in the morning sector and 1° equatorward in the afternoon sector of the BAS model. We think the difference between the two models is caused by the appearance of auroral forms in connection with upward FACs. All information required for applying our auroral oval model (CH-Aurora-2014) is provided.

  16. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key elements of substorm current spatial structure and temporal development, relationship to electric fields/potentials, plasma moment and distribution features, causal linkages to auroral emission features, and other properties will be discussed.

  17. The Aurora, Magnetosphere, and the IGY

    NASA Astrophysics Data System (ADS)

    McKim Malville, J.

    2007-12-01

    This retrospective of auroral research during the IGY will be from the perspective of the auroral observers in the Antarctic from 1956-58. The IGY served as a watershed divide in our understanding of auroral physics. Prior to the IGY the role of "solar corpuscular radiation” in exciting auroral radiation was the pre-eminent research question. The mechanisms for the acceleration of solar protons and electrons had not been resolved, nor had the role of plasma instabilities been envisioned. The spectroscopic research program during the IGY was dominated by the work of Aden Meinel and Joseph W. Chamberlain at Yerkes Observatory. The dynamics of precipitating solar protons into a dilute gas was a major research focus. The changes brought about by the discoveries of the radiation belts, the solar wind, and the magnetosphere resulted in a remarkable transformation and a paradigm shift in our understanding of the physics of the aurora. Antarctic observations during the IGY revealed the auroral oval, which is a signature of radiation belts distorted by the solar wind. High auroral rays could be explained by pitch angle distributions of trapped electrons. Sudden accelerations of electrons, resulting in red lower borders of aurora deep in the atmosphere, revealed the serious deficiencies of available theory. Whistlers, first detected in the Antarctic at Ellsworth Station in 1957, proved to be valuable probes of the magnetosphere.

  18. Statistical Comparisons of Meso- and Small-Scale Field-Aligned Currents with Auroral Electron Acceleration Mechanisms from FAST Observations

    NASA Astrophysics Data System (ADS)

    Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.

    2016-12-01

    Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.

  19. Rocket measurements of electrons in a system of multiple auroral arcs

    NASA Technical Reports Server (NTRS)

    Boyd, J. S.; Davis, T. N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska. The pitch-angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward-propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range from 2.5 to 10 keV in the weaker aurora and below 5 keV in the brightest arc. The detailed structure of the pitch-angle distribution suggested that, at times, a very selective process was accelerating some electrons in the magnetic field direction, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionosphere.

  20. Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7

    NASA Astrophysics Data System (ADS)

    Grodent, Denis; Bonfond, B.; Yao, Z.; Gérard, J.-C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S. V.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Gladstone, G. R.; Greathouse, T.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; McComas, D. J.; Nichols, J. D.; Orton, G. S.; Roth, L.; Saur, J.; Valek, P.

    2018-05-01

    A large set of observations of Jupiter's ultraviolet aurora was collected with the Hubble Space Telescope concurrently with the NASA-Juno mission, during an eight-month period, from 30 November 2016 to 18 July 2017. These Hubble observations cover Juno orbits 3 to 7 during which Juno in situ and remote sensing instruments, as well as other observatories, obtained a wealth of unprecedented information on Jupiter's magnetosphere and the connection with its auroral ionosphere. Jupiter's ultraviolet aurora is known to vary rapidly, with timescales ranging from seconds to one Jovian rotation. The main objective of the present study is to provide a simplified description of the global ultraviolet auroral morphology that can be used for comparison with other quantities, such as those obtained with Juno. This represents an entirely new approach from which logical connections between different morphologies may be inferred. For that purpose, we define three auroral subregions in which we evaluate the auroral emitted power as a function of time. In parallel, we define six auroral morphology families that allow us to quantify the variations of the spatial distribution of the auroral emission. These variations are associated with changes in the state of the Jovian magnetosphere, possibly influenced by Io and the Io plasma torus and by the conditions prevailing in the upstream interplanetary medium. This study shows that the auroral morphology evolved differently during the five 2 week periods bracketing the times of Juno perijove (PJ03 to PJ07), suggesting that during these periods, the Jovian magnetosphere adopted various states.

  1. Incoherent radar spectra in the auroral ionosphere in the presence of a large electric field: The effect of O+-O+ Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Barghouthi, I. A.

    2005-06-01

    We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F- region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ionneutral, O+-O collisions (resonant charge exchange and polarization interaction) as well as O+-O+ Coulomb self-collisions. At high altitudes, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and consequently, the influence of O+-O+ Coulomb collisions becomes significant. In this study we consider the effect of O+-O+ Coulomb collisions on the incoherent radar spectra in the presence of large electric field (100 mVm-1). As altitude increases (i.e. the ion-to-neutral density ratio increases) the role of O+-O+ Coulomb self-collisions becomes significant, therefore, the one-dimensional, 1-D, O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+-O+ Coulomb self-collisions act to isotropize the 1-D O+ velocity distribution by transferring thermal energy from the perpendicular direction to the parallel direction, however the convection electric field acts to drive the O+ ions away from equilibrium and consequently, non-Maxwellian O+ ion velocity distributions appeared. Therefore, neglecting O+-O+ Coulomb self-collisions overestimates the effect of convection electric field.

  2. Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions

    NASA Astrophysics Data System (ADS)

    Moriconi, M. L.; Adriani, A.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Tosi, F.; Filacchione, G.; Migliorini, A.; Gérard, J. C.; Mura, A.; Grassi, D.; Sindoni, G.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Turrini, D.; Stefani, S.; Olivieri, A.; Amoroso, M.

    2017-05-01

    Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH4) near both poles through its 3.3 μm emission overlapping the H3+ auroral feature at 3.31 μm. Neither acetylene (C2H2) nor ethane (C2H6) have been observed so far. The analysis method, developed for the retrieval of H3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.

  3. Substorms, poleward boundary activations and geosynchronous particle injections during sawtooth events

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.

    2006-12-01

    During sawtooth events, the auroral distribution is typically comprised of an active and dynamic double oval configuration. In association with each tooth, the double oval evolves in a repeatable manner in which a wide double-oval configuration gradually thins down in association with an expansion of the polar cap and stretching of the tail field lines. This is followed by a localized substorm-like brightening of the auroral distribution in the dusk to midnight sector on the lower branch of the double oval which subsequently expands rapidly poleward and azimuthally. A new expanded double oval configuration emerges from this expansion phase activity and the cycle repeats itself for the duration of the sawtooth event. This behavior is highly consistent with the Akasofu picture of substorm onset occurring deep within the closed field-line region on the equator-most arc. Due to the large separation between the poleward boundary and the onset region during these types of substorms, the interaction between the onset region and poleward boundary intensifications, auroral streamers, inclined arcs, torches and omega bands are more easily determined. Here, we show that: (1) Sawtooth injections can be produced by the copious production of auroral streamers, without a substorm onset; (2) Auroral streamers typically evolve into torches and omega bands rather than leading to onsets; (3) Equatorward-moving "inclined arcs" can feed into the onset region. The observations might be explained by the scale-size-dependent behavior of earthward-moving depleted flux tubes in the tail. In this hypothesis, streamers can penetrate rapidly toward the earth (via interchange) and mitigate the pressure crisis in the near-earth region, while the slower-moving inclined arcs map to large-scale depleted flux tubes that do not efficiently penetrate earthward and hence do not alleviate the pressure crisis in the pre-midnight sector.

  4. Effects of a parallel electric field and the geomagnetic field in the topside ionosphere on auroral and photoelectron energy distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  5. Effects of a Parallel Electric Field and the Geomagnetic Field in the Topside Ionosphere on Auroral and Photoelectron Energy Distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  6. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    By examining the exact analytic solution of a kinetic model of collisional interaction of ionospheric ions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, we show that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a non-Maxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  7. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    Examination of the exact analytic solution of a kinetic model of collisional interaction of ionospheric fions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, shows that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a nonMaxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  8. Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, D. L.; Anderson, P. C.

    2005-01-01

    We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.

  9. Ion distribution effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1982-01-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  10. Investigating the Role of Sub-Auroral Polarization Stream Electric Field in Coupled Magnetosphere-Ionosphere-Thermosphere Systemwide Processes

    DTIC Science & Technology

    2017-04-04

    AFRL -AFOSR-JP-TR-2017-0028 Investigating the role of sub-auroral polarization stream electric field in coupled magnetosphere-ionosphere-thermosphere...SPONSOR/MONITOR’S ACRONYM(S) AFRL /AFOSR IOA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-JP-TR-2017-0028     12. DISTRIBUTION/AVAILABILITY STATEMENT...during the 31 August 2005 geomagnetic storm Date: 19-24 June 2016 Presenter: Dr Cheryl Huang, Senior Research Physicist, AFRL /RVBXP

  11. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  12. The Role of the Auroral Processes in the Formation of the Outer Electron Radiation Belt

    NASA Astrophysics Data System (ADS)

    Stepanova, M. V.; Antonova, E. E.; Pinto, V. A.; Moya, P. S.; Riazantseva, M.; Ovchinnikov, I.

    2016-12-01

    The role of the auroral processes in the formation of the outer electron radiation belt during storms is analyzed using the data of RBSP mission, low orbiting satellites and ground based observations. We analyze fluxes of the low energy precipitating ions using data of the Defense Meteorological Satellite Program (DMSP). The location of the auroral electrojet is obtained from the IMAGE magnetometer network, and of the electron distribution in the outer radiation belt from the RBSP mission. We take into account the latest results on the auroral oval mapping in accordance with which the most part of the auroral oval maps not to the plasma sheet. It maps into the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. The development of the ring current and its high latitude continuation generates strong distortion of the Earth's magnetic field and corresponding adiabatic variation of the relativistic electron fluxes. This adiabatic variation should be considered for the analysis of the processes of the acceleration of relativistic electrons and formation of the outer radiation belt. We also analyze the plasma pressure profiles during storms and demonstrate the formation of sharp plasma pressure peak at the equatorial boundary of the auroral oval. It is shown that the observed this peak is directly connected to the creation of the seed population of relativistic electrons. We discuss the possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations.

  13. Electrodynamic parameters in the nighttime sector during auroral substorms

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.

    1994-01-01

    The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each sector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. The downward net current is distributed over wide longitudinal regions from the eastern bulge to the east of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are assoc iated with narrow, intense antisunwqard convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron precipitation and aurora appearing in this western and poleward protion of the bulge. The convection reversal is sharp in the west of bulge and surge horn sectors, and near the high-latitude boundary of the upward region 1, with a near stagnation region often extending over a large interval of latitude. In the eastern bulge and east of bulge sectors, the region 1 and 2 FACs are located in the sunward convection region, while a spikelike electric field occasionally appears poleward of the aurora but usually not associated with a pair of FAC sheets. In the eastern bulge, magnetic field data show complicated FAC distributions which correspond to current segments and filamentary currents.

  14. Monitoring Auroral Electrojet from Polar Cap Stations

    NASA Astrophysics Data System (ADS)

    Tan, A.; Lyatsky, W.; Lyatskaya, S.

    2004-12-01

    The auroral electrojet AL and AE geomagnetic activity indices are important for monitoring geomagnetic substorms. In the northern hemisphere these indices are derived from measurements at a set of geomagnetic observatories located in the auroral zone. In the southern hemisphere the major portion of the auroral zone is located on the ocean; this does not allow us to derive the auroral electrojet indices in the same way. We showed that monitoring the auroral electrojet is possible from magnetic field measurements at polar cap stations. For this purpose we used hourly values of geomagnetic field variations at four polar cap stations, distributed along polar cap boundary and occupying a longitudinal sector of about 14 hours, and calculated mean values of the total magnetic field disturbance T = (X2 + Y2 + Z2)1/2 where X, Y, and Z are geomagnetic field components measured at these polar cap stations. The set of the obtained values were called the T index. This index has a clear physical mining: it is the summary of geomagnetic disturbance in all three components averaged over the polar cap boundary. We found that correlation coefficients for the dependence of the T index on both AL and AE indices are as high as ~0.9 and higher. The high correlation of the T index with the AL and AE indices takes place for any UT hour when the stations were located at the night side. The T index further shows good correlation with solar wind parameters: the correlation coefficient for the dependence of the T index on the solar wind-geomagnetic activity coupling function is ~0.8 and higher, which is close to the correlation coefficient for AL index. The T index may be especially important in the cases when ground-based measurements in the auroral zone are impossible as in the southern hemisphere.

  15. Sources, properties, and energization of auroral particle precipitation

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J.; Khazanov, G. V.

    2017-12-01

    The sources of and the physical processes associated with the auroral ion and electron precipitation are studied with DMSP satellites. The electron aurora has been previously classified into three categories: diffuse, monoenergetic, and broadband aurorae. The diffuse auroral electrons can be observed mainly in 22:00 - 09:00 MLT, which coincides much with the spatial distribution of the whistler-mode chorus waves that have been shown to be the predominant mechanism for pitch-angle scattering magnetospheric electrons into the loss cone, but there appears to be a separate population near noon, which may be associated with solar wind particles. The broadband auroral electrons can be found mostly at 22:00 - 02:00 MLT and pre-noon where Alfvén waves, which cause broadband electron acceleration, are observed in the magnetosphere. On the other hand, the monoenergetic auroral electrons can be observed at dusk-midnight sector, pre- and post-noon. The monoenergetic electrons have been previously thought as magnetospheric electrons that have gone through a quasi-static parallel electric field in the upward field-aligned current regions. However, there may be a connection between monoenergetic and broadband electrons in that the low frequency Alfvén wave-electron interaction can result in monoenergetic electron signature. This is consistent with the observations where broadband and monoenergetic electrons are often spatially co-located. Precipitating electrons can ionize the neutrals in the ionosphere, which can travel upward, which can precipitate in the opposite hemisphere or reflected back to the same hemisphere by upward field-aligned potential drop. Either way, the upward flowing electrons can greatly modify the initial precipitating electron population. Substorm processes increase the power of the diffuse, monoenergetic, and broadband electron aurora by 310%, 71%, and 170%, respectively. Substorms energize the ion aurora mainly in the 21:00-05:00 MLT sector. The duration of the substorm cycle for monoenergetic and broadband auroral is 5 hr, but it is larger than 5 hr for diffuse auroral electrons.

  16. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Gjerloev, J. W.

    2011-12-01

    A generalization of the traditional 12-station auroral electrojet (AE) index to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power (AP), even at high cadence (1 min). We use this index, and a database of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt-1.19 for short times (<80 min) and as Δt-1.76 for longer times (>3 hours). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 hours. The time between two consecutive substorms is only weakly correlated (r = 0.18 for isolated and r = 0.06 for recurrent) with the time until the next, suggesting quasiperiodicity is not common. However, substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW AP. More surprisingly, another characteristic scale exists in the magnetosphere, namely, a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating AP. The dominant form of auroral precipitation is diffuse aurora; thus, these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving that rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower distribution (with a 40% weighting) corresponds to the characteristic quiet peak, while the higher value distribution (60% weighting) is an average over the characteristic substorm peak and the subsequent prolonged recovery.

  17. The convection electrojet and the substorm electrojet

    NASA Astrophysics Data System (ADS)

    Kamide, Y.; Nakamura, R.

    1996-06-01

    Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the electric field-dominant'' and conductivity-dominant'' auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.--> Correspondence to: Y. Kamide-->

  18. Low-Altitude Satellite Measurements of Pulsating Auroral Electrons

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-01-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  19. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.

    1987-01-01

    Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.

  20. Temporal Development of Auroral Acceleration Potentials: High-Altitude Evolutionary Sequences, Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.

    2007-12-01

    The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.

  1. Field-aligned Currents Induced by Electrostatic Polarization at the Ionosphere: Application to the Poleward Boundary Intensification (PBI) of Auroral Emission

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Yoshikawa, A.

    2016-12-01

    Although the field-aligned currents (Birkeland currents) are generally considered to be driven by magnetospheric processes, it is possible that some field-aligned currents are locally induced in the ionosphere in the presence of sharp conductance gradient. In this presentation we shall discuss the poleward boundary intensification (PBI) of auroral emission as an example effect of such electrostatic polarization. The observations show that the PBIs are very often preceded by the fast polar cap convection approaching the nightside auroral oval. We propose that the ionospheric currents driven by the associated electric field diverges/converges at the poleward boundary of the auroral oval as the background ionospheric conductance changes sharply in space, and they close with field-aligned currents. The associated upward field-aligned current is accompanied by electron precipitation, which may cause auroral emission as observed as PBIs. We test this idea by modeling the ionosphere as a slab-shaped enhancement of conductance and the polar cap flow channel as a pair of upward and downward FACs. The results show that (i) a pair of upward and downward FACs is induced at the poleward boundary when the front of the polar cap flow channel approaches the auroral oval; (ii) the upward FAC extends westward much wider in longitude than the flow channel; (iii) the peak FAC density is significantly larger than the incident FAC; and (iv) the induced upward and downward FACs are distributed almost symmetrically in longitude, indicating that the Pedersen polarization dominates the Hall polarization. These results are consistent with some general characteristics of PBIs, which are rather difficult to explain if the PBIs are the ionospheric manefestation of distant reconnection as often suggested.

  2. The relationship between diffuse auroral and plasma sheet electron distributions near local midnight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumaker, T.L.; Gussenhoven, M.S.; Hardy, D.A.

    1989-08-01

    A study of the relationship between diffuse auroral and plasma sheet electron distributions in the energy range from 50 eV to 20 keV in the midnight region was conducted using data from the P78-1 and SCATHA satellites. From 1 1/2 years of data, 14 events were found where the polar-orbiting P78-1 satellite and the near-geosynchronous SCATHA satellite were approximately on the same magnetic field line simultaneously, with SCATHA in the plasma sheet and P78-1 in the diffuse auroral region. For all cases the spectra from the two satellites are in good quantitative agreement. For 13 of the 14 events themore » pitch angle distribution measured at P78-1 was isotropic for angles mapping into the loss cone at the SCATHA orbit. For one event the P78-1 electron flux decreased with pitch angle toward the field line direction. At SCATHA the distributions outside the loss cone were most commonly butterfly or pancake, although distributions peaked toward the field line were sometimes observed at energies below 1 keV. Electron distributions, as measured where there is isotropy within the loss cone but anisotropy outside the loss cone, are inconsistent with current theories for the scattering of cone for the distribution measured at SCATHA, the electron precipitation lifetimes were calculated for the 14 events. Because the distributions are anisotropic at pitch angles away from the loss cone, the calculated lifetimes significantly exceed the lifetimes in the limit when the flu is isotropic at all pitch angles. The computed precipitation lifetimes are found to be weakly dependent on magnetic activity. The average lifetimes exceed those for the case of isotropy at all pitch angles by a factor between 2 and 3 for {ital Kp}{le}2 and approximately 1.5 for {ital Kp}{gt}2. {copyright} American Geophysical Union 1989« less

  3. Exploring the Alfven-Wave Acceleration of Auroral Electrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schroeder, James William Ryan

    Inertial Alfven waves occur in plasmas where the Alfven speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfven waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfven waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfven waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfven waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfven waves, the measured portion of the distribution function oscillates at the Alfven wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfven wave antennas. The oscillation of the distribution function is described by a purely Alfvenic model when the Alfven wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvenic and non-Alfvenic effects. Indications of a nonlinear interaction between electrons and inertial Alfven waves are present in recent data.

  4. The Effect of Solar Radiation on Molecular Nitrogen Emissions Originating in the Sunlit Thermosphere of Earth.

    NASA Astrophysics Data System (ADS)

    Hatfield, David Brooke

    The vibrational distribution of N_2 triplet states in the sunlit upper thermosphere of Earth is measured and modeled for the first time. A comparison is made between measured and theoretical limb column emission rates for bands originating from each upper vibrational level of C^3Pi_ u(v) and A^3Sigma_sp {u}{+}(v). The measured column emission rates for the Second Positive (2PG) bands are 3.2 (+/-0.2), 3.2 (+/-0.2) and 0.6 (+0.0,-0.4) kRayleighs for bands originating from C^3Pi_ u(0<=qrm v<=q2) and 13.3 ( +/-0.2), 10.0 (+/-0.2), 3 (+0,-2) and 2 (+0,-2) kRayleighs for Vegard-Kaplan (VK) bands originating from A^3Sigma_sp{u}{+ }(0<=qrm v<=q3).. Predicted limb column emission rates for C ^3Pi_ u(v) are in excellent agreement with the measured 2PG intensities, but comparisons of predicted A^3Sigma_sp{u }{+}(v) column emissions to measured VK intensities are poor. Despite this discrepancy, the predicted sum of all A^3Sigma_sp {u}{+}(v) emission rates over all v compared well to the sum of measured VK intensities. This implies that the excitation rate into the N_2 triplet states is well understood, but that the cascade mechanisms are not as yet understood sufficiently to use dayglow N_2 band emissions as remote sensing probes of the sunlit thermosphere. The dayglow N_2 emissions are modeled by extending the existing auroral model to include resonance scattering of sunlight and replacing the precipitating auroral electrons with photoelectrons. The effects of solar resonance scattering on the X ^1Sigma_sp{g}{+}, A^3Sigma_sp{u }{+} and B^3Pi _ g states are presented as a function of A^3Sigma_sp{u}{+ } quenching rate. These theoretical predictions have important implications for the analysis of dayglow and auroral emissions. The effect of resonance scattering on the A^3Sigma_sp{u} {+} state is small, and will not be measurable under auroral conditions. This implies that the measured auroral vibrational population of the A^3 Sigma_sp{u}{+} state is valid for sunlit aurora. The population of B ^3Pi_ g(v = O) relative to other B^3Pi_ g(v) states is predicted to be enhanced by sunlight. A novel set of computer variables based on tree structures was created to manage the information used. These variables are described in detail and were found to be useful tools for the creation and extension of computer models treating diatomic species.

  5. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images

    NASA Astrophysics Data System (ADS)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu

    2018-05-01

    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  6. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    NASA Astrophysics Data System (ADS)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  7. Development and performance of a suprathermal electron spectrometer to study auroral precipitations.

    PubMed

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  8. Development and Performance of a Suprathermal Electron Spectrometer to Study Auroral Precipitations

    NASA Technical Reports Server (NTRS)

    Ogasawara, Keiichi; Grubbs, Guy, II; Michell, Robert G.; Samara, Maria; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha

    2016-01-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for greater than 20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker F1at Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  9. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation tomore » read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.« less

  10. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  11. Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Wang, Hui; Hermann, Luehr

    2017-04-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.

  12. Vertical distribution of vibrational energy of molecular nitrogen in a stable auroral red arc and its effect on ionospheric electron densities. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Newton, G. P.

    1973-01-01

    Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.

  13. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Lynch, K. A.; Heinselman, C. J.; Stenbaek-Nielsen, H. C.

    2008-11-01

    We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR). On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs), the first observed with PFISR. These times corresponded to (a) when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b) when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a) and (b) was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m-3. Broad-band extremely low frequency (BBELF) wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs) and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could have many implications. One specific example of interest is identifying and following the temporal and spatial evolution of regions of potential ion outflow over large spatial and temporal scales using ground-based optical observations.

  14. Statistical study of auroral omega bands

    NASA Astrophysics Data System (ADS)

    Partamies, Noora; Weygand, James M.; Juusola, Liisa

    2017-09-01

    The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT), lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.

  15. Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database

    NASA Astrophysics Data System (ADS)

    Redmon, Robert J.

    The mechanisms by which thermal O+ escapes from the top of the ionosphere and into the magnetosphere are not fully understood even with 30 years of active research. This thesis introduces a new database, builds a simulation framework around a thermospheric model and exploits these tools to gain new insights into the study of O+ ion outflows. A dynamic auroral boundary identification system is developed using Defense Meteorological Satellite Program (DMSP) spacecraft observations at 850 km to build a database characterizing the oxygen source region. This database resolves the ambiguity of the expansion and contraction of the auroral zone. Mining this new dataset, new understanding is revealed. We describe the statistical trajectory of the cleft ion fountain return flows over the polar cap as a function of activity and the orientation of the interplanetary magnetic field y-component. A substantial peak in upward moving O+ in the morning hours is discovered. Using published high altitude data we demonstrate that between 850 and 6000 km altitude, O+ is energized predominantly through transverse heating; and acceleration in this altitude region is relatively more important in the cusp than at midnight. We compare data with a thermospheric model to study the effects of solar irradiance, electron precipitation and neutral wind on the distribution of upward O+ at auroral latitudes. EUV irradiance is shown to play a dominant role in establishing a dawn-focused source population of upwelling O+ that is responsible for a pre-noon feature in escaping O+ fluxes. This feature has been corroborated by observations on platforms including the Dynamics Explorer 1 (DE-1), Polar, and Fast Auroral Snapshot SnapshoT (FAST) spacecraft. During quiet times our analysis shows that the neutral wind is more important than electron precipitation in establishing the dayside O+ upwelling distribution. Electron precipitation is found to play a relatively modest role in controlling dayside, and a critical role in controlling nightside, upwelling O+. This thesis provides a new database, and insights into the study of oxygen ion outflows during quiet times. These results and tools will be essential for researchers working on topics involving magnetosphere-ionosphere interactions.

  16. Fine structure of low-energy H(+) in the nightside auroral region

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Perez, J. D.; Moore, T. E.; Chappell, C. R.; Slavin, J. A.

    1994-01-01

    Low-energy H(+) data with 6-s resolution from the retarding ion mass spectrometer instrument on Dynamics Explorer (DE) 1 have been analyzed to reveal the fine structure at middle altitudes of the nightside auroral region. A new method for deconvolving the energy-integrated count rate in the spin plane of the satellite has been used to derive the two-dimensional phase space density. A detailed analysis reveals an alternating conic-beam-conic pattern with the observed conics correlated with large earthward currents in the auroral region. The strong downward current (larger than 1 microamperes per sq m (equivalent value at ionosphere)) provides a free energy source for the perpendicular ion heating, that generates the ion conics with energies from several eV to tens of eV. The bowl shape distribution of the low-energy H(+) is caused by the extended perpendicular heating. The strong correlation between conics and large downward currents suggests that the current-driven electrostatic ion cyclotron wave is an appropriate candidate for the transverse heating mechanism.

  17. Anomalous auroral electron distributions due to an artificial ion beam in the ionosphere

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Arnoldy, R. L.; Kaufmann, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Walker, D. N.

    1982-01-01

    Results are reported for the perturbation of the auroral ionosphere by the operation of an ion gun which injected about 100 mA of 25-eV Ar(+) ions at upgoing pitch angles over a discrete auroral arc. The major effects observed were the excitation of intense broadband electric field fluctuations at zero-10 kHz, and the appearance of streaming and isotropic heating in different parts of superthermal electron velocity space. A scenario is explored in which electron runaway or streaming is expected between the trapping speed and the critical velocity for cyclotron interactions with the waves, where the streaming electrons carry the current that would be carried by thermals or energetic electrons in the absence of the waves. A current of about 1.0 microA/sq m is carried by the streaming electrons. The gun-associated electrons were anomalous in the sense that their anisotropy was the opposite of that observed in the natural aurora.

  18. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  19. Generation of poleward moving auroral forms (PMAFs) during periods of dayside auroral oval expansions/contractions and periods when the dayside auroral oval is expanded and stable

    NASA Astrophysics Data System (ADS)

    Fasel, G. J.; Flicker, J.; Sibeck, D. G.; Alyami, M.; Angelo, A.; Aylward, R. J.; Bender, S.; Christensen, M.; Kim, J.; Kristensen, H.; Orellana, Y.; Sahin, O.; Yoon, J.; Green, D.; Sigernes, F.; Lorentzen, D. A.

    2013-12-01

    The latitude of the equatorial edge of the dayside auroral oval has been shown to vary with the direction of the IMF Bz-component. The equatorward/poleward edge of the dayside auroral oval shifts equatorward/poleward when the IMF Bz-component is negative/positive [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. Past studies have shown that poleward-moving auroral forms (PMAFs) are a common feature during equatorward expansions of the dayside auroral oval. Horwitz and Akasofu [1977] noted a one-to-one correspondence of luminous PMAFs associated with an equatorward expansion of the dayside auroral oval. During the southward turning of the IMF Bz-component the merging rate on the dayside increases [Newell and Meng, 1987] leading to the erosion of the dayside magnetopause. The field line merging process is thought to be most efficient when the interplanetary magnetic field (IMF) Bz-component turns southward. Both Vorobjev et al. [1975] and Horwitz and Akasofu [1977] attributed these PMAFs to magnetic flux being eroded away from the dayside magnetopause and transported antisunward. Dayside poleward-moving auroral forms are also observed during periods of an expanded and stable dayside auroral oval for both northern and southern hemisphere observations [Sandholt et al., 1986, 1989, 1990; Rairden and Mende, 1989; Mende et al., 1990]. Poleward-moving auroral forms have also been observed during some dayside oval contractions but have not been discussed much in the literature. This study examines the dayside auroral oval during periods of expansion, contraction, and during periods of an expanded and stable dayside auroral oval. This statistical study will provide the following results: number of poleward-moving auroral forms that are generated during dayside auroral oval expansions/contractions and during periods of a stable and expanded dayside auroral oval, the average initial and final elevation angle of the dayside auroral oval, time for dayside auroral oval to expand or contract, and the solar wind parameters (IMF Bx, By, Bz, speed, and pressure) associated with each interval (expansion, contraction, or stable and expanded).

  20. A multipoint study of a substorm occurring on 7 December, 1992, and its theoretical implications

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Cowley, S. W. H.; Davda, V. N.; Enno, G.; Friis-Christensen, E.; Greenwald, R. A.; Hairston, M. R.; Lester, M.; Lockwood, M.; Lühr, H.; Milling, D. K.; Murphree, J. S.; Pinnock, M.; Reeves, G. D.

    1999-11-01

    On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.

  1. Investigating the auroral electrojets using Swarm

    NASA Astrophysics Data System (ADS)

    Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy

    2016-04-01

    The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http://nora.nerc.ac.uk/503037/ Vennerstrom, S. and Moretto, T., 2013. Monitoring auroral electrojets with satellite data. Space Weather, VOL. 11, 509-519, doi:10.1002/swe.20090

  2. High latitude electromagnetic plasma wave emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1983-01-01

    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  3. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  4. Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.

    2016-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  5. Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.

    2017-12-01

    Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.

  6. Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lühr, Hermann; Wang, Hui

    2017-11-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.

  7. Development of the Near-Earth Magnetotail and the Auroral Arc Associated with Substorm Onset: Evidence for a New Model

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Hiraki, Y.; Angelopoulos, V.; Ieda, A.; Machida, S.

    2015-12-01

    We have studied the time sequence of the development of the near-Earth magnetotail and the auroral arc associated with a substorm onset, using the data from the THEMIS spacecraft and ground-based observatories at high temporal and spatial resolutions. We discuss four steps of the auroral development, linking them to magnetotail changes: the auroral fading, the initial brightening of an auroral onset arc, the enhancement of the wave-like structure, and the poleward expansion. A case study shows that near-Earth magnetic reconnection began at X~-17 RE at least ~3 min before the auroral initial brightening and ~1 min before the auroral fading. Ionospheric large-scale convection also became enhanced just before the auroral fading and before the auroral initial brightening. Then low-frequency waves were amplified in the plasma sheet at X~-10 RE, with the pressure increase due to the arrival of the earthward flow from the near-Earth reconnection site ~20 s before the enhancement of the auroral wave-like structure. Finally, the dipolarization began ~30 s before the auroral poleward expansion. On the basis of the present observations, we suggest that near-Earth magnetic reconnection plays two roles in the substorm triggering. First, it generates a fast earthward flow and Alfvén waves. When the Alfvén waves which propagate much faster than the fast flow reach the ionosphere, large-scale ionospheric convection is enhanced, leading to the auroral initial brightening and subsequent gradual growth of the auroral wave-like structure. Second, when the reconnection-initiated fast flow reaches the near-Earth magnetotail, it promotes rapid growth of an instability, such as the ballooning instability, and the auroral wave-like structure is further enhanced. When the instability grows sufficiently, the dipolarization and the auroral poleward expansion are initiated.

  8. Simultaneous total electron content and all-sky camera measurements of an auroral arc

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.

    2002-07-01

    We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.

  9. OUTER RADIATION BELT AND AURORAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchakov, E.V.

    1961-01-01

    Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less

  10. Stagnation of Saturn's auroral emission at noon

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Gérard, J.-C.; Southwood, D. J.; Chané, E.; Bonfond, B.; Pryor, W.

    2017-06-01

    Auroral emissions serve as a powerful tool to investigate the magnetospheric processes at Saturn. Solar wind and internally driven processes largely control Saturn's auroral morphology. The main auroral emission at Saturn is suggested to be connected with the magnetosphere-solar wind interaction, through the flow shear related to rotational dynamics. Dawn auroral enhancements are associated with intense field-aligned currents generated by hot tenuous plasma carried toward the planet in fast moving flux tubes as they return from tail reconnection site to the dayside. In this work we demonstrate, based on Cassini auroral observations, that the main auroral emission at Saturn, as it rotates from midnight to dusk via noon, occasionally stagnates near noon over a couple of hours. In half of the sequences examined, the auroral emission is blocked close to noon, while in three out of four cases, the blockage of the auroral emission is accompanied with signatures of dayside reconnection. We discuss some possible interpretations of the auroral "blockage" near noon. According to the first one, it could be related to local time variations of the flow shear close to noon. Auroral local time variations are also suggested to be initiated by radial transport process. Alternatively, the auroral blockage at noon could be associated with a plasma circulation theory, according to which tenuously populated closed flux tubes as they return from the nightside to the morning sector experience a blockage in the equatorial plane and they cannot rotate beyond noon.

  11. Interaction of upgoing auroral H(+) and O(+) beams

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Ludlow, G. R.; Collin, H. L.; Peterson, W. K.; Burch, J. L.

    1986-01-01

    Data from the S3-3 and DE 1 satellites are analyzed to study the interaction between H(+) and O(+) ions in upgoing auroral beams. Every data set analyzed showed some evidence of an interaction. The measured plasma was found to be unstable to a low-frequency electrostatic wave that propagates at an oblique angle to vector-B(0). A second wave, which can propagate parallel to vector-B(0), is weakly damped in the plasma studied in most detail. It is likely that the upgoing ion beams generate this parallel wave at lower altitudes. The resulting wave-particle interactions qualitatively can explain most of the features observed in ion distribution functions.

  12. Possible Mechanism for Damping of Electrostatic Instability Related to Inhomogeneous Distribution of Energy Density in the Auroral Ionosphere

    NASA Astrophysics Data System (ADS)

    Golovchanskaya, I. V.; Kozelov, B. V.; Chernyshov, A. A.; Ilyasov, A. A.; Mogilevsky, M. M.

    2018-03-01

    Satellite observations show that the electrostatic instability, which is expected to occur in most cases due to an inhomogeneous energy density caused by a strongly inhomogeneous transverse electric field (shear of plasma convection velocity), occasionally does not develop inside nonlinear plasma structures in the auroral ionosphere, even though the velocity shear is sufficient for its excitation. In this paper, it is shown that the instability damping can be caused by out-of-phase variations of the electric field and field-aligned current acting in these structures. Therefore, the mismatch of sources of free energy required for the wave generation nearly nullifies their common effect.

  13. Auroral Data Analysis

    DTIC Science & Technology

    1979-01-31

    LT) sector, distinct and repeatable electron lair - and disceearrlrgos epetvI.Tepro tde tudinal distributions \\%ere observed as a function of substorm...of surface a ,wcond time by using the same procedure, Next the)’ were optical albedo and east-%est nonuniformities in precipitation grouped together

  14. U.S. national report to the International Union of Geodesy and Geophysics

    NASA Technical Reports Server (NTRS)

    Gorney, D. J.

    1987-01-01

    This paper highlights progress by U.S. authors during 1983-1986 in the broad area of auroral research. Atmospheric emissions and their use as a tool for remote-sensing the dynamics, energetics, and effects of auroral activity is a subject which is emphasized here because of the vast progress made in this area on both observational and theoretical fronts. The evolution of primary auroral electrons, the acceleration of auroral ions, small-scale electric fields, auroral kilometric radiation, auroral empirical models and activity indices are also reviewed. An extensive bibliography is supplied.

  15. US national report to the International Union of Geodesy and Geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorney, D.J.

    1987-04-01

    This paper highlights progress by U.S. authors during 1983-1986 in the broad area of auroral research. Atmospheric emissions and their use as a tool for remote-sensing the dynamics, energetics, and effects of auroral activity is a subject which is emphasized here because of the vast progress made in this area on both observational and theoretical fronts. The evolution of primary auroral electrons, the acceleration of auroral ions, small-scale electric fields, auroral kilometric radiation, auroral empirical models and activity indices are also reviewed. An extensive bibliography is supplied.

  16. Monte Carlo Calculations of F-region Incoherent Radar Spectra at High Latitudes: the Effect of O+-O+ Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Barghouthi, I.; Barakat, A.

    We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F-region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ion-neutral O+ -- O resonant charge exchange and polarization interactions as well as Coulomb self-collisions O+ -- O+. At a few hundreds kilometers of altitude, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and, consequently, the influence of O+ -- O+ Coulomb collisions becomes significant. In this study we consider the effect of O+ -- O+ collisions on the incoherent radar spectra in the presence of large electric field (˜ 100 mVm-1). As altitude increases, (i.e. the role of O+ -- O+ becomes significant), the 1-D O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+ -- O+ Coulomb collisions act to istropize the 1-D O+ velocity distribution, and modify the radar spectrum accordingly, by transferring thermal energy from the perpendicular direction to the parallel direction.

  17. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  18. Scaled Experiment to Investigate Auroral Kilometric Radiation Mechanisms in the Presence of Background Electrons

    NASA Astrophysics Data System (ADS)

    McConville, S. L.; Ronald, K.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Bingham, R.; Robertson, C. W.; Whyte, C. G.; He, W.; King, M.; Bryson, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2014-05-01

    Auroral Kilometric Radiation (AKR) emissions occur at frequencies ~300kHz polarised in the X-mode with efficiencies ~1-2% [1,2] in the auroral density cavity in the polar regions of the Earth's magnetosphere, a region of low density plasma ~3200km above the Earth's surface, where electrons are accelerated down towards the Earth whilst undergoing magnetic compression. As a result of this magnetic compression the electrons acquire a horseshoe distribution function in velocity space. Previous theoretical studies have predicted that this distribution is capable of driving the cyclotron maser instability. To test this theory a scaled laboratory experiment was constructed to replicate this phenomenon in a controlled environment, [3-5] whilst 2D and 3D simulations are also being conducted to predict the experimental radiation power and mode, [6-9]. The experiment operates in the microwave frequency regime and incorporates a region of increasing magnetic field as found at the Earth's pole using magnet solenoids to encase the cylindrical interaction waveguide through which an initially rectilinear electron beam (12A) was accelerated by a 75keV pulse. Experimental results showed evidence of the formation of the horseshoe distribution function. The radiation was produced in the near cut-off TE01 mode, comparable with X-mode characteristics, at 4.42GHz. Peak microwave output power was measured ~35kW and peak efficiency of emission ~2%, [3]. A Penning trap was constructed and inserted into the interaction waveguide to enable generation of a background plasma which would lead to closer comparisons with the magnetospheric conditions. Initial design and measurements are presented showing the principle features of the new geometry.

  19. On the spatial distribution of decameter‒scale subauroral ionospheric irregularities observed by SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Larquier, S.; Ponomarenko, P.; Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Sterne, K. T.; Lester, M.

    2013-08-01

    The midlatitude Super Dual Auroral Radar Network (SuperDARN) radars regularly observe nighttime low‒velocity Sub‒Auroral Ionospheric Scatter (SAIS) from decameter‒scale ionospheric density irregularities during quiet geomagnetic conditions. To establish the origin of the density irregularities responsible for low‒velocity SAIS, it is necessary to distinguish between the effects of high frequency (HF) propagation and irregularity occurrence itself on the observed backscatter distribution. We compare range, azimuth, and elevation data from the Blackstone SuperDARN radar with modeling results from ray tracing coupled with the International Reference Ionosphere assuming a uniform irregularity distribution. The observed and modeled distributions are shown to be very similar. The spatial distribution of backscattering is consistent with the requirement that HF rays propagate nearly perpendicular to the geomagnetic field lines (aspect angle ≤1°). For the first time, the irregularities responsible for low‒velocity SAIS are determined to extend between 200 and 300 km altitude, validating previous assumptions that low‒velocity SAIS is an F‒region phenomenon. We find that the limited spatial extent of this category of ionospheric backscatter within SuperDARN radars' fields‒of‒view is a consequence of HF propagation effects and the finite vertical extent of the scattering irregularities. We conclude that the density irregularities responsible for low‒velocity SAIS are widely distributed horizontally within the midlatitude ionosphere but are confined to the bottom‒side F‒region.

  20. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to see whether they predict in situ detection of MF burst.

  1. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  2. Dawn Auroral Breakup at Saturn Initiated by Auroral Arcs: UVIS/Cassini Beginning of Grand Finale Phase

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.

    2017-12-01

    We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.

  3. VLF-HISS from electrons in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1973-01-01

    Intensities of auroral and magnetospheric hiss generated by the Cherenkov radiation process of electrons in the lower magnetosphere were calculated with respect to a realistic model of the earth's magnetosphere. In this calculation, the magnetic field was expressed by the Mead-Fairfield Model, and a static model of the iono-magnetospheric plasma distribution was constructed by accumulated data obtained by recent satellite observations. The energy range of hiss producing electrons and the frequency range of produced VLF in the computation are 100 eV to 200 keV, and 2 to 200 kHz, respectively. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. Higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and less association of auroral hiss in nighttime sectors must be, therefore, due to the local time dependence of the energy spectra of precipitating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.

  4. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  5. Relative Timing of Substorm-Associated Processes in the Near-Earth Magnetotail and Development of Auroral Onset Arc

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Ieda, A.; Machida, S.; Hiraki, Y.; Angelopoulos, V.; McFadden, J. P.; Auster, H. U.; Mende, S. B.; Donovan, E.; Larson, D. E.

    2014-12-01

    We have studied the relative timing of the processes in the near-Earth magnetotail and development of auroral onset arc at the beginning of the expansion phase, based on substorm events observed by the THEMIS spacecraft and ground-based all-sky imagers. The THEMIS all-sky imagers can observe auroras over a wide area with temporal and spacial resolutions higher than spacecraft-borne cameras. This enables us to investigate the timing of auroral development in more detail than before. A few min after the appearance and intensification of an auroral onset arc, it begins to form wave-like structure. Then auroral poleward expansion begins another few min later. THEMIS magnetotail observations clearly show that magnetic reconnection is initiated at X~-20 Re at least 1-2 min before the intensification of auroral onset arc. Then low-frequency waves are excited in the plasma sheet at X~-10 Re 2 min before dipolarization, which is simultaneous with the formation of auroral wave-like structure. Dipolarization begins at the same time as the auroral poleward expansion. These results suggest that near-Earth magnetic reconnection plays some role in the development of dipolarization and auroral onset arc.

  6. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  7. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  8. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  9. Comet Shoemaker-Levy-9 impact with Jupiter: Aeronomical predictions

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1994-01-01

    The fragments of comet Shoemaker-Levy-9 will enter the atmosphere of Jupiter during July 20-26, 1994. Significant amounts of water vapor will be injected into the upper atmosphere of Jupiter either from the comet itself or from the lower atmosphere of Jupiter. The photochemistry of both the neutral gas and the ionosphere will be greatly altered by the influx of this water vapor or the atomic oxygen generated by the dissociation of the water. Enhanced abundances of H2O (or other species such as NH3) in the atmosphere above the homopause should persist for at least a year and should be globally distributed. The odd oxygen (i.e., O or H2O or OH) associated with the cometary water influx alters the ion chemistry by removing H(+) ions, which also has the effect of reducing the ionospheric electron density because H(+) is ordinarily the main ion species in the Jovian ionosphere. The density of H3(+), both in the auroral and non-auroral ionosphere, will also be reduced due to presence of water. This ion species has been detected spectroscopically at Jupiter, and a drop in its abundance should be detectable. The major ion species will become H3O(+) which could reach a peak density as high as 10(exp 4)/cu cm in the non-auroral ionosphere and 10(exp 5)/cu cm in the auroral ionosphere. It should be possible to detect this ion species spectroscopically from Earth-based observatories.

  10. Auroral oval kinematics program

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.

    1972-01-01

    A computer program which determines the geographic location of the auroral oval for given universal time and level of geomagnetic activity was developed for use on the IBM 7094 computer. The program provides both printed output of geographic coordinates of auroral oval boundaries and polar plots of the auroral oval. In addition, there is available a time-integration option which indicates how long a given location is under the auroral oval during a specified period. A description is given of the program and its use.

  11. Dayside auroral arcs and convection

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Burch, J. L.; Heelis, R. A.

    1978-01-01

    Recent Defense Meteorological Satellite Program and International Satellite for Ionospheric Studies dayside auroral observations show two striking features: a lack of visible auroral arcs near noon and occasional fan shaped arcs radiating away from noon on both the morning and afternoon sides of the auroral oval. A simple model which includes these two features is developed by reference to the dayside convection pattern of Heelis et al. (1976). The model may be testable in the near future with simultaneous convection, current and auroral light data.

  12. The Structure and Properties of 0.1 - 100 keV Electron Distributions Over Jupiter's Polar Aurora Region and their Contribution to Polar Aurora Emissions

    NASA Astrophysics Data System (ADS)

    Ebert, R. W.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Clark, G. B.; Gladstone, R.; Hue, V.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Paranicas, C.; Saur, J.; Reno, C.; Szalay, J. R.; Thomsen, M. F.; Valek, P. W.; Weidner, S.; Wilson, R. J.

    2017-12-01

    In addition to the main emissions in the north and south, Jupiter's auroral emissions also include polar, satellite-related, and other features. Here we present observations from Juno's Jovian Auroral Distributions Experiment (JADE) of 0.1 - 100 keV electrons in Jupiter's polar aurora region during the spacecraft's northern and southern polar passes bounding PJ1 (27 August 2016), PJ3 (11 December 11 2016), PJ4 (2 February 2017), PJ5 (27 March 2017), PJ6 (19 May 2017), and PJ7 (11 July 2017). Specifically, we focus on the spatial structure, energy and pitch angle distributions, and energy flux and spectra of these electrons. The observations reveal regions containing magnetic field aligned beams of bi-directional electrons having broad energy distributions interspersed between beams of upward electrons with narrow, peaked energy distributions, regions void of these electrons, and regions dominated by penetrating radiation, with penetrating radiation being most common. The electrons show evidence of acceleration via parallel electric fields (inverted-V structures) and via stochastic processes (bi-directional distributions). The inverted-V structures identified to date were observed from 1.4 - 2.9 RJ and had spatial scales of 100s to 1000s of kilometers along Juno's trajectory. The upward energy flux of the electron distributions was typically greater than the downward energy flux and their contribution to producing Jupiter's polar aurora emissions will be discussed.

  13. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  14. Cassini UVIS Auroral Observations in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  15. Auroral Infrasound Observed at I53US at Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Olson, J. V.

    2003-12-01

    In this presentation we will describe two different types of auroral infrasound recently observed at Fairbanks, Alaska in the pass band from 0.015 to 0.10 Hz. Infrasound signals associated with auroral activity (AIW) have been observed in Fairbanks over the past 30 years with infrasonic microphone arrays. The installation of the new CTBT/IMS infrasonic array, I53US, at Fairbanks has resulted in a greatly increased quality of the infrasonic data with which to study natural sources of infrasound. In the historical data at Fairbanks all the auroral infrasonic waves (AIW) detected were found to be the result of bow waves that are generated by supersonic motion of auroral arcs that contain strong electrojet currents. This infrasound is highly anisotropic, moving in the same direction as that of the auroral arc. AIW bow waves observed in 2003 at I53US will be described. Recently at I53US we have observed many events of very high trace velocity that are comprised of continuous, highly coherent wave trains. These waves occur in the morning hours at times of strong auroral activity. This new type of very high trace velocity AIW appears to be associated with pulsating auroral displays. Pulsating auroras occur predominantly after magnetic midnight (10:00 UT at Fairbanks). They are a usual part of the recovery phase of auroral substorms and are produced by energetic electrons precipitating into the atmosphere. Given proper dark, cloudless sky conditions during the AIW events, bright pulsating auroral forms were sometimes visible overhead.

  16. Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.

    2013-01-01

    Abstract<p label="1">By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HGSS....2....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HGSS....2....1S"><span>Danish auroral science history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stauning, P.</p> <p>2011-01-01</p> <p>Danish auroral science history begins with the early auroral observations made by the Danish astronomer Tycho Brahe during the years from 1582 to 1601 preceding the Maunder minimum in solar activity. Included are also the brilliant observations made by another astronomer, Ole Rømer, from Copenhagen in 1707, as well as the early auroral observations made from Greenland by missionaries during the 18th and 19th centuries. The relations between auroras and geomagnetic variations were analysed by H. C. Ørsted, who also played a vital role in the development of Danish meteorology that came to include comprehensive auroral observations from Denmark, Iceland and Greenland as well as auroral and geomagnetic research. The very important auroral investigations made by Sophus Tromholt are outlined. His analysis from 1880 of auroral observations from Greenland prepared for the significant contributions from the Danish Meteorological Institute, DMI, (founded in 1872) to the first International Polar Year 1882/83, where an expedition headed by Adam Paulsen was sent to Greenland to conduct auroral and geomagnetic observations. Paulsen's analyses of the collected data gave many important results but also raised many new questions that gave rise to auroral expeditions to Iceland in 1899 to 1900 and to Finland in 1900 to 1901. Among the results from these expeditions were 26 unique paintings of the auroras made by the artist painter, Harald Moltke. The expedition to Finland was headed by Dan la Cour, who later as director of the DMI came to be in charge of the comprehensive international geomagnetic and auroral observations made during the Second International Polar Year in 1932/33. Finally, the article describes the important investigations made by Knud Lassen during, among others, the International Geophysical Year 1957/58 and during the International Quiet Sun Year (IQSY) in 1964/65. With his leadership the auroral and geomagnetic research at DMI reached a high international level that came to be the background for the first Danish satellite, Ørsted, successfully launched in 1999 and still in operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39.1862S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39.1862S"><span>Maser emission from planetary and stellar magnetospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Speirs, David</p> <p>2012-07-01</p> <p>A variety of astrophysical radio emissions have been identified to date in association with non-uniform magnetic fields and charged particle streams. From terrestrial auroral kilometric radiation (AKR) to observations of auroral radio emission from the flare star UV Ceti and CU Virginis, there are numerous examples of this intense, highly polarised magnetospheric radio signature [1][2]. Characterised by discrete spectral components at ~300kHz in the terrestrial auroral case, the radiation is clearly non-thermal and there is a strong belief that such emissions are generated by an electron cyclotron maser instability [1]. Previous work has focussed on a loss cone generation mechanism and cavity ducting model for radiation beaming, however recent theory and simulations suggest an alternative model comprising emission driven by an electron horseshoe distribution [1]. Such distributions are formed when particles descend into the increasing magnetic field of planetary / stellar auroral magnetospheres, where conservation of the magnetic moment results in conversion of axial momentum into rotational momentum. Theory has demonstrated that such distributions are highly unstable to cyclotron emission in the X-mode [3], and that these emissions when propagating tangential to the plasma cavity boundary may refract upwards due to plasma density inhomogeneity [4]. Scaled experiments have been conducted at the University of Strathclyde to study the emission process under controlled laboratory conditions [5]. In addition, numerical models have simulated the emission mechanism in the presence of a background plasma and in the absence of radiation boundaries [6]. Here we present the results of beam-plasma simulations that confirm the radiation model for tangential growth and upward refraction [4] and agree with recent Jodrell Bank observations of pulsed, narrowly beamed radio emission from the oblique rotator star CU Virginis [2]. [1] R. Bingham and R. A. Cairns, Phys. Plasmas, 7, 3089 (2000). [2] B.J. Kellett, V. Graffagnino, R. Bingham et al., ArXiv Astrophysics, 0701214 (2007). [3] R.A. Cairns, I. Vorgul, R. Bingham et al., Phys. Plasmas 18, 022902 (2011). [4] J.D. Menietti, R.L. Mutel, I.W. Christopher et al., J. Geophys. Res., 116, A12219 (2011). [5] S.L. McConville, M.E. Koepke, K.M. Gillespie et al., Plasma Phys. Control. Fusion, 53, 124020 (2011). [6] D.C. Speirs, K. Ronald, S.L. McConville, Phys. Plasmas, 17, 056501 (2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040068131&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconjunctions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040068131&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconjunctions"><span>FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.</p> <p>2003-01-01</p> <p>The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away from the poleward edge of the auroral zone is the primary field-aligned current region which results in the classical field- aligned acceleration associated with the auroral zone (electrons earthward and ion beams tailward). During times of high magnetic activity, high-energy ion beams originating from the magnetotail are observed within, and overlapping, the regions of primary and return field-aligned current. Along the field lines where the high-energy magnetotail ion beams are located, field-aligned acceleration can occur in the auroral zone leading to precipitating electrons and upwelling ionospheric ion beams. Field-aligned currents are present during both quiet and active times, while the Alfven waves and magnetotail ion beams were observed only during more magnetically active events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990089688&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990089688&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra"><span>Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitations, Plasma Waves, and Convection Observed by POLAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990089688'); toggleEditAbsImage('author_19990089688_show'); toggleEditAbsImage('author_19990089688_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990089688_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990089688_hide"></p> <p>1997-01-01</p> <p>The POLAR satellite often observes upflowing ionospheric ions (UFls) in and near the auroral oval on southern perigee (approximately 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass-angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the dusk side after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawn side during the recovery phase. The UFls showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approximately 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above approximately 200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument (EFI) were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs. the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43D2916C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43D2916C"><span>3D model of auroral emissions for Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cessateur, G.; Barthelemy, M.; Rubin, M.; Lilensten, J.; Maggiolo, R.; De Keyser, J.; Gunell, H.; Loreau, J.</p> <p>2017-12-01</p> <p>As archetype of icy satellites, Europa will be one of the primary targets of the ESA JUICE and NASA Europa Clipper missions. Through surface sputtering, Europa does possess a thin neutral gas atmosphere, mainly composed of O2 and H2O. Valuable information can therefore be retrieved from auroral and airglow measurements. We present here a 3D electron-excitation-transport-emission coupled model of oxygen line emissions produced through precipitating electrons. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). Oxygen emission lines in the UV have first been modelled, such as those at 130.5 and 135.6 nm, and there is a nonhomogenous distribution of the emission. For 135.6 nm, the line emission can be significant and reach 700 Rayleigh close to the surface for a polar limb viewing angle. Visible emissions with the red-doublet (630-636.4 nm) and green (577.7 nm) oxygen lines are also considered with emission intensities reaching 7150 R and 200 R, respectively, for limb polar viewing. Using different cross section data, a sensitivity study has also been performed to assess the impact of the uncertainties on the auroral emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.7834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.7834S"><span>Global modeling of thermospheric airglow in the far ultraviolet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solomon, Stanley C.</p> <p>2017-07-01</p> <p>The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000IAUJD...6E..15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000IAUJD...6E..15W"><span>Scientific interpretation of historical auroral records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willis, D. M.; Stephenson, F. R.</p> <p></p> <p>The available historical auroral records from both Europe and East Asia are examined critically for their relevance in the investigation of long-term variations in both solar activity and the Earth's magnetic field. The early oriental records are sufficiently numerous to allow scientific studies of variations on several time scales. Special attention is paid to the seasonal and secular variations of the early oriental auroral observations. In addition, the oriental auroral records exhibit a clear 27-day recurrence tendency at particular periods of time. A search has been made for examples of strictly simultaneous and indisputably independent observations of the aurora from spatially separated sites in East Asia. This search has yielded nine observations of mid-latitude auroral displays at more than one site in East Asia on the same night. A particular geomagnetic storm that occurred during December in AD 1128 is investigated in detail. Five days after the observation of two large sunspots in England, a red auroral display was observed from Korea. In addition, between the middle of AD 1127 and the middle of AD 1129, five Chinese and five Korean auroral observations were recorded. These provide evidence for recurrent auroral activity on a timescale almost exactly equal to the synodic-solar-rotation period (approximately 27 days). Finally, a new attempt is made to use the oriental historical auroral records to determine the location of the north geomagnetic pole during the European Middle Ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040034085&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dproject%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040034085&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dproject%2Bwaves"><span>The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schriver, David</p> <p>2003-01-01</p> <p>The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920044499&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbarium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920044499&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbarium"><span>Observation and theory of the barium releases from the CRRES satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernhardt, P. A.; Huba, J. D.; Scales, W. A.; Wescott, E. M.; Stenbaek-Nielsen, H. C.</p> <p>1992-01-01</p> <p>The relationship between releases of barium from the NASA Combined Release and Radiation Effects Satellite (CRRES) and enhanced auroral activity is discussed with reference to observational data. Barium releases were conducted at a variety of altitudes and injection velocities, and plasma irregularities are reported as a result of the interactions. Auroral activity increased within 5 min of each release, and references are made to the effects on diamagnetic cavities, bulk ion motion, and stimulated electron and ion precipitation. Artificially created structured diamagnetic cavities are noted for each release, plasma waves are generated by the high-speed ion clouds, and enhanced ionization is found in the critical ionization-velocity process. Barium releases are effective in stimulating electron precipitation, and the observed irregularities are related to cycloid bunching of the initial ion distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930001977','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930001977"><span>The role of proton precipitation in Jovian aurora: Theory and observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Waite, J. H., Jr.; Curran, D. B.; Cravens, T. E.; Clarke, J. T.</p> <p>1992-01-01</p> <p>It was proposed that the Jovian auroral emissions observed by Voyager spacecraft could be explained by energetic protons precipitating into the upper atmosphere of Jupiter. Such precipitation of energetic protons results in Doppler-shifted Lyman alpha emission that can be quantitatively analyzed to determine the energy flux and energy distribution of the incoming particle beam. Modeling of the expected emission from a reasonably chosen Voyager energetic proton spectrum can be used in conjunction with International Ultraviolet Explorer (IUE) observations, which show a relative lack of red-shifted Lyman alpha emission, to set upper limits on the amount of proton precipitation taking place in the Jovian aurora. Such calculations indicate that less than 10 percent of the ultraviolet auroral emissions at Jupiter can be explained by proton precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51A2418C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51A2418C"><span>Exploring the relative boundaries of the patchy pulsating aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlisle, E.; Donovan, E.; Jackel, B. J.</p> <p>2017-12-01</p> <p>Pulsating aurora is a common auroral feature that occurs most frequently on the nightside, in the equatorward part of the auroral oval. It is caused by pitch angle scattering of electrons due to wave-particle interactions near the equatorial plane. As such, observations of pulsating aurora provide information about the distribution of the plasma waves in the magnetosphere. Anecdotal evidence suggests that pulsating aurora occur equatorward of the proton aurora, and hence in the largely dipolar region at or inside the inner edge of the plasma sheet. Here we present results of a statistical survey of photometer observations of proton aurora and simultaneous all-sky imager observations of electron aurora. Our objective is to provide a definitive statement regarding the location of pulsating aurora relative to the proton aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920068571&hterms=polar+bear&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpolar%2Bbear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920068571&hterms=polar+bear&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpolar%2Bbear"><span>Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.</p> <p>1992-01-01</p> <p>The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P31C2811M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P31C2811M"><span>H3+ Measurements in the Jovian Atmosphere with JIRAM/Juno</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mura, A.; Migliorini, A.; Dinelli, B. M.; Moriconi, M. L.; Altieri, F.; Adriani, A.; Fabiano, F.; Piccioni, G.; Tosi, F.; Filacchione, G.; Sindoni, G.; Grassi, D.; Noschese, R.; Cicchetti, A.; Sordini, R.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Levin, S.; Lunine, J. I.; Gerard, J. C. M. C.; Turrini, D.; Stefani, S.; Olivieri, A.; Plainaki, C.</p> <p>2017-12-01</p> <p>The NASA Juno mission has been investigating Jupiter's atmosphere since August 2016, providing unprecedented insights into the giant planet. The Jupiter Infrared Auroral Mapper (JIRAM) experiment, on board Juno, performed spectroscopic observations of the H3+ emissions both in the auroral regions (Dinelli et al., 2017; Adriani et al., 2017; Mura et al., 2017) and at mid latitudes. In the present work, we analyse the observations acquired by the JIRAM spectrometer during the first perijove passage on 26-27 August 2016, when the spacecraft was at about 500,000-1,200,000 km (7-17 RJ) from the planet. During a portion of the observations, the slit of the spectrometer sampled Jupiter's limb in the latitude range from 30° to 60° in both hemispheres. The limb spectra show the typical features of the H3+ emission in the 3-4 μm spectral range, which are generally used to retrieve the H3+ concentration and temperature in the auroral region. In this work we employ above spectral region to provide new insight into the H3+ vertical distribution. The spatial resolution of the limb observations of Jupiter, ranging between 50 and 130 km, is favorable for investigating the vertical distribution of H3+. The vertical profiles of the H3+ limb intensity will be presented along with the preliminary results of the retrieval on H3+ vertical volume mixing ratio (VMR) height profiles, and comparison with predictions from the available atmospheric models of the planet. Possible variability of the altitude of the peak emission with respect to latitude and longitude will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSM23B1406B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSM23B1406B"><span>Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.</p> <p>2007-12-01</p> <p>MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014707"><span>Study of plasmasphere dynamics using incoherent scatter data from Chatanika, Alaska radar facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shelley, E. G.</p> <p>1975-01-01</p> <p>Results of the study of Chatanika incoherent scatter radar data and Lockheed Palo Alto Research Laboratory satellite data are reported. Specific topics covered include: determination of the effective recombination coefficient in the auroral E region; determination of the location of the auroral oval; auroral boundary characteristics; and the relationship of auroral current systems, particle precipitation, visual aurora, and radar aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730023546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730023546"><span>Analysis of Auroral Data from Nasa's 1968 and 1969 Airborne Auroral Expedition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>Results of a methodical compilation, reduction, and correlated analysis of spectrophotometric data obtained by various scientific groups during NASA's 1968 and 1969 Airborne Auroral Expedition are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........68M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........68M"><span>Characteristics of dayside auroral displays in relation to magnetospheric processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minow, Joseph I.</p> <p>1997-09-01</p> <p>The use of dayside aurorae as a ground based monitor of magnetopause activity is explored in this thesis. The origin of diffuse (OI) 630.0 nm emissions in the midday auroral oval is considered first. Analysis of low altitude satellite records of precipitating charged particles within the cusp show an unstructured electron component that will produce a 0.5-1 kR 630.0 nm emission throughout the cusp. Distribution of the electrons is controlled by the requirement of charge neutrality in the cusp, predicting a diffuse 630.0 nm background even if the magnetosheath plasma is introduced into the magnetosphere in discrete merging events. Cusp electron fluxes also contain a structured component characterized by enhancements in the electron energy and energy flux over background values in narrow regions a few 10's of kilometers in width. These structured features are identified as the source of the transient midday arcs. An auroral model is developed to study the morphology of (OI) 630.0 nm auroral emissions produced by the transient arcs. The model demonstrates that a diffuse 630.0 nm background emission is produced by transient arcs due to the long lifetime of the O(1D) state. Two sources of diffuse 630.0 nm background emissions exist in the cusp which may originate in discrete merging events. The conclusion is that persistent 630.0 nm emissions cannot be interpreted as prima facie evidence for continuous particle transport from the magnetosheath across the magnetopause boundary and into the polar cusp. The second subject that is considered is the analysis of temporal and spatial variations of the diffuse 557.7 nm pulsating aurora in relation to the 630.0 nm dominated transient aurora. Temporal variations at the poleward boundary of the diffuse 557.7 nm aurora correlate with the formation of the 630.0 nm transient aurorae suggesting that the two events are related. The character of the auroral variations is consistent with the behavior of particle populations reported during satellite observations of flux transfer events near the dayside magnetopause. An interpretation of the events in terms of impulsive magnetic reconnection yields a new observation that relates the poleward moving transient auroral arcs in the midday sector to the flux transfer events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM31C4213D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM31C4213D"><span>A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.</p> <p>2014-12-01</p> <p>Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970040338&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970040338&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado"><span>Excitation of Plasma Waves in Aurora by Electron Beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.</p> <p>1996-01-01</p> <p>In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26074636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26074636"><span>Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S</p> <p>2014-05-28</p> <p>We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4459195','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4459195"><span>Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S</p> <p>2014-01-01</p> <p>We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM22A..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM22A..02K"><span>Storm-associated Alfvén Waves in the Polar Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keiling, A.; Wygant, J. R.; Dombeck, J. P.</p> <p>2017-12-01</p> <p>Global polar distribution maps of Alfvénic Poynting flux and Alfvén-wave-accelerated electrons now exist from a number of satellites, orbiting at various altitudes, including below and in the auroral acceleration region (AAR), above the AAR and in the equatorial plasma sheet. Together with auroral images, it has been established that the nightside aurora, in particular its premidnight to midnight dominance, is coupled to these waves. Moreover, global simulations have reproduced the observed nightside distribution of Alfvén waves, coming from the far-tail magnetospheric dynamo. While recent studies, using low-altitude and equatorial satellites, have shown a deviation from this average nightside pattern during storm times, as of now there is no such study to provide the link between these regions, namely just above the AAR. In this presentation, we will present Polar spacecraft-based data during storm times, covering the altitude range from 4 to 7 RE (geocentric distance) and spanning a time period of six years. The results will be put in context to published studies, in particular with regard to morphology and dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810004173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810004173"><span>A global model of the neutral thermosphere in magnetic coordinates based on AE-C data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stehle, C. G.</p> <p>1980-01-01</p> <p>An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840040871&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840040871&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent"><span>Fourier analysis of polar cap electric field and current distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barbosa, D. D.</p> <p>1984-01-01</p> <p>A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EP%26S...67..166A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EP%26S...67..166A"><span>Problems with mapping the auroral oval and magnetospheric substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.</p> <p>2015-10-01</p> <p>Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27656099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27656099"><span>Problems with mapping the auroral oval and magnetospheric substorms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antonova, E E; Vorobjev, V G; Kirpichev, I P; Yagodkina, O I; Stepanova, M V</p> <p></p> <p>Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770042334&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770042334&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconvection%2Bcurrents"><span>On high-latitude convection field inhomogeneities, parallel electric fields and inverted-V precipitation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lennartsson, W.</p> <p>1977-01-01</p> <p>A simple model of a static electric field with a component parallel to the magnetic field is proposed for calculating the electric field and current distributions at various altitudes when the horizontal distribution of the convection electric field is given at a certain altitude above the auroral ionosphere. The model is shown to be compatible with satellite observations of inverted-V electron precipitation structures and associated irregularities in the convection electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993PhDT........25B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993PhDT........25B"><span>A generalized semikinetic (GSK) model for mesoscale auroral plasma transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, David Gillespie</p> <p>1993-12-01</p> <p>The auroral region of the Earth's ionosphere-magnetosphere system is a complex and active part of the Earth's environment. In order to study the transport of ionospheric plasma in this region, we have developed a generalized semikinetic (GSK) model which combines the tracking of ionospheric ion gyrocenters (between stochastic impulses from waves), with a generalized fluid treatment of ionospheric electrons and Liouville mapping of magnetospheric plasma components. This model has been used to simulate the effects of 'self-consistent' heating ('self consistent' in the sense that heating occurs only where the modelled plasma is unstable) due to the current-driven ion cyclotron instability in the return current regions. Our results include generation of 'conics' whose wings are drawn in towards the upsilon(parallel)-axis at higher energies (such distributions were subsequently found in recent studies of DE-1 data for this region) and an alternative formation mechanism for toroidal (or 'ring'-shaped) ion velocity-space distributions. We also present results illustrating the effects of combining large scale electric fields (generated by anisotropic magnetospheric plasma distributions) with wave heating by a presumed distribution of wave spectra. In the presence of an upwards electric field the addition of wave heating increases the density of the O(sup +) 'beam' ('ion feeder' effect), while a downwards hot plasma-induced electric field increases the time which ions spend within the heating region ('pressure cooker' effect), resulting in greater ion energization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990Icar...85..216B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990Icar...85..216B"><span>Auroral and photoelectron fluxes in cometary ionospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.</p> <p>1990-05-01</p> <p>The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4648G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4648G"><span>A Statistical Survey of the 630.0-nm Optical Signature of Periodic Auroral Arcs Resulting From Magnetospheric Field Line Resonances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gillies, D. Megan; Knudsen, David; Rankin, Robert; Milan, Stephen; Donovan, Eric</p> <p>2018-05-01</p> <p>Advances in networks of ground-based optical instrumentation have enabled us to identify over 400 examples of auroral arcs with an infrequently observed, temporally periodic auroral morphology. This study focuses on these arcs observed via the 630-nm ("redline") auroral emission wavelength and connects them to global magnetospheric wave modes known as field line resonances (FLRs). We show that optical redline FLR auroral arcs occur most frequently near 20 and 4 magnetic local time, in contrast to nonperiodic redline arcs, which occur most frequently near midnight. We find that this periodic type of auroral arc is rare, occurring in approximately 5% of redline aurora observed by the Redline Emission Geospace Observatory all-sky imagers. We also show Swarm satellite observations of two separate instances of 630-nm FLR arcs with strong upward field-aligned currents of the order of 3-6 μA/m2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840044910&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMOOS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840044910&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMOOS"><span>IUE observations of longitudinal and temporal variations in the Jovian auroral emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Moos, H. W.</p> <p>1984-01-01</p> <p>The IUE's short wavelength spectrograph has been used to monitor the auroral emissions from Jupiter's northern hemisphere, yielding eight observations between January 1981 and January 1982 of H I Lyman-alpha and the H2 Lyman and Werner bands. Attention is given to an apparent periodic emission flux fluctuation, through detailed modeling of the emission geometry. Two possible auroral zones are defined at the north pole by mapping the magnetic field lines from the Io torus and the magnetotail onto the planet's atmosphere. The observed variation in flux with central meridian longitude is not consistent with a uniform brightness as a function of magnetic longitude in either auroral zone. The data can be fitted by confining the emissions to the region of the northern torus auroral zone, in qualitative agreement with the magnetic anomaly model. A similar emission from the magnetotail auroral zone cannot be ruled out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990067626&hterms=space+force&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dspace%2Bforce','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990067626&hterms=space+force&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dspace%2Bforce"><span>Ponderomotive Force and Lower Hybrid Turbulence Effects in Space Plasmas Subjected to Large-Amplitude Low-Frequency Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.</p> <p>1997-01-01</p> <p>In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.U22A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.U22A..03M"><span>First Results from the Jupiter Energetic Particle Detector Instrument (JEDI) Investigation Within the Magnetosphere and Over the Poles of Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mauk, B.; Haggerty, D. K.; Paranicas, C.; Clark, G. B.; Kollmann, P.; Rymer, A. M.; Brown, L. E.; Jaskulek, S. E.; Schlemm, C. E.; Kim, C. K.; Nelson, K.; Bolton, S. J.; Bagenal, F.; Connerney, J. E. P.; Gladstone, R.; Kurth, W. S.; Levin, S.; McComas, D. J.; Valek, P. W.</p> <p>2016-12-01</p> <p>The Juno spacecraft first entered Jupiter's magnetosphere on 25 June 2016, but evidence for Jupiter's magnetospheric environment was first observed by the Jupiter Energetic Particle Detector Instrument (JEDI) as early as January 2016 in the form of leaking energetic particles observed over 1200 RJ away from Jupiter. JEDI is an energetic particle instrument designed to measure the energy, angular, and compositional distribution of energetic electrons ( 25 to > 700 keV) and ions (protons: 10 keV to > 1.5 MeV). A special set of channels for oxygen and sulfur extend up in energy to > 10 MeV. The JEDI instrument comprises three separate sensor heads, each with multiple (6) telescopes, in order to capture angular distributions of energetic particles over the poles of Jupiter as Juno rushes over auroral forms as narrow as < 80 km at a speed of up to 55 km/s. Since entering Jupiter's magnetosphere JEDI has observed both familiar, and some unfamiliar structures, including: 1) undulations along the dawn flank of Jupiter's magnetosphere possibly signaling the occurrence of Kelvin-Helmholz instability structures thought to play a role in coupling the solar wind energetics to the dynamics of Jupiter's magnetosphere, and 2) spiky electron transients with magnetic field-aligned angular distributions within the distant magnetodisc plasmas conjectured to be related to transient auroral forms observed at other times by the Hubble Space Telescope poleward of Jupiter's main aurora. A principal target of JEDI and other fields and particles instruments on Juno is the near-planet polar regions of Jupiter's space environment, never-before visited by spacecraft. These instruments were designed to determine the physics of auroral acceleration at Jupiter and the role that those processes play in enabling Jupiter to spin up and energize its vast magnetospheric space environment. The first polar pass is scheduled for 27 August 2016. In this report we present the first results from the JEDI instrument after making measurements in this novel polar environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4921102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4921102S"><span>Solar wind control of stratospheric temperatures in Jupiter's auroral regions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.</p> <p>2017-10-01</p> <p>Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050212155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050212155"><span>Correlation Between Low Frequency Auroral Kilometric Radiation (AKR) and Auroral Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paxamickas, Katherine A.; Green, James L.; Gallagher, Dennis L.; Boardsen, Scott; Mende, Stephen; Frey, Harald; Reinisch, Bodo W.</p> <p>2005-01-01</p> <p>Auroral Kilometric Radiation (AKR) is a radio wave emission that has long been associated with auroral activity. AKR is normally observed in the frequency range from -60 - 600 kHz. Low frequency AKR (or LF-AKR) events are characterized as a rapid extension of AKR related emissions to 30 kHz or lower in frequency for typically much less than 10 minutes. LF-AKR emissions predominantly occur within a frequency range of 20 kHz - 30 kHz, but there are LF-AKR related emissions that reach to a frequency of 5 kHz. This study correlates all instances of LF-AKR events during the first four years of observations from the IMAGE spacecraft's Radio Plasma Imager (WI) instrument with auroral observations from the wideband imaging camera (WIC) onboard IMAGE. The correlation between LF-AKR occurrence and WIC auroral observations shows that in the 295 confirmed cases of LF-AKR emissions, bifurcation of the aurora is seen in 74% of the cases. The bifurcation is seen in the dusk and midnight sectors of the auroral oval, where AKR is believed to be generated. The polarization of these LF-AKR emissions has yet to be identified. Although LF-AKR may not be the only phenomena correlated with bifurcated auroral structures, bifurcation will occur in most instances when LF-AKR is observed. The LF-AKR emissions may be an indicator of specific auroral processes sometimes occurring during storm-time conditions in which field-aligned density cavities extend a distance of perhaps 5-6 RE tailward from the Earth for a period of 10 minutes or less.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA191164','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA191164"><span>Coordinated Ground and Space Measurements of Auroral Surge over South Pole.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-02-01</p> <p>3y V. Coordinated Ground and Space Measurements of co an Auroral Surge over South Pole T. J. ROSENBERG and D. L. DETRICK Institute for Physical...Measurements of an Auroral Surge over South Pole 12. PERSONAL AUTHOR(S) Rosenberg, T. J., and DetrickD. L., University of Maryland; Mizera, Paul F., 13a. TYPE...premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996A%26A...305..669L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996A%26A...305..669L"><span>A coherent nonlinear theory of auroral Langmuir-Alfven-whistler (LAW) events in the planetary magnetosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopes, S. R.; Chian, A. C.-L.</p> <p>1996-01-01</p> <p>A coherent nonlinear theory of three-wave coupling involving Langmuir, Alfven and whistler waves is formulated and applied to the observation of auroral LAW events in the planetary magnetosphere. The effects of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics are analyzed. The relevance of this theory for understanding the fine structures of auroral whistler-mode emissions and amplitude modulations of auroral Langmuir waves is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118..685I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118..685I"><span>The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imber, S. M.; Milan, S. E.; Lester, M.</p> <p>2013-02-01</p> <p>We present a statistical study relating the latitude of the auroral oval measured by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) SI-12 proton auroral camera to that of the Heppner-Maynard Boundary (HMB) determined from Super Dual Auroral Radar Network (SuperDARN) data during the period 2000-2002. The HMB represents the latitudinal extent of the ionospheric convection pattern. The oval latitude from the proton auroral images is determined using the method of Milan et al. (2009a), which fits a circle centered on a point 2° duskward and 5° antisunward of the magnetic pole. The auroral latitude at midnight is determined for those images where the concurrent SuperDARN northern hemisphere maps contain more than 200 data points such that the HMB is well-defined. The statistical study comprises over 198,000 two-minute intervals, and we find that the HMB is located on average 2.2° equatorward of the proton auroral latitude. A superposed epoch analysis of over 2500 substorms suggests that the separation between the HMB and the oval latitude increases slightly during periods of high geomagnetic activity. We suggest that during intervals where there are no auroral images available, the HMB latitude and motion could be used as a proxy for that of the aurora, and therefore provide information about motions of the open/closed field line boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840040873&hterms=generation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgeneration%2BZ','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840040873&hterms=generation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgeneration%2BZ"><span>Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Omidi, N.; Gurnett, D. A.; Wu, C. S.</p> <p>1984-01-01</p> <p>The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024396"><span>Physical Processes for Driving Ionospheric Outflows in Global Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Thomas Earle; Strangeway, Robert J.</p> <p>2009-01-01</p> <p>We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM53A..08Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM53A..08Y"><span>Improving the Ionospheric Auroral Conductance in a Global Ring Current Model and the Effects on the Ionospheric Electrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.</p> <p>2017-12-01</p> <p>The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2663L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2663L"><span>The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.</p> <p>2017-12-01</p> <p>The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA51B2392M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA51B2392M"><span>Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.</p> <p>2017-12-01</p> <p>Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2375K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2375K"><span>Simultaneous all-sky and multi-satellite observations of auroral breakup and magnetic reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawashima, T.; Ieda, A.; Machida, S.; Nishimura, Y.; Miura, T.</p> <p>2017-12-01</p> <p>A substorm is a large-scale disturbance including auroral breakup in the ionosphere and magnetic reconnection in the magnetotail. Two predominant models of the substorm time history have been proposed: the near-Earth neutral line (NENL) model and the current disruption model. The former is of outside-in type with tailward propagation of the disturbance, whereas the latter is of inside-out type with earthward propagation of the disturbance. To determine such time histories of such substorms using aurora all-sky and magnetotail multi-satellite observations, the National Aeronautics and Space Administration (NASA) is conducting a mission named the "Time History of Events and Macroscale Interactions during Substorms (THEMIS)". The time history of a substorm is expected to be best clarified when satellites are aligned along the tail axis. A substorm occurred under such a satellite distribution on 0743:42 UT February 27, 2009, and we investigated the auroral breakup and fast plasma flows produced by the magnetic reconnection in this substorm. The THEMIS satellites observed that a northward magnetic field variation propagated earthward. Because this earthward propagation is consistent with the NENL model, observation of a substorm onset after the magnetic reconnection was expected. However, the substorm onset was observed in the all-sky images before the magnetic reconnection, as noted in a previous study. In this study, we report that another earthward fast plasma flow occurred before the substorm onset, indicating that another magnetic reconnection occurred before the substorm onset. In addition, we confirm that the above mentioned post-onset magnetic reconnection occurred simultaneously with auroral poleward expansion, within a 1-min period. These results support the NENL model and further suggest that the two-step development of magnetic reconnection is a key component of the substorm time history.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050041809&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFord','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050041809&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFord"><span>Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter</p> <p>2004-01-01</p> <p>Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050201880&hterms=heating+global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheating%2Bglobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050201880&hterms=heating+global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheating%2Bglobal"><span>Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.</p> <p>2005-01-01</p> <p>A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA127042','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA127042"><span>Auroral-Region Dynamics Determined with the Chatanika Radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-11-01</p> <p>report) 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from report) 18 . SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on...for 1 April 1973 .......... ... 41 18 Vertical Neutral Wind Measured with the Fabry-Perot Interferometer ......... ........................ ... 44 vii...Waves Determined from Radar Observations on 18 January 1976 ..... ............... ... 50 23 Meridional Wind and Gravity Waves Determined from Radar</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA405592','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA405592"><span>Characterization of the Auroral Electrojet and the Ambient and Modified D Region for HAARP Using Long-Path VLF Diagnostics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-03-15</p> <p>order to characterize the auroral electrojet and the ambient and modified D-region directly above and near the HAARP (High Frequency Active Auroral...near the HAARP facility and along the west coast of Alaska. In addition in order to characterize the auroral electrojet on a continental scale and to...United States and Canada. Data from the complete array of D-region diagnostic systems was acquired during a number of Fall and Spring HAARP campaigns</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920019668','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920019668"><span>Theoretical and experimental studies relevant to interpretation of auroral emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keffer, Charles E.</p> <p>1992-01-01</p> <p>The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880033331&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddeming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880033331&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddeming"><span>Variability of ethane on Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David</p> <p>1987-01-01</p> <p>Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA260015','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA260015"><span>Precipitating Auroral Electron Flux Characteristics Based on UV Data Obtained by the AIRS Experiment Onboard the Polar BEAR Satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-03-01</p> <p>approved for publication. RICHARD EASTES DAVID ANDERSON Contract Manager Branch Chief "" K. VICKERY Division Director This document has been reviewed by...Contract Manager: Richard Eastes/GPIM 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public...system within this band ( Vallance Jones, 1974) 4.2 Model atmosphere MSIS86 (Hedin, 1987) was used to generate the model atmospheres for our analysis of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180002925&hterms=Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180002925&hterms=Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar"><span>Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Kan; Sibeck, David G.</p> <p>2018-01-01</p> <p>We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061175&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DFord','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061175&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DFord"><span>Preliminary Results from Recent Simultaneous Chandra/HST Observations of Jupiter Auroral Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elsner, R.; Gladstone, R.; Waite, H.; Majeed, T.; Ford, P.; Grodent, D.; Bwardwaj, A.; Howell, R.; Cravens, T.; MacDowell, R.</p> <p>2003-01-01</p> <p>Jupiter was observed by the Chandra X-ray Observatory in late February, 2003, for 144 ks, using both the ACIS-S and HRC-I imaging x-ray cameras. Five orbits of HST STIS observations of the planet's northern auroral zone were obtained during the ACIS-S observations. These data are providing a wealth of information about Jupiter's auroral activity, including the first x-ray spectra from the x-ray hot spots inside the auroral ovals. We will also discuss the approximately 45 minute quasi-periodicity in the auroral x-ray emission - which correlates well with simultaneous observations of radio bursts by the Ulysses spacecraft - and a possible phase relation between the emission from the northern and southern x-ray aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990113190&hterms=remote+viewing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dremote%2Bviewing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990113190&hterms=remote+viewing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dremote%2Bviewing"><span>Global Auroral Remote Sensing Using GGS UVI Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Spann, J. F., Jr.; Cumnock, J.; Lummerzheim, D.</p> <p>1997-01-01</p> <p>The GGS POLAR satellite, with an apogee distance of 9 Earth radii, provides an excellent platform for extended viewing of the northern auroral zone. Global FUV auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength Earth Far Ultraviolet (FUV) Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. The determination of maps of incident auroral energy characteristics is demonstrated here and compared with in situ measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411217Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411217Y"><span>Mechanisms of Saturn's Near-Noon Transient Aurora: In Situ Evidence From Cassini Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Z. H.; Radioti, A.; Rae, I. J.; Liu, J.; Grodent, D.; Ray, L. C.; Badman, S. V.; Coates, A. J.; Gérard, J.-C.; Waite, J. H.; Yates, J. N.; Shi, Q. Q.; Wei, Y.; Bonfond, B.; Dougherty, M. K.; Roussos, E.; Sergis, N.; Palmaerts, B.</p> <p>2017-11-01</p> <p>Although auroral emissions at giant planets have been observed for decades, the physical mechanisms of aurorae at giant planets remain unclear. One key reason is the lack of simultaneous measurements in the magnetosphere while remote sensing of the aurora. We report a dynamic auroral event identified with the Cassini Ultraviolet Imaging Spectrograph (UVIS) at Saturn on 13 July 2008 with coordinated measurements of the magnetic field and plasma in the magnetosphere. The auroral intensification was transient, only lasting for ˜30 min. The magnetic field and plasma are perturbed during the auroral intensification period. We suggest that this intensification was caused by wave mode conversion generated field-aligned currents, and we propose two potential mechanisms for the generation of this plasma wave and the transient auroral intensification. A survey of the Cassini UVIS database reveals that this type of transient auroral intensification is very common (10/11 time sequences, and ˜10% of the total images).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSA33A2177F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSA33A2177F"><span>Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.</p> <p>2012-12-01</p> <p>The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Ap%26SS.361..295Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Ap%26SS.361..295Z"><span>Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.</p> <p>2016-09-01</p> <p>This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ is 0.9.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031914"><span>Theoretical and experimental studies relevant to interpretation of auroral emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keffer, Charles E.</p> <p>1994-01-01</p> <p>This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720056314&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720056314&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconvection%2Bcurrents"><span>The Harang discontinuity in auroral belt ionospheric currents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heppner, J. P.</p> <p>1972-01-01</p> <p>Discussion of the nature of a discontinuity in the ionospheric current of the auroral belt whose existence was suggested by Harang in 1946. Convection characteristics, time variability, and current continuity in the auroral belt are considered in a context of observations and arguments supporting the reality of Harang's discontinuity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory"><span>Wave-particle interactions on the FAST satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.</p> <p>1990-01-01</p> <p>NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral zone from a 3500-km apogee polar orbit. FAST will give attention to wave, double-layer, and soliton production processes due to electrons and ions, as well as to wave-wave interactions, and the acceleration of electrons and ions by waves and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral zone, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000021211','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000021211"><span>UCLA IGPP Space Plasma Simulation Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750016137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750016137"><span>Electron precipitation in the post midnight sector of the auroral zones. [on the Explorer 40 satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Saflekos, N. A.; Ackerson, K. L.</p> <p>1975-01-01</p> <p>Comprehensive measurements of the angular distributions and energy spectra of electron intensities with electrostatic analyzer arrays on board the low-altitude satellite Injun 5 are reported. These are for the post-midnight sector of the auroral zones during the high-intensity events accompanying magnetic substorms. Precipitation features on closed terrestrial field lines well equatorward of the trapping boundary for energetic electrons with E greater than 45 keV were examined. No evidences of maxima in the differential energy spectra or of strongly field-aligned currents which are indicative of quasi-static electric fields aligned parallel to the geomagnetic field were found. Precipitation of low-energy electron intensities fluctuated on time scales greater than 2 seconds as viewed at the satellite position. This precipitation was characterized by isotropy for all pitch angles outside the atmospheric backscatter cone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564003','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564003"><span>Contamination and Micropropulsion Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-07-01</p> <p>23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810011152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810011152"><span>One-dimensional models of quasi-neutral parallel electric fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, D. P.</p> <p>1981-01-01</p> <p>Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030852','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030852"><span>Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cornwall, J. M.</p> <p>1994-01-01</p> <p>This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790052142&hterms=History+Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHistory%2BWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790052142&hterms=History+Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHistory%2BWave%2BEnergy"><span>Auroral origin of medium scale gravity waves in neutral composition and temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.</p> <p>1979-01-01</p> <p>The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840034545&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840034545&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures"><span>Auroral photometry from the atmosphere Explorer satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rees, M. H.; Abreu, V. J.</p> <p>1984-01-01</p> <p>Attention is given to the ability of remote sensing from space to yield quantitative auroral and ionospheric parametrers, in view of the auroral measurements made during two passes of the Explorer C satellite over the Poker Flat Optical Observatory and the Chatanika Radar Facility. The emission rate of the N2(+) 4278 A band computed from intensity measurements of energetic auroral electrons has tracked the same spetral feature that was measured remotely from the satellite over two decades of intensity, providing a stringent test for the measurement of atmospheric scattering effects. It also verifies the absolute intensity with respect to ground-based photometric measurements. In situ satellite measurments of ion densities and ground based electron density profile radar measurements provide a consistent picture of the ionospheric response to auroral input, while also predicting the observed optical emission rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSM31B0319S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSM31B0319S"><span>Observation of hectometric auroral radio emissions in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Y.; Ono, T.; Iizima, M.; Sato, N.</p> <p>2006-12-01</p> <p>The Earth's auroral region is an active radio source at frequencies from a few hertz to several megahertz. In the hectometric range, it was found that Terrestrial Hectometric Radiation (THR) is related to auroras by observations of the Ohzora satellite [Oya et al.(1985)]. In resent research, Shinbori et al. [2003] showed that occurrence of THR follows SC by several minutes using the Akebono satellite data. On the ground, auroral roar and MF burst were discovered by Kellogg and Monson [1979, 1984] and Weatherwax et al. [1994] in the northern Canada, respectively. Because there is not enough physical and geophysical characterization of these radio emissions, the physical mechanism of these phenomena in the auroral ionosphere has not been fully understood yet. We set up new observation system at Husafell station in Iceland in September, 2005 and have started to observe auroral radio emissions. Radio signals, which are received by the cross loop antennas, are converted into left- and right- handed polarized components within the frequency range from 1 MHz to 5 MHz. Based on the calibration of system, it was found that the possibility of occurence would be smaller than expected due to the low sensitivity because average power spectrum densities of auroral roar and MF burst are 50-100 nV/m/Hz^1/2. So, the system was planed to be upgraded in this September, which makes it possible to detect auroral roar and MF burst. It is expected that the detail physical process will be elucidated by clarifying the spectrum, polarization, dependence on the geomagnetic activity, and so on. In this presentation, we will show the improved points of the new system and preliminary observation results. There is a basic question whether auroral roar and MF burst observed on the ground are generated by the same process as THR observed by satellites. By comparing the results from the ground-based observation and the Akebono satellite observation of THR, it becomes possible to obtain a new picture of auroral radio emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......202B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......202B"><span>High-resolution observations of core and suprathermal ions in the auroral ionosphere: Techniques and results from the GEODESIC sounding rocket</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burchill, Johnathan Kerr</p> <p></p> <p>Low-energy (Ek ˜ 10-1--10 1 eV) ions comprise the bulk of Earth's ionosphere, and represent the initial stages of ion heating and outflow from Earth's auroral regions. The suprathermal ion imager (SII) is a fast (˜93 images/sec), compact, two-dimensional ion energy (0 < Ek < 20 eV) and direction-of-arrival analyzer designed to observe the energy distributions of these ions in detail, with emphasis on exploring small-scale (˜10--100 m) structure in the ionosphere. The SII was flown into an auroral substorm on the GEODESIC sounding rocket from Poker Flat, Alaska, on 26 February 2000. The technical element of this thesis deals with the development of a computer model of the SII, and techniques for extracting and interpreting physical quantities from the SII observations. Laboratory and in-flight calibrations demonstrate that the analyzer imaging capability departs from the ideal model. Nevertheless, the SII represents a technological step forward, and has yielded new scientific results. The scientific element of this thesis focuses on simultaneous observations of ion energy distributions and low-frequency plasma waves in the topside (500--1000 km) auroral ionosphere. GEODESIC encountered three types of plasma wave which have previously been associated with ion heating. However, heated ions were only observed in association with localized density depletions and wave enhancements known as lower-hybrid solitary structures (LHSS). Approximately 90% of the LHSS ion number density is comprised of the ambient isotropic sub-eV core population. The remaining 10% corresponds to transverse acceleration of ions (TAI) to within 5° transverse to the geomagnetic field and to mean energies up to 5--10 eV, consistent with previous findings. Contrary to previously published observations, the GEODESIC TAI is consistent with localized bulk heating of some of the ambient core. Ion heating was not observed in association with large-scale (>1 km) broadband extremely low frequency (BB ELF) wave enhancements. Similarly, no ion heating was detected in the presence of large amplitude, short perpendicular wavelength Alfven waves. Differences between low-frequency ion flow fluctuations and convection drift fluctuations can be explained only partially by ion polarization drift physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750057144&hterms=1041&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231041','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750057144&hterms=1041&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231041"><span>Magnetospheric and auroral plasmas - A short survey of progress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.</p> <p>1975-01-01</p> <p>Important milestones in our researches of auroral and magnetospheric plasmas for the past quadrennium 1971-1975 are reviewed. Many exciting findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking inverted V electron precipitation events, were reported during this period. Solutions to major questions concerning the origins and acceleration of these plasmas appear possible in the near future. A comprehensive bibliography of current research is appended to this brief survey of auroral and magnetospheric plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780048772&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeomagnetism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780048772&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeomagnetism"><span>The Third General Scientific Assembly of the International Association of Geomagnetism and Aeronomy - Special sessions of auroral processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.</p> <p>1978-01-01</p> <p>Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910025795&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddiscrete%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910025795&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddiscrete%2Bstructure"><span>A mathematical model of the structure and evolution of small-scale discrete auroral arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seyler, Charles E.</p> <p>1990-01-01</p> <p>A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM53A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM53A..04C"><span>Effect of Precipitating Electrons on Stormtime Inner Magnetospheric Electric Fields during the 17 March 2013 Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, M.; Lemon, C. L.; Sazykin, S. Y.; Wolf, R.; Hecht, J. H.; Walterscheid, R. L.; Boyd, A. J.; Turner, D. L.</p> <p>2015-12-01</p> <p>We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions and how the precipitating electrons modify the ionospheric conductivity and electric potentials during the large 17 March 2013 magnetic storm. Of particular interest is how electron precipitation in the evening sector affects the development of the Sub-auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating electron distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. We compare simulated trapped and precipitating electron flux distributions with measurements from Van Allen Probes/MagEIS, POES/TED and MEPED, respectively, to validate the electron loss model. Ground-based (SuperDARN) and in-situ (Van Allen Probes/EFW) observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons on the SAPS and inner magnetospheric electric field through the data-model comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51B2486M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51B2486M"><span>A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.</p> <p>2016-12-01</p> <p>Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM23A2462F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM23A2462F"><span>Auroral E-region Plasma Irregularities and their Control by the Plasma Convection in the Southern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsythe, V. V.; Makarevich, R. A.</p> <p>2016-12-01</p> <p>Small-scale ionospheric plasma irregularities in the high-latitude E region and their control by F-region plasma convection are investigated using Super Dual Auroral Network (SuperDARN) observations at high southern latitudes over a 1-year period. Significant asymmetries are found in the velocity occurrence distribution due to the clustering of the high-velocity echoes of a particular velocity polarity. Statistical analysis of convection showed that some radars observe predominantly negative bias in the convection component within their short, E-region ranges, while others have a predominantly positive bias. A hypothesis that this bias is caused by asymmetric sectoring of the high-latitude plasma convection pattern is investigated. A new algorithm is developed that samples the plasma convection map and evaluates the convection pattern asymmetry along the particular latitude that corresponds to the radar location. It is demonstrated that the convection asymmetry has a particular seasonal and diurnal pattern, which is different for the polar and auroral radars. Possible causes for the observed convection pattern asymmetry are discussed. It is further proposed that the statistical occurrence of high-velocity E-region echoes generated by the Farley-Buneman instability (FBI) is highly sensitive to small changes in the convection pattern, which is consistent with the electric field threshold for the FBI onset being perhaps sharper and lower than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM22A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM22A..03S"><span>Polar CAP Boundary Identification Using Redline Imaging Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spanswick, E.; Roy, E. A.; Gallardo-Lacourt, B.; Donovan, E.; Ridley, A. J.; Gou, D.</p> <p>2017-12-01</p> <p>The location of the polar cap boundary is typically detected using low-orbit satellite measurements in which the boundary is identified by its unique signature of a sharp decrease in energy and particle flux poleward of the auroral oval. A previous study based in optical data by Blanchard et al. [1995] suggested that a dramatic gradient in redline aurora may also be an indicator of the polar cap boundary. While this study has been heavily cited, it was only based on few events and its findings have largely gone uncontested. Since the Blanchard study, satellite instrumentation and available auroral data have improved significantly. Auroral imaging has moved well beyond the capabilities of the instrumentation in the previous study in terms of sensitivity and both spatial and temporal resolution. We now have access to decades of optical data from arrays spanning a huge spatial range; none of which was available previously. In this study we have used data from FAST and DMSP satellites in conjunction with the University of Calgary's Narrow-band All-sky Cameras for Auroral Monitoring (NASCAM) ground based auroral imaging array and the REdline Geospace Observatory (REGO) data to assess the viability of automated detection of the polar cap boundary. In our analysis we used redline (630nm) auroral signatures from the ground based imagers around the location of the polar cap boundary observed in satellite data. We have characterized the polar cap boundary luminosity and location using the redline auroral data during different geomagnetic conditions. Our results enable a new tool to automatically identify the polar cap boundary to reach a deeper understanding of the connection between polar cap location and auroral activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2666H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2666H"><span>Validation of Ground-based Optical Estimates of Auroral Electron Precipitation Energy Deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hampton, D. L.; Grubbs, G. A., II; Conde, M.; Lynch, K. A.; Michell, R.; Zettergren, M. D.; Samara, M.; Ahrns, M. J.</p> <p>2017-12-01</p> <p>One of the major energy inputs into the high latitude ionosphere and mesosphere is auroral electron precipitation. Not only does the kinetic energy get deposited, the ensuing ionization in the E and F-region ionosphere modulates parallel and horizontal currents that can dissipate in the form of Joule heating. Global models to simulate these interactions typically use electron precipitation models that produce a poor representation of the spatial and temporal complexity of auroral activity as observed from the ground. This is largely due to these precipitation models being based on averages of multiple satellite overpasses separated by periods much longer than typical auroral feature durations. With the development of regional and continental observing networks (e.g. THEMIS ASI), the possibility of ground-based optical observations producing quantitative estimates of energy deposition with temporal and spatial scales comparable to those known to be exhibited in auroral activity become a real possibility. Like empirical precipitation models based on satellite overpasses such optics-based estimates are subject to assumptions and uncertainties, and therefore require validation. Three recent sounding rocket missions offer such an opportunity. The MICA (2012), GREECE (2014) and Isinglass (2017) missions involved detailed ground based observations of auroral arcs simultaneously with extensive on-board instrumentation. These have afforded an opportunity to examine the results of three optical methods of determining auroral electron energy flux, namely 1) ratio of auroral emissions, 2) green line temperature vs. emission altitude, and 3) parametric estimates using white-light images. We present comparisons from all three methods for all three missions and summarize the temporal and spatial scales and coverage over which each is valid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...10428101L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...10428101L"><span>High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaBelle, J.; McAdams, K. L.; Trimpi, M. L.</p> <p></p> <p>High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840054162&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840054162&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconvection%2Bcurrents"><span>A case-study of the evolution of polar-cap currents and auroral electrojets during polar geomagnetic disturbances with IMS magnetometer data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iijima, T.; Kim, J. S.; Sugiura, M.</p> <p>1984-01-01</p> <p>The development of the polar cap current and the relationship of that development to the evolution of auroral electrojets during individual polar geomagnetic disturbances is studied using 1 min average data from US-Canada IMS network stations and standard magnetograms from sites on the polar cap and in the auroral zone. It is found that even when the auroral electrojet activity is weak, polar cap currents producing fields of magnitude approximately 100-200 nT almost always exist. A normal convection current system exists quasi-persistently in the polar cap during extended quiet or weakly disturbed periods of auroral electrojet activity. After one such period, some drastic changes occur in the polar cap currents, which are followed by phases of growth, expansion, and recovery. Polar cap currents cannot all be completely ascribed to a single source mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7668G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7668G"><span>Juno-UVS approach observations of Jupiter's auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.-C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.</p> <p>2017-08-01</p> <p>Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of 2 h and a decay time of 5 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000745&hterms=application+spaces&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dapplication%2Bspaces','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000745&hterms=application+spaces&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dapplication%2Bspaces"><span>First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.</p> <p>2017-01-01</p> <p>Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSM11A1590T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSM11A1590T"><span>The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.</p> <p>2008-12-01</p> <p>In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMS...216..121M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMS...216..121M"><span>Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mottez, Fabrice</p> <p>2016-02-01</p> <p>There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720029850&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720029850&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnike"><span>Field-aligned particle currents near an auroral arc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choy, L. W.; Arnoldy, R. L.; Potter, W.; Kintner, P.; Cahill, L. J., Jr.</p> <p>1971-01-01</p> <p>A Nike-Tomahawk rocket equipped to measure electric and magnetic fields and charged particles from a few eV to several hundred keV energy was flown into an auroral band on April 11, 1970. The purpose of this flight was to obtain evidence of the low-energy electrons and protons that constitute a field-aligned sheet current, and also to obtain the magnetic signature of such a current and the electric field in and near the auroral-arc electric current system. Particular attention was given to a sudden increase in the field-aligned current associated with a prior sudden increase in the electric field and a sudden change in the magnetic field, all occurring near the edge of a visual auroral arc. Data obtained are discussed and analyzed; they present an important contribution to the problem of mapping of atmospheric auroral phenomena to the magnetospheric equatorial plane.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28989207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28989207"><span>Juno-UVS approach observations of Jupiter's auroras.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gladstone, G R; Versteeg, M H; Greathouse, T K; Hue, V; Davis, M W; Gérard, J-C; Grodent, D C; Bonfond, B; Nichols, J D; Wilson, R J; Hospodarsky, G B; Bolton, S J; Levin, S M; Connerney, J E P; Adriani, A; Kurth, W S; Mauk, B H; Valek, P; McComas, D J; Orton, G S; Bagenal, F</p> <p>2017-08-16</p> <p>Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007821"><span>Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minow, Joseph I.</p> <p>2016-01-01</p> <p>Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740048173&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740048173&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dnike"><span>Field aligned currents and the auroral spectrum below 1 keV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnoldy, R. L.</p> <p>1973-01-01</p> <p>Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM22A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM22A..03H"><span>Global MHD Modeling of Auroral Conjugacy for Different IMF Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hesse, M.; Kuznetsova, M. M.; Liu, Y. H.; Birn, J.; Rastaetter, L.</p> <p>2016-12-01</p> <p>The question whether auroral features are conjugate or not, and the search for the underlying scientific causes is of high interest in magnetospheric and ionospheric physics. Consequently, this topic has attracted considerable attention in space-based observations of auroral features, and it has inspired a number of theoretical ideas and related modeling activities. Potential contributing factors to the presence or absence of auroral conjugacy include precipitation asymmetries in case of the diffuse aurora, inter-hemispherical conductivity differences, magnetospheric asymmetries brought about by, e.g., dipole tilt, corotation, or IMF By, and, finally, asymmetries in field-aligned current generation primarily in the nightside magnetosphere. In this presentation, we will analyze high-resolution, global MHD simulations of magnetospheric dynamics, with emphasis on auroral conjugacy. For the purpose of this study, we define controlled conditions by selecting solstice times with steady solar wind input, the latter of which includes an IMF rotation from purely southward to east-westward. Conductivity models will include both auroral precipaition proxies as well as the effects of the aysmmetric daylight. We will analyze these simulations with respect to conjugacies or the lack thereof, and study the role of the effects above in determing the former.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26709318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26709318"><span>First light from a kilometer-baseline Scintillation Auroral GPS Array.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G</p> <p>2015-05-28</p> <p>We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681424','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681424"><span>First light from a kilometer-baseline Scintillation Auroral GPS Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G</p> <p>2015-01-01</p> <p>We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006451','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006451"><span>DMSP Auroral Charging at Solar Cycle 24 Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandler, M.; Parker, L. Neergaard; Minow, J. I.</p> <p>2013-01-01</p> <p>It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E..82A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E..82A"><span>Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina</p> <p>2016-07-01</p> <p>We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001791&hterms=magazine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagazine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001791&hterms=magazine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagazine"><span>DISCOVERY OF A DARK AURORAL OVAL ON SATURN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The ultraviolet image was obtained by the NASA/ESA Hubble Space Telescope with the European Faint Object Camera (FOC) on June 1992. It represents the sunlight reflected by the planet in the near UV (220 nm). * The image reveals a dark oval encircling the north magnetic pole of Saturn. This auroral oval is the first ever observed for Saturn, and its darkness is unique in the solar system (L. Ben-Jaffel, V. Leers, B. Sandel, Science, Vol. 269, p. 951, August 18, 1995). The structure represents an excess of absorption of the sunlight at 220 nm by atmospheric particles that are the product of the auroral activity itself. The large tilt of the northern pole of Saturn at the time of observation, and the almost perfect symmetry of the planet's magnetic field, made this observation unique as even the far side of the dark oval across the pole is visible! * Auroral activity is usually characterized by light emitted around the poles. The dark oval observed for Saturn is a STUNNING VISUAL PROOF that transport of energy and charged particles from the magnetosphere to the atmosphere of the planet at high latitudes induces an auroral activity that not only produces auroral LIGHT but also UV-DARK material near the poles: auroral electrons are probably initiating hydrocarbon polymer formation in these regions. Credits: L. Ben Jaffel, Institut d'Astrophysique de Paris-CNRS, France, B. Sandel (Univ. of Arizona), NASA/ESA, and Science (magazine).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8560Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8560Y"><span>An explanation of auroral intensification during the substorm expansion phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.</p> <p>2017-08-01</p> <p>A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001089&hterms=ftp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dftp%253A','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001089&hterms=ftp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dftp%253A"><span>HUBBLE PROVIDES THE FIRST IMAGES OF SATURN'S AURORA (Top)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>This is the first image ever taken of bright aurorae at Saturn's northern and southern poles, as seen in far ultraviolet light by the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Hubble resolves a luminous, circular band centered on the north pole, where an enormous auroral curtain rises as far as 1,200 miles (2,000 kilometers) above the cloudtops. This curtain changed rapidly in brightness and extent over the two hour period of our HST observations, though the brightest emissions remained at a position fixed in sun angle, near 'dawn' in the north auroral band. The image was taken on October 9, 1994, when Saturn was at a distance of 831 million miles (1.3 billion kilometers) from Earth. The aurora is produced as trapped charged particles precipitating from the magnetosphere collide with atmospheric gases -- molecular and atomic hydrogen in Saturn's case. As a result of the bombardment, Saturn's gases glow at far-ultraviolet wavelengths (110-160 nanometers) which are absorbed by the Earth's atmosphere, and so can only be observed from space-based telescopes. Saturn's magnetic field is nearly perfectly aligned with the planet's rotation, giving the auroral 'ring' its symmetry centered on the pole. (The southern aurora is faintly visible in this view despite the fact that Saturn's northern pole is now tilted slightly toward Earth.) The Hubble images demonstrate our capability to record from the Earth the auroral brightness and distribution about Saturn's poles, which will ultimately complement the in situ measurements of Saturn's magnetic field and charged particles to be made by the NASA/ESA Cassini spacecraft near the turn of the century. Study of the aurora on Saturn had its beginnings a few decades ago. The Pioneer 11 probe observed a far-ultraviolet brightening on Saturn's poles in 1979. Beginning in 1980, a series of spectroscopic observations by the International Ultraviolet Explorer (IUE) have sporadically detected emissions from Saturn's auroral zones. The Saturn flybys of the Voyager 1 and 2 spacecraft, in the early 1980s, found auroral emissions confined to a circumpolar ring. (Bottom) - For comparison, this is a visible-light color composite image of Saturn as seen by Hubble on December 1, 1994. Unlike the ultraviolet image, Saturn's familiar atmospheric belts and zones are clearly seen. The lower cloud deck is not visible at UV wavelengths because sunlight is reflected from higher in the atmosphere. Credits: J.T. Trauger (JPL), J.T. Clarke (Univ. of Michigan), the WFPC2 science team, and NASA Image files in GIF and JPEG format may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4850102F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4850102F"><span>Physical and Chemical Properties of Jupiter's Polar Vortices and Regions of Auroral Influence Revealed Through High-Resolution Infrared Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandes, Josh; Orton, Glenn S.; Sinclair, James; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya; Momary, Thomas W.; Yanamandra-Fisher, Padma A.</p> <p>2016-10-01</p> <p>We report characterization of the physical and chemical properties of Jupiter's polar regions derived from mid-infrared imaging of Jupiter covering all longitudes at unprecedented spatial resolution using the COMICS instrument at the Subaru Telescope on the nights of January 24 and 25, 2016 (UT). Because of Jupiter's slight axial tilt of 3°, the low angular resolution and incomplete longitudinal coverage of previous mid-infrared observations, the physical and chemical properties of Jupiter's polar regions have been poorly characterized. In advance of the Juno mission's exploration of the polar regions, this study focuses on mapping the 3-dimensional structure of Jupiter's polar regions, specifically to characterize the polar vortices and compact regions of auroral influence. Using mid-infrared images taken in the 7.8 - 24.2 µm range, we determined the 3-dimensional temperature field, mapped the para-H2 fraction and aerosol opacity at 700 mbar and lower pressures, and constrained the distribution of gaseous NH3 in Jupiter's northern and southern polar regions. Retrievals of these atmospheric parameters was performed using NEMESIS, a radiative transfer forward model and retrieval code. Preliminary results indicate that there are vortices at both poles, each with very distinct low-latitude boundaries approximately 60° (planetocentric) from the equator, which can be defined by sharp thermal gradients extending at least from the upper troposphere (500 mbar) and into the stratosphere (0.1 mbar). These polar regions are characterized by lower temperatures, lower aerosol number densities, and lower NH3 volume mixing ratios, compared with the regions immediately outside the vortex boundaries. These images also provided the highest resolution of prominent auroral-related stratospheric heating to date, revealing a teardrop-shaped morphology in the north and a sharp-edged oval shape in the south. Both appear to be contained inside the locus of H3+ auroral emission detected at 3.417 µm two nights later at NASA's Infrared Telescope Facility using the SpeX guide camera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040121135','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040121135"><span>Simultaneous Chandra X-ray, HST Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj, A.; MacDowall, R. J.</p> <p>2004-01-01</p> <p>Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990039172&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990039172&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra"><span>Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitation, Plasma Waves, and Convection Observed by Polar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990039172'); toggleEditAbsImage('author_19990039172_show'); toggleEditAbsImage('author_19990039172_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990039172_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990039172_hide"></p> <p>1998-01-01</p> <p>The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2678B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2678B"><span>The "Alfvén" proposal for the European Space Agency M5 Mission Call</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berthomier, M.; Fazakerley, A. N.</p> <p>2017-12-01</p> <p>The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985GeoRL..12..457W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985GeoRL..12..457W"><span>ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.</p> <p>1985-07-01</p> <p>Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014714"><span>Coordinated analysis of various auroral measurements made during NASA's 1968 and 1969 airborne auroral expeditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sivjee, G. G.</p> <p>1976-01-01</p> <p>Auroral optical measurements made aboard NASA's CV 990 were analyzed. The measurements analyzed form a small part of extensive spectroscopic, photometric and photographic data gathered during the 1968 and 1969 Airborne Auroral Expeditions. Simultaneous particle measurements from ESRO IA satellite were used in the analysis. Information about magnetospheric boundaries, interaction between magnetosheath particles and the terrestrial ionosphere, the polar bulge in helium abundance and excitation mechanisms of the triplet state of atmospheric N2 in auroras was obtained. Further analysis of the data is required to elucidate the relation between 3466 and 5200 A emissions of NI and the excitation of 3726-3729 A emissions from atomic oxygen ions in auroras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800044064&hterms=ambiguity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dambiguity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800044064&hterms=ambiguity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dambiguity"><span>The spatial-temporal ambiguity in auroral modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rees, M. H.; Roble, R. G.; Kopp, J.; Abreu, V. J.; Rusch, D. W.; Brace, L. H.; Brinton, H. C.; Hoffman, R. A.; Heelis, R. A.; Kayser, D. C.</p> <p>1980-01-01</p> <p>The paper examines the time-dependent models of the aurora which show that various ionospheric parameters respond to the onset of auroral ionization with different time histories. A pass of the Atmosphere Explorer C satellite over Poker Flat, Alaska, and ground based photometric and photographic observations have been used to resolve the time-space ambiguity of a specific auroral event. The density of the O(+), NO(+), O2(+), and N2(+) ions, the electron density, and the electron temperature observed at 280 km altitude in a 50 km wide segment of an auroral arc are predicted by the model if particle precipitation into the region commenced about 11 min prior to the overpass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5606505','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5606505"><span>Juno‐UVS approach observations of Jupiter's auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.‐C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.</p> <p>2017-01-01</p> <p>Abstract Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno‐UVS observations of Jupiter's auroral emissions, acquired during 3–29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3–4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h. PMID:28989207</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870014816','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870014816"><span>Auroral particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, David S.</p> <p>1987-01-01</p> <p>The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA477076','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA477076"><span>Morphology of Southern Hemisphere Riometer Auroral Absorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-06-01</p> <p>Departamento de Geofísica Universidad de Concepción, Concepción CHILE foppiano@udec.cl ABSTRACT A morphology of riometer auroral absorption is...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Departamento de Geofísica Universidad de ...range of frequencies used an inverse -square frequency dependence approximately holds. Morphology of Southern Hemisphere Riometer Auroral Absorption</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557367','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557367"><span>Comparative Statistical Analysis of Auroral Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-22</p> <p>was willing to add this project to her extremely busy schedule. Lastly, I must also express my sincere appreciation for the rest of the faculty and...models have been extensively used for estimating GPS and other communication satellite disturbances ( Newell et al., 2010a). The auroral oval...models predict changes in the auroral oval in response to various geomagnetic conditions. In 2010, Newell et al. conducted a comparative study of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810051634&hterms=electrostatic+accelerator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Delectrostatic%2Baccelerator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810051634&hterms=electrostatic+accelerator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Delectrostatic%2Baccelerator"><span>Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.</p> <p>1981-01-01</p> <p>The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006417','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006417"><span>DMSP Auroral Charging at Solar Cycle 24 Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.</p> <p>2013-01-01</p> <p>It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......135G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......135G"><span>Detection of F-region electron density irregularities using incoherent-scatter radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gudivada, Krishna Prasad</p> <p></p> <p>Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is always biased strongly toward small-scale sizes (less than 50 km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......412M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......412M"><span>In situ analysis of measurements of auroral dynamics and structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mella, Meghan R.</p> <p></p> <p>Two auroral sounding rocket case studies, one in the dayside and one in the nightside, explore aspects of poleward boundary aurora. The nightside sounding rocket, Cascades-2 was launched on 20 March 2009 at 11:04:00 UT from the Poker Flat Research Range in Alaska, and flew across a series of poleward boundary intensifications (PBIs). Each of the crossings have fundamentally different in situ electron energy and pitch angle structure, and different ground optics images of visible aurora. The different particle distributions show signatures of both a quasistatic acceleration mechanism and an Alfvenic acceleration mechanism, as well as combinations of both. The Cascades-2 experiment is the first sounding rocket observation of a PBI sequence, enabling a detailed investigation of the electron signatures and optical aurora associated with various stages of a PBI sequence as it evolves from an Alfvenic to a more quasistatic structure. The dayside sounding rocket, Scifer-2 was launched on 18 January 2008 at 7:30 UT from the Andoya Rocket Range in Andenes, Norway. It flew northward through the cleft region during a Poleward Moving Auroral Form (PMAF) event. Both the dayside and nightside flights observe dispersed, precipitating ions, each of a different nature. The dispersion signatures are dependent on, among other things, the MLT sector, altitude, source region, and precipitation mechanism. It is found that small changes in the shape of the dispersion have a large influence on whether the precipitation was localized or extended over a range of altitudes. It is also found that a single Maxwellian source will not replicate the data, but rather, a sum of Maxwellians of different temperature, similar to a Kappa distribution, most closely reproduces the data. The various particle signatures are used to argue that both events have similar magnetospheric drivers, that is, Bursty Bulk Flows in the magnetotail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080037609&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080037609&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Saturn's Auroral Response to the Solar Wind: Centrifugal Instability Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sittler, Edward C.; Blanc, Michel F.; Richardson, J. D.</p> <p>2008-01-01</p> <p>We describe a model initially presented by Sittler et al. [2006] which attempts to explain the global response of Saturn's magnetosphere and its corresponding auroral behavior to variations in the solar wind. The model was derived from published simultaneous Hubble Space Telescope (HST) auroral images and Cassini upstream measurements taken during the month of January 2004. These observations show a direct correlation between solar wind dynamic pressure and (1) auroral brightening toward dawn local time, (2) an increase of rotational movement of auroral features to as much as 75% of the corotation speed, (3) the movement of the auroral oval to higher latitudes and (4) an increase in the intensity of Saturn Kilometric Radiation (SKR). This model is an alternative to the reconnection model of Cowley et al. [2004a,b; 2005] which is more Earth-like while ours stresses rotation. If angular momentum is conserved in a global sense, then when compressed the magnetosphere will tend to spin up and when it expands will tend to spin down. With the plasma sheet outer boundary at L approximates 15 we argue this region to be the dominant source region for the precipitating particles. If radial transport is dominated by centrifugal driven flux tube interchange motions, then when the magnetosphere spins up, outward transport will increase, the precipitating particles will move radially outward and cause the auroral oval to move to higher latitudes as observed. The Kelvin-Helmholtz instability may contribute to the enhanced emission along the dawn meridian as observed by HST. We present this model in the context of presently published observations by Cassini.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663157-panchromatic-view-brown-dwarf-aurorae','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663157-panchromatic-view-brown-dwarf-aurorae"><span>A Panchromatic View of Brown Dwarf Aurorae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pineda, J. Sebastian; Hallinan, Gregg; Kao, Melodie M.</p> <p></p> <p>Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence, there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multiwavelength surveys of magnetic activity, including radio, X-ray, andmore » optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as a consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestations of auroral phenomena, like H α , in brown dwarf atmospheres and define their distinguishing characteristics. We conclude that large-amplitude photometric variability in the near-infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral H α emission and quiescent radio emission in electron cyclotron maser instability pulsing brown dwarfs, suggesting a potential underlying physical connection between quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems both to power the aurorae and seed the magnetosphere with plasma.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.4572D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.4572D"><span>The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.</p> <p>2013-07-01</p> <p>High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...846...75P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...846...75P"><span>A Panchromatic View of Brown Dwarf Aurorae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pineda, J. Sebastian; Hallinan, Gregg; Kao, Melodie M.</p> <p>2017-09-01</p> <p>Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence, there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multiwavelength surveys of magnetic activity, including radio, X-ray, and optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as a consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestations of auroral phenomena, like Hα, in brown dwarf atmospheres and define their distinguishing characteristics. We conclude that large-amplitude photometric variability in the near-infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral Hα emission and quiescent radio emission in electron cyclotron maser instability pulsing brown dwarfs, suggesting a potential underlying physical connection between quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems both to power the aurorae and seed the magnetosphere with plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12212406G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12212406G"><span>Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.</p> <p>2017-12-01</p> <p>Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P42B..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P42B..03L"><span>Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.</p> <p>2013-12-01</p> <p>Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space Climate, Volume 3, 12, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JGR....90.2915D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JGR....90.2915D"><span>Generation of Z mode radiation by diffuse auroral electron precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dusenbery, P. B.; Lyons, L. R.</p> <p>1985-03-01</p> <p>The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850044821&hterms=generation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgeneration%2BZ','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850044821&hterms=generation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgeneration%2BZ"><span>Generation of Z mode radiation by diffuse auroral electron precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dusenbery, P. B.; Lyons, L. R.</p> <p>1985-01-01</p> <p>The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2772W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2772W"><span>Solar Wind Properties During Juno's Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1-D Forward Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, R. J.; Bagenal, Fran; Valek, Philip W.; McComas, D. J.; Allegrini, Frederic; Ebert, Robert W.; Kim, Thomas K.; Kurth, W. S.; Szalay, Jamey R.; Thomsen, Michelle F.</p> <p>2018-04-01</p> <p>The Jovian Auroral Distributions Experiment ion sensor (JADE-I) on board the National Aeronautics and Space Administration's Juno mission measured solar wind ions for ≈40 days prior to the spacecraft's arrival at Jupiter, simultaneous with numerous telescope observations of the Jovian aurora. JADE-I is a thermal plasma time-of-flight instrument designed to measure Jovian auroral and magnetospheric ions. This study provides a solar wind parameter data set for the approach phase that may be used in coordinated studies with remote measurements of the Jovian aurora, to compare with models that propagate solar wind conditions from Earth and to apply to Jovian bow shock or magnetopause models. While multiple bow shock crossings were predicted during Juno's approach, there was only one observed suggesting a compressed magnetosphere that was shrinking as Juno approached. However, the calculated ram pressure at the bow shock was near the median value of those 40 days, rather than being in an upper percentile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870057876&hterms=discrete+charge+simulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddiscrete%2Bcharge%2Bsimulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870057876&hterms=discrete+charge+simulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddiscrete%2Bcharge%2Bsimulation"><span>Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Robert A.</p> <p>1987-01-01</p> <p>The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830033749&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830033749&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091"><span>Transport of aurorally produced N/2D/ by winds in the high latitude thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerard, J.-C.; Roble, R. G.</p> <p>1982-01-01</p> <p>A time-dependent, two-dimensional model is developed for describing the meridional circulation of thermospheric odd nitrogen species produced in the auroral zone. The model is based on a previous model by Roble and Gary (1979) extended to upper altitude transport of the nitrogen species. Assumptions made include the existence of a steady neutral wind flowing from low to high latitudes, and an initial background due to scattered Lyman-beta and nightglow emissions. The aurora is also assumed as steady, along with a constant ion production. Predictions made using the model are compared with observations with the Atmosphere Explorer C spacecraft and rocket sounding measurements of the 5200 A distribution near the day-side polar cusp. The model requires thermospheric winds of 100-200 m/sec, flowing from day to nightside. Convective velocities near 1000 m/sec were detected by the Explorer spacecraft, as well as a day-to-nightside flow at the cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5308M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5308M"><span>Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mura, A.; Adriani, A.; Altieri, F.; Connerney, J. E. P.; Bolton, S. J.; Moriconi, M. L.; Gérard, J.-C.; Kurth, W. S.; Dinelli, B. M.; Fabiano, F.; Tosi, F.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Sindoni, G.; Filacchione, G.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Turrini, D.; Stefani, S.; Amoroso, M.; Olivieri, A.</p> <p>2017-06-01</p> <p>The Jovian Infrared Auroral Mapper (JIRAM) is an imager/spectrometer on board NASA/Juno mission for the study of the Jovian aurorae. The first results of JIRAM's imager channel observations of the H3+ infrared emission, collected around the first Juno perijove, provide excellent spatial and temporal distribution of the Jovian aurorae, and show the morphology of the main ovals, the polar regions, and the footprints of Io, Europa and Ganymede. The extended Io "tail" persists for 3 h after the passage of the satellite flux tube. Multi-arc structures of varied spatial extent appear in both main auroral ovals. Inside the main ovals, intense, localized emissions are observed. In the southern aurora, an evident circular region of strong depletion of H3+ emissions is partially surrounded by an intense emission arc. The southern aurora is brighter than the north one in these observations. Similar, probably conjugate emission patterns are distinguishable in both polar regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910060889&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dthe%2B5%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910060889&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dthe%2B5%2Bwave"><span>ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from about 2.5 to 4.5 R(E)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Catell, C. A.; Mozer, F. S.; Roth, I.; Anderson, R. R.; Elphic, R. C.</p> <p>1991-01-01</p> <p>Quasi-monochromatic waves at about the hydrogen cyclotron frequency were observed as the ISEE 1 satellite traversed auroral field lines at radial distances of about 2.5-4.5 R(E) near midnight on June 19, 1981. Waves and both lower and higher frequencies were observed at higher altitudes, and possible electrostatic helium cyclotron and oxygen cyclotron waves occurred at lower altitudes. Upflowing hydrogen and oxygen beams and field-aligned currents occurred simultaneously. The features of the waves are most consistent with the current-driven mode. In addition, numerical studies of the linear dispersion relation, using parameters based on the observations, show that both the parallel and oblique two-stream modes and the ion-beam-driven modes were stable while oblique current-driven modes were unstable. The O(+) and H(+) distributions provide evidence for interactions with local electrostatic ion cyclotron waves and for the H(+)-O(+) two-stream instability at altitudes below the satellite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SpWea..13..458D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SpWea..13..458D"><span>Analysis of geomagnetic hourly ranges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danskin, D. W.; Lotz, S. I.</p> <p>2015-08-01</p> <p>In an attempt to develop better forecasts of geomagnetic activity, hourly ranges of geomagnetic data are analyzed with a focus on how the data are distributed. A lognormal distribution is found to be able to characterize the magnetic data for all observatories up to moderate disturbances with each distribution controlled by the mean of the logarithm of the hourly range. In the subauroral zone, the distribution deviates from the lognormal, which is interpreted as motion of the auroral electrojet toward the equator. For most observatories, a substantial deviation from the lognormal distribution was noted at the higher values and is best modeled with a power law extrapolation, which gives estimates of the extreme values that may occur at observatories which contribute to the disturbance storm time (Dst) index and in Canada.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RaSc...52..988S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RaSc...52..988S"><span>Distributed sensing of ionospheric irregularities with a GNSS receiver array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.</p> <p>2017-08-01</p> <p>We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006EP%26S...58.1107I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006EP%26S...58.1107I"><span>Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao</p> <p>2006-09-01</p> <p>The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790055647&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhot%2Bspot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790055647&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhot%2Bspot"><span>Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dessler, A. J.; Chamberlain, J. W.</p> <p>1979-01-01</p> <p>Auroral emissions generated by the Jovian moons Io and Europa, originating at the foot of the magnetic flux tubes of the satellites, may be largely limited to longitudes where the planet's ionospheric conductivity is enhanced. The enhanced conductivity is produced by trapped energetic electrons that drift into the Jovian atmosphere in regions where the planet's magnetic field is anomalously weak. The most active auroral hot-spot emissions lie in a sector of the northern hemisphere defined by decametric radio emission. Weaker auroral hot spots are found in the southern hemisphere along a magnetic conjugate trace. The brightness and the longitude of the Jovian hot spots predicted in this paper are in agreement with observations reported by Atreya et al. (1977).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1411S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1411S"><span>The Martian airglow: observations by Mars Express and kinetic modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Cyril; Leblanc, François; Gronoff, Guillaume; Witasse, Olivier; Lilensten, Jean; Barthelemy, Mathieu; Bertaux, Jean-Loup</p> <p></p> <p>The photoemissions on Mars are the result of physical chemistry reactions in the upper atmo-sphere that depend on the planet's plasma environment. They arise on the dayside from UV photo-excitation (Barth et al., 1971) and on the nightside from chemical reactions and electron precipitation above regions of strong crustal magnetism (Bertaux et al., 2005). The physics of airglow generation at Mars is discussed both in terms of observations (satellites) and models (especially transport codes). A review of observations made by SPICAM, the UV spectrometer onboard Mars Express, is first presented. The Cameron bands of CO(a - X), the CO+ (A - X) 2 doublet at 289.0 nm and the trans-auroral line of OI (297.2 nm) are mainly seen on the dayside. On the nightside both Cameron emissions and NO(C - X and A - X) emissions are present. In a second step, an updated airglow model has been developed and compared to the latest SPICAM data. Several interesting implications are highlighted regarding neutral atmosphere variations for the dayglow (Simon et al., 2009) and electron precipitation mechanisms at the origin of the auroral intensities measured by SPICAM in conjunction with the particle detector ASPERA and the radar MARSIS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51A2413N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51A2413N"><span>Statistical study of phase relationships between magnetic and plasma thermal pressures in the near-earth magnetosphere using the THEMIS satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishi, K.; Kazuo, S.</p> <p>2017-12-01</p> <p>The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSA32A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSA32A..01L"><span>First Observations of 5fce Auroral Roar Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labelle, J. W.</p> <p>2012-12-01</p> <p>Auroral radio emissions reveal physics of beam-plasma interactions and provide possibilities to remotely sense ionospheric plasma processes. Sato et al. [2012] recently discovered that auroral roar emissions, long known to occur at two and three times the electron gyrofrequency (fce), also occur at 4fce. Using data from wave receivers in the British Antarctic Survey Automatic Geophysical Observatories (BAS AGOs), we confirm the existence of 4fce-roars and observe for the first time 5fce-roars. A search at higher frequencies did not find higher harmonics, however. Both 4fce- and 5fce-roars only occur in sunlit conditions near the summer soltices. The harmonic emissions scale as expected with the strength of the geomagnetic field, and combining data from four stations with a wide range of magnetic field strengths suggests that the source height of the 4fce may lie around 245 km, significantly lower than the ˜ 275 km estimated for 2fce-roars. These observations show that the auroral roar generation mechanism acts under a broader set of plasma densities than previously considered, highlight how ubiquitous and robust the mechanism must be in different plasma environments, and suggest a broader application for remote sensing methods exploiting auroral roar, such as those described by Weatherwax et al. [2002]. References: Sato, Y., T. Ono, N. Sato, and Y. Ogawa, First observations of 4fce auroral roar emissions, Geophys. Res. Lett., 39, L07101, doi:10.1029/2012GL051205, 2012. Weatherwax, A.T., P.H. Yoon, and J. LaBelle, Model results and interpretation related to topside observations of auroral roar, J. Geophys. Res., 107, 10.1029/2001JA000315, 2002.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790016401','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790016401"><span>Auroral magnetosphere-ionosphere coupling: A brief topical review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chiu, Y. T.; Schulz, M.; Cornwall, J. M.</p> <p>1979-01-01</p> <p>Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740051276&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWIND%2BSTORMS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740051276&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWIND%2BSTORMS"><span>Observations of neutral winds in the auroral E region during the magnetospheric storm of August 3-9, 1972</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brekke, A.; Doupnik, J. R.; Banks, P. M.</p> <p>1974-01-01</p> <p>Auroral zone E-region neutral winds have been derived from simultaneous measurements of ion drift velocities in different altitudes by the incoherent radar facility at Chatanika, Alaska, on a quiet day before and during the great magnetospheric storm of Aug. 3-9, 1972. The neutral wind expected for a day-night pressure asymmetry appears to be strongly opposed by ion drag and local pressure gradients in the auroral oval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Natur.554..337K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Natur.554..337K"><span>Pulsating aurora from electron scattering by chorus waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.</p> <p>2018-02-01</p> <p>Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GSL.....4...23R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GSL.....4...23R"><span>Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.</p> <p>2017-12-01</p> <p>Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110006334','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110006334"><span>The Relationship of Magnetotail Flow Bursts and Ground Onset Signatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kepko, Larry; Spanswick, Emma; Angelopoulos, Vassilis; Donovan, Eric</p> <p>2010-01-01</p> <p>It has been known for decades that auroral substorm onset occurs on (or at least near) the most equatorward auroral arc, which is thought to map to the near geosynchronous region. The lack of auroral signatures poleward of this arc prior to onset has been a major criticism of flow-burst driven models of substorm onset. The combined THEMIS 5 spacecraft in-situ and ground array measurements provide an unprecedented opportunity to examine the causal relationship between midtail plasma flows, aurora, and ground magnetic signatures. I first present an event from 2008 using multi-spectral all sky imager data from Gillam and in-situ data from THEMIS. The multispectral data indicate an equatorward moving auroral form prior to substorm onset. When this forms reaches the most equatorward arc, the arc brightens and an auroral substorm begins. The THEMIS data show fast Earthward flows prior to onset as well. I discuss further the association of flow bursts and Pi2 pulsations, in the con text of the directly-driven Pi2 model. This model directly links flows and Pi2 pulsations, providing an important constraint on substorm onset theories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001421','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001421"><span>A mathematical model of the structure and evolution of small scale discrete auroral arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seyler, C. E.</p> <p>1990-01-01</p> <p>A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080031663&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080031663&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere"><span>Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed During Geomagnetic Storms with the DEMETER and DMSP Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pfaff, R.; Liebrecht, C.; Berthelier, J.-J.; Parrot, M.; Lebreton, J.-P.</p> <p>2008-01-01</p> <p>Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are presented that were gathered with probes on the DEMETER and DMSP satellites during geomagnetic storms. Data from successive orbits reveal how the density structure and irregularities evolve with changes in the Dst. The observations reveal that precisely during the main phase of severe geomagnetic storms, increased ambient plasma densities and broad regions of irregularities are observed at 700 km, initially at storm commencement near the magnetic equator and then extending to mid- and sub-auroral latitudes within the approximately 8 hour period corresponding to the negative Dst excursions. Furthermore, intense, broadband electric and magnetic field irregularities are often observed at sub-auroral latitudes and are typically associated with the trough region and its poleward plasma density gradient. The observations provide a general framework showing how low, mid, and sub-auroral latitude plasma density structuring and associated irregularities respond to geomagnetic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087"><span>Correlations between solar wind parameters and auroral kilometric radiation intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, D. L.; Dangelo, N.</p> <p>1981-01-01</p> <p>The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EOSTr..94..273S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EOSTr..94..273S"><span>Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2013-07-01</p> <p>The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997AnGeo..15..959S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997AnGeo..15..959S"><span>Luminosity variations in several parallel auroral arcs before auroral breakup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safargaleev, V.; Lyatsky, W.; Tagirov, V.</p> <p>1997-08-01</p> <p>Variation of the luminosity in two parallel auroral arcs before auroral breakup has been studied by using digitised TV-data with high temporal and spatial resolution. The intervals when a new arc appears near already existing one were chosen for analysis. It is shown, for all cases, that the appearance of a new arc is accompanied by fading or disappearance of another arc. We have named these events out-of-phase events, OP. Another type of luminosity variation is characterised by almost simultaneous enhancement of intensity in the both arcs (in-phase event, IP). The characteristic time of IP events is 10-20 s, whereas OP events last about one minute. Sometimes out-of-phase events begin as IP events. The possible mechanisms for OP and IP events are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810060080&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar%2Bpower%2Bfilters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810060080&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar%2Bpower%2Bfilters"><span>Solar wind control of auroral zone geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clauer, C. R.; Mcpherron, R. L.; Searls, C.; Kivelson, M. G.</p> <p>1981-01-01</p> <p>Solar wind magnetosphere energy coupling functions are analyzed using linear prediction filtering with 2.5 minute data. The relationship of auroral zone geomagnetic activity to solar wind power input functions are examined, and a least squares prediction filter, or impulse response function is designed from the data. Computed impulse response functions are observed to have characteristics of a low pass filter with time delay. The AL index is found well related to solar wind energy functions, although the AU index shows a poor relationship. High frequency variations of auroral indices and substorm expansions are not predictable with solar wind information alone, suggesting influence by internal magnetospheric processes. Finally, the epsilon parameter shows a poorer relationship with auroral geomagnetic activity than a power parameter, having a VBs solar wind dependency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011745"><span>V and V Efforts of Auroral Precipitation Models: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael</p> <p>2011-01-01</p> <p>Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA263158','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA263158"><span>Auroral-E Observations: The First Year’s Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-02-01</p> <p>incidence-sound- ing (VIS) ionograms. One group, generally called auroral-E, includes nighttime E (par- ticle E) of the k type and E of the r type (Esr...toward solar minimum. Auroral-E tended to occur in clusters or "swarms" during periods of increased geo- magnetic activity. Figures 15a, 15b, and 15c show...midnight and several hours after local midnight. In the hours between 2200 and 0300 local time, when the K index is sufficiently high to place the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750010749','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750010749"><span>Magnetospheric and auroral plasmas: A short survey of progress, 1971 - 1975</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.</p> <p>1975-01-01</p> <p>Milestones in researches of auroral and magnetospheric plasmas for the past quadrennium 1971 - 1975 are reviewed. Findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking 'inverted-V' electron precipitation events, are reported. Solutions to major questions concerning the origins and acceleration of these plasmas are discussed. A comprehensive bibliography of current research is included.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA51B2391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA51B2391S"><span>Mid-latitude Plasma Irregularities During Sub-Auroral Polarization Streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, N.; Loper, R. D.</p> <p>2017-12-01</p> <p>Geomagnetic storming impacts the ionosphere in different ways at different latitudes. In the mid latitudes, Sub-Auroral Polarization Streams (SAPS) may trigger a redistribution of plasma leading to the creation of ionospheric troughs, storm enhanced density plumes, and acceleration of sub-auroral ion drifts. Solar cycle data, real time space weather satellite data, and radar data will be analyzed to study mid-latitude plasma densities and characterize the plasma anomalies SAPS create in order to increase short-term mid-latitude space weather forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01257&hterms=Invisible+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInvisible%2Bweb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01257&hterms=Invisible+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInvisible%2Bweb"><span>Hubble Images Reveal Jupiter's Auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1996-01-01</p> <p>These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.<p/>The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.<p/>The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.<p/>The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.<p/>The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.<p/>This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2677S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2677S"><span>Generation of Alfvenic Double Layers, Formation of Auroral Arcs, and Their Impact on Energy and Momentum Transfer in M-I Coupling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Y.; Lysak, R. L.</p> <p>2017-12-01</p> <p>Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9897M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9897M"><span>Scaled experimental investigation of the moderation of auroral cyclotron emissions by background plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.</p> <p>2012-04-01</p> <p>Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008EOSTr..89..379C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008EOSTr..89..379C"><span>Comment on ``Unraveling the Causes of Radiation Belt Enhancements''</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Wallace H.</p> <p>2008-09-01</p> <p>The excellent article by M. W. Liemohn and A. A. Chan on the radiation belts (see Eos, 88(42), 16 October 2007) is misleading in its implication that the disturbance storm-time (Dst) index is an indicator of a magnetospheric ring current. That index is formed from an average of magnetic data from three or four low-latitude stations that have been fallaciously ``adjusted'' to a magnetic equatorial location under the 1960's assumption [Sugiura, 1964] that the fields arrive from the growth and decay of a giant ring of current in the magnetosphere. In truth, the index has a negative lognormal form [Campbell, 1996; Yago and Kamide, 2003] as a result of its composition from numerous negative ionospheric and magnetospheric disturbance field sources, each having normal field amplitude distributions [Campbell, 2004]. Some partial ring currents [Lui et al., 1987] and their associated field-aligned currents, as well as major ionospheric currents flowing from the auroral zone to equatorial latitudes, are the main contributors to the Dst index. No full magnetospheric ring of currents is involved, despite its false name (``Equatorial Dst Ring Current Index'') given by the index suppliers, the Geomagnetism Laboratory at Kyoto University, Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRA..108.8007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRA..108.8007S"><span>Double layers in expanding plasmas and their relevance to the auroral plasma processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Nagendra; Khazanov, George</p> <p>2003-04-01</p> <p>When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [, 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [, 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040000732&hterms=quasi+rest+potential&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquasi%2Brest%2Bpotential','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040000732&hterms=quasi+rest+potential&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquasi%2Brest%2Bpotential"><span>Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Singh, Nagendra; Khazanov, George</p> <p>2003-01-01</p> <p>When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSM41B1657J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSM41B1657J"><span>Relationship Between Saturn Kilometric Radiation Emissions and Kronian Magnetotail Activity, as Compared with the Terrestrial Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackman, C. M.; Lamy, L.; Freeman, M. P.; Cecconi, B.; Zarka, P.; Dougherty, M. K.; Kurth, W. S.</p> <p>2008-12-01</p> <p>Several examples of plasmoid passage associated with substorm-like reconnection in the magnetotail of Saturn have been discovered using data from the Cassini magnetometer [Jackman et al., 2008]. Some of these events (along with several others) have subsequently been found to be roughly associated with bursts of Saturn Kilometric Radiation (SKR) emission. We explore this link in detail, with particular emphasis on expansions of the radio emission to lower frequencies, signifying motion of the source along the field lines. We compare with observations of Auroral Kilometric Radiation (AKR) at Earth, which has been shown in some cases to have a separate low-frequency component associated with substorm onset [Morioka et al., 2007] We also wish to estimate the recurrence rate of kronian substorms. Previously for the case of the terrestrial magnetosphere, it has been found that the substorm phenomenon is identified with a component of the probability distribution of durations for which the AU or AL indices are above or below a fixed threshold, respectively [Freeman, Watkins and Riley, 2000]. After exploring the correlation between terrestrial substorms and AKR (which can be a reasonable proxy for the AE indices), we then apply the threshold crossing technique to Saturn by using data from the Cassini Radio and Plasma Wave Science (RPWS) instrument. We look at the probability distributions of Saturn's radio emissions in different frequency bands above and below fixed thresholds, with a view to revealing kronian substorms as a distinct separate population with a characteristic scale. References: Freeman, M.P., N.W. Watkins and D.J. Riley, (2000), Evidence for a solar wind origin of the power law burst lifetime distribution of the AE indices, Geophys. Res. Lett., 27, 8, 1087-1090. Jackman, C. M., C. S. Arridge, N. Krupp, E. J. Bunce, D. G. Mitchell, W. S. Kurth, H. J. McAndrews, M. K. Dougherty, C. T. Russell, N. Achilleos, A. J. Coates, and G. H. Jones (2008), A multi-instrument view of tail reconnection at Saturn, J. Geophys. Res., doi:10.1029/2008JA013592, in press. Morioka, A., Y. Miyoshi, F. Tsuchiya, H. Misawa, T. Sakanoi, K. Yumoto, R.R. Anderson, J.D. Menietti, and E.F. Donovan, (2007), Dual structure of auroral acceleration regions at substorm onsets as derived from auroral kilometric radiation spectra, J. Geophys. Res., 112, doi:10.1029/2006JA012186.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMDI23C2092K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMDI23C2092K"><span>New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelbert, A.; Egbert, G. D.; Sun, J.</p> <p>2011-12-01</p> <p>Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSA44A..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSA44A..05L"><span>Recent Advances in Observations of Ground-level Auroral Kilometric Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.</p> <p>2011-12-01</p> <p>Recently LaBelle and Anderson [2011] reported the first definitive observations of AKR at ground level, confirmed through simultaneous measurements on the Geotail spacecraft and at South Pole Station, Antarctica. The initial observations consisted of three examples recorded in 2004. An Antarctic observing site is critical for observing ground level AKR which is obscured by man-made broadcast signals at northern hemisphere locations. Examination of 2008 austral winter radio data from Antarctic Automatic Geophysical Observatories (AGOs) of the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) network and South Pole Station reveals 37 ground level AKR events on 23 different days, 30 of which are confirmed by correlation with AKR observed with the Geotail spacecraft. The location of the Geotail spacecraft appears to be a significant factor enabling coincident measurements. Six of the AKR events are detected at two or three ground-level observatories separated by approximately 500 km, suggesting that the events illuminate an area comparable to a 500-km diameter. For 14 events on ten nights, photometer and all-sky imager data from South Pole and AGOs were examined; in ten cases, locations of auroral arcs could be determined at the times of the events. In eight of those cases, the AKR was detected at observatories poleward of the auroral arcs, and in the other two cases the aurora was approximately overhead at the observatory where AKR was detected. These observations suggest that the AKR signals may be ducted to ground level along magnetic field lines rather than propagating directly from the AKR source region of approximately 5000 km altitude. Correlations between structures in the AKR and intensifications of auroral arcs are occasionally observed but are rare. The ground-level AKR events have a local time distribution similar to that of AKR observed from satellites, peaking in the pre-midnight to midnight sector. This data base of >30 events observed coincidentally at ground level and on the Geotail spacecraft, including several events detected at multiple ground stations, will provide a measurements of the ratio of the ground level intensity to that observed on the satellite, with the latter adjusted for distance. This ratio of intensities, not well-determined from the original three events [LaBelle and Anderson, 2011], places an important constraint on the generation mechanism. Reference: LaBelle, J., and R.R. Anderson (2011), Ground-level detection of Auroral Kilometric Radiation, Geophys. Res. Lett., 38, L04104, doi:10.1029/2010GL046411.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P24A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P24A..08S"><span>High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.</p> <p>2017-12-01</p> <p>Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from IRTF-SpeX and Juno-JIRAM/UVS to assess the extent of coupling between the stratosphere and ionosphere. In addition, a magnetospheric mapping tool (Vogt et al. 2011, doi:10.1029/2010JA016148) will be used to determine whether small-scale features are likely linked to the solar wind or the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.........3B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.........3B"><span>Ground and space observations of medium frequency auroral radio emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Broughton, Matthew C.</p> <p></p> <p>The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the waves would experience due to Landau damping on the topside ionosphere and mode conversion on the bottomside ionosphere. The amount of Landau damping is sensitive to the ratio of secondary to background electrons nse/ne0. Ignoring collisional damping in the lower ionosphere, these calculations suggest that for nse/n e0<0.4%, 0.01-45% of the initial Langmuir wave power would reach ground-level. The above experimental and numerical studies constrain the conditions under which MF burst could plausibly originate as Langmuir/Z-mode waves on the topside of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820040361&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820040361&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarium"><span>The electric field structure of auroral arcs as determined from barium plasma injection experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wescott, E. M.</p> <p>1981-01-01</p> <p>Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3919105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3919105P"><span>Infrasonic waves generated by supersonic auroral arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pasko, Victor P.</p> <p>2012-10-01</p> <p>A finite-difference time-domain (FDTD) model of infrasound propagation in a realistic atmosphere is used to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves in the frequency range 0.1-0.01 Hz associated with the auroral electrojet. The results are consistent with original ideas of Swift (1973) and demonstrate that the synchronization of the speed of auroral arc and phase speed of the acoustic wave in the electrojet volume is an important condition for generation of magnitudes and frequency contents of infrasonic waves observable on the ground. The reported modeling also allows accurate quantitative reproduction of previously observed complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA130175','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA130175"><span>1978 Diffuse Auroral Boundaries and a Derived Auroral Boundary Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-12-28</p> <p>they have nothing to do with the auroral precipitation, they must be differentiated from the auroral electrons when determining boundaries. Due to the...47.8 -54.6 -61.4 -68.0 -74.2 -79.4 -81.7 -78.9 -73.5 - 7.2 -60.6 GLON 121.0 118.5 115 S 1114 105.3 95.0 74.69 37.7 352.2 332.? 323:.1 317:3 M1LAY -56.2...1IN NN 1 1 NI M- I II- IN - N1 C , S~li-o N nol- O) N.010 DTN440 W00CO0 10011aN IIU0 )0 r,0 0 N0 t N1e . 0 MC0t)O0 r- ,J o 110 00 toC 0 0010 01 0t n 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940018611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940018611"><span>Computer assisted analysis of auroral images obtained from high altitude polar satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Samadani, Ramin; Flynn, Michael</p> <p>1993-01-01</p> <p>Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.5606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.5606P"><span>Occurrence and average behavior of pulsating aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.</p> <p>2017-05-01</p> <p>Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.2209Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.2209Y"><span>Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, T.</p> <p>2012-02-01</p> <p>The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P33C2151T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P33C2151T"><span>Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.</p> <p>2016-12-01</p> <p>Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982PhDT.........5Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982PhDT.........5Y"><span>Parallel Electric Field on Auroral Magnetic Field Lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeh, Huey-Ching Betty</p> <p>1982-03-01</p> <p>The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SSRv...63..245U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SSRv...63..245U"><span>Studies of Polar Current Systems Using the IMS Scandinavian Magnetometer Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Untiedt, J.; Baumjohann, W.</p> <p>1993-09-01</p> <p>As a contribution to the International Magnetospheric Study (IMS, 1976 1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6476H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6476H"><span>Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haggerty, D. K.; Mauk, B. H.; Paranicas, C. P.; Clark, G.; Kollmann, P.; Rymer, A. M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.</p> <p>2017-07-01</p> <p>After a successful orbit insertion, the Juno spacecraft completed its first 53.5 day orbit and entered a very low altitude perijove with the full scientific payload operational for the first time on 27 August 2016. The Jupiter Energetic particle Detector Instrument measured ions and electrons over the auroral regions and through closest approach, with ions measured from 0.01 to >10 MeV, depending on species. This report focuses on the composition of the energetic ions observed during the first perijove of the Juno mission. Of particular interest are the ions that precipitate from the magnetosphere onto the polar atmosphere and ions that are accelerated locally by Jupiter's powerful auroral processes. We report preliminary findings on the spatial variations, species, including energy and pitch angle distributions throughout the prime science region during the first orbit of the Juno mission. The prime motivation for this work was to examine the heavy ions that are thought to be responsible for the observed polar X-rays. Jupiter Energetic particle Detector Instrument (JEDI) did observe precipitating heavy ions with energies >10 MeV, but for this perijove the intensities were far below those needed to account for previously observed polar X-ray emissions. During this survey we also found an unusual signal of ions between oxygen and sulfur. We include here a report on what appears to be a transitory observation of magnesium, or possibly sodium, at MeV energies through closest approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhyS...87e8201B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhyS...87e8201B"><span>Ion acceleration by Alfvén waves on auroral field lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bingham, Robert; Eliasson, Bengt; Tito Mendonça, José; Stenflo, Lennart</p> <p>2013-05-01</p> <p>Observations of ion acceleration along auroral field lines at the boundary of the plasma sheet and tail lobe of the Earth show that the energy of the ions increases with decreasing density. The observations can be explained by ion acceleration through Landau resonance with kinetic Alfvén waves (KAWs) such that kA·vi = ωA, where kA is the wave vector, vi is the ion resonance velocity and ωA is the Alfvén wave frequency. The ion resonance velocities are proportional to the Alfvén velocity which increases with decreasing density. This is in agreement with the data if the process is occurring at the plasma sheet tail lobe boundary. A quasi-linear theory of ion acceleration by KAWs is presented. These ions propagate both down towards and away from the Earth. The paths of the Freja and Polar satellites indicate that the acceleration takes place between the two satellites, between 1Re and 5Re. The downward propagating ions develop a horseshoe-type of distribution which has a positive slope in the perpendicular direction. This type of distribution can produce intense lower hybrid wave activity, which is also observed. Finally, the filamentation of shear Alfvén waves is considered. It may be responsible for large-scale density striations. In memory of Padma Kant Shukla, a great scientist and a good friend.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000180&hterms=pathways&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpathways','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000180&hterms=pathways&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpathways"><span>Major Pathways to Electron Distribution Function Formation in Regions of Diffuse Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia</p> <p>2017-01-01</p> <p>This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric collisional machine that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4251K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4251K"><span>Major pathways to electron distribution function formation in regions of diffuse aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia</p> <p>2017-04-01</p> <p>This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric "collisional machine" that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016538','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016538"><span>Magnetospheric space plasma investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comfort, Richard H.; Horwitz, James L.</p> <p>1995-01-01</p> <p>Topics and investigations covering this period of this semiannual report period (August 1994 - January 1995) are as follows: (1) Generalized SemiKinetic (GSK) modeling of the synergistic interaction of transverse heating of ionospheric ions and magnetospheric plasma-driven electric potentials on the auroral plasma transport. Also, presentations of GSK modeling of auroral electron precipitation effects on ionospheric plasma outflows, of ExB effects on such outflow, and on warm plasma thermalization and other effects during refilling with pre-existing warm plasmas; (2) Referees' reports received on the statistical study of the latitudinal distributions of core plasmas along the L = 4.6 field line using DE-1/RIMS data. Other work is concerned in the same field, field-aligned flows and trapped ion distributions; and (3) A short study has been carried out on heating processes in low density flux tubes in the outer plasmasphere. The purpose was to determine whether the high ion temperatures observed in these flux tubes were due to heat sources operating through the thermal electrons or directly to the ions. Other investigations center along the same area of plasmasphere-ionosphere coupling. The empirical techniques and model, the listing of hardware calibrated, and/or tested, and a description of notable meetings attended is included in this report, along with a list of all present publication in submission or accepted and those reference papers that have resulted from this work thus far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM53A2215U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM53A2215U"><span>New frontiers in H-Beta auroral photometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unick, C.; Donovan, E.; Connors, M. G.; Spanswick, E.; Jackel, B. J.; Greffen, M. J.; Wilson, C.; Little, J.; Chaddock, D.; Schofield, I.; MacRae, A.; Chen, S.; Crowther, A.; James, S.; Read, A.; Willis, T.</p> <p>2013-12-01</p> <p>The proton aurora provides valuable information about magnetotail structure and dynamics. For example, the location of the equatorward boundary of the proton aurora is a robust indicator of magnetotail stretching. Also, proton auroral luminosities combined with in situ ion measurements provide important information about magnetic mapping between the inner CPS and the auroral ionosphere. In this paper, we present a new and innovative proton-auroral (H-Beta) meridian-scanning photometer (MSP) capable of higher spatial and temporal resolution than has been achieved in the past. This H-Beta MSP is the first of a new dual-wavelength (signal/background) MSP design with a single scanning mirror and no other moving parts. The novel filtering architecture allows for a near 100% duty cycle with a 30-second meridian scan and configurable operating modes. The new design is significantly more sensitive than the legacy CANOPUS MSPs. The increased SNR can be employed in a variety of ways, such as to achieve significantly higher time resolution. Here, we present the new instrument design, test data from a commissioning campaign in Athabasca, and some thoughts on how the enhance proton auroral capability can increase the science value of these measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..993G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..993G"><span>A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha</p> <p>2018-01-01</p> <p>It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA51B2387G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA51B2387G"><span>On the location of Steve, the mysterious subauroral feature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallardo-Lacourt, B.; Nishimura, Y.; Donovan, E.; Gillies, D. M.; Spanswick, E.; Archer, W. E.; MacDonald, E.; Knudsen, D. J.</p> <p>2017-12-01</p> <p>Over the past year, there has been an exciting development in auroral research with the finding of a new subauroral phenomenon called Steve. Although Steve has been documented by amateur night sky watchers for decades, this is a new phenomenon about which scientists know very little. From optical observations including images from amateur photographers, Steve is a luminous arc that is narrow in north-south extent, and thousands of kilometers in east-west extent. We use auroral images from the ground-based THEMIS all-sky imagers and the Redline Geospace Observatory (REGO) array to identify Steve events. In addition, we use data from Meridian Scanning Photometers (NORSTAR and FESO) that measure brightness of H-β proton auroral emission at 4861Å. We surveyed data from December 2007 up to May 2017. Our observations suggest that Steve is always located equatorward of the proton aurora, and thus is not a traditional electron auroral arc, a feature which is always poleward of the peak in proton auroral brightness. Further, we have developed a picture of the magnetospheric region which is magnetically conjugate to Steve, and the magnetospheric conditions which give rise to the feature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820034546&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy%2Bregions%2BRemote','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820034546&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy%2Bregions%2BRemote"><span>Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vondrak, R. R.</p> <p>1981-01-01</p> <p>Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900049920&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dkaufmann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900049920&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dkaufmann"><span>Mapping and distortions of auroral structures in the quiet magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen</p> <p>1990-01-01</p> <p>The closed quiet magnetosphere model of Beard (1979) and Beard et al. (1982) is used to identify those features of commonly observed dayside auroras that can be explained by either of two processes: mapping distortions or distortions caused by nearby Birkeland currents. It is shown that single and multiple linear and hooked auroral forms can be easily explained in terms of mapping distortions in a quiet magnetosphere. On the other hand, the shapes of bright twisted or folded auroral forms can be more easily explained as distortions produced by localized Birkeland currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930047919&hterms=taylor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dtaylor%2Bt%2Bb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930047919&hterms=taylor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dtaylor%2Bt%2Bb"><span>Artificial auroras in the upper atmosphere. I - Electron beam injections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burch, J. L.; Mende, S. B.; Kawashima, N.; Roberts, W. T.; Taylor, W. W. L.; Neubert, T.; Gibson, W. C.; Marshall, J. A.; Swenson, G. R.</p> <p>1993-01-01</p> <p>The Atlas-1 Spacelab payload's Space Experiments with Particle Accelerators generated artificial electron beams for the stimulation of auroral emissions at southern auroral latitudes. Optical measurements were made by the Shuttle Orbiter's onboard TV cameras, as well as by the Atmospheric Emissions Photometric Imager (in both white light and the 427.8 nm N2(+) emission line). Shuttle-based auroral imaging furnished a novel perspective on the artificial auroras; the emissions were traced from 295 km to the 110 km level along the curved magnetic-field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740032645&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddropout','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740032645&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddropout"><span>Auroral electrojets and evening sector electron dropouts at synchronous orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Erickson, K. N.; Winckler, J. R.</p> <p>1973-01-01</p> <p>Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060051854&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DFord','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060051854&hterms=Ford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DFord"><span>Simultaneous Chandra X ray, Hubble Space Telescope Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20060051854'); toggleEditAbsImage('author_20060051854_show'); toggleEditAbsImage('author_20060051854_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20060051854_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20060051854_hide"></p> <p>2005-01-01</p> <p>Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi-periodic radio outbursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998DPS....30.4307B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998DPS....30.4307B"><span>HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.</p> <p>1998-09-01</p> <p>An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23145209N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23145209N"><span>THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team</p> <p>2018-01-01</p> <p>In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic fields to determine if they occurred near open magnetic field lines. We will report on the results of these two studies, and the ramifications for Mars auroral processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040027570&hterms=thermodynamics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dthermodynamics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040027570&hterms=thermodynamics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dthermodynamics"><span>Ground Based Remote Sensing of Upper Atmosphere Dynamics, Thermodynamics and Composition in Support of TIMED Satellites Scientific Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>The following research work was accomplished: 1. We operated high throughput spectrophotometers and interferometers at eight observatories in the Arctic, Antarctic and mid-latitude regions to record relatively high-resolution spectra of very low light level airglow and auroral line as well as band emissions. 2. Our Polar observations of auroral emissions from N2 and O emissions have been analyzed to derive the O/N2 ratios around 110 km height in the Polar thermosphere during different auroral events triggered by the precipitation of auroral electrons with average energy of about 10 keV. These results have been compared with similar ratios derived from TIMED satellite s GUVI measurements of N2 LBH and 01 1356A emissions. 3. Our airglow measurements show MLT density and temperature modulations by Planetary, Tidal and Gravity Waves. They also indicate Mesopause cooling preceding a Stratospheric Warming Event (SWE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930001976','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930001976"><span>Modeling the Jovian aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Waite, J. Hunter, Jr.</p> <p>1992-01-01</p> <p>The Jovian aurora is the most powerful aurora in the solar system, over 100 times more powerful than the Earth's aurora. These magnificent visual displays can provide important information about the planetary magnetosphere which is responsible for the acceleration of energetic particles that produce aurora at any planet. Similarities and differences in planetary auroral emissions are thus a viable means of classifying and studying both comparative atmospheric and magnetospheric processes. For instance, at Earth the solar wind is the primary source of auroral power while at Jupiter it is conjectured that the rotation of the planet is the major source of magnetospheric and auroral power. The purpose of this IR project was to develop a model: (1) for use in interpreting the existing set of multispectral observations of Jupiter's aurora; and (2) to design new experiments based on the findings to improve understanding of the underlying auroral processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900054436&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMOOS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900054436&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMOOS"><span>Long-term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Livengood, T. A.; Strobel, D. F.; Moos, H. W.</p> <p>1990-01-01</p> <p>The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850032533&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMOOS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850032533&hterms=MOOS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMOOS"><span>Comparison of the Jovian north and south pole aurorae using the IUE observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skinner, T. E.; Moos, H. W.</p> <p>1984-01-01</p> <p>New results on the spatial and temporal variability of the auroral emissions from Jupiter have been obtained from three IUE observations of the south pole made during the period July 1983 to March 1984. The current observations, together with previous IUE studies of the north pole aurora, provide convincing evidence for persistent longitudinal asymmetries in the Jovian auroral emissions. The strongest emissions appear to originate from regions centered near lambda-III of about 0 deg at the south pole and lambda-III of about 185 deg at the north pole. Differences in surface magnetic field strength seem inadequate to explain the extent to which particles precipitating along field lines into a given longitude sector in one hemisphere are inhibited from precipitating along the same field lines into the opposite hemisphere. Thus, the IUE auroral results present a challenge to existing models of auroral production.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020039730&hterms=activity+Physics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactivity%2BPhysics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020039730&hterms=activity+Physics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactivity%2BPhysics"><span>Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)</p> <p>2002-01-01</p> <p>During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980038194','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980038194"><span>Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail During Substorms: Implications for Magnetic Field Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spence, Harlan E.</p> <p>1996-01-01</p> <p>This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of discrete features in the context of the global picture. We reported on our initial study at national and international meetings and published the results of our predictions of the low-altitude signatures of the plasma sheet. In addition, the PI was invited to contribute a publication to the so-called 'Great Debate in Space Physics' series that is a feature of EOS. The topic was on the nature of magnetospheric substorms. Specific questions of the when and where a substorm occurs and the connection between the auroral and magnetospheric components were discussed in that paper. This paper therefore was derived exclusively from the research supported by this grant. Attachment: Empirical modeling of the quite time nightside magnetosphere.' 'CRRES observations of particle flux dropout event.' The what, where, when, and why of magnetospheric substorm triggers'. and 'Low altitude signature of the plasma sheet: model prediction of local time dependence'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM23C4246S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM23C4246S"><span>Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Y.; Lysak, R. L.</p> <p>2014-12-01</p> <p>Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3900K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3900K"><span>Measurements of Ion-Neutral Coupling in the Auroral F Region in Response to Increases in Particle Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiene, A.; Bristow, W. A.; Conde, M. G.; Hampton, D. L.</p> <p>2018-05-01</p> <p>Neutral winds are a key factor in the dynamics of the ionosphere-thermosphere system. Previous observations have shown that neutral and ion flows are strongly coupled during periods of auroral activity when ion drag forcing can become the dominant force driving neutral wind flow. This is primarily due to increases in ion density due to enhanced particle precipitation as well as associated increases the strength of the electric fields that drive ion motions. Due to this strong coupling, numerical simulations of neutral dynamics have difficulty reproducing neutral wind observations when they are driven by modeled precipitation and modeled convection. It is therefore desirable whenever possible to have concurrent coincident measurements of auroral precipitation and ion convection. Recent advancements in high-resolution fitting of Super Dual Auroral Radar Network ion convection data have enabled the generation of steady maps of ion drifts over Alaska, coinciding with several optics sites. The Super Dual Auroral Radar Network measurements are compared with scanning Doppler imager neutral wind measurements at similar altitude, providing direct comparisons of ion and neutral velocities over a wide field and for long periods throughout the night. Also present are a digital all-sky imager and a meridian spectrograph, both of which provide measurements of auroral intensity on several wavelengths. In this study, we combine these data sets to present three case studies that show significant correlation between increases in F region precipitation and enhancements in ion-neutral coupling in the evening sector. We investigate the time scales over which the coupling takes place and compare our findings to previous measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..364B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..364B"><span>Evidence for Auroral Emissions From Callisto's Footprint in HST UV Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharyya, Dolon; Clarke, John T.; Montgomery, Jordan; Bonfond, Bertrand; Gérard, Jean-Claude; Grodent, Denis</p> <p>2018-01-01</p> <p>Auroral emissions are expected from the footprint of Callisto in Jupiter's upper atmosphere owing to the known interaction of its atmosphere with Jupiter's magnetosphere, and from the observed auroral emissions from the footprints of the other three Galilean satellites. The mapping of Callisto along modeled magnetic field lines at Jupiter, however, places the expected footprint at the same latitude as the main auroral emissions, making it difficult to detect. We analyzed ultraviolet images of Jupiter taken using the Hubble Space Telescope/Advanced Camera for Surveys instrument during a large observing campaign in 2007. Using a coaddition method similar to one used for Enceladus, we have identified a strong candidate for the footprint of Callisto on 24 May 2007. We tested this finding by applying the same coaddition technique to a nearly identical auroral configuration on 30 May 2007 when Callisto was behind Jupiter, not visible from Earth (central meridian longitude = 22°; sub-Callisto system III longitude = 327°). By comparing the two coadded images, we can clearly see the presence of a strongly subcorotating spot close to the expected Callisto footprint location on 24 May and its absence on 30 May. On 24 May Callisto was located in the current sheet. We also found a probable candidate on 26 May 2007 during which time Callisto was positioned below the current sheet. The measured location and intensity of the auroral emission provide important information about the interaction of Callisto with Jupiter's magnetic field, the corotating plasma, and the neutral and ionized state of the thin atmosphere of Callisto.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.9705Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.9705Z"><span>Latitude Dependence of Low-Altitude O+ Ion Upflow: Statistical Results From FAST Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, K.; Chen, K. W.; Jiang, Y.; Chen, W. J.; Huang, L. F.; Fu, S.</p> <p>2017-09-01</p> <p>We introduce a statistical model to explain the latitudinal dependence of the occurrence rate and energy flux of the ionospheric escaping ions, taking advantage of advances in the spatial coverage and accuracy of FAST observations. We use a weighted piecewise Gaussian function to fit the dependence, because two probability peaks are located in the dayside polar cusp source region and the nightside auroral oval zone source region. The statistical results show that (1) the Gaussian Mixture Model suitably describes the dayside polar cusp upflows, and the dayside and the nightside auroral oval zone upflows. (2) The magnetic latitudes of the ionospheric upflow source regions expand toward the magnetic equator as Kp increases, from 81° magnetic latitude (MLAT) (cusp upflows) and 63° MLAT (auroral oval upflows) during quiet times to 76° MLAT and 61° MLAT, respectively. (3) The dayside polar cusp region provides only 3-5% O+ upflows among all the source regions, which include the dayside auroral oval zone, dayside polar cusp, nightside auroral oval zone, and even the polar cap. However, observations show that more than 70% of upflows occur in the auroral oval zone and that the occurrence probability increases at the altitudes of 3500-4200 km, which is considered to be the lower altitude boundary of ion beams. This observed result suggests that soft electron precipitation and transverse wave heating are the most efficient ion energization/acceleration mechanisms at the altitudes of FAST orbit, and that the parallel acceleration caused by field-aligned potential drops becomes effective above that altitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.4430L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.4430L"><span>Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.</p> <p>2018-05-01</p> <p>In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41B2620J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41B2620J"><span>Characteristics of ionospheric electron density profiles in the auroral and polar cap regions from long-term incoherent scatter radar observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.</p> <p>2017-12-01</p> <p>We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880064020&hterms=Classical+Perspectives&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DClassical%2BPerspectives','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880064020&hterms=Classical+Perspectives&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DClassical%2BPerspectives"><span>The terrestrial plasma source - A new perspective in solar-terrestrial processes from Dynamics Explorer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chappell, Charles R.</p> <p>1988-01-01</p> <p>The geospace environment has been viewed as a mixing bowl for plasmas of both solar and terrestrial origin. The present perspective on the nature of the supply mechanisms has undergone a radical evolution over the past decade, particularly during the five years of the Dynamics Explorer mission. During this period, the terrestrial source has increased in importance in both magnitude and character of ionospheric outflow. These outflows include the classical polar wind, the cleft ion fountain, the auroral ion fountain, and the polar cap. The earth can be envisioned as a multifaceted fountain which ejects particles from different spatial locations spread around the globe. These particles exhibit a range of masses from 1 to 32 amu and a range of energies from 1 eV to 10 keV. The total flux of this ionospheric outflow is very large: adequate to supply the entire magnetospheric particle population. And the implications of the outflow are significant across a broad spectrum of solar-terrestrial processes ranging from sources of magnetospheric plasmas, to influences on ionospheric density and temperature structure, to energy transfer in phenomena such as stable auroral red arcs. The Dynamics Explorer mission has made a major contribution in the characterization of the terrestrial plasma source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2664C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2664C"><span>ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II</p> <p>2017-12-01</p> <p>E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988pre2.conf..399W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988pre2.conf..399W"><span>Cyclotron maser instability and its applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, C. S.</p> <p></p> <p>The possible application of cyclotron maser theory to a variety of radio sources is considered, with special attention given to the theory of auroral kilometric radiation (AKR) of Wu and Lee (1979). The AKR model assumes a loss-cone distribution function for the reflected electrons, along with the depletion of low-energy electrons by the parallel electric field. Other topics considered include fundamental AKR, second-harmonic AKR, the generation of Z-mode radiation, and the application of maser instability to other sources than AKR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1017129','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1017129"><span>An Observational and Modeling Study of Auroral Upwelling in the Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-04-28</p> <p>0000UT) on each of the nights of 15 and 17 February 2015. The Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) provided additional line-of...photoionisation based on solar fluxes, Figure 5 Conventional Joule heating in the region 110-150 km (Thayer et al., 1995) Distribution A: Approved...i.e. 2100 UT). The simulations are for January solar minimum, using f10.7 value of 80 and quiet steady state conditions. Table 1: Four CMAT2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0747027','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0747027"><span>Analysis of Simultaneous Polar Fox II Backscatter and Ionospheric Sounding Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>latitudes where vertical soundings show spread-E and -F. Those regions appear to be identical to the auroral E (night E) layer and ’ plasma ring ’ F layer known to be associated with the auroral oval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GeoRL..3110103C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GeoRL..3110103C"><span>Infrared Auroral Emissions Driven by Resonant Electron Impact Excitation of NO Molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, L.; Brunger, M. J.; Petrovic, Z. Lj.; Jelisavcic, M.; Panajotovic, R.; Buckman, S. J.</p> <p>2004-05-01</p> <p>Although only a minor constituent of the earth's upper atmosphere, nitric oxide (NO) plays a major role in infrared auroral emissions due to radiation from vibrationally excited (NO*) states. The main process leading to the production of these excited molecules was thought to be chemiluminescence, whereby excited nitrogen atoms interact with oxygen molecules to form vibrationally excited nitric oxide (NO*) and atomic oxygen. Here we show evidence that a different production mechanism for NO*, due to low energy electron impact excitation of NO molecules, is responsible for more than 30% of the NO auroral emission near 5 μm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810019182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810019182"><span>Rocket study of auroral processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnoldy, R. L.</p> <p>1981-01-01</p> <p>Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870039720&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870039720&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback"><span>Feedback between neutral winds and auroral arc electrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, L. R.; Walterscheid, R. L.</p> <p>1986-01-01</p> <p>The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P14C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P14C..03L"><span>Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.</p> <p>2011-12-01</p> <p>Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120004107','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120004107"><span>Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minow, Joseph I.; Parker, Linda N.</p> <p>2012-01-01</p> <p>Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRA..11410212L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRA..11410212L"><span>An auroral oval at the footprint of Saturn's kilometric radio sources, colocated with the UV aurorae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, L.; Cecconi, B.; Prangé, R.; Zarka, P.; Nichols, J. D.; Clarke, J. T.</p> <p>2009-10-01</p> <p>Similarly to other magnetized planets, Saturn displays auroral emissions generated by accelerated electrons gyrating around high-latitude magnetic field lines. They mainly divide in ultraviolet (UV) and infrared (IR) aurorae, excited by electron collisions with the upper atmosphere, and Saturn's kilometric radiation (SKR), radiated from higher altitudes by electron-wave resonance. Whereas spatially resolved UV and IR images of atmospheric aurorae reveal a continuous auroral oval around each pole, the SKR source locus was only indirectly constrained by the Voyager radio experiment to a limited local time (LT) range on the morningside, leading to interpretation of the SKR modulation as a fixed flashing light. Here, we present resolved SKR maps derived from the Cassini Radio and Plasma Wave Science (RPWS) experiment using goniopolarimetric techniques. We observe radio sources all around the planet, organized along a high-latitude continuous auroral oval. Observations of the Hubble Space Telescope obtained in January 2004 and January 2007 have been compared to simultaneous and averaged Cassini-RPWS measurements, revealing that SKR and UV auroral ovals are very similar, both significantly enhanced on the dawnside. These results imply that the SKR and atmospheric aurorae are triggered by the same populations of energetic electron beams, requiring a unified model of particle acceleration and precipitation on Saturn.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SpWea...310001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SpWea...310001C"><span>A Kp-based model of auroral boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbary, James F.</p> <p>2005-10-01</p> <p>The auroral oval can serve as both a representation and a prediction of space weather on a global scale, so a competent model of the oval as a function of a geomagnetic index could conveniently appraise space weather itself. A simple model of the auroral boundaries is constructed by binning several months of images from the Polar Ultraviolet Imager by Kp index. The pixel intensities are first averaged into magnetic latitude-magnetic local time (MLT-MLAT) and local time bins, and intensity profiles are then derived for each Kp level at 1 hour intervals of MLT. After background correction, the boundary latitudes of each profile are determined at a threshold of 4 photons cm-2 s1. The peak locations and peak intensities are also found. The boundary and peak locations vary linearly with Kp index, and the coefficients of the linear fits are tabulated for each MLT. As a general rule of thumb, the UV intensity peak shifts 1° in magnetic latitude for each increment in Kp. The fits are surprisingly good for Kp < 6 but begin to deteriorate at high Kp because of auroral boundary irregularities and poor statistics. The statistical model allows calculation of the auroral boundaries at most MLTs as a function of Kp and can serve as an approximation to the shape and extent of the statistical oval.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999DPS....31.5311S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999DPS....31.5311S"><span>Detection of the 'continuous' H3(+) electrojet in the Jovian Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stallard, T. S.; Miller, S.; Achilleos, N.; Rego, D.; Prange, R.; Dougherty, M.; Joseph, R. D.</p> <p>1999-09-01</p> <p>Recently we have published the first detection of an auroral electrojet - a fast ion wind circulating around the auroral oval - on Jupiter (Rego et al., Nature, 399, 121-123). The detection was made during an unusual "auroral event", but raised the possibility that such electrojets might be detectable under "normal" auroral conditions. This work, currently in progress, is directed towards that aim. To accomplish this, high resolution infrared spectra and images of the Jovian aurora were taken on the nights of September 7-11(th) 1998, observing the nu_ {2} Q(1,0(-) ) line of H(+}_{3) at 3.953 mu m. The slit was aligned across the planet, perpendicular to the rotational axis, and the spectra were taken at 1 arcsec steps across the planet through the region of aurora. Each spectrum has been fitted row by row with a gaussian using height, width, background and central position as free parameters. This results in a measurement of how the relative central position varies across each spectra. Having processed the data, removing any systematic array effects, rotation, and instrumentally based spatial effects, we intend to show a measurable electrojet from the dopler shift it causes. This will be in the form of LOS maps of the auroral region at different CML taken over the 5 night observation period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA42A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA42A..06K"><span>Defense Meteorological Satellite Program Data in Dynamic Auroral Boundary Coordinates: New insights into Polar Cap and Auroral Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knipp, D.</p> <p>2016-12-01</p> <p>Using reprocessed (Level-2) data from the Defense Meteorology Satellite Program magnetometer (SSM) and particle precipitation (SSJ) instruments we determine the boundaries of the central plasma sheet auroral oval, and then consider the relative locations and intensities of field aligned currents. Large-scale field-aligned currents (FAC) are determined using the Minimum Variance Analysis technique, and their influence is then removed from the magnetic perturbations allowing us to estimate intensity and scale-size of the smaller-scale currents. When sorted by dynamic auroral boundary coordinates we find that large- scale Region 1 (R1) FAC are often within the polar cap and Region 2 (R2) FAC show a strong dawn-dusk asymmetry (as in Ohtani et al., 2010). We find that mesoscale FAC are stronger in the summer and are most consistently present in the vicinity of dawnside (downward) R1 FAC. Further, mesoscale FAC are confined to auroral latitudes and above on the dawnside, but can be subaroural on the dusk side. Hotspots of mesoscale FAC occur in pre-midnight regions especially during summer. Finally, we show how this information can be combined with measurements from above and below the ionosphere-thermosphere to help explain significant perturbations in polar cap dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6249237-jovian-longitudinal-asymmetry-io-related-europa-related-auroral-hot-spots','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6249237-jovian-longitudinal-asymmetry-io-related-europa-related-auroral-hot-spots"><span>Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dessler, A.J.; Chamberlain, J.W.</p> <p>1979-06-15</p> <p>Jupiter's internal magnetic field is markedly non-dipolar. We propose that Io- or Europa-generated auroral emissions (originating at the foot of either Io's or Europa's magnetic flux tube) are largely restricted to longitudes where Jupiter's ionospheric conductivity is enhanced. Trapped, energetic electrons that drift into Jupiter's atmosphere, in regions where the Jovian magnetic field is anomalously weak, produce the increased conductivity. The longitude range of enchanced auroral hot-spot emissions is thus restricted to an active sector that is determined from dekametric radio emission to lie in the northern hemisphere in the Jovian System III (1965) longitude range of 205/sup 0/ +-more » 30/sup 0/. Relatively weaker auroral hot spots should occur in the southern hemisphere along the mgnetic conjugate trace covering the longitude range of 215/sup 0/ +- 55/sup 0/. At other longitudes, the brightness of the hot spot should decrease by at least one order of magnitude. These results, with respect to both brightness and longitude, are in accord with the observations of Jovian auroral hot spots reported by Atreya et al. We show that the northern hemisphere foot of either Io's or Europa's magnetic flux tube was in the preferred longitude range (the active sector) at the time of each observation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1336M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1336M"><span>Nonlinear Interactions within the D-Region Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Robert</p> <p>2016-07-01</p> <p>This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984JGR....8910779K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984JGR....8910779K"><span>Direct evidence for two-stage (bimodal) acceleration of ionospheric ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klumpar, D. M.; Peterson, W. K.; Shelley, E. G.</p> <p>1984-12-01</p> <p>Energetic ion composition spectrometer data gathered on hybrid conical ion distributions by the Dynamics Explorer 1 in the topside ionosphere are reported. The observed ion distributions were field-aligned and upward flowing, with energies up to 5 keV. Increases in ion energy were accompanied by a departure from field-alignment and a cone patterned upward flow, with the apex in the auroral field lines and the cone angle widening upward as the energy increased. Both transverse and parallel accelerations were imparted to the ions, with the transverse heating occurring in a 5000 km extent region centered at 18,000 km altitude. A bi-Maxwellian distribution, a temperature of 1.2 keV and a 260 eV parallel temperature were found at the top of the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003009','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003009"><span>SA13B-1900 Auroral Charging of the International Space Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minow, Joseph I.; Chandler, Michael O.; Wright, Kenneth H., Jr.</p> <p>2011-01-01</p> <p>Electrostatic potential variations of the International Space Station (ISS) relative to the space plasma environment are dominated by interaction of the negatively grounded 160 volt US photovoltaic power system with the plasma environment in sunlight and inductive potential variations across the ISS structure generated by motion of the vehicle across the Earth's magnetic field. Auroral charging is also a source of potential variations because the 51.6? orbital inclination of ISS takes the vehicle to sufficiently high magnetic latitudes to encounter precipitating electrons during geomagnetic storms. Analysis of auroral charging for small spacecraft or isolated insulating regions on ISS predict rapid charging to high potentials of hundreds of volts but it has been thought that the large capacitance of the entire ISS structure on the order of 0.01 F will limit frame potentials to less than a volt when exposed to auroral conditions. We present three candidate auroral charging events characterized by transient ISS structure potentials varying from approximately 2 to 17 volts. The events occur primarily at night when the solar arrays are unbiased and cannot therefore be due to solar array current collection. ISS potential decreases to more negative values during the events indicating electron current collection and the events are always observed at the highest latitudes along the ISS trajectory. Comparison of the events with integral >30 keV electron flux measurements from NOAA TIROS spacecraft demonstrate they occur within regions of precipitating electron flux at levels consistent with the energetic electron thresholds reported for onset of auroral charging of the DMSP and Freja satellites. In contrast to the DMSP and Freja events, one of the ISS charging events occur in sunlight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CosRe..55..426K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CosRe..55..426K"><span>Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.</p> <p>2017-11-01</p> <p>We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P24A..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P24A..06G"><span>Overview of HST observvations of Jupiter's ultraviolet aurora during Juno orbits 03 to 07</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grodent, D. C.; Bonfond, B.; Tao, Z.; Gladstone, R.; Gerard, J. C. M. C.; Radioti, K.; Clarke, J. T.; Nichols, J. D.; Bunce, E. J.; Roth, L.; Saur, J.; Kimura, T.; Orton, G.; Badman, S. V.; Mauk, B.; Connerney, J. E. P.; McComas, D. J.; Kurth, W. S.; Adriani, A.; Hansen, C. J.; Valek, P. W.; Palmaerts, B.; Dumont, M.; Bolton, S. J.; Levin, S.; Bagenal, F.</p> <p>2017-12-01</p> <p>Jupiter's permanent ultraviolet auroral emissions have been systematically monitored from Earth orbit with the Hubble Space Telescope (HST) during an 8-month period. The first part of this HST large program (GO-14634) was meant to coordinate with the NASA Juno mission during orbits 03 through 07. The HST program will resume in Feb 2018, in time for Juno's PJ11 perijove, right after HST's solar and lunar avoidance periods. HST observations are designed to provide a Jovian auroral activity background for all instruments on board Juno and for the numerous ground based and space based observatories participating to the Juno mission. In particular, several HST visits were programmed in order to obtain as many simultaneous observations with Juno-UVS as possible, sometimes in the same hemisphere, sometimes in the opposite one. In addition, the timing of some HST visits was set to take advantage of Juno's multiple crossings of the current sheet and of the magnetic field lines threading the auroral emissions. These observations are obtained with the Space Telescope Imaging Spectrograph (STIS) in time-tag mode. They consist in spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. Here, we present an overview of the present -numerous- HST results. They demonstrate that while Jupiter is always showing the same basic auroral components, it is also displaying an ever-changing auroral landscape. The complexity of the auroral morphology is such that no two observations are alike. Still, in this apparent chaos some patterns emerge. This information is giving clues on magnetospheric processes at play at the local and global scales, the latter being only accessible to remote sensing instruments such as HST.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100002035&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100002035&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone"><span>Hemispheric Asymmetries in Substorm Recovery Time Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.</p> <p>2009-01-01</p> <p>Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170006548&hterms=tourism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtourism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170006548&hterms=tourism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtourism"><span>Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Yihua; Rastaetter, Lutz</p> <p>2015-01-01</p> <p>Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910017323','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910017323"><span>Theoretical and experimental studies relevant to interpretation of auroral emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keffer, Charles E.</p> <p>1991-01-01</p> <p>The accomplishments achieved over the past year are detailed with emphasis on the interpretation or auroral emissions and studies of potential spacecraft-induced contamination effects. Accordingly, the research was divided into two tasks. The first task is designed to add to the understanding of space vehicle induced external contamination. An experimental facility for simulation of the external environment for a spacecraft in low earth orbit was developed. The facility was used to make laboratory measurements of important phenomena required for improving the understanding of the space vehicle induced external environment and its effect on measurement of auroral emissions from space-based platforms. A workshop was sponsored to provide a forum for presentation of the latest research by nationally recognized experts on space vehicle contamination and to discuss the impact of this research on future missions involving space-based platforms. The second task is to add an ab initio auroral calculation to the extant ionospheric/thermospheric global modeling capabilities. Once the addition of the code was complete, the combined model was to be used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Such studies are essential to an understanding of the types of vacuum ultraviolet (VUV) auroral images which are expected to be available within two years with the successful deployment of the Ultraviolet Imager (UVI) on the ISTP POLAR spacecraft. In anticipation of this, the second task includes support for meetings of the science working group for the UVI to discuss operational and data analysis needs. Taken together, the proposed tasks outline a course of study designed to make significant contributions to the field of space-based auroral imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240689-measuring-seeds-ion-outflow-auroral-sounding-rocket-observations-low-altitude-ion-heating-circulation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240689-measuring-seeds-ion-outflow-auroral-sounding-rocket-observations-low-altitude-ion-heating-circulation"><span>Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; ...</p> <p>2016-01-25</p> <p>Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006P%26SS...54...45J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006P%26SS...54...45J"><span>Electron-driven excitation of O 2 under night-time auroral conditions: Excited state densities and band emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.</p> <p>2006-01-01</p> <p>Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122..916F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122..916F"><span>Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary</p> <p>2017-01-01</p> <p>Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28331778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28331778"><span>Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary</p> <p>2017-01-01</p> <p>Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5340283','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5340283"><span>Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary</p> <p>2017-01-01</p> <p>Abstract Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co‐aligned GPS radio link. Large‐scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large‐scale structures did not cascade into smaller‐scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large‐scale to small‐scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services. PMID:28331778</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240689','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240689"><span>Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fernandes, P. A.; Lynch, K. A.; Zettergren, M.</p> <p></p> <p>Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007P%26SS...55.2244C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007P%26SS...55.2244C"><span>Thermodynamics of rare events and impulsive relaxation events in the magnetospheric substorm dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Consolini, Giuseppe; Kretzschmar, Matthieu</p> <p>2007-12-01</p> <p>The magnetosphere dynamics shows fast relaxation events following power-law distribution for many observable quantities during magnetic substorms. The emergence of such power-law distributions has been widely discussed in the framework of self-organized criticality and/or turbulence. Here, a different approach to the statistical features of these impulsive dynamical events is proposed in the framework of the thermodynamics of rare events [Lavenda, B.H., Florio, A., 1992. Thermodynamics of rare events, Int. J. Theor. Phys. 31, 1455-1475; Lavenda, B.H., 1995. Thermodynamics of Extremes. Albion]. In detail, an application of such a novel approach to the magnetospheric substorm avalanching dynamics as monitored by the auroral electroject index is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM42A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM42A..02C"><span>The Effect of Precipitating Electrons and Ions on Ionospheric Conductance and Inner Magnetospheric Electric Fields 142106</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, M.; Lemon, C.; Hecht, J. H.; Evans, J. S.; Boyd, A. J.</p> <p>2016-12-01</p> <p>We investigate how scattering of electrons by waves and of ions by field-line curvature in the inner magnetosphere affect precipitating energy flux distributions and how the precipitating particles modify the ionospheric conductivity and electric potentials during magnetic storms. We examine how particle precipitation in the evening sector affects the development of the Sub-Auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector as well as the electric field in the morning sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating particle distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are employed. Our description for the rate of ion scattering is more simplistic. We assume that the ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. We compare simulated trapped and precipitating electron/ion flux distributions with measurements from Van Allen Probes/MagEIS, POES and DMSP, respectively, to validate the particle loss models. DMSP observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons and ions on the SAPS and the inner magnetospheric electric field through the data-model comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770005677','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770005677"><span>A region of intense plasma wave turbulence on auroral field lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, D. A.; Frank, L. A.</p> <p>1976-01-01</p> <p>This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870049548&hterms=senior&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsenior','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870049548&hterms=senior&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsenior"><span>E and F region study of the evening sector auroral oval - A Chatanika/Dynamics Explorer 2/NOAA 6 comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Senior, C.; Sharber, J. R.; Winningham, J. D.; De La Beaujardiere, O.; Heelis, R. A.; Evans, D. S.; Sugiura, M.; Hoegy, W. R.</p> <p>1987-01-01</p> <p>Simultaneous data from the Chatanika radar and the DE 2 and NOAA 6 satellites are used to study the typical behavior of the winter evening-sector auroral plasma during moderate and steady magnetic activity. The equatorward edge of the auroral E layer, of the region 2 field-aligned currents, and of the region of intense convection are colocated. The auroral E layer extends several degrees south of the equatorward edge of the keV electron precipitation from the CPS. Although the main trough and ionization channel are embedded in a region of intense electric field where the plasma flows sunward at high speed, the flux tubes associated with these two features have different time histories. The midlatitude trough is located south of the region of electron precipitation, above a proton aurora. The ionization channel marks the poleward edge of the main trough and is colocated with the equatorward boundary of the electron precipitation from the central plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003588&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstorms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003588&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstorms"><span>Magnetopause Erosion During the 17 March 2015 Magnetic Storm: Combined Field-Aligned Currents, Auroral Oval, and Magnetopause Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Le, G.; Luehr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003588'); toggleEditAbsImage('author_20170003588_show'); toggleEditAbsImage('author_20170003588_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003588_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003588_hide"></p> <p>2016-01-01</p> <p>We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26C....11..138L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26C....11..138L"><span>The Auroral Planetary Imaging and Spectroscopy (APIS) service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.</p> <p>2015-06-01</p> <p>The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSA14A..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSA14A..04B"><span>Observations of Penetration Electric Fields and Sub-Auroral Ion Drifts With Mid-Latitude SuperDARN Radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, J. B.; Greenwald, R. A.; Yin, Y.; Ruohoniemi, J. M.; Clausen, L.; Frissell, N. A.; Ribeiro, A. J.</p> <p>2009-12-01</p> <p>The Super Dual Auroral Radar Network (SuperDARN) provides continuous Doppler measurements of ionospheric plasma convection over extended spatial scales with high temporal resolution. First generation SuperDARN radars were constructed at magnetic latitudes near 60 degrees to optimize coverage during periods of moderate geomagnetic activity. In recent years there has been an expansion of the network to middle latitudes to increase coverage during enhanced geomagnetic activity, such as during magnetic storms. In this paper we present measurements of prompt penetration electric fields and sub-auroral ion drift (SAID) events observed by the Wallops and Blackstone radars at middle latitudes. Together, these two radars provide a capability to continuously examine the temporal evolution of these features over an extended local time sector. We present case studies and statistical results showing that transient sub-auroral flow enhancements occur over a wide range of magnetospheric disturbance levels and are often highly correlated with activity at higher latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18755561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18755561"><span>[Early prenatal interview: implementation of a sheet link "carried" by patient. The Aurore perinatal network experience].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dupont, C; Gonnaud, F; Touzet, S; Luciani, F; Perié, M-A; Molenat, F; Evrard, A; Fernandez, M-P; Roy, J; Rudigoz, R-C</p> <p>2008-11-01</p> <p>Early prenatal interview has needed the implementation of a new communication tool between follow-up pregnancy professionals: a link sheet filled and carried by patients. To assess the utilization of link sheet by trained professionals, the contribution of the interview and the patient acceptation of the link sheet. Descriptive survey from the database of link sheets returned by professionals to Aurore perinatal network and semi-guided interviews with 100 randomized patients. One thousand one hundred and nineteen link sheets were sent to Aurore perinatal network by 55 professionals out of 78 trained. For primipare, precocious prenatal interview contribution has concerned health care security (60%) and emotional security (56%). For multipare, this contribution has concerned mainly emotional security (80%). No interviewed patient has refused link sheet principle. Link sheet principle, like implemented by Aurore perinatal network, seems pertinent to professionals and patients but it constitutes only one of the elements of network elaboration of personalized care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21899.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21899.html"><span>Polar Lights at Saturn Bid Cassini Farewell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-10-16</p> <p>On Sept. 14, 2017, one day before making its final plunge into Saturn's atmosphere, NASA's Cassini spacecraft used its Ultraviolet Imaging Spectrograph, or UVIS, instrument to capture this final view of ultraviolet auroral emissions in the planet's north polar region. The view is centered on the north pole of Saturn, with lines of latitude visible for 80, 70 and 60 degrees. Lines of longitude are spaced 40 degrees apart. The planet's day side is at bottom, while the night side is at top. A sequence of images from this observation has also been assembled into a movie sequence. The last image in the movie was taken about an hour before the still image, which was the actual final UVIS auroral image. Auroral emissions are generated by charged particles traveling along the invisible lines of Saturn's magnetic field. These particles precipitate into the atmosphere, releasing light when they strike gas molecules there. Several individual auroral structures are visible here, despite that this UVIS view was acquired at a fairly large distance from the planet (about 424,000 miles or 683,000 kilometers). Each of these features is connected to a particular phenomenon in Saturn's magnetosphere. For instance, it is possible to identify auroral signatures here that are related to the injection of hot plasma from the dayside magnetosphere, as well as auroral features associated with a change in the magnetic field's shape on the magnetosphere's night side. Several possible scenarios have been postulated over the years to explain Saturn's changing auroral emissions, but researchers are still far from a complete understanding of this complicated puzzle. Researchers will continue to analyze the hundreds of image sequences UVIS obtained of Saturn's auroras during Cassini's 13-year mission, with many new discoveries likely to be made. This image and movie sequence were produced by the Laboratory for Planetary and Atmospheric Physics (LPAP) of the STAR Institute of the University of Liege in Belgium, in collaboration with the UVIS Team. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21899</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM23A2216H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM23A2216H"><span>Time development of high-altitude auroral acceleration region plasma, potentials, and field-aligned current systems observed by Cluster during a substorm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.</p> <p>2013-12-01</p> <p>The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated current systems was quite rapid, occurring in the span of a few minutes. These results suggest that the Alfvenic activity may be an important precursor and perhaps may be playing an essential role in the development of inverted-V arc systems that form during substorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43C..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43C..01H"><span>Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huba, J.; Sazykin, S. Y.; Coster, A. J.</p> <p>2017-12-01</p> <p>We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800021439','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800021439"><span>The relationships between high latitude convection reversals and the energetic particle morphology observed by the Atmosphere Explorer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heelis, R. A.; Winningham, J. D.; Hanson, W. B.; Burch, J. L.</p> <p>1980-01-01</p> <p>Simultaneous measurements of the auroral zone particle precipitation and the ion convection velocity by Atmosphere Explorer show a consistent difference between the location of the poleward boundary of the auroral particle precipitation and the ion convection reversal. The difference of about 1.5 degrees of invariant latitude is such that some part of the antisunward convection lies wholly within the auroral particle precipitation region. The nature of the convection reversals within the precipitation region suggests that in this region the convection electric field is generated on closed field lines that connect in the magnetosphere to the low latitude boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910035700&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910035700&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnike"><span>Electrodynamic response of the middle atmosphere to auroral pulsations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.</p> <p>1990-01-01</p> <p>The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA111266','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA111266"><span>Anomalous Resistivity of Auroral Field Lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-01-25</p> <p>Anomalous Resistivity on Auroral Field Lines H-. L. R0VNLAND AND K. PAPADOPOULOS Laboratory for Plasma and Fusion Energy Studies$ University of Maryland...d in Stock 20, It difitir.oI from Reprt) It.SUPPLEMENTARY NOTES * Laboratory for Plasma and Fusion Energy Studies, University of NMarland, College</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSM34A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSM34A..03M"><span>Coordinated measurements of auroral processes at Saturn from the Cassini spacecraft and HST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, D. G.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Krupp, N.; Saur, J.; Mauk, B. A.; Carbary, J. F.; Krimigis, S. M.; Brandt, P. C.; Dougherty, M. K.; Clarke, J. T.; Nichols, J. D.; Gerard, J.; Grodent, D.; Pryor, W. R.; Bunce, E. J.; Crary, F. J.</p> <p>2008-12-01</p> <p>One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents, relationship with solar wind pressure and magnetic field, and its large scale mapping to the magnetosphere. By design, the Cassini orbital tour included high inclination and low periapsis orbits late in the prime mission specifically to address many of these topics. In this presentation, we will provide a snapshot of the current state of our investigation into the relationship between magnetospheric measurements of particles and fields, and the aurora. For in situ data, we will show measurements of upward traveling light ion conics (~30 keV to 200 keV), often accompanied by electron beams (<20 keV to ~1 MeV) and enhanced broadband noise (10 Hz to a few kHz), throughout the outer magnetosphere on field lines that nominally map from well into the polar cap (dipole L > 50) to well into the closed field region (dipole L < 10). Sometimes the particle phenomena and the broadband noise occur in pulses of roughly five-minute duration, separated by tens of minutes. At other times they are relatively steady over an hour or more. Magnetic signatures associated with some of the pulsed events are consistent with field aligned current structures. Correlative observations of solar wind (Cassini) and aurora (HST) have established a strong relationship between solar wind pressure and auroral activity (brightness) (Crary et al., Nature, 2005; Clarke et al., JGR, 2008). A similar correspondence between bright auroral arcs and ring current ion acceleration will be shown here. So while some auroral forms seem to be associated with the open/closed field boundary (i.e. in the cusp-Bunce et al., JGR, 2008), we also demonstrate that under some magnetospheric conditions for which protons and oxygen ions are accelerated once per Saturn magnetosphere rotation at a preferred local time between midnight and dawn, simultaneous auroral observations by the HST reveal a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent energetic neutral atom enhancements coincide closely with bursts of Saturn kilometric radiation, again suggesting a linkage with high latitude auroral processes. Finally, we will show some intriguing results of auroral movie sequences from the Cassini UVIS instrument with corresponding ring current movies from the Magnetospheric Imaging Instrument Ion and Neutral Camera (MIMI/INCA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050210157','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050210157"><span>Eyewitness Reports of the Great Auroral Storm of 1859</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, James L.; Boardsen, Scott; Odenwald, Sten; Humble, John; Pazamickas, Katherine A.</p> <p>2005-01-01</p> <p>The great geomagnetic storm of 1859 is really composed of two closely spaced massive worldwide auroral events. The first event began on August 28th and the second began on September 2nd. It is the storm on September 2nd that results from the Carrington-Hodgson white light flare that occurred on the sun September l&. In addition to published scientific measurements; newspapers, ship logs and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." Several important aspects of this great geomagnetic storm are simply phenomenal. Auroral forms of all types and colors were observed to latitudes of 25deg and lower. A significant portion of the world's 125,000 miles of telegraph lines were also adversely affected. Many of - which were unusable for 8 hours or more and had a small but notable economic impact. T h s paper presents only a select few available first hand accounts of the Great Auroral Event of 1859 in an attempt to give the modern reader a sense of how this spectacular display was received by the public from many places around the globe and present some other important historical aspects of the storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5017366-auroral-ray-imaging-from-high-low-earth-orbit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5017366-auroral-ray-imaging-from-high-low-earth-orbit"><span>Auroral x-ray imaging from high- and low-Earth orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McKenzie, D.L.; Gorney, D.J.; Imhof, W.L.</p> <p></p> <p>Observations of bremsstrahlung x rays emitted by energetic electrons impacting the Earth's atmosphere can be used for remotely sensing the morphology, intensity, and energy spectra of electron precipitation from the magnetosphere. The utility of the technique is derived from the broad energy range of observable x rays (2 to > 100 KeV), the simple emission process, the large x-ray mean free path in the atmosphere, and negligible background. Two auroral x-ray imagers, developed for future spaceflights, are discussed. The Polar Ionospheric X-Ray Imaging Experiment is scheduled for launch on the NASA International Solar-Terrestrial Physics/Global Geospace Science program POLAR satellite inmore » 1994. The POLAR orbit, with an apogee and perigee of 9 and 1.8 R[sub e] (Earth radii), respectively, affords the opportunity to image the aurora from a high altitude above the north pole continuously for several hours. The Magnetospheric Atmospheric X-Ray Imaging Experiment (MAXIE) was launched aboard the NOAA-I satellite on August 8, 1993. The 800-km polar orbit passes over both the northern and southern auroral zones every 101 min. MAXIE will be capable of obtaining multiple images of the same auroral region during a single satellite orbit. The experimental approaches used to exploit these very different orbits for remote sensing of the Earth's auroral zones are emphasized.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.7334D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.7334D"><span>An autonomous receiver/digital signal processor applied to ground-based and rocket-borne wave experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dombrowski, M. P.; LaBelle, J.; McGaw, D. G.; Broughton, M. C.</p> <p>2016-07-01</p> <p>The programmable combined receiver/digital signal processor platform presented in this article is designed for digital downsampling and processing of general waveform inputs with a 66 MHz initial sampling rate and multi-input synchronized sampling. Systems based on this platform are capable of fully autonomous low-power operation, can be programmed to preprocess and filter the data for preselection and reduction, and may output to a diverse array of transmission or telemetry media. We describe three versions of this system, one for deployment on sounding rockets and two for ground-based applications. The rocket system was flown on the Correlation of High-Frequency and Auroral Roar Measurements (CHARM)-II mission launched from Poker Flat Research Range, Alaska, in 2010. It measured auroral "roar" signals at 2.60 MHz. The ground-based systems have been deployed at Sondrestrom, Greenland, and South Pole Station, Antarctica. The Greenland system synchronously samples signals from three spaced antennas providing direction finding of 0-5 MHz waves. It has successfully measured auroral signals and man-made broadcast signals. The South Pole system synchronously samples signals from two crossed antennas, providing polarization information. It has successfully measured the polarization of auroral kilometric radiation-like signals as well as auroral hiss. Further systems are in development for future rocket missions and for installation in Antarctic Automatic Geophysical Observatories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..07S"><span>Sub-Auroral Polarization Stream (SAPS) Events Under Non-storm Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sazykin, S. Y.; Coster, A. J.; Huba, J.; Spiro, R. W.; Baker, J. B.; Kunduri, B.; Ruohoniemi, J. M.; Erickson, P. J.; Wolf, R.</p> <p>2017-12-01</p> <p>The occurrence of Sub-Auroral Polarization Stream, or SAPS, structures, defined here as latitudinally narrow channels of enhanced westward plasma convection in the evening ionosphere equatorward of the auroral electron precipitation boundary, is most dramatic during geomagnetic storms. However, SAPS-like structures known as Polarization Jets or SAIDs (Sub-Auroral Ion Drift events) are also frequently observed during non-storm conditions, typically during periods of isolated substorm activity or during bursts of enhanced convection associated with southward IMF Bz component. This paper presents results from data analysis and numerical simulations of several SAPS/SAID events observed during non-storm conditions. We use convection velocity measurements from the mid-latitude chain of SuperDARN radars and cross-track drift meter data from DMSP spacecraft to identify SAPS/SAID and to characterize their structure and temporal evolution. DMSP topside ion density data and high-resolution ground-based GPS total electron content (TEC) maps are used to determine the ionospheric and plasmaspheric morphology of SAPS regions. DMSP electron precipitation data are used to determine auroral boundaries. We also present simulation results of the chosen event intervals obtained with the SAMI3-RCM ionosphere-magnetosphere coupled model. Observational results are analyzed to identify systematic differences between non-storm SAPS/SAID and the picture that has emerged based on previous storm time studies. Simulation results are used to provide physical interpretation of these differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GSL.....3...12M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GSL.....3...12M"><span>Relation of the auroral substorm to the substorm current wedge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McPherron, Robert L.; Chu, Xiangning</p> <p>2016-12-01</p> <p>The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA13B3988C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA13B3988C"><span>Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.</p> <p>2014-12-01</p> <p>While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4244354-auroral-rays-cosmic-rays-related-phenomena-during-storm-february','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4244354-auroral-rays-cosmic-rays-related-phenomena-during-storm-february"><span>AURORAL X-RAYS, COSMIC RAYS, AND RELATED PHENOMENA DURING THE STORM OF FEBRUARY 10-11, 1958</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Winckler, J.R.; Peterson, L.; Hoffman, R.</p> <p>1959-06-01</p> <p>Balloon observations were made during the auroral storm of February 10- 11, 1958, at Minneapolis. Strong x-ray bursts in two groups were detected. The groups appeared coincident with two large magnetic bays, with strong radio noise absorption, and with the passage across the zenith of a very large amount of auroral luminosity. From the x-ray intensity and measured energies, an electron current of 0.6 x 10/sup 6/ electrons /cm/sup 2// scc was present. These electrons ionizing the upper D layer accounted for the increased cosmic noise absorption. The x-rays themselves carried 1000 times less energy than the electrons and couldmore » not provide sufficient ionization for the observed radio absorption. Visual auroral fornis during this storm are reported to have lower borders at thc 200 to 300 km level. There is thus a difficulty in bringing the electrons to the D layer without ani accompanying visible aurora. A cosmic-ray decrease accompanied the storm and was observed to be from 4 to 6% at sea level, 21% in the balloon altitude ionization, and 15% in total energy influx at 55 deg geomagnetic latitude. Compared with the great intensity of the magnetic and auroral phenomena in this storm, the cosmic-ray modulation was not exceptionally large. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA111640','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA111640"><span>Atmospheric Pressure and Velocity Fluctuations Near the Auroral Electrojet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-01-15</p> <p>various aspects of the atmosphere’s dynamical response to auroral activity have been carried out by Blumen and Hendl (1969), Testud (1970), Francis...Geophys. Res. 80, 2839, 1975. Testud , 3., Gravity waves generated during magnetic substorms, 3. Atmos. Terr. Phys. 32, 1793, 1970. Waco, D. E., A</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..388G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..388G"><span>Juno-UVS and Chandra Observations of Jupiter's Polar Auroral Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gladstone, G. R.; Kammer, J. A.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Gérard, J.-C.; Grodent, D.; Bonfond, B.; Jackman, C.; Branduardi-Raymont, G.; Kraft, R. P.; Dunn, W. R.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Mauk, B. H.; Valek, P.; Adriani, A.; Kurth, W. S.; Orton, G. S.</p> <p>2017-09-01</p> <p>New results are presented comparing Jupiter's auroras at far-ultraviolet and x-ray wavelengths, using data acquired by Juno-UVS and Chandra. The highly variable polar auroras (which are located within the main auroral oval) track each other quite well in brightness at these two wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900030850&hterms=red+fox&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dred%2Bfox','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900030850&hterms=red+fox&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dred%2Bfox"><span>The red and green lines of atomic oxygen in the nightglow of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fox, J. L.</p> <p>1990-01-01</p> <p>O(1D) and O(1S), the excited states that give rise to the atomic oxygen red and green lines, are produced in the Venus nightglow in dissociative recombination of O2(+). The emissions should also be excited by precipitation of soft electrons, the suggested source of the 'auroral' emission features of atomic oxygen at 1304 and 1356 A, which have been reported from observations of the Pioneer Venus Orbiter Ultraviolet Spectrometer. No emisison at 6300 or 5577 A was detected, however, by the visible spectrophotometers on the Soviet spacecraft Veneras 9 and 10; upper limits have been placed on the intensities of these features. The constraints placed on models for the auroral production mechanism by the Venera upper limits by modeling the intensities of the red and green lines in the nightglow are evaluated, combining a model for the vibrational distribution of O2(+) on the nightside of Venus with rate coefficients recently computed by Guberman for production of O(1S) and O(1D) in dissociative recombination of O2(+) from different vibrational levels. The integrated overhead intensities are 1 - 2 R for the green line and about 46 R for the red line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810033343&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810033343&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam"><span>Observations of waves artificially stimulated by an electron beam inside a region with auroral precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.</p> <p>1980-01-01</p> <p>Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CosRe..45..248K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CosRe..45..248K"><span>Observations of the auroral hectometric radio emission onboard the INTERBALL-1 satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuril'Chik, V. N.</p> <p>2007-06-01</p> <p>The results of five-year (1995 2000) continuous observations of the auroral radio emission (ARE) in the hectometric wavelength range on the high-apogee INTERBALL-1 satellite are presented. Short intense bursts of the auroral hectometric radio emission (AHR) were observed at frequencies of 1463 and 1501 kHz. The bursts were observed predominantly at times when the terrestrial magnetosphere was undisturbed (in the quiet Sun period), and their number decreased rapidly with increasing solar activity. The bursts demonstrated seasonal dependence in the Northern and Southern hemispheres (dominating in the autumn-winter period). Their appearance probably depends on the observation time (UT). A qualitative explanation of the AHR peculiarities is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930033009&hterms=discrete+structure&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddiscrete%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930033009&hterms=discrete+structure&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddiscrete%2Bstructure"><span>A low-altitude mechanism for mesoscale dynamics, structure, and current filamentation in the discrete aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keskinen, M. J.; Chaturvedi, P. K.; Ossakow, S. L.</p> <p>1992-01-01</p> <p>The 2D nonlinear evolution of the ionization-driven adiabatic auroral arc instability is studied. We find: (1) the adiabatic auroral arc instability can fully develop on time scales of tens to hundreds of seconds and on spatial scales of tens to hundreds of kilometers; (2) the evolution of this instability leads to nonlinear 'hook-shaped' conductivity structures: (3) this instability can lead to parallel current filamentation over a wide range of scale sizes; and (4) the k-spectra of the density, electric field, and parallel current develop into inverse power laws in agreement with satellite observations. Comparison with mesoscale auroral phenomenology and current filamentation structures is made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045515&hterms=lanchester&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlanchester','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045515&hterms=lanchester&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlanchester"><span>Energy flux and characteristic energy of an elemental auroral structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lanchester, B. S.; Palmer, J. R.; Rees, M. H.; Lummerzheim, D.; Kaila, K.; Turunen, T.</p> <p>1994-01-01</p> <p>Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730051495&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730051495&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike"><span>An example of anticorrelation of auroral particles and electric fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maynard, N. C.; Bahnsen, A.; Christophersen, P.; Lundin, R.; Egeland, A.</p> <p>1973-01-01</p> <p>The question of whether correlation or anticorrelation should occur is complex and depends on many factors, e.g., the internal impedance of the source; the Pedersen conductivity, which in turn is dependent on the incident energy of the precipitated particles; whether space charge can build up; and the magnitude of the incoming flux. Data are presented from a case in which an anticorrelation between auroral particles and electric fields is especially striking. The data were obtained from a Nike Tomahawk launched from the Norwegian rocket range at Andoya. The experiments carried are described briefly. The data support the anticorrelation model as one mechanism that can affect the electric field strength in auroral regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..54.1786E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..54.1786E"><span>Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.</p> <p>2014-11-01</p> <p>The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040081409&hterms=report&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dreport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040081409&hterms=report&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dreport"><span>Next Generation Transport Phenomenology Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strickland, Douglas J.; Knight, Harold; Evans, J. Scott</p> <p>2004-01-01</p> <p>This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA32A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA32A..01M"><span>High Power Radio Wave Interactions within the D-Region Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, R. C.</p> <p>2014-12-01</p> <p>This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568949','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568949"><span>Defense Science and Technology Success Stories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-01-01</p> <p>Active Auroral Research Project ( HAARP ) ........................................................................136 Weapons Strategic Illuminator Laser...drawing 136 Service/Agency Background: The High Frequency Active Auroral Research Project ( HAARP ) developed new experimental research capabilities and...Appropriation Act provided funds for the creation of HAARP , jointly managed by the Air Force Research Laboratory and the Office of Naval Research to exploit</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780031606&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhot%2Bspot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780031606&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhot%2Bspot"><span>Search for Jovian auroral hot spots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, S. K.; Barker, E. S.; Yung, Y. L.; Donahue, T. M.</p> <p>1977-01-01</p> <p>Auroral emission originating at the foot of the Io-associated flux tube at Jupiter has been detected with a high-resolution spectrometer/telescope on board the Orbiting Astronomical Observatory Copernicus. The emission intensity at Ly-alpha is found to be greater than 100 kR, and the emission is located at zenographic latitudes greater than 65 deg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870013888','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870013888"><span>Effect of double layers on magnetosphere-ionosphere coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lysak, Robert L.; Hudson, Mary K.</p> <p>1987-01-01</p> <p>The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008886&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstorms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008886&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstorms"><span>Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, W. Robin; Doornbos, Eelco; Zhang, Yongliang</p> <p>2014-01-01</p> <p>Poynting flux shows peaks around auroral zone AND inside polar cap. Energy enters IT system at all local times in polar cap. Track-integrated flux at DMSP often peaks at polar latitudes- probably due to increased area of polar cap during storm main phases. center dot lon temperatures at DMSP show large increases in polar region at all local times; cusp and auroral zones do not show distinctively high Ti. center dot I on temperatures in the polar cap are higher than in the auroral zones during quiet times. center dot Neutral densities at GRACE and GOCE show maxima at polar latitudes without clear auroral signatures. Response is fast, minutes from onset to density peaks. center dot GUVI observations of O/N2 ratio during storms show similar response as direct measurements of ion and neutral densities, i.e. high temperatures in polar cap during prestorm quiet period, heating proceeding from polar cap to lower latitudes during storm main phase. center dot Discrepancy between maps of Poynting flux and of ion temperatures/neutral densities suggests that connection between Poynting flux and Joule heating is not simple.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM23A2220C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM23A2220C"><span>Testing the Auroral Current-Voltage Relation in Multiple Arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cameron, T. G.; Knudsen, D. J.; Cully, C. M.</p> <p>2013-12-01</p> <p>The well-known current-voltage relation within auroral inverted-V regions [Knight, Planet. Space Sci., 21, 741, 1973] predicts current carried by an auroral flux tube given the total potential drop between a plasma-sheet source region and the ionosphere. Numerous previous studies have tested this relation using spacecraft that traverse auroral arcs at low (ionospheric) or mid altitudes. Typically, the potential drop is estimated at the peak of the inverted-V, and field-aligned current is estimated from magnetometer data; statistical information is then gathered over many arc crossings that occur over a wide range of source conditions. In this study we use electron data from the FAST satellite to examine the current-voltage relation in multiple arc sets, in which the key source parameters (plasma sheet density and temperature) are presumed to be identical. We argue that this approach provides a more sensitive test of the Knight relation, and we seek to explain remaining variability with factors other than source variability. This study is supported by a grant from the Natural Sciences and Engineering Research Council of Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730016689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730016689"><span>Direct comparison between satellite electric field measurements and the visual aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Swift, D. W.; Gurnett, D. A.</p> <p>1973-01-01</p> <p>Electric field data from two passes of the Injun 5 satellite, one corresponding to magnetically quiet conditions and one corresponding to substorm conditions, are compared with simultaneous all-sky-camera data from College, Alaska. In each case, a significant deviation of the electric field from the expected V x B field (where V is the satellite velocity) was evident and a distinct electric field reversal could be identified. In the region of substantial electric field equatorward of the electric field reversal a diffuse auroral arc was observed during the magnetically quiet pass and auroral patches were observed during the substorm pass. The motion of the auroral patches was consistent with the general direction and magnitude of the E x B drift computed from the satellite electric field measurements. In the substorm case the electric field reversal occurred very near a discrete auroral arc at the poleward side of the diffuse arcs and patches. Comparison of the quiet time and substorm cases suggests that the convection electric field penetrates deeper into the magnetosphere during a substorm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.2311R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.2311R"><span>A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Clausen, L. B. N.; Greenwald, R. A.; Lester, M.</p> <p>2012-02-01</p> <p>The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars that monitor plasma dynamics in the ionosphere. In recent years, SuperDARN has expanded to midlatitudes in order to provide enhanced coverage during geomagnetically active periods. A new type of backscatter from F region plasma irregularities with low Doppler velocity has been frequently observed on the nightside during quiescent conditions. Using three years of data from the Blackstone, VA radar, we have implemented a method for extracting this new type of backscatter from routine observations. We have statistically characterized the occurrence properties of the Sub Auroral Ionospheric Scatter (SAIS) events, including the latitudinal relationships to the equatorward edge of the auroral oval and the ionospheric projection of the plasmapause. We find that the backscatter is confined to local night, occurs on ≈70% of nights, is fixed in geomagnetic latitude, and is equatorward of both the auroral region and the plasmapause boundary. We conclude that SAIS irregularities are observed within a range of latitudes that is conjugate to the inner magnetosphere (plasmasphere).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110011013&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110011013&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstatistics"><span>Multiscale Auroral Emission Statistics as Evidence of Turbulent Reconnection in Earth's Midtail Plasma Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klimas, Alex; Uritsky, Vadim; Donovan, Eric</p> <p>2010-01-01</p> <p>We provide indirect evidence for turbulent reconnection in Earth's midtail plasma sheet by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. The events are divided into two groups: (1) those that map to absolute value of (X(sub GSM)) < 12 R(sub E) in the magnetotail and do not show scale-free statistics and (2) those that map to absolute value of (X(sub GSM)) > 12 R(sub E) and do show scale-free statistics. The absolute value of (X(sub GSM)) dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM33C2686R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM33C2686R"><span>Quasi-periodic latitudinal shift of Saturn's main auroral emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.</p> <p>2017-12-01</p> <p>The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM51C2190S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM51C2190S"><span>The Search for Precursor Redline Auroral Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sobel, E. I.; Kepko, L.; Angelopoulos, V.; Donovan, E.; Spanswick, E.</p> <p>2013-12-01</p> <p>A popular theory of geomagnetic substorms postulates that substorms begin in the downtail region of the magnetosphere and propagate Earthward. This should result in a visible auroral precursor; however, observations have not shown such formations. This poster presents the results of our project to examine the little-studied redline data in search of these early-cycle auroral phenomena. We reviewed daily ground-based redline auroral observations for relevant months of 2008-2013 using software developed in IDL and created an event database with the observation stations, onset timestamp, available satellites, and notes. After narrowing the initial list of nearly 350 events to the best 5, we analyzed the redline events alongside white light and green light observations from the same stations, as well as in situ measurements from THEMIS and geomagnetic readings from ground-based stations. Preliminary results from 36 suspected cases and 5 confirmed cases show some instances of clear redline formations that precede visual onsets. These phenomena form above the equatorward auroral arc, descend over several minutes, and then appear to trigger onset within minutes of reaching the arc boundary. We also found evidence that these precursors are created by earthward plasma flows. This research helps answer the long-standing question of why there has been no visible precursor, despite strong evidence of pre-onset earthward flows. It is one of the first ventures into the lower spectra of the aurora, opening the door for future work on the longer-lasting, lower-energy, and more sensitive red wavelengths.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4398K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4398K"><span>Polar cap potential saturation during the Bastille Day storm event using global MHD simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.</p> <p>2017-04-01</p> <p>We investigated the temporal variations and saturation of the cross polar cap potential (CPCP) in the Bastille Day storm event (15 July 2000) by global magnetohydrodynamics (MHD) simulation. The CPCP is considered to depend on the electric field and dynamic pressure of the solar wind as well as on the ionospheric conductivity. Previous studies considered only the ionospheric conductivity due to solar extreme ultraviolet (EUV) variations. In this paper, we dealt with the changes in the CPCP attributable to auroral conductivity variations caused by pressure enhancement in the inner magnetosphere owing to energy injection from the magnetosphere because the energy injection is considerably enhanced in a severe magnetic storm event. Our simulation reveals that the auroral conductivity enhancement is significant for the CPCP variation in a severe magnetic storm event. The numerical results concerning the Bastille Day event show that the ionospheric conductivity averaged over the auroral oval is enhanced up to 18 mho in the case of Bz of less than -59 nT. On the other hand, the average conductivity without the auroral effect is almost 6 mho throughout the entire period. Resultantly, the saturated CPCP is about 240 kV in the former and 704 kV in the latter when Bz is -59 nT. This result indicates that the CPCP variations could be correctly reproduced when the time variation of auroral conductivity caused by pressure enhancement due to the energy injection from the magnetosphere is correctly considered in a severe magnetic storm event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050110125&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dcomparative','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050110125&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dcomparative"><span>Aurora and Non-Auroral X-ray Emissions from Jupiter: A Comparative View</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhardwal, Anil; Elsner, Ron; Gladstone, Randy; Waite, Hunter, Jr.; Lugaz, Noe; Cravens, Tom; Branduardi-Raymont, Graziella; Ramsay, Gavin; Soria, Rob; Ford, Peter</p> <p>2004-01-01</p> <p>Jovian X-rays can be broadly classified into two categories: (1) auroral emission, which is confined to high-latitudes (approximately greater than 60 deg.) at both polar regions, and (2) dayglow emission, which originates from the sunlit low-latitude (approximately less than 50 deg.) regions of the disk (hereafter called disk emissions). Recent X-ray observations of Jupiter by chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the approximately 40 plus or minus 20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31A2619N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31A2619N"><span>Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.</p> <p>2017-12-01</p> <p>Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011687"><span>Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120011687'); toggleEditAbsImage('author_20120011687_show'); toggleEditAbsImage('author_20120011687_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120011687_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120011687_hide"></p> <p>2012-01-01</p> <p>The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009505','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009505"><span>Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120009505'); toggleEditAbsImage('author_20120009505_show'); toggleEditAbsImage('author_20120009505_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120009505_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120009505_hide"></p> <p>2011-01-01</p> <p>The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026973','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026973"><span>The Visible Imaging System (VIS) for the Polar Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Sigwarth, J. B.; Craven, J. D.; Cravens, J. P.; Dolan, J. S.; Dvorsky, M. R.; Hardebeck, P. K.; Harvey, J. D.; Muller, D. W.</p> <p>1995-01-01</p> <p>The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N+2 at 391.4 nm, 0 I at 557.7 and 630.0 nm, H I at 656.3 nm, and 0 II at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8 R(sub e). The time to acquire and telemeter a 256 x 256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with the in-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for the in-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003498&hterms=Citizen+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCitizen%2Bscience','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003498&hterms=Citizen+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCitizen%2Bscience"><span>Using Citizen Science Reports to Define the Equatorial Extent of Auroral Visibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Case, N. A.; MacDonald, E. A.; Viereck, R.</p> <p>2016-01-01</p> <p>An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a "view line" to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than Is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM53A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM53A..03K"><span>An Overlooked Source of Auroral Arc Field-Aligned Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudsen, D. J.</p> <p>2017-12-01</p> <p>The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41B2619L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41B2619L"><span>Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.</p> <p>2017-12-01</p> <p>Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760011637','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760011637"><span>A study of a sector spectrophotometer and auroral O+(2P-2D) emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Swenson, G. R.</p> <p>1976-01-01</p> <p>The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130003217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130003217"><span>Extreme Spacecraft Charging in Polar Low Earth Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard</p> <p>2012-01-01</p> <p>Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........27O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........27O"><span>Characterization and diagnostic methods for geomagnetic auroral infrasound waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oldham, Justin J.</p> <p></p> <p>Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with modulation of the electrojets due to energetic particle precipitation, dispersion due to coupling with gravity waves, and reflection and refraction effects in the intervening atmosphere all potential factors in the shaping of the waveforms observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASTP.146..129A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASTP.146..129A"><span>Auroral boundary movement rates during substorm onsets and their correspondence to solar wind and the AL index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andriyas, Tushar</p> <p>2016-08-01</p> <p>A statistical analysis of the equatorward and poleward auroral boundary movement during substorm onsets, the related solar wind activity, GOES 8 and 10 magnetic field, and the westward auroral electrojet (AL) index is undertaken, during the years 2000-2002. Auroral boundary data were obtained from the British Antarctic Survey (BAS). These boundaries were derived using auroral images from the IMAGE satellite. The timing of the onsets was derived from the Frey et al. (2004) database. Data were also classified based on the peak AL around the onset and the onset latitude, in order to analyze the differences, if any, in the rates of movement. It was found that the absolute ratio of the rate of movement of the mean poleward and equatorward boundaries was slower than the rate of mean movement around the midnight sector. The stronger the onset (in terms of the peak AL around the onset) was, the faster the rate of movement for both the boundaries. This implies that the stronger the AL signature around the onset, the weaker the magnetic field was prior to the onset and the faster it increased after the onset at GOES 8 and 10 locations. The stronger the AL signature, the thicker the latitudinal width of the aurora was, prior to the onset and higher was the increase in the width after the onset, due to large poleward and average equatorward expansion. Magnetotail field line stretching and relaxation rates as measured by GOES were also found to lie in the same order of magnitude. It is therefore concluded that the rates of latitudinal descent prior to a substorm onset and ascent after the onset, of the mean auroral boundaries, corresponds to the rate at which the tail field lines stretch and relax before and after the onset, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045383&hterms=Geomagnetic+reversal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeomagnetic%2Breversal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045383&hterms=Geomagnetic+reversal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeomagnetic%2Breversal"><span>Auroral activity associated with Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrugia, C. J.; Sandholt, P. E.; Burlaga, L. F.</p> <p>1994-01-01</p> <p>Auroral activity occurred in the late afternoon sector (approx. 16 MLT) in the northern hemisphere during the passage at Earth of an interplanetary magnetic cloud on January 14, 1988. The auroral activity consisted of a very dynamic display which was preceded and followed by quiet auroral displays. During the quiet displays, discrete rayed arcs aligned along the geomagnetic L shells were observed. In the active stage, rapidly evolving spiral forms centered on magnetic zenith were evident. The activity persisted for many minutes and was characterized by the absence of directed motion. They were strongly suggestive of intense filaments of upward field-aligned currents embedded in the large-scale region 1 current system. Distortions of the flux ropes as they connect from the equatorial magnetosphere to the ionosphere were witnessed. We assess as possible generating mechanisms three nonlocal sources known to be associated with field-aligned currents. Of these, partial compressions of the magnetosphere due to variations of solar wind dynamic pressure seem an unlikely source. The possibility that the auroral forms are due to reconnection is investigated but is excluded because the active aurora were observed on the closed field line region just equatorward of the convection reversal boundary. To support this conclusion further, we apply recent results on the mapping of ionospheric regions to the equatorial plane based on the Tsyganenko 1989 model (Kaufmann et al., 1993). We find that for comparable magnetic activity the aurora map to the equatorial plane at X(sub GSM) = approx. 3 R(sub E) and approx. 2 R(sub E) inward of the magnetopause, that is, the inner edge of the boundary layer close to dusk. Since the auroral forms are manifestly associated with magnetic field shear, a vortical motion at the equatorial end of the flux rope is indicated, making the Kelvin-Helmholtz instability acting at the inner edge of the low-latitude boundary layer the most probable generating source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..689K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..689K"><span>An investigation of ionospheric disturbances over the north-eastern region of Russia in October 2003 using auroral images and data from a network of ground-based instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurkin, V. I.; Afraimovich, E. L.; Berngardt, O. I.; Zherebtsov, G. A.; Litovkin, G. I.; Matyushonok, S. M.; Medvedev, A. V.; Potekhin, A. P.; Ratovsky, K. G.; Shpynev, B. G.</p> <p></p> <p>Presented are the results from analyzing the experimental data from the Irkutsk incoherent scatter (IS) radar, a network of magnetometers, GPS receivers, digital ionosounders for vertical- and oblique-incidence sounding combined with auroral images during geomagnetic disturbances as a consequence of high flaring activity of the Sun from October 19 to 29, 2003. The position of the auroral oval was determined using NOAA POES and DMSP satellite data available through the Internet. For substorms of October 21-22 and 24-25, significant (up to ˜ 50%) negative disturbances of electron density were recorded during the nighttime and daytime in the longitude sector from 90E to 150E from subauroral to mid-latitudes (up to ˜ 50N). During the nighttime the equatorial boundary of the auroral oval reached ˜ 55N (invariant latitude). The Irkutsk IS radar during that period recorded coherent echoes from ionospheric E-layer irregularities generated near the oval boundary. The strongest ionospheric disturbances throughout the aforementioned region were recorded on October 28 and 29 after two powerful flares of class X17.5 and X10.0 that occurred on October 28 and 29. A combined analysis of auroral images and data from ground-based radiophysical facilities made it possible to study the dynamics of the boundaries of the auroral oval and ionospheric trough during strong geomagnetic disturbances. A dramatic displacement of the auroral oval boundary (up to ˜ 46N of invariant latitude) and a long-lasting generation of a broad spectrum of irregularities and wave-like disturbances in the ionosphere were recorded. During the daytime on October 30 and 31, negative disturbances were recorded over most of the region in the ionospheric F-layer reaching 60-70%, which were replaced the next day by positive disturbances with ˜ 30% amplitude. Negative disturbances of electron density during the nighttime were accompanied by a substantial rise of electron (by ˜ 1500K) and ion (by ˜ 1000K) temperatures. Studying the characteristic features of the ionospheric response over the north-eastern region of Russia to strong geomagnetic disturbances is of significant interest for understanding the magnetosphere-ionosphere coupling on a global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300..305S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300..305S"><span>Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Fletcher, L. N.; Moses, J. I.; Hue, V.; Irwin, P. G. J.</p> <p>2018-01-01</p> <p>We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter's high latitudes obtained on NASA's Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C2H2, C2H4 and C2H6 were retrieved at both high-northern and high-southern latitudes and results were compared in 'quiescent' regions and regions known to be affected by Jupiter's aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0 ± 4.2 K at 0.98 mbar, 20.8 ± 3.9 K at 0.01 mbar but only by 8.3 ± 4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C2H2 and C2H4 exhibit enrichments but C2H6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C2H2 increases from 278.4 ± 40.3 ppbv at 70°N, 60°W to 564.4 ± 72.0 ppbv at 70°N, 180°W and at 0.01 mbar, over the same longitude range at 70°N, C2H4 increases from 0.669 ± 0.129 ppmv to 6.509 ± 0.811 ppmv. However, we note that non-LTE (local thermodynamic equilibrium) emission may affect the cores of the strongest C2H2 and C2H4 lines on the northern auroral region, which may be a possible source of error in our derived concentrations. We retrieved concentrations of C2H6 at 1 mbar of 9.03 ± 0.98 ppmv at 70°N, 60°W and 7.66 ± 0.70 ppmv at 70°N, 180°W. Thus, C2H6's concentration appears constant (within uncertainty) as a function of longitude at 70°N.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.191..965S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.191..965S"><span>Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, Alexey; Kuvshinov, Alexey</p> <p>2012-12-01</p> <p>The global 3-D electrical conductivity distribution in the mantle (in the depth range between 400 and 1600 km) is imaged by inverting C-responses estimated on a global net of geomagnetic observatories. Very long time-series (up to 51 years; 1957-2007) of hourly means of three components of the geomagnetic field from 281 geomagnetic observatories are collected and analysed. Special attention is given to data processing in order to obtain unbiased C-responses with trustworthy estimates of experimental errors in the period range from 2.9 to 104.2 d. After careful inspection of the obtained C-responses the data from 119 observatories are chosen for the further analysis. Squared coherency is used as a main quality indicator to detect (and then to exclude from consideration) observatories with a large noise-to-signal ratio. During this analysis we found that—along with the C-responses from high-latitude observatories (geomagnetic latitudes higher than 58°)—the C-responses from all low-latitude observatories (geomagnetic latitudes below 11°) also have very low squared coherencies, and thus cannot be used for global induction studies. We found that the C-responses from the selected 119 mid-latitude observatories show a huge variability both in real and imaginary parts, and we investigated to what extent the ocean effect can explain such a scatter. By performing the systematic model calculations we conclude that: (1) the variability due to the ocean effect is substantial, especially at shorter periods, and it is seen for periods up to 40 d or so; (2) the imaginary part of the C-responses is to a larger extent influenced by the oceans; (3) two types of anomalous C-response behaviour associated with the ocean effect can be distinguished; (4) to accurately reproduce the ocean effect a lateral resolution of 1°× 1° of the conductance distribution is needed, and (5) the ocean effect alone does not explain the whole variability of the observed C-responses. We also detected that part of the variability in the real part of the C-responses is due to the auroral effect. In addition we discovered that the auroral effect in the C-responses reveals strong longitudinal variability, at least in the Northern Hemisphere. Europe appears to be the region with smallest degree of distortion compared with North America and northern Asia. We found that the imaginary part of the C-responses is weakly affected by the auroral source, thus confirming the fact that in the considered period range the electromagnetic (EM) induction from the auroral electrojet is small. Assuming weak dependence of the auroral signals on the Earth's conductivity at considered periods, and longitudinal variability of the auroral effect, we developed a scheme to correct the experimental C-responses for this effect. With these developments and findings in mind we performed a number of regularized 3-D inversions of our experimental data in order to detect robust features in the recovered 3-D conductivity images. Although differing in details, all our 3-D inversions reveal a substantial level of lateral heterogeneity in the mantle at the depths between 410 and 1600 km. Conductivity values vary laterally by more than one order of magnitude between resistive and conductive regions. The maximum lateral variations of the conductivity have been detected in the layer at depths between 670 and 900 km. By comparing our global 3-D results with the results of independent global and semi-global 3-D conductivity studies, we conclude that 3-D conductivity mantle models produced so far are preliminary as different groups obtain disparate results, thus complicating quantitative comparison with seismic tomography or/and geodynamic models. In spite of this, our 3-D EM study and most other 3-D EM studies reveal at least two robust features: reduced conductivity beneath southern Europe and northern Africa, and enhanced conductivity in northeastern China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740014875&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740014875&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike"><span>Resonances observed on mother-daughter rocket flights in the ionosphere. [signal frequency enhancement in auroral zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Folkestad, K.; Troeim, J.</p> <p>1973-01-01</p> <p>Resonance phenomena have been observed in swept frequency experiments carried out on two mother-daughter Nike-Tomahawk rocket flights at auroral latitudes. The experimental method is briefly described and characteristic samples of the results are presented. A possible interpretation of some main resonances is offered, involving cold plasma cone resonances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..234S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..234S"><span>Ganymede and Europa and their Jovian polar footprints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sejkora, N.; Rucker, H. O.; Panchenko, M.</p> <p>2017-09-01</p> <p>The interactions between the Galilean moons Europa and Ganymede and the Jovian magnetosphere are studied. The focus lies on the satellites' auroral footprints observable in the polar regions of Jupiter. The work encompasses case studies of UV observations, obtained by the Hubble Space Telescope (HST), showing auroral features potentially triggered by either Europa or Ganymede. For those situations the footprint lead angles are determined, using different magnetic field models. The aim is to estimate the relationship between satellite longitude and lead angle. The delay between the local interaction at the satellite and the resulting auroral emission, which is implied by the obtained lead angles, is compared to the travel time of an Alfvén wave along a magnetic field line from the satellite to the planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890024143&hterms=transverse+study&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtransverse%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890024143&hterms=transverse+study&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtransverse%2Bstudy"><span>Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.</p> <p>1988-01-01</p> <p>Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990009871&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990009871&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs"><span>Auroral Observations from the POLAR Ultraviolet Imager (UVI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Germany, G. A.; Spann, J. F.; Parks, G. K.; Brittnacher, M. J.; Elsen, R.; Chen, L.; Lummerzheim, D.; Rees, M. H.</p> <p>1998-01-01</p> <p>Because of the importance of the auroral regions as a remote diagnostic of near-Earth plasma processes and magnetospheric structure, spacebased instrumentation for imaging the auroral regions have been designed and operated for the last twenty-five years. The latest generation of imagers, including those flown on the POLAR satellite, extends this quest for multispectral resolution by providing three separate imagers for the visible, ultraviolet, and X ray images of the aurora. The ability to observe extended regions allows imaging missions to significantly extend the observations available from in situ or groundbased instrumentation. The complementary nature of imaging and other observations is illustrated below using results from tile GGS Ultraviolet Imager (UVI). Details of the requisite energy and intensity analysis are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720021632','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720021632"><span>Analysis of auroral particle fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chappell, C. R.</p> <p>1972-01-01</p> <p>The physical processes which describe the interaction of auroral electrons with the atmosphere appear to be more complex than just the Coulomb scattering of the incident primary electrons with a subsequent loss of energy. The comparison of the measured backscattered electron spectra with spectra predicted using a theoretical scattering calculation has led to a discrepancy for energies below about 1 to 2 keV. It was found that the very high ratio (100%) of backscattered to incident fluxes for these energies could be most reasonably explained by a parallel downward-directed electric field which prevents these lower energy electrons from entering the atmospheric scattering region. This parallel field with potential drop of about 1 keV is thought to have its origin in waveparticle interactions in the turbulent auroral ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740057195&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740057195&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike"><span>Field-aligned currents and the auroral electrojet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cahill, L. J.; Potter, W. E.; Kintner, P. M.; Arnoldy, R. L.; Choy, L. W.</p> <p>1974-01-01</p> <p>A Nike Tomahawk with fields and particles payload was launched on Nov. 18, 1970, over a strong westward electrojet current and auroral forms moving rapidly to the east. Electron fluxes moving up and down the magnetic field lines were measured. Upward-moving electrons below 1-keV energy were dominant and were equivalent to a net downward electric current that fluctuated between .2 and .6 microamp/sq m during the flight above 130 km. As the rocket traversed this broad region of downward electric current over and to the north of the auroral forms, the horizontal electric field slowly rotated from east to west. The magnetic measurements indicate that the westward electrojet was a horizontal sheet of current several hundred kilometers in north-south extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10520857C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10520857C"><span>Nitric oxide excited under auroral conditions: Excited state densities and band emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cartwright, D. C.; Brunger, M. J.; Campbell, L.; Mojarrabi, B.; Teubner, P. J. O.</p> <p>2000-09-01</p> <p>Electron impact excitation of vibrational levels in the ground electronic state and nine excited electronic states in NO has been simulated for an IBC II aurora (i.e., ˜10 kR in 3914 Å radiation) in order to predict NO excited state number densities and band emission intensities. New integral electron impact excitation cross sections for NO were combined with a measured IBC II auroral secondary electron distribution, and the vibrational populations of 10 NO electronic states were determined under conditions of statistical equilibrium. This model predicts an extended vibrational distribution in the NO ground electronic state produced by radiative cascade from the seven higher-lying doublet excited electronic states populated by electron impact. In addition to significant energy storage in vibrational excitation of the ground electronic state, both the a 4Π and L2 Φ excited electronic states are predicted to have relatively high number densities because they are only weakly connected to lower electronic states by radiative decay. Fundamental mode radiative transitions involving the lowest nine excited vibrational levels in the ground electronic state are predicted to produce infrared (IR) radiation from 5.33 to 6.05 μm with greater intensity than any single NO electronic emission band. Fundamental mode radiative transitions within the a 4Π electronic state, in the 10.08-11.37 μm region, are predicted to have IR intensities comparable to individual electronic emission bands in the Heath and ɛ band systems. Results from this model quantitatively predict the vibrational quantum number dependence of the NO IR measurements of Espy et al. [1988].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1373E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1373E"><span>Possible Cause of Extremely Bright Aurora Witnessed in East Asia on 17 September 1770</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebihara, Yusuke; Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Kawamura, Akito Davis; Isobe, Hiroaki</p> <p>2017-10-01</p> <p>Extremely bright aurora was witnessed in East Asia on 17 September 1770, according to historical documents. The aurora was described as "as bright as a night with full moon" at magnetic latitude of 25°. The aurora was dominated by red color extending from near the horizon up beyond the polar star (corresponding to elevation angle of 35°). We performed a two-stream electron transport code to calculate the volume emission rates at 557.7 nm (OI) and 630.0 nm (OI). Two types of distribution of precipitating electrons were assumed. The first one is based on the unusually intense electron flux measured by the DMSP satellite in the March 1989 storm. The distribution consists of hot (peaking at 3 keV) and cold (peaking at 71 eV) components. The second one is the same as the first one, but the hot component is removed. We call this high-intensity low-energy electrons (HILEEs). The first spectrum results in an auroral display with a bright, lower green border. The second one results in red-dominated aurora extending up to the elevation angle of 35° when the equatorward boundary of the electron precipitation is located at 32° invariant latitude. The poleward boundary of the precipitation would be 42° invariant latitude or greater to explain the auroral display extending from near the horizon. The origin of the HILEEs is probably the plasma sheet or the plasmasphere that is transported earthward to L 1.39 due to enhanced magnetospheric convection. Local heating or acceleration is also plausible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSA51B0246K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSA51B0246K"><span>Auroras Now! - Auroral nowcasting service for Hotels in Finnish Lapland and its performance during winter 2003-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauristie, K.; Mälkki, A.; Pulkkinen, A.; Nevanlinna, H.; Ketola, A.; Tulkki, V.; Raita, T.; Blanco, A.</p> <p>2004-12-01</p> <p>European Space Agency is currently supporting 17 Service Development Activities (SDA) within its Space Weather Pilot Project. Auroras Now!, one of the SDAs, has been operated during November 2003 - March 2004 as its pilot season. The service includes a public part freely accessible in Internet (http://aurora.fmi.fi) and a private part visible only to the customers of two hotels in the Finnish Lapland through the hotels' internal TV-systems. The nowcasting system is based on the magnetic recordings of two geophysical observatories, Sodankylä (SOD, MLAT ~64 N) and Nurmijärvi (NUR, MLAT ~57 N). The probability of auroral occurrence is continuously characterised with an empirically determined three-level scale. The index is updated once per hour and based on the magnetic field variations recorded at the observatories. During dark hours the near-real time auroral images acquired at SOD are displayed. The hotel service also includes cloudiness predictions for the coming night. During the pilot season the reliability of the three-level magnetic alarm system was weekly evaluated by comparing its prediction with auroral observations by the nearby all-sky camera. Successful hits and failures were scored according to predetermined rules. The highest credit points when it managed to spot auroras in a timely manner and predict their brightness correctly. Maximum penalty points were given when the alarm missed clear bright auroras lasting for more than one hour. In this presentation we analyse the results of the evaluation, present some ideas to further sharpen the procedure, and discuss more generally the correlation between local auroral and magnetic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA51C2412H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA51C2412H"><span>Networked high-speed auroral observations combined with radar measurements for multi-scale insights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirsch, M.; Semeter, J. L.</p> <p>2015-12-01</p> <p>Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..385L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..385L"><span>The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L. Y.; Wang, Z. Q.</p> <p>2018-01-01</p> <p>After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760063735&hterms=geophysique&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeophysique','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760063735&hterms=geophysique&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeophysique"><span>Observations of large parallel electric fields in the auroral ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mozer, F. S.</p> <p>1976-01-01</p> <p>Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880066225&hterms=Abreu&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAbreu%252C%2Bc.','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880066225&hterms=Abreu&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAbreu%252C%2Bc."><span>The auroral 6300 A emission - Observations and modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Solomon, Stanley C.; Hays, Paul B.; Abreu, Vincent J.</p> <p>1988-01-01</p> <p>A tomographic inversion is used to analyze measurements of the auroral atomic oxygen emission line at 6300 A made by the atmosphere explorer visible airglow experiment. A comparison is made between emission altitude profiles and the results from an electron transport and chemical reaction model. Measurements of the energetic electron flux, neutral composition, ion composition, and electron density are incorporated in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA086222','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA086222"><span>High-Latitude Scintillation Morphology, Alaskan Sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-10-01</p> <p>region. Localized nighttime scintillation enhancements within the scin - tillation boundary have been associated with active auroral arcs. This list...thus ideally located for measuring scin - tillation phenomena associated with the nighttime auroral oval. The Wideband satellite orbit is such that...1000 UT). The region of enhanced phase scin - tillation between 0952 and 0955 is associated with a narrow region of enhanced energetic particle</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740018764','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740018764"><span>Rocket investigations of the auroral electrojet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, T. N.</p> <p>1973-01-01</p> <p>Five Nike-Tomahawk rockets were flown to measure perturbations in the magnitude of the geomagnetic field due to auroral electrojets. The dates and locations of the rocket launches are given along with a brief explanation of payloads and instrumentation. Papers published as a result of the project are listed. An abstract is included which outlines the scientific results from one of the flights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053472&hterms=exponential+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexponential%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053472&hterms=exponential+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexponential%2Bcurrent"><span>A correlative comparison of the ring current and auroral electrojects usig geomagnetic indices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cade, W. B., III; Sojka, J. J.; Zhu, L.</p> <p>1995-01-01</p> <p>From a study of the 21 largest geomagnetic storms during solar cycle 21, a strong correlation is established between the ring current index Dst and the time-weighted accumulation of the 1-hour auroral electrojets indices, AE and AL. The time-weighted accumulation corresponds to convolution of the auroral electrojet indices with an exponential weighting function with an e-folding time of 9.4 hours. The weighted indices AE(sub w) and AL(sub w) have correltation coefficients against Dst ranging between 0.8 and 0.95 for 20 of the 21 storms. Correlation over the entire solar cycle 21 database is also strong but not as strong as for an individual storm. A set of simple Dst prediction functions provide a first approximation of the inferred dependence, but the specific functional relationship of Dst (AL(sub w)) or Dst (AL(sub w)) varies from one storm to the next in a systematic way. This variation reveals a missing parametric dependence in the transfer function. However, our results indicate that auroral electroject indices are potentially useful for predicting storm time enhancements of ring current intensity with a few hours lead time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850034466&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbarium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850034466&hterms=barium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbarium"><span>Acceleration of barium ions near 8000 km above an aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.</p> <p>1984-01-01</p> <p>A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.3659V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.3659V"><span>The Auroral Field-aligned Acceleration - Cluster Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaivads, A.; Cluster Auroral Team</p> <p></p> <p>The four Cluster satellites cross the auroral field lines at altitudes well above most of acceleration region. Thus, the orbit is appropriate for studies of the generator side of this region. We consider the energy transport towards the acceleration region and different mechanisms for generating the potential drop. Using data from Cluster we can also for the first time study the dynamics of the generator on a minute scale. We present data from a few auroral field crossings where Cluster are in conjunction with DMSP satellites. We use electric and magnetic field data to estimate electrostatic po- tential along the satellite orbit, Poynting flux as well as the presence of plasma waves. These we can compare with data from particle and wave instruments on Cluster and on low latitude satellites to try to make a consistent picture of the acceleration region formation in these cases. Preliminary results show close agreement both between in- tegrated potential values at Cluster and electron peak energies at DMSP as well as close agreement between the integrated Poynting flux values at Cluster and the elec- tron energy flux at DMSP. At the end we draw a parallels between auroral electron acceleration and electron acceleration at the magnetopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930001978','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930001978"><span>Lyman alpha line shapes from electron impact H2 dissociative processes in the Jovian auroral zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Waite, J. H., Jr.; Gladstone, G. R.</p> <p>1992-01-01</p> <p>Over the past two years several Lyman alpha line profile spectra of Jupiter were obtained using the International Ultraviolet Explorer (IUE) telescope. Several different regions of the planet were observed including the auroral zone, the low and mid latitudes, and the equatorial region which includes the Lyman alpha bulge region. These results have presented a very interesting picture of atomic hydrogen on Jupiter with explanations that range from ion outflow in the auroral zone to large thermospheric winds at low and mid latitudes. New data are needed to address the outstanding questions. Almost certainly, high resolution spectra from the Hubble Space Telescope will play a role in new observations. Better data also require better models, and better models require new laboratory data as inputs. The purpose of this program is two-fold: (1) to introduce a method by which new laboratory electron impact measurements of H2 dissociation can be used to calculate both the slow and fast H(S-2) and H(P-2) fragments in an H2 atmosphere; and (2) to determine the predicted Lyman alpha line shape that would result from electron impact production of these dissociative fragments in the Jovian auroral zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850062284&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconjunctions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850062284&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconjunctions"><span>Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.</p> <p>1985-01-01</p> <p>Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5648076','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5648076"><span>Filamentary field-aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje</p> <p>2017-01-01</p> <p>ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..937L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..937L"><span>The APIS service : a tool for accessing value-added HST planetary auroral observations over 1997-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.</p> <p>2015-10-01</p> <p>The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.2050S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.2050S"><span>Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadeghi, S.; Emami, M. R.</p> <p>2018-04-01</p> <p>This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840062965&hterms=development+personality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddevelopment%2Bpersonality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840062965&hterms=development+personality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddevelopment%2Bpersonality"><span>Kristian Birkeland - The man and the scientist</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egeland, A.</p> <p>1984-01-01</p> <p>A review is presented of Birkeland's outstanding contributions to auroral theory and, in particular, to the foundation of modern magnetospheric physics. Birkeland's first years in research, after a study of mathematics and theoretical physics at the university, were concerned with Maxwell's theory, the investigation of electromagnetic waves in conductors, wave propagation in space, an energy transfer by means of electromagnetic waves, and a general expression for the Poynting vector. Experiments with cathode rays near a magnet in 1895, led Birkeland to the development of an auroral theory. This theory represented the first detailed, realistic explanation of the creation of an aurora. Attention is given to experiments conducted to verify the theory, the discovery of the polar elementary storm, and the deduction of auroral electric currents. Birkeland's background and education is also considered along with his personality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511803S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511803S"><span>An approach to forecast major GIC events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stauning, Peter</p> <p>2013-04-01</p> <p>In addition to provide fascinating auroral displays, the large and violent magnetic substorms may endanger power grids and cause problems for a variety of other important technical systems. Such substorms generally result from the build-up of excessive stresses in the magnetospheric tail region caused by imbalance between the transpolar antisunward convection of plasma and embedded magnetic fields and the sunward convection (return flow) at auroral latitudes. The stresses are subsequently released through substorm processes, which may, among other, cause rapidly varying ionospheric currents in the million-ampere range that in turn endanger power grids through the related "Geomagnetically Induced Current" (GIC) effects. The presentation will discuss the construction of a geomagnetic stress parameter based on a combination of polar cap indices and auroral electrojet monitoring to be used in the forecasting of major GIC events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SpWea..13..548M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SpWea..13..548M"><span>Aurorasaurus: A citizen science platform for viewing and reporting the aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.</p> <p>2015-09-01</p> <p>A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810032958&hterms=application+Fourier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dapplication%2BFourier','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810032958&hterms=application+Fourier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dapplication%2BFourier"><span>Time sequence analysis of flickering auroras. I - Application of Fourier analysis. [in atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berkey, F. T.; Silevitch, M. B.; Parsons, N. R.</p> <p>1980-01-01</p> <p>Using a technique that enables one to digitize the brightness of auroral displays from individual fields of a video signal, we have analyzed the frequency content of flickering aurora. Through the application of Fourier analysis to our data, we have found that flickering aurora contains a wide range of enhanced frequencies, although the dominant frequency enhancement generally occurs in the range 6-12 Hz. Each incidence of flickering that we observed was associated with increased radio wave absorption. Furthermore, we have found that flickering occurs in bright auroral surges, the occurrence of which is not limited to the 'breakup' phase of auroral substorms. Our results are interpreted in terms of a recently proposed theory of fluctuating double layers that accounts for a number of the observational features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990104340&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dorbiting%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990104340&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dorbiting%2Bwind"><span>Global Auroral Energy Deposition during Substorm Onset Compared with Local Time and Solar Wind IMF Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.</p> <p>1998-01-01</p> <p>The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.3668C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.3668C"><span>Mapping auroral activity with Twitter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.</p> <p>2015-05-01</p> <p>Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740014861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740014861"><span>UCB current detector experiment on Swedish auroral payloads. [ionospheric current and plasma flow measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mozer, F.</p> <p>1974-01-01</p> <p>A split Langmuir probe has been developed to make in situ measurements of ionospheric current density and plasma bulk flow. The probe consists of two conducting elements that are separated by a thin insulator that shield each other over a 2 pi solid angle, and that are simultaneously swept from negative to positive with respect to the plasma. By measuring the current to each plate and the difference current between plates, information is obtained on the plasma's current density, bulk flow, electron temperature, and density. The instrument was successfully flown twice on sounding rockets into auroral events. Measurement data indicate that the total auroral current configuration is composed of several alternating east and west electrojets associated with several alternating up and down Birkeland currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.658G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.658G"><span>Ultraviolet aurora on outer planets: morphology and remote sensing of electron precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerard, Jean-Claude; Bisikalo, Dmitry; Shematovich, Valery; Soret, Lauriane</p> <p>2016-07-01</p> <p>The aurora is the result of the interaction between energetic particles and the upper atmosphere of a planet. Generally, energetic particles from the magnetosphere penetrate the atmosphere, partly deposit their energy and are partly reflected. Their collisional interactions with the atmospheric atoms and molecules heat the atmosphere and produce auroral emissions. Consequently, the aurora then bears the signature of both the acceleration mechanism and the atmospheric structure and composition. Jupiter's UV auroral H2 and H emissions are generally divided into several components. The main auroral emission at Jupiter is associated with the giant current loop connecting the region of co-rotation breakdown in the middle magnetosphere with the ionosphere. The polar emissions observed inside the main emission are very variable over short timescales. The observed diffuse emission equatorward of the main emission is most likely related to precipitation resulting from wave-particle interactions. Finally, the satellite magnetic footprints are created by accelerated electrons resulting from the interaction between the Galilean moons and the plasma in the Jovian magnetosphere. Saturn's magnetosphere and its aurorae appear to be both solar wind driven as the terrestrial magnetosphere and rotationally dominated, similarly to Jupiter. In addition to the main auroral ring, transient features have been recently identified. Uranus displays aurorae quite different from the other two with faint small-size structures appearing following solar storm activity. These different processes are probably associated with different energy spectra of the precipitated electrons. We present an overview of recent results concerning the relation between morphology, variability and remote sensing of the auroral electron energy in the different components. We show that mapping the UV color ratio is a powerful tool to globally characterize the electron precipitation and the flux-energy relation. Considerable progress is expected with the Cassini Grand Finale and the upcoming Juno mission. The characteristics of the Mars aurora are quite different in the absence of a global magnetic field. Two types of events have been detected. The first one corresponds to localized emissions in the southern hemisphere that are related to the presence of cusp-type structures in the residual magnetic field. Diffuse auroral emission has been observed with MAVEN-IUVS in the northern hemisphere during periods following solar events. Spectral features include the CO Cameron bands, the CO2+ UV doublet, the CO 4th Positive system and the OI multiplets at 130.4 and 135.6 nm. Optical and particle instruments on board Mars Express and MAVEN have simultaneously detected the energetic electrons and their optical auroral signatures. We summarize the characteristics of the discrete aurorae. Monte Carlo simulations of Martian auroral emissions generated by electron fluxes measured in situ with ASPERA-3 will be presented and compared with nadir observations made with the SPICAM instrument. The effects of the presence of the Mars crustal magnetic field on the upward and downward electron fluxes and the emitted power will be discussed and compared with available particle flux data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6048573-distribution-mean-doppler-shift-spectral-width-skewness-coherent-mhz-auroral-radar-backscatter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6048573-distribution-mean-doppler-shift-spectral-width-skewness-coherent-mhz-auroral-radar-backscatter"><span>Distribution of mean Doppler shift, spectral width, and skewness of coherent 50-MHz auroral radar backscatter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Watermann, J.; McNamara, A.G.; Sofko, G.J.</p> <p></p> <p>Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetricmore » than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA197698','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA197698"><span>High-Latitude F-Region Irregularities: A Review and Synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-02-15</p> <p>8217 Menlo Park, CA 94025-3434 O 15 February 1988 Technical Report ) CONTRACT No. DNA 001-86- C -0002 Approved for public release; distribution is unlimited...auroral currents. Sato and 31 %~~ & % -- mmm i m m lm I ml mm* l,* ~ -. O Rourke [132] derived electric field patterns from ground-based magnetome...uarrlbost h equaorwad ege o theaurral layr 2 Janary 979 36S 2100p P % %. % k’ %1 Id ~IJ cn 0 0 D/ K!> ,’ c II0 D 0 Li DU U. - F UI L, z* 0 <~ ~ < CQ cn N J</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730058183&hterms=1587&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231587','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730058183&hterms=1587&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231587"><span>Jupiter's outer atmosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brice, N. M.</p> <p>1973-01-01</p> <p>The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31B2395N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31B2395N"><span>SuperDARN HOP radars observation of ionospheric convection associated with low-latitude aurora observed at Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishitani, N.; Hori, T.; Kataoka, R.; Ebihara, Y.; Shiokawa, K.; Otsuka, Y.; Suzuki, H.; Yoshikawa, A.</p> <p>2016-12-01</p> <p>The SuperDARN HOkkaido Pair of (HOP) radars, consisting of the Hokkaido East (2006-) and West (2014-) radars, are the SuperDARN radars located at the lowest geomagnetic latitude (36.5 degrees), and have been continuously measuring ionospheric convection at high to subauroral and middle latitudes with high temporal resolutions (<= 1 to 2 mins). These radars enable us to study the two-dimensional evolution of ionospheric convection ever 1 or 2 minutes. In this paper we study two low latitude aurora events observed in Hokkaido, Japan from 15 to 19 UT on March 17, 2015 and from 1900 to 2030 UT on December 20, 2015, identified using optical instruments such as all-sky CCD camera, wide field of view digital camera and meridian scanning photometer. Both events occurred during the main phase of the relatively large geomagnetic storms with minimum Dst of -223 nT and -170 nT respectively. The ionospheric convection at mid-latitude regions associated with the low-latitude auroral emission is characterized by (1) transient equatorward flows up to about 500 m/s in the initial phase of the emission (the geomagnetic field data at Paratunka, Far East Russia show corresponding negative excursions), and (2) sheared flow structure consisting of westward flow (about 500 m/s) equatorward of eastward flow (1000 m/s), with the equatorward boundary of auroral emission embedded in the westward flow region which expanded up to below 50 deg geomagnetic latitude. These observations imply that the electric field / convection distribution plays important roles in continuously generating the low latitude auroral emission. In particular the observation of the equatorward flow (dawn-dusk electric field) up to as low as about 50 deg geomagnetic latitude is the direct evidence for the presence of electric field to drive ring current particles into the plasmaspheric regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..03W"><span>Relation between the Sub-Auroral Polarization Stream and Energetic Particle Injection during Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.; Zou, S.; Gjerloev, J. W.; Wygant, J. R.; Ruohoniemi, J. M.; Kunduri, B.</p> <p>2017-12-01</p> <p>Sub-Auroral Polarization Streams (SAPS) refer to regions with intense radial electric fields in the inner magnetosphere and poleward electric fields in the conjugate subauroral ionosphere. These large electric fields lead to westward convection flows and sometimes reduce electron density in the ionosphere. SAPS play an important role in the magnetosphere-ionosphere-thermosphere coupling process. However, their relationship with energetic particle injections during substorms are still not well understood. In this study, we report two conjugate observations of SAPS during substorms from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN) on May 18, 2013 and Jun 29, 2013. In both cases, a large SAPS electric field ( 10 mV/m) pointing radially outward and a magnetic field depression are observed near the inner edge of the ring current. The first event is associated with a single short-lived injection, while the second one with a series of injections. The SuperDARN observations of these SAPS events reveal quite different lifetime ( 10 min for the first event and 40 min for the second one). Using the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) model and ground-based magnetometer observations as input, we show the distribution of field-aligned currents (FACs) associated with the SAPS. The above-described complex signatures can be explained by the closure of the FACs associated with the dispersionless particle injection. We conclude that particle injections during substorm can lead to localized enhanced pressure and pressure gradient, and thus the formation of SAPS through FAC closure in the ionosphere. In addition, the lifetime of SAPS depends on the injection lifetime, i.e., a series of injections can give rise to a longer lifetime of SAPS. We also run the SWMF with anisotropic feature to simulate this case and compare results with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43C..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43C..08N"><span>Dynamics of ionospheric convection during disturbed periods observed by the mid-latitude SuperDARN radars in the premidnight and postmidnight sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishitani, N.; Hori, T.; Baker, J. B.; Ruohoniemi, J. M.; Shepherd, S. G.; Bristow, W. A.; Matsuoka, A.; Teramoto, M.</p> <p>2017-12-01</p> <p>Sub-Auroral Polarization Streams (SAPS) are one of the main disturbance signatures in the ionospheric convection at subauroral latitudes. Their generation is related to a wide variety of factors such as ring current distribution, solar wind / magnetospheric conditions, ionospheric conductivity etc. Expansion of the Super Dual Auroral Radar Network (SuperDARN) field of view into mid-latitudes and the launch of the inner magnetosphere spacecraft made it possible to study the SAPS dynamics in the framework of the global convection and magnetospheric disturbances. In this paper we discuss one event of the SAPS and concurrent convection signatures on Apr 4, 2017, observed by the mid-latitude SuperDARN radars. Together with the enhancement / decay of the SAPS in the premidnight sector, the mid-latitude SuperDARN radar observed the intensification / weakening of the eastward convective flows in the postmidnight sector. Furthermore, these eastward flows were enhanced together with the magnetic perturbations observed by the ERG / Arase satellite located in the same local time sector, probably associated with the substorm expansion onset. Detailed study of the ionospheric convection dynamics including SAPS, as well as their relation to solar wind / IMF condition changes, or substorm / storm developments will be reported in the presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA282882','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA282882"><span>Information Technology Division’s Technical Paper Abstracts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-07-05</p> <p>antenna systems. 86 Title: An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ...examined a number of potential sites for the location of the proposed High Frequency Active Auroral Research Program ( HAARP ) transmitter facility. The...proposed HAARP facility will consist of a large planar array of antennas excited by phased high power transmitters operating in the lower portion of the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870045492&hterms=maxwell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dm.m%2Bmaxwell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870045492&hterms=maxwell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dm.m%2Bmaxwell"><span>The minimum bandwidths of auroral kilometric radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumback, M. M.; Calvert, W.</p> <p>1987-01-01</p> <p>The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA280716','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA280716"><span>Molecular Nitrogen Fluorescence Lidar for Remote Sensing of the Auroral Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-02-24</p> <p>AD-A280 716 PL-TR-94-2044 MOLECULAR NITROGEN FLUORESCENCE LIDAR FOR REMOTE SENSING OF THE AURORAL IONOSPHERE Richard Garner Michael Burka...6. AUTHOR(S) Richard Garner Contract F19628-92-C-0160 Michael Burka 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...by Richard Dickmuaz of the HIPAS observatory and by Ralph Wuerker of UCLA PPL. 29 le</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM53A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM53A..04L"><span>Strong Ionospheric Electron Heating Associated With Pulsating Auroras - A Swarm Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, J.; Yang, B.; Burchill, J. K.; Donovan, E.; Knudsen, D. J.</p> <p>2016-12-01</p> <p>A pulsating aurora is a repetitive modulation of auroral luminosity with periods typically of the order of 1-30 sec. It is often observed in the equatorward portion of the auroral oval. While it is generally recognized that the ultimate source of the pulsating auroral precipitation comes from energetic electrons of magnetospheric origin, investigating the ionospheric signature of the pulsating aurora may offer clues to the magnetosphere-ionosphere coupling aspect of the pulsating aurora and, under certain circumstance, to the generation mechanism of the pulsating aurora. In this study, we perform an extensive survey on the ionospheric signatures (electron temperature, plasma density and field-aligned current etc.) of pulsating auroras using Swarm satellite data. Via the survey we repeatedly identify a strong electron temperature enhancement associated with the pulsating aurora. On average, the electron temperature at Swarm satellite altitude ( 500 km) increases from 2100 K at subauroral altitudes to a peak of 2900 K upon entering the pulsating aurora patch. This indicates that the pulsating auroras may act as an important heating source of the nightside ionosphere/thermosphere. On the other hand, no well-defined trend of plasma density variation associated with pulsating auroras is identified in the survey. There often exist moderate upward field-aligned currents (up to a few mA/m2) within the pulsating auroral patch when the patch is "on" during the traversal of satellites [Gillies et al., 2015], and the electron temperature enhancement is found to be positively correlated with the magnitude of the field-aligned current. In a few events with high-resolution Swarm electric field instrument (EFI) data, we find that the on-time pulsating auroral patch is associated with structured electric field disturbances with peaks exceeding 10 mV/m. Based upon observations and ionospheric models, we consider and evaluate several possible mechanisms that may account for the strong electron heating associated with the pulsating aurora, including the Joule heating related to the field-aligned current and to the structured electric field, the backscattered secondary electrons led by the impact of pulsating auroral precipitation, and the vertical conductive heat transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10527531F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10527531F"><span>Pulsating midmorning auroral arcs, filamentation of a mixing region in a flank boundary layer, and ULF waves observed during a Polar-Svalbard conjunction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrugia, C. J.; Sandholt, P. E.; Maynard, N. C.; Burke, W. J.; Scudder, J. D.; Ober, D. M.; Moen, J.; Russell, C. T.</p> <p>2000-12-01</p> <p>Magnetically conjugate observations by the HYDRA and the Magnetic Field Experiment instruments on Polar, meridian-scanning photometers and all-sky imagers at Ny-Ålesund, and International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers on November 30, 1997, illustrate aspects of magnetosphere-ionosphere coupling at 0900-1000 magnetic local times (MLT) and 70°-80° magnetic latitudes and their dependence on interplanetary parameters. Initially, Polar crossed a boundary layer on closed field lines where magnetospheric and magnetosheath plasmas are mixed. This region contains filaments where magnetospheric electron and ion fluxes are enhanced. These filaments are associated with field-aligned current structures embedded within the large-scale region 1 (R1) current. Ground auroral imagery document the presence at this time of discrete, east-west aligned arcs, which are in one-to-one correspondence with the filaments. Temporal variations present in these auroral arcs correlate with Pc 5 pulsations and are probably related to modulations in the interplanetary electric field. The auroral observations indicate that the filamented mixing region persisted for many tens of minutes, suggesting a spatial structuring. The data suggest further that the filamented, mixing region is an important source of the R1 current and the associated midmorning arcs. When the interplanetary magnetic field (IMF) turned strongly north, Polar had entered the dayside extension of the central plasma sheet/region 2 current system where it and the underlying ground magnetometers recorded a clear field line resonance of frequency ~2.4 mHz (Pc 5 range). The source of these oscillations is most likely the Kelvin-Helmholtz instability. Subsequent to the IMF northward turning, the multiple arcs were replaced by a single auroral form to the north of Ny-Ålesund (at 1000 MLT) in the vicinity of the westward edge of the cusp. ULF pulsation activity changed to the Pc 3-4 range in the regime of the pulsating diffuse aurora when the IMF went to an approximately Parker spiral orientation and the ground stations had rotated into the MLT sector of cusp emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31B2625L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31B2625L"><span>From discrete auroral arcs to the magnetospheric generator: numerical model and case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, H.; Echim, M.; Cessateur, G.; Simon Wedlund, C.; Gustavsson, B.; Maggiolo, R.; Gunell, H.; Darrouzet, F.; De Keyser, J.</p> <p>2017-12-01</p> <p>We discuss an analysis method developed to estimate some of the properties of auroral generators (electron density, ne and temperature, Te), from ionospheric observations of the energy flux of precipitating electrons, e, measured across an auroral arc. The method makes use of a quasi-static magnetosphere-ionosphere coupling model. Assuming that the generator is a magnetospheric plasma interface, one obtains a parametric description of the generator electric field as a function of the kinetic and MHD properties of the interface. This description of the generator is introduced in a stationary M-I coupling model based on the current continuity in the topside ionosphere (Echim et al, 2007). The model is run iteratively for typical values of the magnetospheric ne and Te that are adjusted until the precipitating energy flux ɛ provided by the model at ionospheric altitudes fits the observations. The latter can be provided either in-situ by spacecraft measurements or remotely from optical ground-based observations. The method is illustrated by using the precipitating energy flux observed in-situ by DMSP on April 28, 2001, above a discrete auroral arc. For this particular date we have been able to compare the generator properties determined with our method with actual magnetospheric in-situ data provided by Cluster. The results compare very well and hence validate the method. The methodology is then applied on the energy flux of precipitating electrons estimated from optical images of a discrete auroral arc obtained simultaneously with the CCD cameras of the ALIS (Auroral Large Imaging System) network located in Scandinavia on 5 March 2008 (Simon Wedlund et al, 2013). Tomography-like techniques are used to retrieve the three-dimensional volume emission rates at 4278 Å from which the energy spectra of precipitating magnetospheric electrons can be further derived. These spectra are obtained along and across the arc, with a spatial resolution of approximately 3 km and provide E0, the characteristic energy and ɛ, the total flux energy of precipitating electrons. The generator properties are then estimated using the iterative technique validated with data from the DMSP-Cluster conjunction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1236775-formation-origin-substorm-growth-phase-onset-auroral-arcs-inferred-from-conjugate-space-ground-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1236775-formation-origin-substorm-growth-phase-onset-auroral-arcs-inferred-from-conjugate-space-ground-observations"><span>On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Motoba, T.; Ohtani, S.; Anderson, B. J.; ...</p> <p>2015-10-27</p> <p>In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1236775','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1236775"><span>On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Motoba, T.; Ohtani, S.; Anderson, B. J.</p> <p></p> <p>In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12210145W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12210145W"><span>Swarm Observation of Field-Aligned Currents Associated With Multiple Auroral Arc Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E. F.; Burchill, J. K.</p> <p>2017-10-01</p> <p>Auroral arcs occur in regions of upward field-aligned currents (FACs); however, the relation is not one to one, since kinetic energy of the current-carrying electrons is also important in the production of auroral luminosity. Multiple auroral arc systems provide an opportunity to study the relation between FACs and auroral brightness in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms all-sky imagers, magnetometers and electric field instruments on board the Swarm satellites. In "unipolar FAC" events, each arc is an intensification within a broad, unipolar current sheet and downward return currents occur outside of this broad sheet. In "multipolar FAC" events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 17 events with unipolar FAC and 12 events with multipolar FACs, we find that (1) unipolar FAC events occur most frequently between 20 and 21 magnetic local time and multipolar FAC events tend to occur around local midnight and within 1 h after substorm onset. (2) Arcs in unipolar FAC systems have a typical width of 10-20 km and a spacing of 25-50 km. Arcs in multipolar FAC systems are wider and more separated. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) Electric fields are strong and highly structured on the edges of multiple arc system with unipolar FAC. The fact that arcs with unipolar FAC are much more highly structured than the associated currents suggests that arc multiplicity is indicative not of a structured generator deep in the magnetosphere, but rather of the magnetosphere-ionosphere coupling process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51C2510H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51C2510H"><span>First Look at the 3-channel Photometer Data from RENU2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hecht, J. H.; Brinkman, D. G.; Clemmons, J. H.; Walterscheid, R. L.; Evans, J. S.; Fritz, B.; Lessard, M.</p> <p>2016-12-01</p> <p>The Rocket Experiment for Neutral Upwelling-2 (RENU2) rocket launched north towards the cusp region from Andoya, Norway at 735 UT on December 12th 2015. It included a 3-channel forward looking photometer which included narrow-band interference filters at the following wavelengths: (1) 391.4 nm to measure the relatively bright N2+(0,0) band, primarily excited in cusp aurora via resonant scattering of solar light, (2) 557.7 nm, the auroral green line, which is seen in both dayglow emission (very weakly) and when auroral precipitation is present, and (3) 630.0 nm, the auroral redline, which is also excited in the dayglow and by low energy auroral electrons typically present in the cusp. Averaging over the 2 seconds, to minimize out the rocket spin modulation, revealed a volume emission rate profile as a function of altitude that showed dayglow and resonant scattering emission from all three features on the up leg before the cusp aurora region was entered, and a combination of this and auroral emission on the down leg. Noteworthy on the down leg was a sudden increase in the 391.4 nm emission strongly suggestive of an increase in N2+ ions above the rocket. The data are compared to results of AURIC and B3C model runs where electron data from the EPLAS instrument were used to provide the electron spectra. This comparison revealed information not only about the N2+ ion and atomic oxygen density but also showed, via the effects of the different lifetime of the red and green emissions, that there were many short timescale bursts of precipitation lasting much less than 1 second.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSM51A1387M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSM51A1387M"><span>Dynamics of Auroras Conjugate to the Dayside Reconnection Region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mende, S. B.; Frey, H. U.; Doolittle, J. H.</p> <p>2006-12-01</p> <p>During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM23A2473H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM23A2473H"><span>New Insights into Auroral Particle Acceleration via Coordinated Optical-Radar Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirsch, M.</p> <p>2016-12-01</p> <p>The efficacy of instruments synthesized from heterogeneous sensor networks is increasingly being realized in fielded science observation systems. New insights into the finest spatio-temporal scales of ground-observable ionospheric physics are realized by coupling low-level data from fixed legacy instruments with mobile and portable sensors. In particular, turbulent ionospheric events give enhanced radar returns more than three orders of magnitude larger than typical incoherent plasma observations. Radar integration times for the Poker Flat Incoherent Scatter Radar (PFISR) can thereby be shrunk from order 100 second integration time down to order 100 millisecond integration time for the ion line. Auroral optical observations with 20 millisecond cadence synchronized in absolute time with the radar help uncover plausible particle acceleration processes for the highly dynamic aurora often associated with Langmuir turbulence. Quantitative analysis of coherent radar returns combined with a physics-based model yielding optical volume emission rate profiles vs. differential number flux input of precipitating particles into the ionosphere yield plausibility estimates for a particular auroral acceleration process type. Tabulated results from a survey of auroral events where the Boston University High Speed Auroral Tomography system operated simultaneously with PFISR are presented. Context is given to the narrow-field HiST observations by the Poker Flat Digital All-Sky Camera and THEMIS GBO ASI network. Recent advances in high-rate (order 100 millisecond) plasma line ISR observations (100x improvement in temporal resolution) will contribute to future coordinated observations. ISR beam pattern and pulse parameter configurations favorable for future coordinated optical-ISR experiments are proposed in light of recent research uncovering the criticality of aspect angle to ISR-observable physics. High-rate scientist-developed GPS TEC receivers are expected to contribute additional high resolution observations to such experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH51B1283B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH51B1283B"><span>Custom auroral electrojet indices calculated by using MANGO value-added services</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bargatze, L. F.; Moore, W. B.; King, T. A.</p> <p>2009-12-01</p> <p>A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.9068K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.9068K"><span>A new DMSP magnetometer and auroral boundary data set and estimates of field-aligned currents in dynamic auroral boundary coordinates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilcommons, Liam M.; Redmon, Robert J.; Knipp, Delores J.</p> <p>2017-08-01</p> <p>We have developed a method for reprocessing the multidecadal, multispacecraft Defense Meteorological Satellite Program Special Sensor Magnetometer (DMSP SSM) data set and have applied it to 15 spacecraft years of data (DMSP Flight 16-18, 2010-2014). This Level-2 data set improves on other available SSM data sets with recalculated spacecraft locations and magnetic perturbations, artifact signal removal, representations of the observations in geomagnetic coordinates, and in situ auroral boundaries. Spacecraft locations have been recalculated using ground-tracking information. Magnetic perturbations (measured field minus modeled main field) are recomputed. The updated locations ensure the appropriate model field is used. We characterize and remove a slow-varying signal in the magnetic field measurements. This signal is a combination of ring current and measurement artifacts. A final artifact remains after processing: step discontinuities in the baseline caused by activation/deactivation of spacecraft electronics. Using coincident data from the DMSP precipitating electrons and ions instrument (SSJ4/5), we detect the in situ auroral boundaries with an improvement to the Redmon et al. (2010) algorithm. We embed the location of the aurora and an accompanying figure of merit in the Level-2 SSM data product. Finally, we demonstrate the potential of this new data set by estimating field-aligned current (FAC) density using the Minimum Variance Analysis technique. The FAC estimates are then expressed in dynamic auroral boundary coordinates using the SSJ-derived boundaries, demonstrating a dawn-dusk asymmetry in average FAC location relative to the equatorward edge of the aurora. The new SSM data set is now available in several public repositories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSM32A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSM32A..07D"><span>Saturn aurora movies in visible and near-IR observed by Cassini ISS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyudina, U.; Wellington, D.; Ewald, S. P.; Ingersoll, A. P.; Porco, C.</p> <p>2010-12-01</p> <p>New 2009-2010 movies from the Cassini camera show Saturn’s auroral curtains move and change in both the northern and southern hemispheres. The observations reveal reddish color of the aurora observed in filters spanning different wavelengths. The aurora was detected in H-alpha (652-661 nm), red (574-724 nm), and broad-band infrared (668-833 nm) wavelengths, and also faintly in blue (405-505 nm) and green (507-632 nm) wavelengths. The prominent H-alpha line and the overall spectral shape agrees with predicted spectra for Saturnian auroras (Aguilar, 2008). Along with the spectra and brightness measurements, we will present two 400+ frame movies taken in the clear filter, one showing aurora in the northern hemisphere from October 5-9, 2009, and the other showing the aurora in the southern hemisphere, from June 26, 2010. These movies show the aurora varying dramatically with longitude and rotating together with Saturn. The main longitudinal structure of the aurora can persist for ~3 days, as seen on the repeated views of the same longitudes several Saturn rotations later. Besides the steady main structure, aurora may brighten suddenly on the timescales on the order of 10 minutes. Near the limb the height of the auroral curtains above its base can be measured; this height can reach more than 1200 km. The main auroral oval in the northern hemisphere appears near 75° latitude. The main auroral oval in the southern hemisphere appears near -72° latitude, with smaller instances of auroral activity near -75° and -77°. Reference: Aguilar, A., J. M. Ajello, R. S. Mangina, G. K. James, H. Abgrall, and E. Roueff, “The electron-excited middle UV to near IR spectrum of H2 : Cross-sections and transition probabilities”, Astrophys. J. Supp. Ser., 177 (2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850014173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850014173"><span>Auroral-polar cap environment and its impact on spacecraft plasma interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garrett, H. B.</p> <p>1985-01-01</p> <p>The high density of the plasma at shuttle altitude is likely to increase greatly the possibility of arcing and shorting of exposed high voltage surfaces. For military missions over the polar caps and through the auoroal zones, the added hazards of high energy auroral particle fluxes or solar flares will further increase the hazard to shuttle, its crew, and its mission. A review of the role that the auroral and polar cap environment play in causing these interactions was conducted. A simple, though comprehensive attempt at modelling the shuttle environment at 400 km will be described that can be used to evaluate the importance of the interactions. The results of this evaluation are then used to define areas where adequate environmental measurements will be necessary if a true spacecraft interactions technology is to be developed for the shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830047096&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830047096&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddebye%2Blength"><span>Numerically simulated two-dimensional auroral double layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borovsky, J. E.; Joyce, G.</p> <p>1983-01-01</p> <p>A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMIN34A..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMIN34A..05J"><span>Data Acquisition System for Russian Arctic Magnetometer Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janzhura, A.; Troshichev, O. A.; Takahashi, K.</p> <p>2010-12-01</p> <p>Monitoring of magnetic activity in the auroral zone is very essential for space weather problem. The big part of northern auroral zone lies in the Russian sector of Arctica. The Russian auroral zone stations are located far from the proper infrastructure and communications, and getting the data from the stations is complicated and nontrivial task. To resolve this problem a new acquisition system for magnetometers was implemented and developed in last few years, with the magnetic data transmission in real time that is important for many forecasting purpose. The system, based on microprocessor modules, is very reliable in hush climatic conditions. The information from the magnetic sensors transmits to AARI data center by satellite communication system and is presented at AARI web pages. This equipment upgrading of Russian polar magnetometer network is supported by the international RapidMag program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870026476&hterms=circuit+electric&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcircuit%2Belectric','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870026476&hterms=circuit+electric&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcircuit%2Belectric"><span>Simulation of double layers in a model auroral circuit with nonlinear impedance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, R. A.</p> <p>1986-01-01</p> <p>A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830064833&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830064833&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>Spatial relationship of field-aligned currents, electron precipitation, and plasma convection in the auroral oval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coley, W. R.</p> <p>1983-01-01</p> <p>Observations reported by Winningham et al. (1975) have established that the auroral oval mapped to the magnetosphere along closed field lines divided the oval into two distinct regions of particle precipitation. In order to determine relationships between field-aligned current, convection, and particle precipitation, simultaneous measurements of all quantities are needed. The studies of Bythrow et al. (1980, 1981) have utilized Atmosphere Explorer C data for sunlit passes of the high-latitude ionosphere. The addition of magnetometer information for the eclipsed high-latitude passes of the Atmospheric Explorer C spacecraft makes it possible to make simultaneous measurements of Birkeland currents, plasma convection, and electron precipitation in the nightside auroral oval and polar cap. The present investigation provides the results of such observations, discusses the observed relationships, and attempts to correlate boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850051361&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Denvironnement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850051361&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Denvironnement"><span>Universal time dependence of nighttime F region densities at high latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De La Beaujardiere, O.; Wickwar, V. B.; Caudal, G.; Holt, J. M.; Craven, J. D.; Frank, L. A.; Brace, L. H.</p> <p>1985-01-01</p> <p>Coincident auroral-zone experiments using three incoherent-scatter radars at widely spaced longitudes are reported. The observational results demonstrate that, during the night, the F layer electron density is strongly dependent on the longitude of the observing site. Ionization patches were observed in the nighttime F region from the Chatanika and EISCAT radars, while densities observed from the Millstone radar were substantially smaller. The electron density within these maxima is larger at EISCAT than at Chatanika. When observed in the midnight sector auroral zone, these densities had a peak density at a high altitude of 360-475 km. The density was maximum when EISCAT was in the midnight sector and minimum when Millstone was in the midnight sector. A minimum in insolation in the auroral zone occurs at the UT when Millstone is in the midnight sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PASJ...69L...1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PASJ...69L...1C"><span>Unusual rainbows as auroral candidates: Another point of view</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrasco, Víctor M. S.; Trigo, Ricardo M.; Vaquero, José M.</p> <p>2017-04-01</p> <p>Several auroral events that occurred in the past have not been cataloged as such due to the fact that they were described in the historical sources with different terminologies. Hayakawa et al. (2016, PASJ, 68, 33) have reviewed historical Oriental chronicles and proposed the terms “unusual rainbow” and “white rainbow” as candidates for auroras. In this work, we present three events that took place in the 18th century in two different settings (the Iberian Peninsula and Brazil) that were originally described with similar definitions or wording to that used by the Oriental chronicles, despite the inherent differences in terms associated with Oriental and Latin languages. We show that these terms are indeed applicable to the three case studies from Europe and South America. Thus, the auroral catalogs available can be extended to Occidental sources using this new terminology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25d2303S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25d2303S"><span>Electron acoustic nonlinear structures in planetary magnetospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.</p> <p>2018-04-01</p> <p>In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984AnGeo...2...77M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984AnGeo...2...77M"><span>Generation of intensity covariations of the oxygen green and red lines in the nightglow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misawa, K.; Takeuchi, I.; Kato, Y.; Aoyama, I.</p> <p>1984-02-01</p> <p>The cause of intensity covariations of the oxygen green and red lines is studied. Intensity covariations are compared with the auroral-electrojet-activity index AE, the substorm Pi2, and the magnetogram. It is suggested that intensity covariations or double-intensity maxima of the red line occur in association with intense auroral substorms, and that they are the direct experimental evidences of Testud's theory (1973).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810061762&hterms=efficiency+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Defficiency%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810061762&hterms=efficiency+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Defficiency%2Benergy"><span>Saturation and energy-conversion efficiency of auroral kilometric radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.</p> <p>1981-01-01</p> <p>A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA012476','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA012476"><span>Auroral Simulation Studies. HAES Report No. 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-04-22</p> <p>Kofsky and John Schroeder (Photomctrics). Benefit was also derived from conversations with Drs; A. T. Stair (AFCRL), Richard Hegblom (Boston College...rate at 1.27 pm) about 35 minutes following auroral onset. This is consistent -with the observations of Gattinger and Vallance Jones (Reference 26). The...above lead to the results shown in Fi&.ee 2-42. Shown for comparison are the observations of Gattinger and Vallance Jones. The measured maximum ground</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.2267G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.2267G"><span>Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu</p> <p>2018-05-01</p> <p>A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720055073&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720055073&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bzone"><span>Local-time survey of plasma at low altitudes over the auroral zones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Ackerson, K. L.</p> <p>1972-01-01</p> <p>Local-time survey of the low-energy proton and electron intensities precipitated into the earth's atmosphere over the auroral zones during periods of magnetic quiescence. This survey was constructed by selecting a typical individual satellite crossing of this region in each of eight local-time sectors from a large library of similar observations with the polar-orbiting satellite Injun 5. The trapping boundary for more-energetic electron intensities, E greater than 45 keV, was found to be a 'natural coordinate' for delineating the boundary between the two major types of lower-energy, 50 less than or equal to E less than or equal to 15,000 eV, electron precipitation commonly observed over the auroral zones at low altitudes. Poleward of this trapping boundary inverted 'V' electron precipitation bands are observed in all local-time sectors. These inverted 'V' electron bands in the evening and midnight sectors are typically more energetic and have greater latitudinal widths than their counterparts in the noon and morning sectors. In general, the main contributors to the electron energy influx into the earth's atmosphere over the auroral zones are the electron inverted 'V' precipitation poleward of the trapping boundary in late evening, the plasma-sheet electron intensities equatorward of this boundary in early morning, and both of these precipitation events near local midnight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616252L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616252L"><span>APIS : an interactive database of HST-UV observations of the outer planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre</p> <p>2014-05-01</p> <p>Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..573L"><span>APIS : an interactive database of HST-UV observations of the outer planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.</p> <p>2013-09-01</p> <p>Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM44A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM44A..06K"><span>Evaluating the role of pre-onset streamers on substorm expansion - where do we go from here?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kepko, L.</p> <p>2017-12-01</p> <p>Prior to the THEMIS mission there were two `standard' substorm models — inside out vs. outside in. The THEMIS era has fundamentally altered this dichotomy with the inclusion of the triggered inside-out scenario. This scenario was initially based on the observation of THEMIS ASI white light streamers flowing from the poleward edge of the auroral oval, arriving in the vicinity of the eventual breakup region. It has since been augmented with observations from radar and 630.0 nm ASI cameras. The validity of this scenario rests crucially on the interpretation of ground-based auroral imager data, which in many cases is a subjective analysis. Through an exhaustive examination of 443 events that formed the basis of the pre-onset streamer, triggered inside-out scenario, we have identified several distinct types of auroral intensifications and expansions, including events for which pre-onset streamers appeared to play a clear role. In this talk we suggest an organizational paradigm for interpretation and analysis of substorm events, identifying when and under what conditions pre-onset streamers appear to be associated with auroral activity. We further comment on the current observational and theoretical hurdles that are limiting our ability to reach closure on this topic, and make specific recommendations for achieving further progress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10628897V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10628897V"><span>Polar UVI observations of dayside auroral transient events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorobjev, V. G.; Yagodkina, O. I.; Sibeck, D. G.; Liou, K.; Meng, C.-I.</p> <p>2001-12-01</p> <p>We analyze Polar Ultraviolet Imager (UVI) observations of auroral transient events (ATEs) in the dayside Northern Hemisphere. During 5 winter months in 1996 and 1997, we found 31 prenoon ATEs but only 13 afternoon events. Prenoon and afternoon event characteristics differ. Prenoon ATEs generally appear as bright spots of auroral luminosity in the area from 0800 to 1000 magnetic local time (MLT) and 74.5° and 76.5° corrected geomagnetic latitude (CGL). Bright aurorae then quickly expand westward and poleward, accompanied by high-latitude magnetic impulsive events (MIE) and traveling convection vortices (TCV). Afternoon ATEs usually appear as a sudden intensification of aurorae in the area from 1400 to 1600 MLT and 75.5° to 78.5° CGL. Within 15-20 min the bright band of luminosity extends eastward to reach 2000-2100 MLT at 70°-72° CGL. Although midlatitude and low-latitude ground magnetograms in the evening sector record increases in the horizontal component of the magnetic field, no corresponding features occur at stations in the morning sector. Afternoon ATEs correspond to abrupt changes in the interplanetary magnetic field (IMF) orientation, but not to significant variations of the solar wind dynamic pressure, indicating that the auroral transient events occur as part of the magnetospheric response to abrupt changes in the foreshock geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33B..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33B..07P"><span>Interhemispheric Propagation and Interactions of Auroral LSTIDs near the Equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pradipta, R.; Valladares, C.; Carter, B. A.; Doherty, P.</p> <p>2016-12-01</p> <p>In this work, we used experimental observations based on GPS total electron content (TEC) and ionosonde measurements to study some of the physics behind large-scale traveling ionospheric disturbances (LSTIDs) during the 26 September 2011 geomagnetic storm. In particular, we looked at how these LSTIDs propagate from the auroral zones all the way to the equatorial region and examined how the auroral LSTIDs from opposite hemispheres interact/interfere near the geomagnetic equator. We found that these LSTIDs had an overall propagation speed of ˜700 m/s. Furthermore, the resultant amplitude of the LSTID interference pattern was found to far exceed the sum of individual amplitudes of the incoming LSTIDs. We suspect that this peculiar intensification of auroral LSTIDs around the geomagnetic equator is facilitated by the significantly higher ceiling/canopy of the ionospheric plasma layer there. Normally, acoustic-gravity waves (AGWs) that leak upward (and thus increase in amplitude) would find a negligible level of plasma density at the topside ionosphere. However, the tip of the equatorial fountain at the geomagnetic equator constitutes a significant amount of plasma at a topside-equivalent altitude. The combination of increased AGW amplitudes and a higher plasma density at such altitude would therefore result in higher-amplitude LSTIDs in this particular region, as demonstrated in our observations and analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019847','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019847"><span>Transfer function analysis of thermospheric perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.</p> <p>1986-01-01</p> <p>Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986thdy.work..221M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986thdy.work..221M"><span>Transfer function analysis of thermospheric perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.</p> <p>1986-06-01</p> <p>Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053485&hterms=rosenberg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drosenberg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053485&hterms=rosenberg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drosenberg"><span>Coincident bursts of auroral kilometric radiation and VLF emissions associted with a type 3 solar radio noise event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rosenberg, T. J.; Singh, S.; Wu, C. S.; Labelle, J.; Treumann, R. A.; Inan, U. S.; Lanzerotti, L. J.</p> <p>1995-01-01</p> <p>This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) bu solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected onthe AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometric considerations relating to wave propagation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the typew III burst at HF with the AKR is consistent with external stimulation of the AKR, is different, more immediate,triggering process than that implied by Calvert (1981) is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequences comparable to those of the AKR by paraetric excitation or some other process, thus providing the few background photons required for the generation of AKR by the WU and Lee (1979) cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.7679F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.7679F"><span>Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Gerrard, A. J.; Miller, E. S.; Marini, J. P.; West, M. L.; Bristow, W. A.</p> <p>2014-09-01</p> <p>A climatology of daytime midlatitude medium-scale traveling ionospheric disturbances (MSTIDs) observed by the Blackstone Super Dual Auroral Radar Network (SuperDARN) radar is presented. MSTIDs were observed primarily from fall through spring. Two populations were observed: a dominant population heading southeast (centered at 147° geographic azimuth, ranging from 100° to 210°) and a secondary population heading northwest (centered at -50° azimuth, ranging from -75° to -25°). Horizontal velocities ranged from 50 to 250 m s-1 with a distribution maximum between 100 and 150 m s-1. Horizontal wavelengths ranged from 100 to 500 km with a distribution peak at 250 km, and periods between 23 and 60 min, suggesting that the MSTIDs may be consistent with thermospheric gravity waves. A local time (LT) dependence was observed such that the dominant (southeastward) population decreased in number as the day progressed until a late afternoon increase. The secondary (northwestward) population appeared only in the afternoon, possibly indicative of neutral wind effects or variability of sources. LT dependence was not observed in other parameters. Possible solar-geomagnetic and tropospheric MSTID sources were considered. The auroral electrojet (AE) index showed a correlation with MSTID statistics. Reverse ray tracing with the HINDGRATS model indicates that the dominant population has source regions over the Great Lakes and near the geomagnetic cusp, while the secondary population source region is 100 km above the Atlantic Ocean east of the Carolinas. This suggests that the dominant population may come from a region favorable to either tropospheric or geomagnetic sources, while the secondary population originates from a region favorable to secondary waves generated via lower atmospheric convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA13D..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA13D..02F"><span>Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by a Longitudinally Distributed Chain of SuperDARN Radars Across the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Gerrard, A. J.; Miller, E. S.; West, M. L.; Bristow, W.</p> <p>2014-12-01</p> <p>Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min. In SuperDARN data, MSTID signatures are manifested as quasi-periodic enhancements of ground scatter power moving through the radar FOV. High latitude SuperDARN MSTIDs have been studied for many years and are generally attributed to atmospheric gravity waves (AGWs) launched by auroral sources. Recent extension of the SuperDARN network to midlatitudes has revealed that MSTIDs are routinely observed at midlatitudes as well. Our previous research using the single radar in Blackstone, Virginia found a primary MSTID propagation direction which suggests that high latitude activity is also the primary source of midlatitude MSTIDs. However, there is also a population of MSTIDs that could be generated by tropospheric sources. This study extends this research by surveying multiple midlatitude radars in Oregon (CVW and CVE), Kansas (FHW and FHW) and Virginia (BKS and WAL) from 1 November 2012 through 1 January 2013 for MSTID signatures in order understand the longitudinal distribution of midlatitude MSTID characteristics and understand possible influences of varied terrain on MSTID observations. MSTIDs observed by all radars had typical wavelengths between 250 to 500 km and horizontal velocities between 100 and 250 m/s. In all radars, the dominant population of MSTIDs propagated in a southward direction, ranging from 135˚ to 250˚ geographic azimuth. The dominant southward propagation direction suggests auroral sources are the dominant source of MSTIDs observed by SuperDARN radars at midlatitudes, which reinforces findings regarding the primary population in previous work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860031895&hterms=generation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeneration%2BZ','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860031895&hterms=generation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeneration%2BZ"><span>The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, C. S.</p> <p>1985-01-01</p> <p>The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA470291','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA470291"><span>Basis of Ionospheric Modification by High-Frequency Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-06-01</p> <p>for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860038155&hterms=destiny&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddestiny','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860038155&hterms=destiny&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddestiny"><span>Destiny of earthward streaming plasma in the plasmasheet boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, J. L.; Horwitz, J. L.</p> <p>1986-01-01</p> <p>The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation"><span>Morphology of auroral zone radio wave scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rino, C.L.; Matthews, S.J.</p> <p>1980-08-01</p> <p>This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhCS.162a2005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhCS.162a2005C"><span>Nonequilibrium calculations of the role of electron impact in the production of NO and its emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, L.; Brunger, M. J.</p> <p>2009-04-01</p> <p>We review our recent work on nonequilibrium modelling of the density of nitric oxide and its infrared emissions in the Earth's upper atmosphere. The aim of these studies was to investigate the contribution of electron impact excitation to the NO density and the sensitivity of this process to the electron impact cross sections. The results are compared with satellite measurements of NO densities in equatorial and auroral high-latitude conditions and with rocket measurements of infrared emissions in auroral conditions. Particular findings are that electron impact excitation of N2 makes a significant contribution to the NO density at altitudes around 105 km and to auroral infrared emissions for the (1 → 0) ground-state emission from NO. The sensitivity of the NO fundamental emissions to various measured and theoretical integral cross sections is investigated and found to be significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028334&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231094','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028334&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231094"><span>The stimulation of auroral kilometric radiation by type III solar radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calvert, W.</p> <p>1981-01-01</p> <p>It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990113191&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Bregions%2BRemote','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990113191&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Bregions%2BRemote"><span>Remote Determination of Auroral Energy Characteristics During Substorm Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Cumnock, J.; Lummerzheim, D.; Spann, J. F., Jr.</p> <p>1997-01-01</p> <p>Ultraviolet auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength N2 Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. This technique is used in this study to estimate incident electron energy flux and average energy during substorm activity occurring on May 19, 1996. This event was simultaneously observed by WIND, GEOTAIL, INTERBALL, DMSP and NOAA spacecraft as well as by POLAR. Here incident energy estimates derived from Ultraviolet Imager (UVI) are compared with in situ measurements of the same parameters from an overflight by the DMSP F12 satellite coincident with the UVI image times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009079','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009079"><span>Small-Scale Features in Pulsating Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc</p> <p>2011-01-01</p> <p>A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>