Cassini UVIS Auroral Observations in 2016 and 2017
NASA Astrophysics Data System (ADS)
Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team
2017-10-01
In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.
Cassini UVIS Observations of Saturn during the Grand Finale Orbits
NASA Astrophysics Data System (ADS)
Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.
2017-12-01
In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.
Computer assisted analysis of auroral images obtained from high altitude polar satellites
NASA Technical Reports Server (NTRS)
Samadani, Ramin; Flynn, Michael
1993-01-01
Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.
Auroral LSTIDs and SAR Arc Occurrences in Northern California During Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Bhatt, A.; Kendall, E. A.
2015-12-01
A 630nm allsky imager has been operated for two years in northern California at the Hat Creek Radio Observatory. F-region airglow data captured by the imager ranges from approximately L=1.7 -2.7. Since installation of the imager several geomagnetic storms have occurred with varying intensities. Two main manifestations of the geomagnetic storms are observed in the 630 nm airglow data: large-scale traveling ionospheric disturbances that are launched from the auroral zone and Stable Auroral Red (SAR) arcs during more intense geomagnetic storms. We will present a statistical analysis of these storm-time phenomena in northern California for the past eighteen months. This imager is part of a larger all-sky imaging network across the continental United States, termed MANGO (Midlatitude All-sky-imaging Network for Geophysical Observations). Where available, we will add data from networked imagers located at similar L-shell in other states as well.
Polar CAP Boundary Identification Using Redline Imaging Data
NASA Astrophysics Data System (ADS)
Spanswick, E.; Roy, E. A.; Gallardo-Lacourt, B.; Donovan, E.; Ridley, A. J.; Gou, D.
2017-12-01
The location of the polar cap boundary is typically detected using low-orbit satellite measurements in which the boundary is identified by its unique signature of a sharp decrease in energy and particle flux poleward of the auroral oval. A previous study based in optical data by Blanchard et al. [1995] suggested that a dramatic gradient in redline aurora may also be an indicator of the polar cap boundary. While this study has been heavily cited, it was only based on few events and its findings have largely gone uncontested. Since the Blanchard study, satellite instrumentation and available auroral data have improved significantly. Auroral imaging has moved well beyond the capabilities of the instrumentation in the previous study in terms of sensitivity and both spatial and temporal resolution. We now have access to decades of optical data from arrays spanning a huge spatial range; none of which was available previously. In this study we have used data from FAST and DMSP satellites in conjunction with the University of Calgary's Narrow-band All-sky Cameras for Auroral Monitoring (NASCAM) ground based auroral imaging array and the REdline Geospace Observatory (REGO) data to assess the viability of automated detection of the polar cap boundary. In our analysis we used redline (630nm) auroral signatures from the ground based imagers around the location of the polar cap boundary observed in satellite data. We have characterized the polar cap boundary luminosity and location using the redline auroral data during different geomagnetic conditions. Our results enable a new tool to automatically identify the polar cap boundary to reach a deeper understanding of the connection between polar cap location and auroral activity.
Auroral x-ray imaging from high- and low-Earth orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, D.L.; Gorney, D.J.; Imhof, W.L.
Observations of bremsstrahlung x rays emitted by energetic electrons impacting the Earth's atmosphere can be used for remotely sensing the morphology, intensity, and energy spectra of electron precipitation from the magnetosphere. The utility of the technique is derived from the broad energy range of observable x rays (2 to > 100 KeV), the simple emission process, the large x-ray mean free path in the atmosphere, and negligible background. Two auroral x-ray imagers, developed for future spaceflights, are discussed. The Polar Ionospheric X-Ray Imaging Experiment is scheduled for launch on the NASA International Solar-Terrestrial Physics/Global Geospace Science program POLAR satellite inmore » 1994. The POLAR orbit, with an apogee and perigee of 9 and 1.8 R[sub e] (Earth radii), respectively, affords the opportunity to image the aurora from a high altitude above the north pole continuously for several hours. The Magnetospheric Atmospheric X-Ray Imaging Experiment (MAXIE) was launched aboard the NOAA-I satellite on August 8, 1993. The 800-km polar orbit passes over both the northern and southern auroral zones every 101 min. MAXIE will be capable of obtaining multiple images of the same auroral region during a single satellite orbit. The experimental approaches used to exploit these very different orbits for remote sensing of the Earth's auroral zones are emphasized.« less
Polar Lights at Saturn Bid Cassini Farewell
2017-10-16
On Sept. 14, 2017, one day before making its final plunge into Saturn's atmosphere, NASA's Cassini spacecraft used its Ultraviolet Imaging Spectrograph, or UVIS, instrument to capture this final view of ultraviolet auroral emissions in the planet's north polar region. The view is centered on the north pole of Saturn, with lines of latitude visible for 80, 70 and 60 degrees. Lines of longitude are spaced 40 degrees apart. The planet's day side is at bottom, while the night side is at top. A sequence of images from this observation has also been assembled into a movie sequence. The last image in the movie was taken about an hour before the still image, which was the actual final UVIS auroral image. Auroral emissions are generated by charged particles traveling along the invisible lines of Saturn's magnetic field. These particles precipitate into the atmosphere, releasing light when they strike gas molecules there. Several individual auroral structures are visible here, despite that this UVIS view was acquired at a fairly large distance from the planet (about 424,000 miles or 683,000 kilometers). Each of these features is connected to a particular phenomenon in Saturn's magnetosphere. For instance, it is possible to identify auroral signatures here that are related to the injection of hot plasma from the dayside magnetosphere, as well as auroral features associated with a change in the magnetic field's shape on the magnetosphere's night side. Several possible scenarios have been postulated over the years to explain Saturn's changing auroral emissions, but researchers are still far from a complete understanding of this complicated puzzle. Researchers will continue to analyze the hundreds of image sequences UVIS obtained of Saturn's auroras during Cassini's 13-year mission, with many new discoveries likely to be made. This image and movie sequence were produced by the Laboratory for Planetary and Atmospheric Physics (LPAP) of the STAR Institute of the University of Liege in Belgium, in collaboration with the UVIS Team. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21899
HST UV Images of Saturn's Aurora Coordinated with Cassini Solar Wind Measurements
NASA Astrophysics Data System (ADS)
Clarke, John
2003-07-01
A key measurement goal of the Cassini mission to Saturn is to obtain simultaneous solar wind and auroral imaging measurements in a campaign scheduled for Jan. 2004. Cassini will measure the solar wind approaching Saturn continuously from 9 Jan. - 6 Feb., but not closer to Saturn due to competing spacecraft orientation constraints. The only system capable of imaging Saturn's aurora in early 2004 will be HST. In this community DD proposal we request the minimum HST time needed to support the Cassini mission during the solar wind campaign with UV images of Saturn's aurora. Saturn's magnetosphere is intermediate between the "closed" Jovian case with large internal sources of plasma and the Earth's magnetosphere which is open to solar wind interactions. Saturn's aurora has been shown to exhibit large temporal variations in brightness and morphology from Voyager and HST observations. Changes of auroral emitted power exceeding one order of magnitude, dawn brightenings, and latitudinal motions of the main oval have all been observed. Lacking knowledge of solar wind conditions near Saturn, it has not been possible to determine its role in Saturn's auroral processes, nor the mechanisms controlling the auroral precipitation. During Cassini's upcoming approach to Saturn there will be a unique opportunity to answer these questions. We propose to image one complete rotation of Saturn to determine the corotational and longitudinal dependences of the auroral activity. We will then image the active sector of Saturn once every two days for a total coverage of 26 days during the Cassini campaign to measure the upstream solar wind parameters. This is the minimum coverage needed to ensure observations of the aurora under solar wind pressure variations of more than a factor of two, based on the solar wind pressure variations measured by Voyager 2 near Saturn on the declining phase of solar activity. The team of proposers has carried out a similar coordinated observing campaign of Jupiter during the Cassini flyby, resulting in a set of papers and HST images on the cover of Nature on 28 February 2002.
DISCOVERY OF A DARK AURORAL OVAL ON SATURN
NASA Technical Reports Server (NTRS)
2002-01-01
The ultraviolet image was obtained by the NASA/ESA Hubble Space Telescope with the European Faint Object Camera (FOC) on June 1992. It represents the sunlight reflected by the planet in the near UV (220 nm). * The image reveals a dark oval encircling the north magnetic pole of Saturn. This auroral oval is the first ever observed for Saturn, and its darkness is unique in the solar system (L. Ben-Jaffel, V. Leers, B. Sandel, Science, Vol. 269, p. 951, August 18, 1995). The structure represents an excess of absorption of the sunlight at 220 nm by atmospheric particles that are the product of the auroral activity itself. The large tilt of the northern pole of Saturn at the time of observation, and the almost perfect symmetry of the planet's magnetic field, made this observation unique as even the far side of the dark oval across the pole is visible! * Auroral activity is usually characterized by light emitted around the poles. The dark oval observed for Saturn is a STUNNING VISUAL PROOF that transport of energy and charged particles from the magnetosphere to the atmosphere of the planet at high latitudes induces an auroral activity that not only produces auroral LIGHT but also UV-DARK material near the poles: auroral electrons are probably initiating hydrocarbon polymer formation in these regions. Credits: L. Ben Jaffel, Institut d'Astrophysique de Paris-CNRS, France, B. Sandel (Univ. of Arizona), NASA/ESA, and Science (magazine).
Evidence for Auroral Emissions From Callisto's Footprint in HST UV Images
NASA Astrophysics Data System (ADS)
Bhattacharyya, Dolon; Clarke, John T.; Montgomery, Jordan; Bonfond, Bertrand; Gérard, Jean-Claude; Grodent, Denis
2018-01-01
Auroral emissions are expected from the footprint of Callisto in Jupiter's upper atmosphere owing to the known interaction of its atmosphere with Jupiter's magnetosphere, and from the observed auroral emissions from the footprints of the other three Galilean satellites. The mapping of Callisto along modeled magnetic field lines at Jupiter, however, places the expected footprint at the same latitude as the main auroral emissions, making it difficult to detect. We analyzed ultraviolet images of Jupiter taken using the Hubble Space Telescope/Advanced Camera for Surveys instrument during a large observing campaign in 2007. Using a coaddition method similar to one used for Enceladus, we have identified a strong candidate for the footprint of Callisto on 24 May 2007. We tested this finding by applying the same coaddition technique to a nearly identical auroral configuration on 30 May 2007 when Callisto was behind Jupiter, not visible from Earth (central meridian longitude = 22°; sub-Callisto system III longitude = 327°). By comparing the two coadded images, we can clearly see the presence of a strongly subcorotating spot close to the expected Callisto footprint location on 24 May and its absence on 30 May. On 24 May Callisto was located in the current sheet. We also found a probable candidate on 26 May 2007 during which time Callisto was positioned below the current sheet. The measured location and intensity of the auroral emission provide important information about the interaction of Callisto with Jupiter's magnetic field, the corotating plasma, and the neutral and ionized state of the thin atmosphere of Callisto.
Dynamics of Auroras Conjugate to the Dayside Reconnection Region.
NASA Astrophysics Data System (ADS)
Mende, S. B.; Frey, H. U.; Doolittle, J. H.
2006-12-01
During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.
NASA Astrophysics Data System (ADS)
Yang, Qiuju; Hu, Ze-Jun
2018-03-01
Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.
Global Auroral Remote Sensing Using GGS UVI Images
NASA Technical Reports Server (NTRS)
Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Spann, J. F., Jr.; Cumnock, J.; Lummerzheim, D.
1997-01-01
The GGS POLAR satellite, with an apogee distance of 9 Earth radii, provides an excellent platform for extended viewing of the northern auroral zone. Global FUV auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength Earth Far Ultraviolet (FUV) Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. The determination of maps of incident auroral energy characteristics is demonstrated here and compared with in situ measurements.
NASA Astrophysics Data System (ADS)
Megan Gillies, D.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E.
2017-08-01
We present a comprehensive survey of 630 nm (red-line) emission discrete auroral arcs using the newly deployed Redline Emission Geospace Observatory. In this study we discuss the need for observations of 630 nm aurora and issues with the large-altitude range of the red-line aurora. We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of 10 red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) and find that a characteristic emission height of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar, both of which are consistent with a characteristic emission height of 200 km.
The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval
NASA Astrophysics Data System (ADS)
Imber, S. M.; Milan, S. E.; Lester, M.
2013-02-01
We present a statistical study relating the latitude of the auroral oval measured by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) SI-12 proton auroral camera to that of the Heppner-Maynard Boundary (HMB) determined from Super Dual Auroral Radar Network (SuperDARN) data during the period 2000-2002. The HMB represents the latitudinal extent of the ionospheric convection pattern. The oval latitude from the proton auroral images is determined using the method of Milan et al. (2009a), which fits a circle centered on a point 2° duskward and 5° antisunward of the magnetic pole. The auroral latitude at midnight is determined for those images where the concurrent SuperDARN northern hemisphere maps contain more than 200 data points such that the HMB is well-defined. The statistical study comprises over 198,000 two-minute intervals, and we find that the HMB is located on average 2.2° equatorward of the proton auroral latitude. A superposed epoch analysis of over 2500 substorms suggests that the separation between the HMB and the oval latitude increases slightly during periods of high geomagnetic activity. We suggest that during intervals where there are no auroral images available, the HMB latitude and motion could be used as a proxy for that of the aurora, and therefore provide information about motions of the open/closed field line boundary.
The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs
NASA Astrophysics Data System (ADS)
Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.
2013-07-01
High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.
NASA Technical Reports Server (NTRS)
Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.
1992-01-01
The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.
Kilometric radiation power flux dependence on area of discrete aurora
NASA Technical Reports Server (NTRS)
Saflekos, N. A.; Burch, J. L.; Gurnett, D. A.; Anderson, R. R.; Sheehan, R. E.
1989-01-01
Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism.
Hubble Images Reveal Jupiter's Auroras
NASA Technical Reports Server (NTRS)
1996-01-01
These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.
The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/NASA Astrophysics Data System (ADS)
Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.
2015-12-01
The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key elements of substorm current spatial structure and temporal development, relationship to electric fields/potentials, plasma moment and distribution features, causal linkages to auroral emission features, and other properties will be discussed.
Global Dynamics of Dayside Auroral Precipitation in Conjunction with Solar Wind Pressure Pulses
NASA Technical Reports Server (NTRS)
Brittnacher, M.; Chua, D.; Fillingim, M.; Parks, G. K.; Spann, James F., Jr.; Germany, G. A.; Carlson, C. W.; Greenwald, R. A.
1999-01-01
Global observation of the dayside auroral region by the Ultraviolet Imager (UVI) during transient solar wind pressure pulse events on October 1, 1997 has revealed unusual features in the auroral precipitation. The auroral arc structure on the dayside, possibly connected with the LLBL, split into 2 arc structures; one moving poleward and fading over a 5 min period, and the other stationary or slightly shifted equatorward (by changes in the x component). The y component was large and positive, and the z component was small and negative. The splitting of the arc structure extended from 9 to 15 MLT and was concurrent with an enhancement of the convection in the cusp region identified by SuperDARN observations. The convection reversal on the morningside was adjacent to and poleward of the weak lower latitude band of precipitation. The sensitivity of the UVI instrument enabled observation of arc structures down to about 0.2 erg electron energy flux, as confirmed by comparison with particle measurements from the FAST satellite for other dayside events. Removal of the spacecraft wobble by PIXON image reconstruction restored the original resolution of the UVI of about 40 km from apogee. This event is being analyzed in connection with a larger study of global dynamics of dayside energy and momentum transfer related to changes in IMF conditions using UVI images in conjunction with observations from FAST and SuperDARN.
Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations
NASA Technical Reports Server (NTRS)
Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.
2002-01-01
Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.
Correlation Between Low Frequency Auroral Kilometric Radiation (AKR) and Auroral Structures
NASA Technical Reports Server (NTRS)
Paxamickas, Katherine A.; Green, James L.; Gallagher, Dennis L.; Boardsen, Scott; Mende, Stephen; Frey, Harald; Reinisch, Bodo W.
2005-01-01
Auroral Kilometric Radiation (AKR) is a radio wave emission that has long been associated with auroral activity. AKR is normally observed in the frequency range from -60 - 600 kHz. Low frequency AKR (or LF-AKR) events are characterized as a rapid extension of AKR related emissions to 30 kHz or lower in frequency for typically much less than 10 minutes. LF-AKR emissions predominantly occur within a frequency range of 20 kHz - 30 kHz, but there are LF-AKR related emissions that reach to a frequency of 5 kHz. This study correlates all instances of LF-AKR events during the first four years of observations from the IMAGE spacecraft's Radio Plasma Imager (WI) instrument with auroral observations from the wideband imaging camera (WIC) onboard IMAGE. The correlation between LF-AKR occurrence and WIC auroral observations shows that in the 295 confirmed cases of LF-AKR emissions, bifurcation of the aurora is seen in 74% of the cases. The bifurcation is seen in the dusk and midnight sectors of the auroral oval, where AKR is believed to be generated. The polarization of these LF-AKR emissions has yet to be identified. Although LF-AKR may not be the only phenomena correlated with bifurcated auroral structures, bifurcation will occur in most instances when LF-AKR is observed. The LF-AKR emissions may be an indicator of specific auroral processes sometimes occurring during storm-time conditions in which field-aligned density cavities extend a distance of perhaps 5-6 RE tailward from the Earth for a period of 10 minutes or less.
Electrodynamic parameters in the nighttime sector during auroral substorms
NASA Technical Reports Server (NTRS)
Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.
1994-01-01
The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each sector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. The downward net current is distributed over wide longitudinal regions from the eastern bulge to the east of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are assoc iated with narrow, intense antisunwqard convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron precipitation and aurora appearing in this western and poleward protion of the bulge. The convection reversal is sharp in the west of bulge and surge horn sectors, and near the high-latitude boundary of the upward region 1, with a near stagnation region often extending over a large interval of latitude. In the eastern bulge and east of bulge sectors, the region 1 and 2 FACs are located in the sunward convection region, while a spikelike electric field occasionally appears poleward of the aurora but usually not associated with a pair of FAC sheets. In the eastern bulge, magnetic field data show complicated FAC distributions which correspond to current segments and filamentary currents.
Hemispheric Asymmetries in Substorm Recovery Time Scales
NASA Technical Reports Server (NTRS)
Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.
2009-01-01
Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Ieda, A.; Machida, S.; Hiraki, Y.; Angelopoulos, V.; McFadden, J. P.; Auster, H. U.; Mende, S. B.; Donovan, E.; Larson, D. E.
2014-12-01
We have studied the relative timing of the processes in the near-Earth magnetotail and development of auroral onset arc at the beginning of the expansion phase, based on substorm events observed by the THEMIS spacecraft and ground-based all-sky imagers. The THEMIS all-sky imagers can observe auroras over a wide area with temporal and spacial resolutions higher than spacecraft-borne cameras. This enables us to investigate the timing of auroral development in more detail than before. A few min after the appearance and intensification of an auroral onset arc, it begins to form wave-like structure. Then auroral poleward expansion begins another few min later. THEMIS magnetotail observations clearly show that magnetic reconnection is initiated at X~-20 Re at least 1-2 min before the intensification of auroral onset arc. Then low-frequency waves are excited in the plasma sheet at X~-10 Re 2 min before dipolarization, which is simultaneous with the formation of auroral wave-like structure. Dipolarization begins at the same time as the auroral poleward expansion. These results suggest that near-Earth magnetic reconnection plays some role in the development of dipolarization and auroral onset arc.
NASA Astrophysics Data System (ADS)
Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.
1998-09-01
An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.
Auroral Observations from the POLAR Ultraviolet Imager (UVI)
NASA Technical Reports Server (NTRS)
Germany, G. A.; Spann, J. F.; Parks, G. K.; Brittnacher, M. J.; Elsen, R.; Chen, L.; Lummerzheim, D.; Rees, M. H.
1998-01-01
Because of the importance of the auroral regions as a remote diagnostic of near-Earth plasma processes and magnetospheric structure, spacebased instrumentation for imaging the auroral regions have been designed and operated for the last twenty-five years. The latest generation of imagers, including those flown on the POLAR satellite, extends this quest for multispectral resolution by providing three separate imagers for the visible, ultraviolet, and X ray images of the aurora. The ability to observe extended regions allows imaging missions to significantly extend the observations available from in situ or groundbased instrumentation. The complementary nature of imaging and other observations is illustrated below using results from tile GGS Ultraviolet Imager (UVI). Details of the requisite energy and intensity analysis are also presented.
Magnetosphere - ionosphere coupling process in the auroral region estimated from auroral tomography
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Ogawa, Y.; Kadokura, A.; Gustavsson, B.; Kauristie, K.; Whiter, D. K.; Enell, C. F. T.; Brandstrom, U.; Sergienko, T.; Partamies, N.; Kozlovsky, A.; Miyaoka, H.; Kosch, M. J.
2016-12-01
We have studied the magnetosphere - ionosphere coupling process by using multiple auroral images and the ionospheric data obtained by a campaign observation with multi-point imagers and the EISCAT UHF radar in Northern Europe. We observed wavy structure of discrete arcs around the magnetic zenith at Tromso, Norway, from 22:00 to 23:15 UT on March 14, 2015, followed by auroral breakup, poleward expansion, and pulsating auroras. During this interval, the monochromatic (427.8nm) images were taken at a sampling interval of 2 seconds by three EMCCD imagers and at an interval of 10 seconds by totally six imagers. The EISCAT UHF radar at Tromso measured the ionospheric parameters along the magnetic field line from 20 to 24 UT. We applied the tomographic inversion technique to these data set to retrieve 3D distribution of the 427.8nm emission, that enabled us to obtain the following quantities for the auroras that change from moment to moment; (1) the relation between the 427.8nm emission and the electron density enhancement along the field line, (2) the horizontal distribution of energy flux of auroral precipitating electrons, and (3) the horizontal distribution of height-integrated ionospheric conductivity. By combining those with the ionospheric equivalent current estimated from the ground-based magnetometer network, we discuss the current system of a sequence of the auroral event in terms of the magnetosphere-ionosphere coupling.
Simultaneous total electron content and all-sky camera measurements of an auroral arc
NASA Astrophysics Data System (ADS)
Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.
2002-07-01
We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.
Jupiter's non-auroral Ionosphere and Thermosphere
NASA Astrophysics Data System (ADS)
Stallard, T.; Melin, H.; Burrell, A. G.; Hsu, V.; Johnson, R.; Moore, L.; O'Donoghue, J.; Thayer, J. P.
2017-12-01
Until recently, our understanding of the non-auroral ionosphere of Jupiter was very limited. However, with the arrival of the Juno spacecraft at Jupiter, we have begun to revise past observations of this region, as well as utilizing modern telescope facilities, in order to reveal a complex array of ionospheric features that show strong coupling with both the local magnetic field and dynamics within the underlying thermosphere. The first feature that was identified was an apparent `Great Dark Spot' in the sub-auroral ionosphere, almost as large as the Great Red Spot. This was observed well away from the northern magnetic pole, mapping to only 2.4 jovian radii. Spectra of the feature showed that it was produced by a 150K cooling in the thermosphere. However, images taken between 1995-2000 showed this feature was consistently observed over two decades at similar magnetic longitudes, but appeared to vary in size, morphology and exact location on a timescale of only days. This suggests that the Great Dark Spot is a large thermospheric vortex driven by auroral heating, similar to transitory features observed at Earth, forming in sub-auroral regions during periods of active aurora. Careful analysis of the Jupiter images then allowed us to measure ionospheric emission down to the equator. This revealed the location of Jupiter's magnetic equator for the first time, appearing as a dark sinusoidal ribbon. This feature appears to be produced as photo-electrons are pushed poleward of the equator when magnetic fields are parallel with the planet's surface, a different process than the dominant plasma fountain that drives Earth's equatorial anomaly. Also revealed were a series of dark spots. Recent Juno magnetometer measurements show that two of these spots appear in regions of high radial magnetic field, suggesting that these regions of the ionosphere are shielded, an inversion of the same process that drives higher ionization in the South Atlantic Anomaly.
NASA Technical Reports Server (NTRS)
Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.;
1997-01-01
The POLAR satellite often observes upflowing ionospheric ions (UFls) in and near the auroral oval on southern perigee (approximately 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass-angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the dusk side after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawn side during the recovery phase. The UFls showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approximately 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above approximately 200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument (EFI) were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs. the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.
Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations
NASA Technical Reports Server (NTRS)
Minow, Joseph; Pettit, Donald R.; Hartman, William A.
2012-01-01
Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.
Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow
NASA Technical Reports Server (NTRS)
Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.
1999-01-01
The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.
Validation of Ground-based Optical Estimates of Auroral Electron Precipitation Energy Deposition
NASA Astrophysics Data System (ADS)
Hampton, D. L.; Grubbs, G. A., II; Conde, M.; Lynch, K. A.; Michell, R.; Zettergren, M. D.; Samara, M.; Ahrns, M. J.
2017-12-01
One of the major energy inputs into the high latitude ionosphere and mesosphere is auroral electron precipitation. Not only does the kinetic energy get deposited, the ensuing ionization in the E and F-region ionosphere modulates parallel and horizontal currents that can dissipate in the form of Joule heating. Global models to simulate these interactions typically use electron precipitation models that produce a poor representation of the spatial and temporal complexity of auroral activity as observed from the ground. This is largely due to these precipitation models being based on averages of multiple satellite overpasses separated by periods much longer than typical auroral feature durations. With the development of regional and continental observing networks (e.g. THEMIS ASI), the possibility of ground-based optical observations producing quantitative estimates of energy deposition with temporal and spatial scales comparable to those known to be exhibited in auroral activity become a real possibility. Like empirical precipitation models based on satellite overpasses such optics-based estimates are subject to assumptions and uncertainties, and therefore require validation. Three recent sounding rocket missions offer such an opportunity. The MICA (2012), GREECE (2014) and Isinglass (2017) missions involved detailed ground based observations of auroral arcs simultaneously with extensive on-board instrumentation. These have afforded an opportunity to examine the results of three optical methods of determining auroral electron energy flux, namely 1) ratio of auroral emissions, 2) green line temperature vs. emission altitude, and 3) parametric estimates using white-light images. We present comparisons from all three methods for all three missions and summarize the temporal and spatial scales and coverage over which each is valid.
The aurorae of Uranus past equinox
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Hansen, K. C.; Tao, C.; Cowley, S. W. H.; Stallard, T. S.; Melin, H.; Achilleos, N.; Guio, P.; Badman, S. V.; Kim, T.; Pogorelov, N.
2017-04-01
The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104 ± 26° (284 ± 26°) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.
The aurorae of Uranus past equinox
NASA Astrophysics Data System (ADS)
Lamy, L.
2017-12-01
The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104+/-26deg (284+/-26deg) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.
Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind
NASA Technical Reports Server (NTRS)
Liou, Kan; Sibeck, David G.
2018-01-01
We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.
Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows
NASA Astrophysics Data System (ADS)
Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.
2017-12-01
Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.
Mechanisms of Saturn's Near-Noon Transient Aurora: In Situ Evidence From Cassini Measurements
NASA Astrophysics Data System (ADS)
Yao, Z. H.; Radioti, A.; Rae, I. J.; Liu, J.; Grodent, D.; Ray, L. C.; Badman, S. V.; Coates, A. J.; Gérard, J.-C.; Waite, J. H.; Yates, J. N.; Shi, Q. Q.; Wei, Y.; Bonfond, B.; Dougherty, M. K.; Roussos, E.; Sergis, N.; Palmaerts, B.
2017-11-01
Although auroral emissions at giant planets have been observed for decades, the physical mechanisms of aurorae at giant planets remain unclear. One key reason is the lack of simultaneous measurements in the magnetosphere while remote sensing of the aurora. We report a dynamic auroral event identified with the Cassini Ultraviolet Imaging Spectrograph (UVIS) at Saturn on 13 July 2008 with coordinated measurements of the magnetic field and plasma in the magnetosphere. The auroral intensification was transient, only lasting for ˜30 min. The magnetic field and plasma are perturbed during the auroral intensification period. We suggest that this intensification was caused by wave mode conversion generated field-aligned currents, and we propose two potential mechanisms for the generation of this plasma wave and the transient auroral intensification. A survey of the Cassini UVIS database reveals that this type of transient auroral intensification is very common (10/11 time sequences, and ˜10% of the total images).
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha
2018-01-01
It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.
Conjugate Observations of Optical Aurora with POLAR Satellite and Ground Based Imagers in Antarctica
NASA Technical Reports Server (NTRS)
Mende, S. H.; Frey, H.; Vo, H.; Geller, S. P.; Doolittle, J. H.; Spann, J. F., Jr.
1998-01-01
Operation of the ultraviolet imager on the POLAR satellite permits the observation of Aurora Borealis in daylight during northern summer. With optical imagers in the Automatic Geophysical Observatories (AGO-s) large regions of the oval of Aurora Australis can be observed simultaneously during the southern winter polar night. This opportunity permits conducting a systematic study of the properties of auroras on opposite ends of the same field line. It is expected that simultaneously observed conjugate auroras occurring on closed field lines should be similar to each other in appearance because of the close connection between the two hemispheres through particle scattering and mirroring processes. On open or greatly distorted field lines there is no a priori expectation of similarity between conjugate auroras. To investigate the influence of different IMF conditions on auroral behavior we have examined conjugate data for periods of southward IMF. Sudden brightening and subsequent poleward expansions are observed to occur simultaneously in both hemispheres. The POLAR data show that sudden brightening are initiated at various local time regions. When the local time of this region is in the field of view of the AGO station network then corresponding brightening is also found to occur in the southern hemisphere. Large features such as substorm induced westward propagation and resulting auroral brightening seem to occur simultaneously on conjugate hemispheres. The widely different view scales make it difficult to make unique identification of individual auroral forms in the POLAR and in the ground based data but in a general sense the data is consistent with conjugate behavior.
NASA Astrophysics Data System (ADS)
Andriyas, Tushar
2016-08-01
A statistical analysis of the equatorward and poleward auroral boundary movement during substorm onsets, the related solar wind activity, GOES 8 and 10 magnetic field, and the westward auroral electrojet (AL) index is undertaken, during the years 2000-2002. Auroral boundary data were obtained from the British Antarctic Survey (BAS). These boundaries were derived using auroral images from the IMAGE satellite. The timing of the onsets was derived from the Frey et al. (2004) database. Data were also classified based on the peak AL around the onset and the onset latitude, in order to analyze the differences, if any, in the rates of movement. It was found that the absolute ratio of the rate of movement of the mean poleward and equatorward boundaries was slower than the rate of mean movement around the midnight sector. The stronger the onset (in terms of the peak AL around the onset) was, the faster the rate of movement for both the boundaries. This implies that the stronger the AL signature around the onset, the weaker the magnetic field was prior to the onset and the faster it increased after the onset at GOES 8 and 10 locations. The stronger the AL signature, the thicker the latitudinal width of the aurora was, prior to the onset and higher was the increase in the width after the onset, due to large poleward and average equatorward expansion. Magnetotail field line stretching and relaxation rates as measured by GOES were also found to lie in the same order of magnitude. It is therefore concluded that the rates of latitudinal descent prior to a substorm onset and ascent after the onset, of the mean auroral boundaries, corresponds to the rate at which the tail field lines stretch and relax before and after the onset, respectively.
The Association of High-Latitude Dayside Aurora With NBZ Field-Aligned Currents
NASA Astrophysics Data System (ADS)
Carter, J. A.; Milan, S. E.; Fogg, A. R.; Paxton, L. J.; Anderson, B. J.
2018-05-01
The relationship between auroral emissions in the polar ionosphere and the large-scale flow of current within the Earth's magnetosphere has yet to be comprehensively established. Under northward interplanetary magnetic field (IMF) conditions, magnetic reconnection occurs at the high-latitude magnetopause, exciting two reverse lobe convection cells in the dayside polar ionosphere and allowing ingress of solar wind plasma to form an auroral "cusp spot" by direct impact on the atmosphere. It has been hypothesized that a second class of NBZ auroras, High-latitude Dayside Aurora, are produced by upward field-aligned currents associated with lobe convection. Here we present data from the Special Sensor Ultraviolet Spectrographic Imager instrument and from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, from January 2010 to September 2013, in a large statistical study. We reveal a northward IMF auroral phenomenon that is located adjacent to the cusp spot and that is colocated with a region of upward electrical current in the clockwise-rotating lobe cell. The emission only occurs in the sunlit summer hemisphere, demonstrating the influence of the conductance of the ionosphere on current closure. In addition, fast solar wind speed is required for this emission to be bright. The results show that dayside auroral emission is produced by IMF-magnetosphere electrodynamic coupling, as well as by direct impact of the atmosphere by the solar wind, confirming the association of High-latitude Dayside Aurora with NBZ currents.
Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions
NASA Astrophysics Data System (ADS)
Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.
2013-01-01
By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.
Evolution of asymmetrically displaced footpoints during substorms
NASA Astrophysics Data System (ADS)
Ohma, A.; Østgaard, N.; Laundal, K.; Reistad, J.; Tenfjord, P.; Snekvik, K.; Fillingim, M. O.
2017-12-01
It is well established that a transverse (y) component in the interplanetary magnetic field (IMF) induces a By component in the closed magnetosphere through asymmetric loading and/or redistribution of magnetic flux. Simultaneous images of the aurora in the two hemispheres have revealed that conjugate auroral features are displaced longitudinally during such conditions, indicating that the field-lines are displaced from their symmetric configuration. Although the direction and magnitude of this displacement show correlations with IMF clock angle and dipole tilt, events show large temporal and spatial variability of this displacement. For instance, it is not clear how substorms affect the displacement.In a previous case study, Østgaard et al. [2011] demonstrated that displaced auroral forms, associated with the present IMF orientation, returned to a more symmetric configuration during the expansion phase of two substorms. Using IMAGE and Polar, we have identified multiple events where conjugate images during substorms are available. By visual inspection and by applying correlation analysis, we identify conjugate auroral features and investigate how the asymmetry evolves during the substorm phases. We find that the system returns to a more symmetric state during the substorm expansion and early recovery phase, in agreement with the earlier published result. This is also true for the events where the solar wind driving is stable, indicating that the asymmetric displacement is indeed reduced or removed by the substorm. This can be interpreted as the result of increased reconnection rate in the magnetotail during the substorm expansion phase, which reduces the asymmetric lobe pressure.Østgaard, N., B. K. Humberset, and K. M. Laundal (2011), Evolution of auroral asymmetries in the conjugate hemi-spheres during two substorms, Geophys. Res. Lett., 38, L03101, doi:10.1029/2010GL046057.
Artificial auroras in the upper atmosphere. I - Electron beam injections
NASA Technical Reports Server (NTRS)
Burch, J. L.; Mende, S. B.; Kawashima, N.; Roberts, W. T.; Taylor, W. W. L.; Neubert, T.; Gibson, W. C.; Marshall, J. A.; Swenson, G. R.
1993-01-01
The Atlas-1 Spacelab payload's Space Experiments with Particle Accelerators generated artificial electron beams for the stimulation of auroral emissions at southern auroral latitudes. Optical measurements were made by the Shuttle Orbiter's onboard TV cameras, as well as by the Atmospheric Emissions Photometric Imager (in both white light and the 427.8 nm N2(+) emission line). Shuttle-based auroral imaging furnished a novel perspective on the artificial auroras; the emissions were traced from 295 km to the 110 km level along the curved magnetic-field lines.
Theoretical and experimental studies relevant to interpretation of auroral emissions
NASA Technical Reports Server (NTRS)
Keffer, Charles E.
1992-01-01
The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented.
On the location of Steve, the mysterious subauroral feature
NASA Astrophysics Data System (ADS)
Gallardo-Lacourt, B.; Nishimura, Y.; Donovan, E.; Gillies, D. M.; Spanswick, E.; Archer, W. E.; MacDonald, E.; Knudsen, D. J.
2017-12-01
Over the past year, there has been an exciting development in auroral research with the finding of a new subauroral phenomenon called Steve. Although Steve has been documented by amateur night sky watchers for decades, this is a new phenomenon about which scientists know very little. From optical observations including images from amateur photographers, Steve is a luminous arc that is narrow in north-south extent, and thousands of kilometers in east-west extent. We use auroral images from the ground-based THEMIS all-sky imagers and the Redline Geospace Observatory (REGO) array to identify Steve events. In addition, we use data from Meridian Scanning Photometers (NORSTAR and FESO) that measure brightness of H-β proton auroral emission at 4861Å. We surveyed data from December 2007 up to May 2017. Our observations suggest that Steve is always located equatorward of the proton aurora, and thus is not a traditional electron auroral arc, a feature which is always poleward of the peak in proton auroral brightness. Further, we have developed a picture of the magnetospheric region which is magnetically conjugate to Steve, and the magnetospheric conditions which give rise to the feature.
NASA Technical Reports Server (NTRS)
Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.
1998-01-01
The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.
Solar wind control of stratospheric temperatures in Jupiter's auroral regions?
NASA Astrophysics Data System (ADS)
Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.
2017-10-01
Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.
The Visible Imaging System (VIS) for the Polar Spacecraft
NASA Technical Reports Server (NTRS)
Frank, L. A.; Sigwarth, J. B.; Craven, J. D.; Cravens, J. P.; Dolan, J. S.; Dvorsky, M. R.; Hardebeck, P. K.; Harvey, J. D.; Muller, D. W.
1995-01-01
The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N+2 at 391.4 nm, 0 I at 557.7 and 630.0 nm, H I at 656.3 nm, and 0 II at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8 R(sub e). The time to acquire and telemeter a 256 x 256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with the in-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for the in-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions.
The Auroral Planetary Imaging and Spectroscopy (APIS) service
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.
2015-06-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.
Remote Determination of Auroral Energy Characteristics During Substorm Activity
NASA Technical Reports Server (NTRS)
Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Cumnock, J.; Lummerzheim, D.; Spann, J. F., Jr.
1997-01-01
Ultraviolet auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength N2 Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. This technique is used in this study to estimate incident electron energy flux and average energy during substorm activity occurring on May 19, 1996. This event was simultaneously observed by WIND, GEOTAIL, INTERBALL, DMSP and NOAA spacecraft as well as by POLAR. Here incident energy estimates derived from Ultraviolet Imager (UVI) are compared with in situ measurements of the same parameters from an overflight by the DMSP F12 satellite coincident with the UVI image times.
NASA Technical Reports Server (NTRS)
Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.;
1998-01-01
The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.
NASA Astrophysics Data System (ADS)
Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.
2017-12-01
We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Hiraki, Y.; Angelopoulos, V.; Ieda, A.; Machida, S.
2015-12-01
We have studied the time sequence of the development of the near-Earth magnetotail and the auroral arc associated with a substorm onset, using the data from the THEMIS spacecraft and ground-based observatories at high temporal and spatial resolutions. We discuss four steps of the auroral development, linking them to magnetotail changes: the auroral fading, the initial brightening of an auroral onset arc, the enhancement of the wave-like structure, and the poleward expansion. A case study shows that near-Earth magnetic reconnection began at X~-17 RE at least ~3 min before the auroral initial brightening and ~1 min before the auroral fading. Ionospheric large-scale convection also became enhanced just before the auroral fading and before the auroral initial brightening. Then low-frequency waves were amplified in the plasma sheet at X~-10 RE, with the pressure increase due to the arrival of the earthward flow from the near-Earth reconnection site ~20 s before the enhancement of the auroral wave-like structure. Finally, the dipolarization began ~30 s before the auroral poleward expansion. On the basis of the present observations, we suggest that near-Earth magnetic reconnection plays two roles in the substorm triggering. First, it generates a fast earthward flow and Alfvén waves. When the Alfvén waves which propagate much faster than the fast flow reach the ionosphere, large-scale ionospheric convection is enhanced, leading to the auroral initial brightening and subsequent gradual growth of the auroral wave-like structure. Second, when the reconnection-initiated fast flow reaches the near-Earth magnetotail, it promotes rapid growth of an instability, such as the ballooning instability, and the auroral wave-like structure is further enhanced. When the instability grows sufficiently, the dipolarization and the auroral poleward expansion are initiated.
NASA Astrophysics Data System (ADS)
Farrugia, C. J.; Sandholt, P. E.; Maynard, N. C.; Burke, W. J.; Scudder, J. D.; Ober, D. M.; Moen, J.; Russell, C. T.
2000-12-01
Magnetically conjugate observations by the HYDRA and the Magnetic Field Experiment instruments on Polar, meridian-scanning photometers and all-sky imagers at Ny-Ålesund, and International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers on November 30, 1997, illustrate aspects of magnetosphere-ionosphere coupling at 0900-1000 magnetic local times (MLT) and 70°-80° magnetic latitudes and their dependence on interplanetary parameters. Initially, Polar crossed a boundary layer on closed field lines where magnetospheric and magnetosheath plasmas are mixed. This region contains filaments where magnetospheric electron and ion fluxes are enhanced. These filaments are associated with field-aligned current structures embedded within the large-scale region 1 (R1) current. Ground auroral imagery document the presence at this time of discrete, east-west aligned arcs, which are in one-to-one correspondence with the filaments. Temporal variations present in these auroral arcs correlate with Pc 5 pulsations and are probably related to modulations in the interplanetary electric field. The auroral observations indicate that the filamented mixing region persisted for many tens of minutes, suggesting a spatial structuring. The data suggest further that the filamented, mixing region is an important source of the R1 current and the associated midmorning arcs. When the interplanetary magnetic field (IMF) turned strongly north, Polar had entered the dayside extension of the central plasma sheet/region 2 current system where it and the underlying ground magnetometers recorded a clear field line resonance of frequency ~2.4 mHz (Pc 5 range). The source of these oscillations is most likely the Kelvin-Helmholtz instability. Subsequent to the IMF northward turning, the multiple arcs were replaced by a single auroral form to the north of Ny-Ålesund (at 1000 MLT) in the vicinity of the westward edge of the cusp. ULF pulsation activity changed to the Pc 3-4 range in the regime of the pulsating diffuse aurora when the IMF went to an approximately Parker spiral orientation and the ground stations had rotated into the MLT sector of cusp emissions.
From discrete auroral arcs to the magnetospheric generator: numerical model and case study
NASA Astrophysics Data System (ADS)
Lamy, H.; Echim, M.; Cessateur, G.; Simon Wedlund, C.; Gustavsson, B.; Maggiolo, R.; Gunell, H.; Darrouzet, F.; De Keyser, J.
2017-12-01
We discuss an analysis method developed to estimate some of the properties of auroral generators (electron density, ne and temperature, Te), from ionospheric observations of the energy flux of precipitating electrons, e, measured across an auroral arc. The method makes use of a quasi-static magnetosphere-ionosphere coupling model. Assuming that the generator is a magnetospheric plasma interface, one obtains a parametric description of the generator electric field as a function of the kinetic and MHD properties of the interface. This description of the generator is introduced in a stationary M-I coupling model based on the current continuity in the topside ionosphere (Echim et al, 2007). The model is run iteratively for typical values of the magnetospheric ne and Te that are adjusted until the precipitating energy flux ɛ provided by the model at ionospheric altitudes fits the observations. The latter can be provided either in-situ by spacecraft measurements or remotely from optical ground-based observations. The method is illustrated by using the precipitating energy flux observed in-situ by DMSP on April 28, 2001, above a discrete auroral arc. For this particular date we have been able to compare the generator properties determined with our method with actual magnetospheric in-situ data provided by Cluster. The results compare very well and hence validate the method. The methodology is then applied on the energy flux of precipitating electrons estimated from optical images of a discrete auroral arc obtained simultaneously with the CCD cameras of the ALIS (Auroral Large Imaging System) network located in Scandinavia on 5 March 2008 (Simon Wedlund et al, 2013). Tomography-like techniques are used to retrieve the three-dimensional volume emission rates at 4278 Å from which the energy spectra of precipitating magnetospheric electrons can be further derived. These spectra are obtained along and across the arc, with a spatial resolution of approximately 3 km and provide E0, the characteristic energy and ɛ, the total flux energy of precipitating electrons. The generator properties are then estimated using the iterative technique validated with data from the DMSP-Cluster conjunction.
Occurrence and average behavior of pulsating aurora
NASA Astrophysics Data System (ADS)
Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.
2017-05-01
Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.
Overview of HST observvations of Jupiter's ultraviolet aurora during Juno orbits 03 to 07
NASA Astrophysics Data System (ADS)
Grodent, D. C.; Bonfond, B.; Tao, Z.; Gladstone, R.; Gerard, J. C. M. C.; Radioti, K.; Clarke, J. T.; Nichols, J. D.; Bunce, E. J.; Roth, L.; Saur, J.; Kimura, T.; Orton, G.; Badman, S. V.; Mauk, B.; Connerney, J. E. P.; McComas, D. J.; Kurth, W. S.; Adriani, A.; Hansen, C. J.; Valek, P. W.; Palmaerts, B.; Dumont, M.; Bolton, S. J.; Levin, S.; Bagenal, F.
2017-12-01
Jupiter's permanent ultraviolet auroral emissions have been systematically monitored from Earth orbit with the Hubble Space Telescope (HST) during an 8-month period. The first part of this HST large program (GO-14634) was meant to coordinate with the NASA Juno mission during orbits 03 through 07. The HST program will resume in Feb 2018, in time for Juno's PJ11 perijove, right after HST's solar and lunar avoidance periods. HST observations are designed to provide a Jovian auroral activity background for all instruments on board Juno and for the numerous ground based and space based observatories participating to the Juno mission. In particular, several HST visits were programmed in order to obtain as many simultaneous observations with Juno-UVS as possible, sometimes in the same hemisphere, sometimes in the opposite one. In addition, the timing of some HST visits was set to take advantage of Juno's multiple crossings of the current sheet and of the magnetic field lines threading the auroral emissions. These observations are obtained with the Space Telescope Imaging Spectrograph (STIS) in time-tag mode. They consist in spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. Here, we present an overview of the present -numerous- HST results. They demonstrate that while Jupiter is always showing the same basic auroral components, it is also displaying an ever-changing auroral landscape. The complexity of the auroral morphology is such that no two observations are alike. Still, in this apparent chaos some patterns emerge. This information is giving clues on magnetospheric processes at play at the local and global scales, the latter being only accessible to remote sensing instruments such as HST.
Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations
NASA Astrophysics Data System (ADS)
Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.
2017-12-01
Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.
JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter.
Adriani, Alberto; Coradini, Angioletta; Filacchione, Gianrico; Lunine, Jonathan I; Bini, Alessandro; Pasqui, Claudio; Calamai, Luciano; Colosimo, Fedele; Dinelli, Bianca M; Grassi, Davide; Magni, Gianfranco; Moriconi, Maria L; Orosei, Roberto
2008-06-01
The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.
NASA Astrophysics Data System (ADS)
Hatch, S.; Chaston, C. C.; Labelle, J. W.
2017-12-01
We report in situ measurements through the auroral acceleration region that reveal extremely nonthermal monoenergetic electron distributions. These auroral primaries are indicative of source populations in the plasma sheet well described as kappa distributions with κ ≲ 2. We show from observations and modeling how this large deviation from Maxwellian form may modify the acceleration potential required to drive current closure through the auroral ionosphere.
NASA Technical Reports Server (NTRS)
Russell, C. T.
1978-01-01
Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.
Preliminary Results from Recent Simultaneous Chandra/HST Observations of Jupiter Auroral Zones
NASA Technical Reports Server (NTRS)
Elsner, R.; Gladstone, R.; Waite, H.; Majeed, T.; Ford, P.; Grodent, D.; Bwardwaj, A.; Howell, R.; Cravens, T.; MacDowell, R.
2003-01-01
Jupiter was observed by the Chandra X-ray Observatory in late February, 2003, for 144 ks, using both the ACIS-S and HRC-I imaging x-ray cameras. Five orbits of HST STIS observations of the planet's northern auroral zone were obtained during the ACIS-S observations. These data are providing a wealth of information about Jupiter's auroral activity, including the first x-ray spectra from the x-ray hot spots inside the auroral ovals. We will also discuss the approximately 45 minute quasi-periodicity in the auroral x-ray emission - which correlates well with simultaneous observations of radio bursts by the Ulysses spacecraft - and a possible phase relation between the emission from the northern and southern x-ray aurora.
Magnetospheric electric fields and auroral oval
NASA Technical Reports Server (NTRS)
Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.
1992-01-01
DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.
An empirical model of the auroral oval derived from CHAMP field-aligned current signatures - Part 2
NASA Astrophysics Data System (ADS)
Xiong, C.; Lühr, H.
2014-06-01
In this paper we introduce a new model for the location of the auroral oval. The auroral boundaries are derived from small- and medium-scale field-aligned current (FAC) based on the high-resolution CHAMP (CHAllenging Minisatellite Payload) magnetic field observations during the years 2000-2010. The basic shape of the auroral oval is controlled by the dayside merging electric field, Em, and can be fitted well by ellipses at all levels of activity. All five ellipse parameters show a dependence on Em which can be described by quadratic functions. Optimal delay times for the merging electric field at the bow shock are 30 and 15 min for the equatorward and poleward boundaries, respectively. A comparison between our model and the British Antarctic Survey (BAS) auroral model derived from IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) optical observations has been performed. There is good agreement between the two models regarding both boundaries, and the differences show a Gaussian distribution with a width of ±2° in latitude. The difference of the equatorward boundary shows a local-time dependence, which is 1° in latitude poleward in the morning sector and 1° equatorward in the afternoon sector of the BAS model. We think the difference between the two models is caused by the appearance of auroral forms in connection with upward FACs. All information required for applying our auroral oval model (CH-Aurora-2014) is provided.
NASA Astrophysics Data System (ADS)
Gillies, D. Megan; Knudsen, David; Rankin, Robert; Milan, Stephen; Donovan, Eric
2018-05-01
Advances in networks of ground-based optical instrumentation have enabled us to identify over 400 examples of auroral arcs with an infrequently observed, temporally periodic auroral morphology. This study focuses on these arcs observed via the 630-nm ("redline") auroral emission wavelength and connects them to global magnetospheric wave modes known as field line resonances (FLRs). We show that optical redline FLR auroral arcs occur most frequently near 20 and 4 magnetic local time, in contrast to nonperiodic redline arcs, which occur most frequently near midnight. We find that this periodic type of auroral arc is rare, occurring in approximately 5% of redline aurora observed by the Redline Emission Geospace Observatory all-sky imagers. We also show Swarm satellite observations of two separate instances of 630-nm FLR arcs with strong upward field-aligned currents of the order of 3-6 μA/m2.
NASA Technical Reports Server (NTRS)
Wilson, Gordon R.
2001-01-01
This document is the fourth quarter progress report for year two on contract NAW-99002 'What is the relationship between heavy ion outflow and high latitude energetic particle precipitation'. In this project we are studying the relationship between the fluxes, mean energies, and field-aligned flow speeds of escaping suprathermal H+ and O+ measured by the TEAMS instrument on FAST and the energy flux of precipitating electrons obtained form the LBHL images taken by the Ultraviolet Imagery (UVI) camera on the Polar spacecraft. We have analyzed data from three time intervals, 7-11 Feb, 25-31 Jan, and 1-6 Feb 1997. We find that there indeed is a relationship between the O+ escape fluxes and the intensity of the aurora at the foot point of the field line. The time delay between an auroral intensification and the corresponding increase in escape flux is very short, only a few minutes. At low auroral luminosity the relationship between escape flux and luminosity appears to break down due possibly to the lack of sensitivity of the auroral emissions to large fluxes of low energy electrons.
Juno-UVS approach observations of Jupiter's auroras
NASA Astrophysics Data System (ADS)
Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.-C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.
2017-08-01
Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of 2 h and a decay time of 5 h.
Juno-UVS approach observations of Jupiter's auroras.
Gladstone, G R; Versteeg, M H; Greathouse, T K; Hue, V; Davis, M W; Gérard, J-C; Grodent, D C; Bonfond, B; Nichols, J D; Wilson, R J; Hospodarsky, G B; Bolton, S J; Levin, S M; Connerney, J E P; Adriani, A; Kurth, W S; Mauk, B H; Valek, P; McComas, D J; Orton, G S; Bagenal, F
2017-08-16
Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.
NASA Astrophysics Data System (ADS)
Burchill, Johnathan Kerr
Low-energy (Ek ˜ 10-1--10 1 eV) ions comprise the bulk of Earth's ionosphere, and represent the initial stages of ion heating and outflow from Earth's auroral regions. The suprathermal ion imager (SII) is a fast (˜93 images/sec), compact, two-dimensional ion energy (0 < Ek < 20 eV) and direction-of-arrival analyzer designed to observe the energy distributions of these ions in detail, with emphasis on exploring small-scale (˜10--100 m) structure in the ionosphere. The SII was flown into an auroral substorm on the GEODESIC sounding rocket from Poker Flat, Alaska, on 26 February 2000. The technical element of this thesis deals with the development of a computer model of the SII, and techniques for extracting and interpreting physical quantities from the SII observations. Laboratory and in-flight calibrations demonstrate that the analyzer imaging capability departs from the ideal model. Nevertheless, the SII represents a technological step forward, and has yielded new scientific results. The scientific element of this thesis focuses on simultaneous observations of ion energy distributions and low-frequency plasma waves in the topside (500--1000 km) auroral ionosphere. GEODESIC encountered three types of plasma wave which have previously been associated with ion heating. However, heated ions were only observed in association with localized density depletions and wave enhancements known as lower-hybrid solitary structures (LHSS). Approximately 90% of the LHSS ion number density is comprised of the ambient isotropic sub-eV core population. The remaining 10% corresponds to transverse acceleration of ions (TAI) to within 5° transverse to the geomagnetic field and to mean energies up to 5--10 eV, consistent with previous findings. Contrary to previously published observations, the GEODESIC TAI is consistent with localized bulk heating of some of the ambient core. Ion heating was not observed in association with large-scale (>1 km) broadband extremely low frequency (BB ELF) wave enhancements. Similarly, no ion heating was detected in the presence of large amplitude, short perpendicular wavelength Alfven waves. Differences between low-frequency ion flow fluctuations and convection drift fluctuations can be explained only partially by ion polarization drift physics.
Exploring the relative boundaries of the patchy pulsating aurora
NASA Astrophysics Data System (ADS)
Carlisle, E.; Donovan, E.; Jackel, B. J.
2017-12-01
Pulsating aurora is a common auroral feature that occurs most frequently on the nightside, in the equatorward part of the auroral oval. It is caused by pitch angle scattering of electrons due to wave-particle interactions near the equatorial plane. As such, observations of pulsating aurora provide information about the distribution of the plasma waves in the magnetosphere. Anecdotal evidence suggests that pulsating aurora occur equatorward of the proton aurora, and hence in the largely dipolar region at or inside the inner edge of the plasma sheet. Here we present results of a statistical survey of photometer observations of proton aurora and simultaneous all-sky imager observations of electron aurora. Our objective is to provide a definitive statement regarding the location of pulsating aurora relative to the proton aurora.
1998-06-10
These mosaics of Jupiter's night side show the Jovian aurora at approximately 45 minute intervals as the auroral ring rotated with the planet below the spacecraft. The images were obtained by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. during its eleventh orbit of Jupiter. The auroral ring is offset from Jupiter's pole of rotation and reaches the lowest latitude near 165 degrees west longitude. The aurora is hundreds of kilometers wide, and when it crosses the edge of Jupiter, it is about 250 kilometers above the planet. As on Earth, the auroral emission is caused by electrically charged particles striking atoms in the upper atmosphere from above. The particles travel along Jupiter's magnetic field lines, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image. In multispectral observations the aurora appears red, consistent with how atomic hydrogen in Jupiter's atmosphere would glow. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in this sequence of Galileo images. In the first mosaic, the auroral ring is directly over Jupiter's limb and is seen "edge on." In the fifth mosaic, the auroral emission is coming from several distinct bands. This mosaic also shows the footprint of the Io flux tube. Volcanic eruptions on Jupiter's moon, Io, spew forth particles that become ionized and are pulled into Jupiter's magnetic field to form an invisible tube, the Io flux tube, between Jupiter and Io. The bright circular feature towards the lower right may mark the location where these energetic particles impact Jupiter. Stars which are visible in some of the images enable precise determination of where the camera is pointed. This has allowed the first three dimensional establishment of the position of the aurora. Surprisingly, the measured height is about half the altitude (above the one bar pressure level) predicted by magnetospheric models. The Universal Time, in Spacecraft Event Time (SCET), that the images were taken is listed beneath each mosaic. The first four frames were taken on November 5, 1997 (SCET 97.309) before the Galileo spacecraft reached perijove, the closest point to Jupiter. The latter four were taken three days later on November 8, 1997 (SCET 97.312), after perijove. Each image was taken at visible wavelengths and is displayed in shades of blue. North is at the top of the picture. A grid of planetocentric latitude and west longitude is overlain on the images. The resolution in the plane of the pictures is 15 kilometers per picture element. The images were taken at a range of 1.3 million kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA01600
Theoretical and experimental studies relevant to interpretation of auroral emissions
NASA Technical Reports Server (NTRS)
Keffer, Charles E.
1991-01-01
The accomplishments achieved over the past year are detailed with emphasis on the interpretation or auroral emissions and studies of potential spacecraft-induced contamination effects. Accordingly, the research was divided into two tasks. The first task is designed to add to the understanding of space vehicle induced external contamination. An experimental facility for simulation of the external environment for a spacecraft in low earth orbit was developed. The facility was used to make laboratory measurements of important phenomena required for improving the understanding of the space vehicle induced external environment and its effect on measurement of auroral emissions from space-based platforms. A workshop was sponsored to provide a forum for presentation of the latest research by nationally recognized experts on space vehicle contamination and to discuss the impact of this research on future missions involving space-based platforms. The second task is to add an ab initio auroral calculation to the extant ionospheric/thermospheric global modeling capabilities. Once the addition of the code was complete, the combined model was to be used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Such studies are essential to an understanding of the types of vacuum ultraviolet (VUV) auroral images which are expected to be available within two years with the successful deployment of the Ultraviolet Imager (UVI) on the ISTP POLAR spacecraft. In anticipation of this, the second task includes support for meetings of the science working group for the UVI to discuss operational and data analysis needs. Taken together, the proposed tasks outline a course of study designed to make significant contributions to the field of space-based auroral imaging.
Imaging and EISCAT radar measurements of an auroral prebreakup event
NASA Astrophysics Data System (ADS)
Safargaleev, V.; Turunen, T.; Lyatsky, W.; Manninen, J.; Kozlovsky, A.
1996-11-01
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150-200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (sim150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS. Acknowledgements. The work done by P. Henelius and E. Vilenius in programme development is gratefully acknowledged. Topical Editor D. Alcayde thanks I. Pryse and A. Vallance-Jones for their help in evaluating this paper.-> Correspondence to: T. Nygrén->
Relationships between particle precipitation and auroral forms
NASA Technical Reports Server (NTRS)
Burch, J. L.; Winningham, J. D.
1978-01-01
The paper discusses recent measurements pertaining to the relationship between high-latitude particle (electron) precipitation and auroras. The discussion covers three topics: the large-scale relationships between auroral forms and the particle populations of the magnetosphere as determined from satellite measurements; (2) the relationship between satellite and sounding-rocket observations, particularly field-aligned pitch-angle distributions and upward field-aligned currents measured in the vicinity of auroral forms; and (3) recent results on the interaction of auroral electrons with the atmosphere.
NASA Astrophysics Data System (ADS)
Avdyushev, V.; Banshchikova, M.; Chuvashov, I.; Kuzmin, A.
2017-09-01
In the paper are presented capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather. The software "Vector-M" is developed by the celestial mechanics and astrometry department of Tomsk State University in collaboration with Space Research Institute (Moscow) and Central Aerological Observatory of Russian Federal Service for Hydrometeorology and Environmental Monitoring. The software "Vector-M" is intended for calculation of attendant geophysical and astronomical information for the centre of mass of the spacecraft and the space of observations in the experiment with auroral imager Aurovisor-VIS/MP in the orbit of the perspective Meteor-MP spacecraft.
Studies of auroral X-ray imaging from high altitude spacecraft
NASA Technical Reports Server (NTRS)
Mckenzie, D. L.; Mizera, P. F.; Rice, C. J.
1980-01-01
Results of a study of techniques for imaging the aurora from a high altitude satellite at X-ray wavelengths are summarized. The X-ray observations allow the straightforward derivation of the primary auroral X-ray spectrum and can be made at all local times, day and night. Five candidate imaging systems are identified: X-ray telescope, multiple pinhole camera, coded aperture, rastered collimator, and imaging collimator. Examples of each are specified, subject to common weight and size limits which allow them to be intercompared. The imaging ability of each system is tested using a wide variety of sample spectra which are based on previous satellite observations. The study shows that the pinhole camera and coded aperture are both good auroral imaging systems. The two collimated detectors are significantly less sensitive. The X-ray telescope provides better image quality than the other systems in almost all cases, but a limitation to energies below about 4 keV prevents this system from providing the spectra data essential to deriving electron spectra, energy input to the atmosphere, and atmospheric densities and conductivities. The orbit selection requires a tradeoff between spatial resolution and duty cycle.
Alaskan Auroral All-Sky Images on the World Wide Web
NASA Technical Reports Server (NTRS)
Stenbaek-Nielsen, H. C.
1997-01-01
In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.
A Panchromatic View of Brown Dwarf Aurorae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pineda, J. Sebastian; Hallinan, Gregg; Kao, Melodie M.
Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence, there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multiwavelength surveys of magnetic activity, including radio, X-ray, andmore » optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as a consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestations of auroral phenomena, like H α , in brown dwarf atmospheres and define their distinguishing characteristics. We conclude that large-amplitude photometric variability in the near-infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral H α emission and quiescent radio emission in electron cyclotron maser instability pulsing brown dwarfs, suggesting a potential underlying physical connection between quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems both to power the aurorae and seed the magnetosphere with plasma.« less
A Panchromatic View of Brown Dwarf Aurorae
NASA Astrophysics Data System (ADS)
Pineda, J. Sebastian; Hallinan, Gregg; Kao, Melodie M.
2017-09-01
Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence, there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multiwavelength surveys of magnetic activity, including radio, X-ray, and optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as a consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestations of auroral phenomena, like Hα, in brown dwarf atmospheres and define their distinguishing characteristics. We conclude that large-amplitude photometric variability in the near-infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral Hα emission and quiescent radio emission in electron cyclotron maser instability pulsing brown dwarfs, suggesting a potential underlying physical connection between quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems both to power the aurorae and seed the magnetosphere with plasma.
NASA Astrophysics Data System (ADS)
Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu
2018-05-01
Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Bhatt, A.
2017-12-01
The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.
Juno‐UVS approach observations of Jupiter's auroras
Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.‐C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.
2017-01-01
Abstract Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno‐UVS observations of Jupiter's auroral emissions, acquired during 3–29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3–4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h. PMID:28989207
Mesoscale thermospheric wind in response to nightside auroral brightening
NASA Astrophysics Data System (ADS)
Nishimura, T.; Zou, Y.; Gabrielse, C.; Lyons, L. R.; Varney, R. H.; Conde, M.; Hampton, D. L.; Mende, S. B.
2017-12-01
Although high-latitude ionospheric flows and thermospheric winds in the F-region are overall characterized by two-cell patterns over a global scale ( 1000 km), intense energy input from the magnetosphere often occurs in a mesoscale ( 100 km) and transient manner ( 10 min). Intense mesoscale energy input would drive enhanced mesoscale winds, whose properties are closely associated with auroral arcs and associated ionospheric flows. However, how thermospheric winds respond to and distribute around mesoscale magnetospheric input has not been characterized systematically. This presentation addresses how mesoscale winds distribute around quasi-steady arcs, evolve and distribute around transient arcs, and vary with geomagnetic and solar activity. We use Scanning Doppler Imagers (SDIs), all-sky imagers and PFISR over Alaska. A channel of azimuthal neutral wind is often found associated with localized flow channels adjacent to quasi-steady discrete aurora. The wind speed dynamically changes after a short time lag (a few tens of minutes) from auroral brightenings, including auroral streamers and intensifications on preexisting auroral arcs. This is in contrast to a much longer time lag ( 1 hour) reported previously. During a storm main phase, a coherent equatorward motion of the Harang discontinuity was seen in plasma flow, aurora and neutral wind, with a few degrees of equatorward displacement of the neutral wind Harang, which is probably due to the inertia. These results suggest that a tight M-I-T connection exists under the energy input of assorted auroral arcs and that mesoscale coupling processes are important in M-I-T energy transfer.
Mid-latitude response to geomagnetic storms observed in 630nm airglow over continental United States
NASA Astrophysics Data System (ADS)
Bhatt, A.; Kendall, E. A.
2016-12-01
We present analysis of mid-latitude response observed to geomagnetic storms using the MANGO network consisting of all-sky cameras imaging 630nm emission over the continental United States. The response largely falls in two categories: Stable Auroral Red (SAR) arc and Large-scale traveling ionospheric disturbances (LSTIDs). However, outside of these phenomena, less often observed response include anomalous airglow brightening, bright swirls, and frozen in traveling structures. We will present an analysis of various events observed over 3 years of MANGO network operation, which started with two imagers in the western US with addition of new imagers in the last year. We will also present unusual north and northeastward propagating waves often observed in conjunction with diffuse aurora. Wherever possible, we will compare with observations from Boston University imagers located in Massachusetts and Texas.
A Kp-based model of auroral boundaries
NASA Astrophysics Data System (ADS)
Carbary, James F.
2005-10-01
The auroral oval can serve as both a representation and a prediction of space weather on a global scale, so a competent model of the oval as a function of a geomagnetic index could conveniently appraise space weather itself. A simple model of the auroral boundaries is constructed by binning several months of images from the Polar Ultraviolet Imager by Kp index. The pixel intensities are first averaged into magnetic latitude-magnetic local time (MLT-MLAT) and local time bins, and intensity profiles are then derived for each Kp level at 1 hour intervals of MLT. After background correction, the boundary latitudes of each profile are determined at a threshold of 4 photons cm-2 s1. The peak locations and peak intensities are also found. The boundary and peak locations vary linearly with Kp index, and the coefficients of the linear fits are tabulated for each MLT. As a general rule of thumb, the UV intensity peak shifts 1° in magnetic latitude for each increment in Kp. The fits are surprisingly good for Kp < 6 but begin to deteriorate at high Kp because of auroral boundary irregularities and poor statistics. The statistical model allows calculation of the auroral boundaries at most MLTs as a function of Kp and can serve as an approximation to the shape and extent of the statistical oval.
Thermospheric Airglow Perturbations in the Upper Atmosphere Caused by Hurricane Harvey
NASA Astrophysics Data System (ADS)
Bhatt, A.; Kendall, E. A.
2017-12-01
The Midlatitude Allsky imaging Network for Geophysical Observations (MANGO) consists of seven allsky imagers distributed across the United States recording observations of large-scale airglow perturbations. The imagers are filtered at 630 nm, a forbidden oxygen line, in order to record the predominant source of airglow at 250 km altitude. While the ubiquitous airglow layer is challenging to observe when under uniform conditions, waves in the upper atmosphere cause ripples in the airglow layer which can easily be imaged by appropriate instrumentation. MANGO is the first network to record perturbations in the airglow layer on a continent-size scale. Large and Mid-scale Traveling Ionospheric Disturbances (LSTIDs and MSTIDs) are recorded that are caused by auroral forcing, mountain turbulence, and tidal variations. On August 25, airglow perturbations centered on the Hurricane Harvey path were observed by MANGO. These images and connections to other complimentary data sets such as GPS will be presented.
Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.
Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S
2014-05-28
We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.
Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope
Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S
2014-01-01
We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636
Stagnation of Saturn's auroral emission at noon
NASA Astrophysics Data System (ADS)
Radioti, A.; Grodent, D.; Gérard, J.-C.; Southwood, D. J.; Chané, E.; Bonfond, B.; Pryor, W.
2017-06-01
Auroral emissions serve as a powerful tool to investigate the magnetospheric processes at Saturn. Solar wind and internally driven processes largely control Saturn's auroral morphology. The main auroral emission at Saturn is suggested to be connected with the magnetosphere-solar wind interaction, through the flow shear related to rotational dynamics. Dawn auroral enhancements are associated with intense field-aligned currents generated by hot tenuous plasma carried toward the planet in fast moving flux tubes as they return from tail reconnection site to the dayside. In this work we demonstrate, based on Cassini auroral observations, that the main auroral emission at Saturn, as it rotates from midnight to dusk via noon, occasionally stagnates near noon over a couple of hours. In half of the sequences examined, the auroral emission is blocked close to noon, while in three out of four cases, the blockage of the auroral emission is accompanied with signatures of dayside reconnection. We discuss some possible interpretations of the auroral "blockage" near noon. According to the first one, it could be related to local time variations of the flow shear close to noon. Auroral local time variations are also suggested to be initiated by radial transport process. Alternatively, the auroral blockage at noon could be associated with a plasma circulation theory, according to which tenuously populated closed flux tubes as they return from the nightside to the morning sector experience a blockage in the equatorial plane and they cannot rotate beyond noon.
Generation and Similarity of the Jovian Satellite Footprints
NASA Astrophysics Data System (ADS)
Bonfond, B.
2017-12-01
A long chain of processes connects the satellite auroral footprints to the moon-magnetosphere interaction from which they originate. These processes include Alfvén waves' generation, filamentation, reflection, and bi-directional electron acceleration. The Io footprint is the most studied auroral footprint, because it is both the brightest one and the most isolated from other auroral emissions. It is made of at least three separate spots and an extended tail in the downstream direction. Early detections of the Europa and Ganymede footprints only identified single spots for these footprints, but re-analysis of the large dataset of Hubble Space Telescope images of the Jovian aurorae showed that they can also be made of multiple spots and display a tail. Moreover, the relative motion of these spots as a function of the location of the satellite is consistent with previous observations of the Io footprint, indicating that this dynamics corresponds to universal processes. Furthermore, a number of recent studies focused on the evolution of the brightness of these spots, with timescales ranging from minutes to days, and the signification of these changes will be reviewed. Finally, a discussion of the theoretical models explaining the footprint tails and their properties will be provided.
APIS : an interactive database of HST-UV observations of the outer planets
NASA Astrophysics Data System (ADS)
Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre
2014-05-01
Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.
APIS : an interactive database of HST-UV observations of the outer planets
NASA Astrophysics Data System (ADS)
Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.
2013-09-01
Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.
NASA Technical Reports Server (NTRS)
Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha
2016-01-01
A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.
The electric field structure of auroral arcs as determined from barium plasma injection experiments
NASA Technical Reports Server (NTRS)
Wescott, E. M.
1981-01-01
Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.
Application of X-ray imaging techniques to auroral monitoring
NASA Technical Reports Server (NTRS)
Rust, D. M.; Burstein, P.
1981-01-01
The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.
NASA Astrophysics Data System (ADS)
Kiene, A.; Bristow, W. A.; Conde, M. G.; Hampton, D. L.
2018-05-01
Neutral winds are a key factor in the dynamics of the ionosphere-thermosphere system. Previous observations have shown that neutral and ion flows are strongly coupled during periods of auroral activity when ion drag forcing can become the dominant force driving neutral wind flow. This is primarily due to increases in ion density due to enhanced particle precipitation as well as associated increases the strength of the electric fields that drive ion motions. Due to this strong coupling, numerical simulations of neutral dynamics have difficulty reproducing neutral wind observations when they are driven by modeled precipitation and modeled convection. It is therefore desirable whenever possible to have concurrent coincident measurements of auroral precipitation and ion convection. Recent advancements in high-resolution fitting of Super Dual Auroral Radar Network ion convection data have enabled the generation of steady maps of ion drifts over Alaska, coinciding with several optics sites. The Super Dual Auroral Radar Network measurements are compared with scanning Doppler imager neutral wind measurements at similar altitude, providing direct comparisons of ion and neutral velocities over a wide field and for long periods throughout the night. Also present are a digital all-sky imager and a meridian spectrograph, both of which provide measurements of auroral intensity on several wavelengths. In this study, we combine these data sets to present three case studies that show significant correlation between increases in F region precipitation and enhancements in ion-neutral coupling in the evening sector. We investigate the time scales over which the coupling takes place and compare our findings to previous measurements.
Gravity Wave Detection through All-sky Imaging of Airglow
NASA Astrophysics Data System (ADS)
Nguyen, T. V.; Martinez, A.; Porat, I.; Hampton, D. L.; Bering, E., III; Wood, L.
2017-12-01
Airglow, the faint glow of the atmosphere, is caused by the interaction of air molecules with radiation from the sun. Similarly, the aurora is created by interactions of air molecules with the solar wind. It has been shown that airglow emissions are altered by gravity waves passing through airglow source region (100-110km), making it possible to study gravity waves and their sources through airglow imaging. University of Houston's USIP - Airglow team designed a compact, inexpensive all-sky imager capable of detecting airglow and auroral emissions using a fisheye lens, a simple optical train, a filter wheel with 4 specific filters, and a CMOS camera. This instrument has been used in USIP's scientific campaign in Alaska throughout March 2017. During this period, the imager captured auroral activity in the Fairbanks region. Due to lunar conditions and auroral activity images from the campaign did not yield visible signs of airglow. Currently, the team is trying to detect gravity wave patterns present in the images through numerical analysis. Detected gravity wave patterns will be compared to local weather data, and may be used to make correlations between gravity waves and weather events. Such correlations could provide more data on the relationship between the mesosphere and lower layers of the atmosphere. Practical applications of this research include weather prediction and detection of air turbulence.
NASA Astrophysics Data System (ADS)
Banshchikova, M. A.; Chuvashov, I. N.; Kuzmin, A. K.; Kruchenitskii, G. M.
2018-05-01
Results of magnetic conjugation of image fragments of auroral emissions at different altitudes along the magnetic field lines and preliminary results of evaluation of their influence on the accuracy of remote mapping of energy characteristics of precipitating electrons are presented. The results are obtained using the code of tracing being an integral part of the software Vector M intended for calculation of accompanying, geophysical, and astronomical information for the center of mass of a space vehicle (SV) and remote observation of aurora by means of Aurovisor-VIS/MP imager onboard the SV Meteor-MP to be launched.
NASA Technical Reports Server (NTRS)
1996-01-01
Volcanic hot spots and auroral emissions glow on the darkside of Jupiter's moon Io in the image at left. The image was taken by the camera onboard NASA's Galileo spacecraft on 29 June, 1996 UT while Io was in Jupiter's shadow. It is the best and highest-resolution image ever acquired of hot spots or auroral features on Io. The mosaic at right of 1979 Voyager images is shown with an identical scale and projection to identify the locations of the hot spots seen in the Galileo image. The grid marks are at 30 degree intervals of latitude and longitude. North is to the top.
In the nighttime Galileo image, small red ovals and perhaps some small green areas are from volcanic hot spots with temperatures of more than about 700 kelvin (about 1000 degrees Fahrenheit). Greenish areas seen near the limb, or edge of the moon, are probably the result of auroral or airglow emissions of neutral oxygen or sulfur atoms in volcanic plumes and in Io's patchy atmosphere. The image was taken from a range of 1,035,000 kilometers (about 643,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoMulti-scale Observations of High-Energy Electron Precipitation in the Nightside Transition Region
NASA Astrophysics Data System (ADS)
Weatherwax, A. T.; Donovan, E.
2012-12-01
In recent years, the riometer has experienced a renaissance as an important tool for tracking the spatio-temporal evolution of high-energy magnetospheric electron (e-) populations. Networks of single beam riometers give a sparsely sampled picture of the global evolution of magnetospheric high energy e- population; existing imaging riometers resolve smaller-scale processes, but because they are isolated from one another, that resolution cannot be applied to the ionospheric signature of mesoscale magnetospheric processes. With funding from an NSF MRI, we are developing an innovative new facility where, for the first time, absorption related to high energy precipitation will be imaged across a large enough region to allow for tracking the effects of mesoscale magnetospheric processes (such as the dispersionless injection, patchy pulsating aurora, and ULF waves) with high enough space and time resolution to address key unresolved geospace questions. We will deploy in central Canada, taking advantage of excellent coverage of our target region by existing and potential future complimentary networks. The figure shows present coverage spanning auroral latitudes in North American by ASIs (including THEMIS-ASI), the mid-latitude SuperDARN HF radars, Meridian Scanning Photometers (MSPs), and magnetometers. The ASI, SuperDARN, and magnetometer networks will provide significantly more extensive coverage than our target region, thus proving information about (lower energy) auroral precipitation, large-scale magnetospheric convection (as impressed on the ionosphere), and ionospheric currents around and within our target region. For the first time, we will simultaneously observe the coupled convection, auroral, and high-energy electron precipitation in this key geospace region. These observations will be important for RBSP, CEDAR, and GEM science.; Figure: Left: Target region for the new imaging riometer array, and FoVs of THEMIS-ASIs and Canadian Multi-Spectral ASIs. Middle: Scan planes (at 110 km) of the five Canadian MSPs, beam directions of relevant mid-latitude SuperDARN HF radars, and the locations of fluxgate magnetometers and single-beam riometers that are currently operating in and around our target region. Right: FoVs of our proposed imaging riometer network (absorption at 95 km imaged to 20° above the horizon) and StormDARN beams (Christmas Valley, Fort Hayes, and Blackstone) plotted over a THEMIS ASI mosaic. The mosaic was created using simultaneous images from five ASIs (sites at top of figure) obtained during the main phase of a small (~ 40 nT DsT) storm. Also shown are typical Radiation Belt Storm Probe (RBSP) magnetic footpoint track, with the thick blue curve indicating the four hours around apogee..
HUBBLE PROVIDES THE FIRST IMAGES OF SATURN'S AURORA (Top)
NASA Technical Reports Server (NTRS)
2002-01-01
This is the first image ever taken of bright aurorae at Saturn's northern and southern poles, as seen in far ultraviolet light by the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Hubble resolves a luminous, circular band centered on the north pole, where an enormous auroral curtain rises as far as 1,200 miles (2,000 kilometers) above the cloudtops. This curtain changed rapidly in brightness and extent over the two hour period of our HST observations, though the brightest emissions remained at a position fixed in sun angle, near 'dawn' in the north auroral band. The image was taken on October 9, 1994, when Saturn was at a distance of 831 million miles (1.3 billion kilometers) from Earth. The aurora is produced as trapped charged particles precipitating from the magnetosphere collide with atmospheric gases -- molecular and atomic hydrogen in Saturn's case. As a result of the bombardment, Saturn's gases glow at far-ultraviolet wavelengths (110-160 nanometers) which are absorbed by the Earth's atmosphere, and so can only be observed from space-based telescopes. Saturn's magnetic field is nearly perfectly aligned with the planet's rotation, giving the auroral 'ring' its symmetry centered on the pole. (The southern aurora is faintly visible in this view despite the fact that Saturn's northern pole is now tilted slightly toward Earth.) The Hubble images demonstrate our capability to record from the Earth the auroral brightness and distribution about Saturn's poles, which will ultimately complement the in situ measurements of Saturn's magnetic field and charged particles to be made by the NASA/ESA Cassini spacecraft near the turn of the century. Study of the aurora on Saturn had its beginnings a few decades ago. The Pioneer 11 probe observed a far-ultraviolet brightening on Saturn's poles in 1979. Beginning in 1980, a series of spectroscopic observations by the International Ultraviolet Explorer (IUE) have sporadically detected emissions from Saturn's auroral zones. The Saturn flybys of the Voyager 1 and 2 spacecraft, in the early 1980s, found auroral emissions confined to a circumpolar ring. (Bottom) - For comparison, this is a visible-light color composite image of Saturn as seen by Hubble on December 1, 1994. Unlike the ultraviolet image, Saturn's familiar atmospheric belts and zones are clearly seen. The lower cloud deck is not visible at UV wavelengths because sunlight is reflected from higher in the atmosphere. Credits: J.T. Trauger (JPL), J.T. Clarke (Univ. of Michigan), the WFPC2 science team, and NASA Image files in GIF and JPEG format may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
Low-Altitude Satellite Measurements of Pulsating Auroral Electrons
NASA Technical Reports Server (NTRS)
Samara, M.; Michell, R. G.; Redmon, R. J.
2015-01-01
We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.
Theoretical and experimental studies relevant to interpretation of auroral emissions
NASA Technical Reports Server (NTRS)
Keffer, Charles E.
1994-01-01
This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.
Coordinated measurements of auroral processes at Saturn from the Cassini spacecraft and HST
NASA Astrophysics Data System (ADS)
Mitchell, D. G.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Krupp, N.; Saur, J.; Mauk, B. A.; Carbary, J. F.; Krimigis, S. M.; Brandt, P. C.; Dougherty, M. K.; Clarke, J. T.; Nichols, J. D.; Gerard, J.; Grodent, D.; Pryor, W. R.; Bunce, E. J.; Crary, F. J.
2008-12-01
One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents, relationship with solar wind pressure and magnetic field, and its large scale mapping to the magnetosphere. By design, the Cassini orbital tour included high inclination and low periapsis orbits late in the prime mission specifically to address many of these topics. In this presentation, we will provide a snapshot of the current state of our investigation into the relationship between magnetospheric measurements of particles and fields, and the aurora. For in situ data, we will show measurements of upward traveling light ion conics (~30 keV to 200 keV), often accompanied by electron beams (<20 keV to ~1 MeV) and enhanced broadband noise (10 Hz to a few kHz), throughout the outer magnetosphere on field lines that nominally map from well into the polar cap (dipole L > 50) to well into the closed field region (dipole L < 10). Sometimes the particle phenomena and the broadband noise occur in pulses of roughly five-minute duration, separated by tens of minutes. At other times they are relatively steady over an hour or more. Magnetic signatures associated with some of the pulsed events are consistent with field aligned current structures. Correlative observations of solar wind (Cassini) and aurora (HST) have established a strong relationship between solar wind pressure and auroral activity (brightness) (Crary et al., Nature, 2005; Clarke et al., JGR, 2008). A similar correspondence between bright auroral arcs and ring current ion acceleration will be shown here. So while some auroral forms seem to be associated with the open/closed field boundary (i.e. in the cusp-Bunce et al., JGR, 2008), we also demonstrate that under some magnetospheric conditions for which protons and oxygen ions are accelerated once per Saturn magnetosphere rotation at a preferred local time between midnight and dawn, simultaneous auroral observations by the HST reveal a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent energetic neutral atom enhancements coincide closely with bursts of Saturn kilometric radiation, again suggesting a linkage with high latitude auroral processes. Finally, we will show some intriguing results of auroral movie sequences from the Cassini UVIS instrument with corresponding ring current movies from the Magnetospheric Imaging Instrument Ion and Neutral Camera (MIMI/INCA).
First light from a kilometer-baseline Scintillation Auroral GPS Array.
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-05-28
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.
First light from a kilometer-baseline Scintillation Auroral GPS Array
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-01-01
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318
NASA Astrophysics Data System (ADS)
Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.
2015-10-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.
Scientific interpretation of historical auroral records
NASA Astrophysics Data System (ADS)
Willis, D. M.; Stephenson, F. R.
The available historical auroral records from both Europe and East Asia are examined critically for their relevance in the investigation of long-term variations in both solar activity and the Earth's magnetic field. The early oriental records are sufficiently numerous to allow scientific studies of variations on several time scales. Special attention is paid to the seasonal and secular variations of the early oriental auroral observations. In addition, the oriental auroral records exhibit a clear 27-day recurrence tendency at particular periods of time. A search has been made for examples of strictly simultaneous and indisputably independent observations of the aurora from spatially separated sites in East Asia. This search has yielded nine observations of mid-latitude auroral displays at more than one site in East Asia on the same night. A particular geomagnetic storm that occurred during December in AD 1128 is investigated in detail. Five days after the observation of two large sunspots in England, a red auroral display was observed from Korea. In addition, between the middle of AD 1127 and the middle of AD 1129, five Chinese and five Korean auroral observations were recorded. These provide evidence for recurrent auroral activity on a timescale almost exactly equal to the synodic-solar-rotation period (approximately 27 days). Finally, a new attempt is made to use the oriental historical auroral records to determine the location of the north geomagnetic pole during the European Middle Ages.
Scale size-dependent characteristics of the nightside aurora
NASA Astrophysics Data System (ADS)
Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.
2017-02-01
We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
NASA Astrophysics Data System (ADS)
Kurkin, V. I.; Afraimovich, E. L.; Berngardt, O. I.; Zherebtsov, G. A.; Litovkin, G. I.; Matyushonok, S. M.; Medvedev, A. V.; Potekhin, A. P.; Ratovsky, K. G.; Shpynev, B. G.
Presented are the results from analyzing the experimental data from the Irkutsk incoherent scatter (IS) radar, a network of magnetometers, GPS receivers, digital ionosounders for vertical- and oblique-incidence sounding combined with auroral images during geomagnetic disturbances as a consequence of high flaring activity of the Sun from October 19 to 29, 2003. The position of the auroral oval was determined using NOAA POES and DMSP satellite data available through the Internet. For substorms of October 21-22 and 24-25, significant (up to ˜ 50%) negative disturbances of electron density were recorded during the nighttime and daytime in the longitude sector from 90E to 150E from subauroral to mid-latitudes (up to ˜ 50N). During the nighttime the equatorial boundary of the auroral oval reached ˜ 55N (invariant latitude). The Irkutsk IS radar during that period recorded coherent echoes from ionospheric E-layer irregularities generated near the oval boundary. The strongest ionospheric disturbances throughout the aforementioned region were recorded on October 28 and 29 after two powerful flares of class X17.5 and X10.0 that occurred on October 28 and 29. A combined analysis of auroral images and data from ground-based radiophysical facilities made it possible to study the dynamics of the boundaries of the auroral oval and ionospheric trough during strong geomagnetic disturbances. A dramatic displacement of the auroral oval boundary (up to ˜ 46N of invariant latitude) and a long-lasting generation of a broad spectrum of irregularities and wave-like disturbances in the ionosphere were recorded. During the daytime on October 30 and 31, negative disturbances were recorded over most of the region in the ionospheric F-layer reaching 60-70%, which were replaced the next day by positive disturbances with ˜ 30% amplitude. Negative disturbances of electron density during the nighttime were accompanied by a substantial rise of electron (by ˜ 1500K) and ion (by ˜ 1000K) temperatures. Studying the characteristic features of the ionospheric response over the north-eastern region of Russia to strong geomagnetic disturbances is of significant interest for understanding the magnetosphere-ionosphere coupling on a global scale.
AURORAL X-RAYS, COSMIC RAYS, AND RELATED PHENOMENA DURING THE STORM OF FEBRUARY 10-11, 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winckler, J.R.; Peterson, L.; Hoffman, R.
1959-06-01
Balloon observations were made during the auroral storm of February 10- 11, 1958, at Minneapolis. Strong x-ray bursts in two groups were detected. The groups appeared coincident with two large magnetic bays, with strong radio noise absorption, and with the passage across the zenith of a very large amount of auroral luminosity. From the x-ray intensity and measured energies, an electron current of 0.6 x 10/sup 6/ electrons /cm/sup 2// scc was present. These electrons ionizing the upper D layer accounted for the increased cosmic noise absorption. The x-rays themselves carried 1000 times less energy than the electrons and couldmore » not provide sufficient ionization for the observed radio absorption. Visual auroral fornis during this storm are reported to have lower borders at thc 200 to 300 km level. There is thus a difficulty in bringing the electrons to the D layer without ani accompanying visible aurora. A cosmic-ray decrease accompanied the storm and was observed to be from 4 to 6% at sea level, 21% in the balloon altitude ionization, and 15% in total energy influx at 55 deg geomagnetic latitude. Compared with the great intensity of the magnetic and auroral phenomena in this storm, the cosmic-ray modulation was not exceptionally large. (auth)« less
NASA Technical Reports Server (NTRS)
Sharber, J. R.; Hones, E. W., Jr.; Heelis, R. A.; Craven, J. D.; Frank, L. A.; Maynard, N. C.; Slavin, J. A.; Birn, J.
1992-01-01
As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region in which the dawn and dusk portions can spread poleward to very high latitudes, (the type of a pattern referred to as a 'horse-collar' aurora by Hones et al., 1989). In this report we use a DE data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager while at the same time the DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. There is close agreement between the optical signatures and the particle precipitation patterns. The particle, plasma, and field measurements made along the satellite track and the 2-D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.
The Far Ultraviolet (FUV) auroral imager for the Inner Magnetospheric Imager (IMI) mission: Options
NASA Technical Reports Server (NTRS)
Wilson, Gordon R.
1993-01-01
The change from an intermediate mission (cost ceiling of $300 million) to a solar-terrestrial probe class mission (cost ceiling of $150 million) will require some major changes in the configuration of the IMI mission. One option being considered is to move to a small spin-stabilized spacecraft (with no despun platform) which could be launched with a smaller Taurus or Conestoga class booster. Such a change in spacecraft type would not present any fundamental problems (other than restrictions on mass and power) for the He plus 304 A plasmasphere imager, the high and low energy neutral atom imagers, and the geocoronal imager, but would present a challenge for the FUV auroral imager since the original plan called for this instrument to operate from a despun platform. Since the FUV instrument is part of the core payload it cannot be dropped from the instrument complement without jeopardizing the science goals of the mission. A way must be found to keep this instrument and to allow it to accomplish most, if not all, of its science objectives. One of the subjects discussed are options for building an FUV instrument for a spinning spacecraft. Since a number of spinning spacecraft have carried auroral imagers, a range of techniques exists. In addition, the option of flying the FUV imager on a separate micro-satellite launched with the main IMI spacecraft or with a separate pegasus launch, was considered and is discussed.
Quasi-periodic latitudinal shift of Saturn's main auroral emission
NASA Astrophysics Data System (ADS)
Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.
2017-12-01
The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-07-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
The Role of Auroral Imaging in Understanding Ionosphere-Inner Magnetosphere Interactions
NASA Technical Reports Server (NTRS)
Spann, Jim; Khazanov, George; Mende, Stephen
2004-01-01
The more ways we probe the ionosphere and inner magnetosphere, the better we can understand their interaction. For example, the multifaceted imaging of geospace with the IMAGE mission complements the more traditional in situ measurements made with many previous missions. Together they have enabled new knowledge of the ionosphere-magnetosphere (IM) coupling. The role of imaging the aurora in understanding this interaction has received renewed attention recently. Based on in situ data, such as FAST or DMSP, and our recent theories, we believe that imaging multiscale features of the aurora is a key component to gaining insight into the processes and mechanisms at work. This talk will explore how auroral imaging can be used to provide improved insight of the dynamics of IM interaction on micro and meso scales, with an emphasis on the current limitations and future possibilities of quantitative analyses.
NASA Astrophysics Data System (ADS)
Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.
2017-12-01
The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
NASA Astrophysics Data System (ADS)
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.
2017-12-01
The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.
The Relationship of Magnetotail Flow Bursts and Ground Onset Signatures
NASA Technical Reports Server (NTRS)
Kepko, Larry; Spanswick, Emma; Angelopoulos, Vassilis; Donovan, Eric
2010-01-01
It has been known for decades that auroral substorm onset occurs on (or at least near) the most equatorward auroral arc, which is thought to map to the near geosynchronous region. The lack of auroral signatures poleward of this arc prior to onset has been a major criticism of flow-burst driven models of substorm onset. The combined THEMIS 5 spacecraft in-situ and ground array measurements provide an unprecedented opportunity to examine the causal relationship between midtail plasma flows, aurora, and ground magnetic signatures. I first present an event from 2008 using multi-spectral all sky imager data from Gillam and in-situ data from THEMIS. The multispectral data indicate an equatorward moving auroral form prior to substorm onset. When this forms reaches the most equatorward arc, the arc brightens and an auroral substorm begins. The THEMIS data show fast Earthward flows prior to onset as well. I discuss further the association of flow bursts and Pi2 pulsations, in the con text of the directly-driven Pi2 model. This model directly links flows and Pi2 pulsations, providing an important constraint on substorm onset theories.
High Altitude Plasma Instrument (HAPI) data analysis
NASA Technical Reports Server (NTRS)
Burch, J. L.
1994-01-01
The objectives of the Dynamics Explorer mission are to investigate the coupling of energy, mass, and momentum among the earth's magnetosphere, ionosphere, and upper atmosphere. At launch, on August 3, 1981, DE-1 was placed into an elliptical polar orbit having an apogee of 23,130 km to allow global auroral imaging and crossings of auroral field lines at altitudes of several thousand kilometers. At the same time DE-2 was placed into a polar orbit, coplanar with that of DE-1 but with a perigee altitude low enough (309 km) for neutral measurements and an apogee altitude of 1012 km. The DE-1 High Altitude Plasma Instrument (HAPI) provided data on low and medium energy electrons and ions from August 13, 1981 until December 1, 1981, when a high-voltage failure occured. Analysis of HAPI data for the time period of this contract has produced new results on the source mechanisms for electron conical distributions, particle acceleration phenomena in auroral acceleration regions, Birkeland currents throughout the nightside auroral regions, the source region for auroral kilometric radiation (AKR), and plasma injection phenomena in the polar cusp.
Low- to Mid-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by solar X-rays resonantly and fluorescently scattered in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the correlation of higher count rate with low surface magnetic-field strength indicates the presence of some secondary component, possibly ion precipitation from radiation belts closer to the planet than elsewhere at low- to mid-latitudes.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots
NASA Technical Reports Server (NTRS)
Dessler, A. J.; Chamberlain, J. W.
1979-01-01
Auroral emissions generated by the Jovian moons Io and Europa, originating at the foot of the magnetic flux tubes of the satellites, may be largely limited to longitudes where the planet's ionospheric conductivity is enhanced. The enhanced conductivity is produced by trapped energetic electrons that drift into the Jovian atmosphere in regions where the planet's magnetic field is anomalously weak. The most active auroral hot-spot emissions lie in a sector of the northern hemisphere defined by decametric radio emission. Weaker auroral hot spots are found in the southern hemisphere along a magnetic conjugate trace. The brightness and the longitude of the Jovian hot spots predicted in this paper are in agreement with observations reported by Atreya et al. (1977).
NASA Astrophysics Data System (ADS)
Knipp, D.
2016-12-01
Using reprocessed (Level-2) data from the Defense Meteorology Satellite Program magnetometer (SSM) and particle precipitation (SSJ) instruments we determine the boundaries of the central plasma sheet auroral oval, and then consider the relative locations and intensities of field aligned currents. Large-scale field-aligned currents (FAC) are determined using the Minimum Variance Analysis technique, and their influence is then removed from the magnetic perturbations allowing us to estimate intensity and scale-size of the smaller-scale currents. When sorted by dynamic auroral boundary coordinates we find that large- scale Region 1 (R1) FAC are often within the polar cap and Region 2 (R2) FAC show a strong dawn-dusk asymmetry (as in Ohtani et al., 2010). We find that mesoscale FAC are stronger in the summer and are most consistently present in the vicinity of dawnside (downward) R1 FAC. Further, mesoscale FAC are confined to auroral latitudes and above on the dawnside, but can be subaroural on the dusk side. Hotspots of mesoscale FAC occur in pre-midnight regions especially during summer. Finally, we show how this information can be combined with measurements from above and below the ionosphere-thermosphere to help explain significant perturbations in polar cap dynamics.
An explanation of auroral intensification during the substorm expansion phase
NASA Astrophysics Data System (ADS)
Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.
2017-08-01
A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.
Energy flux and characteristic energy of an elemental auroral structure
NASA Technical Reports Server (NTRS)
Lanchester, B. S.; Palmer, J. R.; Rees, M. H.; Lummerzheim, D.; Kaila, K.; Turunen, T.
1994-01-01
Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.
Simultaneous all-sky and multi-satellite observations of auroral breakup and magnetic reconnection
NASA Astrophysics Data System (ADS)
Kawashima, T.; Ieda, A.; Machida, S.; Nishimura, Y.; Miura, T.
2017-12-01
A substorm is a large-scale disturbance including auroral breakup in the ionosphere and magnetic reconnection in the magnetotail. Two predominant models of the substorm time history have been proposed: the near-Earth neutral line (NENL) model and the current disruption model. The former is of outside-in type with tailward propagation of the disturbance, whereas the latter is of inside-out type with earthward propagation of the disturbance. To determine such time histories of such substorms using aurora all-sky and magnetotail multi-satellite observations, the National Aeronautics and Space Administration (NASA) is conducting a mission named the "Time History of Events and Macroscale Interactions during Substorms (THEMIS)". The time history of a substorm is expected to be best clarified when satellites are aligned along the tail axis. A substorm occurred under such a satellite distribution on 0743:42 UT February 27, 2009, and we investigated the auroral breakup and fast plasma flows produced by the magnetic reconnection in this substorm. The THEMIS satellites observed that a northward magnetic field variation propagated earthward. Because this earthward propagation is consistent with the NENL model, observation of a substorm onset after the magnetic reconnection was expected. However, the substorm onset was observed in the all-sky images before the magnetic reconnection, as noted in a previous study. In this study, we report that another earthward fast plasma flow occurred before the substorm onset, indicating that another magnetic reconnection occurred before the substorm onset. In addition, we confirm that the above mentioned post-onset magnetic reconnection occurred simultaneously with auroral poleward expansion, within a 1-min period. These results support the NENL model and further suggest that the two-step development of magnetic reconnection is a key component of the substorm time history.
Dynamic effects of restoring footpoint symmetry on closed magnetic field lines
NASA Astrophysics Data System (ADS)
Reistad, J. P.; Østgaard, N.; Tenfjord, P.; Laundal, K. M.; Snekvik, K.; Haaland, S.; Milan, S. E.; Oksavik, K.; Frey, H. U.; Grocott, A.
2016-05-01
Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive y component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated with this restoring process, as recently described by Tenfjord et al. (2015). Using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during the same conditions as the presented event, the large-scale BC pattern associated with the event is presented. It shows the expected influence of the process of restoring symmetry on BCs. We therefore suggest that these observations should be recognized as being a result of the dynamic effects of restoring footpoint symmetry on closed field lines in the nightside.
Pulsating aurora from electron scattering by chorus waves
NASA Astrophysics Data System (ADS)
Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.
2018-02-01
Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.
Saturn's Auroral Response to the Solar Wind: Centrifugal Instability Model
NASA Technical Reports Server (NTRS)
Sittler, Edward C.; Blanc, Michel F.; Richardson, J. D.
2008-01-01
We describe a model initially presented by Sittler et al. [2006] which attempts to explain the global response of Saturn's magnetosphere and its corresponding auroral behavior to variations in the solar wind. The model was derived from published simultaneous Hubble Space Telescope (HST) auroral images and Cassini upstream measurements taken during the month of January 2004. These observations show a direct correlation between solar wind dynamic pressure and (1) auroral brightening toward dawn local time, (2) an increase of rotational movement of auroral features to as much as 75% of the corotation speed, (3) the movement of the auroral oval to higher latitudes and (4) an increase in the intensity of Saturn Kilometric Radiation (SKR). This model is an alternative to the reconnection model of Cowley et al. [2004a,b; 2005] which is more Earth-like while ours stresses rotation. If angular momentum is conserved in a global sense, then when compressed the magnetosphere will tend to spin up and when it expands will tend to spin down. With the plasma sheet outer boundary at L approximates 15 we argue this region to be the dominant source region for the precipitating particles. If radial transport is dominated by centrifugal driven flux tube interchange motions, then when the magnetosphere spins up, outward transport will increase, the precipitating particles will move radially outward and cause the auroral oval to move to higher latitudes as observed. The Kelvin-Helmholtz instability may contribute to the enhanced emission along the dawn meridian as observed by HST. We present this model in the context of presently published observations by Cassini.
NASA Astrophysics Data System (ADS)
Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake
2005-08-01
The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.
Challenges for Future UV Imaging of the Earth's Ionosphere and High Latitude Regions
NASA Technical Reports Server (NTRS)
Spann, James
2006-01-01
Large scale imaging of Geospace has played a significant role in the recent advances in the comprehension of the coupled Solar-Terrestrial System. The Earth's ionospheric far ultraviolet emissions provide a rich tapestry of observations that play a key role in sorting out the dominant mechanisms and phenomena associated with the coupling of the ionosphere and magnetosphere (MI). The MI coupling is an integral part of the Solar-Terrestrial and as such, future observations in this region should focus on understanding the coupling and the impact of solar variability. This talk will focus on the outstanding problems associated with the coupled Solar-Terrestrial system that can be best addressed using far ultraviolet imaging of the Earthls ionosphere. Challenges of global scale imaging and high-resolution imaging will be discussed and how these are driven by unresolved compelling science questions of magnetospheric configuration, and auroral dynamics.
NASA Astrophysics Data System (ADS)
Moriconi, M. L.; Adriani, A.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Tosi, F.; Filacchione, G.; Migliorini, A.; Gérard, J. C.; Mura, A.; Grassi, D.; Sindoni, G.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Turrini, D.; Stefani, S.; Olivieri, A.; Amoroso, M.
2017-05-01
Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH4) near both poles through its 3.3 μm emission overlapping the H3+ auroral feature at 3.31 μm. Neither acetylene (C2H2) nor ethane (C2H6) have been observed so far. The analysis method, developed for the retrieval of H3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.
The application of soft X-ray imaging techniques to auroral research
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of building and operating a grazing incidence X-ray telescope for auroral zone studies from the Polar Plasma Laboratory (PPL) is discussed. A detailed structural analysis of the preferred design, an array of seven nested Wolter mirrors, is presented. An engineering evaluation of the requirements for the instrumental configuration, power, weight and telemetry is included. The problems of radiation hardening and thermal control are discussed. The resulting strawman instrument is presented.
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.
2003-01-01
The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away from the poleward edge of the auroral zone is the primary field-aligned current region which results in the classical field- aligned acceleration associated with the auroral zone (electrons earthward and ion beams tailward). During times of high magnetic activity, high-energy ion beams originating from the magnetotail are observed within, and overlapping, the regions of primary and return field-aligned current. Along the field lines where the high-energy magnetotail ion beams are located, field-aligned acceleration can occur in the auroral zone leading to precipitating electrons and upwelling ionospheric ion beams. Field-aligned currents are present during both quiet and active times, while the Alfven waves and magnetotail ion beams were observed only during more magnetically active events.
1997-09-23
Data from NASA's Galileo spacecraft were used to produce this false-color composite of Jupiter's northern aurora on the night side of the planet. The height of the aurora, the thickness of the auroral arc, and the small-scale structure are revealed for the first time. Images in Galileo's red, green, and clear filters are displayed in red, green, and blue respectively. The smallest resolved features are tens of kilometers in size, which is a ten-fold improvement over Hubble Space Telescope images and a hundred-fold improvement over ground-based images. The glow is caused by electrically charged particles impinging on the atmosphere from above. The particles travel along Jupiter's magnetic field lines, which are nearly vertical at this latitude. The auroral arc marks the boundary between the "closed" field lines that are attached to the planet at both ends and the "open" field lines that extend out into interplanetary space. At the boundary the particles have been accelerated over the greatest distances, and the glow is especially intense. The latitude-longitude lines refer to altitudes where the pressure is 1 bar. The image shows that the auroral emissions originate about 500 kilometers (about 310 miles) above this surface. The colored background is light scattered from Jupiter's bright crescent, which is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees west and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by Galileo's Solid State Imaging (SSI) system. http://photojournal.jpl.nasa.gov/catalog/PIA00603
NASA Astrophysics Data System (ADS)
Patel, K.; MacDonald, E.; Case, N.; Hall, M.; Clayton, J.; Heavner, M.; Tapia, A.; Lalone, N.; McCloat, S.
2015-12-01
On March 17, 2015, a geomagnetic storm—the largest of the solar cycle to date— hit Earth and gave many sky watchers around the world a beautiful auroral display. People made thousands of aurora-related tweets and direct reports to Aurorasaurus.org, an interdisciplinary citizen science project that tracks auroras worldwide in real-time through social media and the project's apps and website. Through Aurorasaurus, researchers are converting these crowdsourced observations into valuable data points to help improve models of where aurora can be seen. In this presentation, we will highlight how the team communicates with the public during these global, sporadic events to help drive and retain participation for Aurorasaurus. We will highlight some of the co-produced scientific results and increased media interest following this event. Aurorasaurus uses mobile apps, blogging, and a volunteer scientist network to reach out to aurora enthusiasts to engage in the project. Real-time tweets are voted on by other users to verify their accuracy and are pinned on a map located on aurorasaurus.org to help show the instantaneous, global auroral visibility. Since the project launched in October 2014, hundreds of users have documented the two largest geomagnetic storms of this solar cycle. In some cases, like for the St. Patrick's Day storm, users even reported seeing aurora in areas different than aurora models suggested. Online analytics indicate these events drive users to our page and many also share images with various interest groups on social media. While citizen scientists provide observations, Aurorasaurus gives back by providing tools to help the public see and understand the aurora. When people verify auroral sightings in a specific area, the project sends out alerts to nearby users of possible auroral visibility. Aurorasaurus team members around the world also help the public understand the intricacies of space weather and aurora science through blog articles, infographics, and quizzes. The project holds public engagement events during large storms via social media "hangouts" where anyone can ask our space weather scientists questions on the recent activity. Focused on long-term engagement, we will discuss our strategies for expanding and retaining this new community and lessons learned.
NASA Technical Reports Server (NTRS)
Spann, J.; Germany, G.; Swift, W.; Parks, G.; Brittnacher, M.; Elsen, R.
1997-01-01
The observed precipitating electron energy between 0130 UT and 0400 UT of January 10 th, 1997, indicates that there is a more energetic precipitating electron population that appears in the auroral oval at 1800-2200 UT at 030) UT. This increase in energy occurs after the initial shock of the magnetic cloud reaches the Earth (0114 UT) and after faint but dynamic polar cap precipitation has been cleared out. The more energetic population is observed to remain rather constant in MLT through the onset of auroral activity (0330 UT) and to the end of the Polar spacecraft apogee pass. Data from the Ultraviolet Imager LBH long and LBH short images are used to quantify the average energy of the precipitating auroral electrons. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The affects of oblique angle viewing are included in the analysis. Suggestions as to the source of this hot electron population will be presented.
NASA Technical Reports Server (NTRS)
Sharber, J. R.; Hones, E. W., Jr.; Heelis, R. A.; Craven, J. D.; Frank, L. A.; Maynard, N. C.; Slavin, J. A.; Birn, J.
1992-01-01
As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region of a pattern referred to as 'horse-collar' aurora (Hones et al., 1989). In this report we use the Dynamics Explorer data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager, while at the same time DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. Our analysis shows that, in general, there is close agreement between the optical signatures and the particle precipitation patterns. In many instances, over scales ranging from tens to a few hundred kilometers, electron precipitation features and upward field-aligned currents are observed at locations where the plasma flow gradients indicate negative V-average x E. The particle, plasma, and field measurements made along the satellite track and the 2D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.
Observations of large parallel electric fields in the auroral ionosphere
NASA Technical Reports Server (NTRS)
Mozer, F. S.
1976-01-01
Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.
NASA Astrophysics Data System (ADS)
Fernandes, Josh; Orton, Glenn S.; Sinclair, James; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya; Momary, Thomas W.; Yanamandra-Fisher, Padma A.
2016-10-01
We report characterization of the physical and chemical properties of Jupiter's polar regions derived from mid-infrared imaging of Jupiter covering all longitudes at unprecedented spatial resolution using the COMICS instrument at the Subaru Telescope on the nights of January 24 and 25, 2016 (UT). Because of Jupiter's slight axial tilt of 3°, the low angular resolution and incomplete longitudinal coverage of previous mid-infrared observations, the physical and chemical properties of Jupiter's polar regions have been poorly characterized. In advance of the Juno mission's exploration of the polar regions, this study focuses on mapping the 3-dimensional structure of Jupiter's polar regions, specifically to characterize the polar vortices and compact regions of auroral influence. Using mid-infrared images taken in the 7.8 - 24.2 µm range, we determined the 3-dimensional temperature field, mapped the para-H2 fraction and aerosol opacity at 700 mbar and lower pressures, and constrained the distribution of gaseous NH3 in Jupiter's northern and southern polar regions. Retrievals of these atmospheric parameters was performed using NEMESIS, a radiative transfer forward model and retrieval code. Preliminary results indicate that there are vortices at both poles, each with very distinct low-latitude boundaries approximately 60° (planetocentric) from the equator, which can be defined by sharp thermal gradients extending at least from the upper troposphere (500 mbar) and into the stratosphere (0.1 mbar). These polar regions are characterized by lower temperatures, lower aerosol number densities, and lower NH3 volume mixing ratios, compared with the regions immediately outside the vortex boundaries. These images also provided the highest resolution of prominent auroral-related stratospheric heating to date, revealing a teardrop-shaped morphology in the north and a sharp-edged oval shape in the south. Both appear to be contained inside the locus of H3+ auroral emission detected at 3.417 µm two nights later at NASA's Infrared Telescope Facility using the SpeX guide camera.
Acceleration of barium ions near 8000 km above an aurora
NASA Technical Reports Server (NTRS)
Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.
1984-01-01
A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.
Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions
NASA Technical Reports Server (NTRS)
Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.
1985-01-01
Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.
An auroral oval at the footprint of Saturn's kilometric radio sources, colocated with the UV aurorae
NASA Astrophysics Data System (ADS)
Lamy, L.; Cecconi, B.; Prangé, R.; Zarka, P.; Nichols, J. D.; Clarke, J. T.
2009-10-01
Similarly to other magnetized planets, Saturn displays auroral emissions generated by accelerated electrons gyrating around high-latitude magnetic field lines. They mainly divide in ultraviolet (UV) and infrared (IR) aurorae, excited by electron collisions with the upper atmosphere, and Saturn's kilometric radiation (SKR), radiated from higher altitudes by electron-wave resonance. Whereas spatially resolved UV and IR images of atmospheric aurorae reveal a continuous auroral oval around each pole, the SKR source locus was only indirectly constrained by the Voyager radio experiment to a limited local time (LT) range on the morningside, leading to interpretation of the SKR modulation as a fixed flashing light. Here, we present resolved SKR maps derived from the Cassini Radio and Plasma Wave Science (RPWS) experiment using goniopolarimetric techniques. We observe radio sources all around the planet, organized along a high-latitude continuous auroral oval. Observations of the Hubble Space Telescope obtained in January 2004 and January 2007 have been compared to simultaneous and averaged Cassini-RPWS measurements, revealing that SKR and UV auroral ovals are very similar, both significantly enhanced on the dawnside. These results imply that the SKR and atmospheric aurorae are triggered by the same populations of energetic electron beams, requiring a unified model of particle acceleration and precipitation on Saturn.
Detection of the 'continuous' H3(+) electrojet in the Jovian Aurora
NASA Astrophysics Data System (ADS)
Stallard, T. S.; Miller, S.; Achilleos, N.; Rego, D.; Prange, R.; Dougherty, M.; Joseph, R. D.
1999-09-01
Recently we have published the first detection of an auroral electrojet - a fast ion wind circulating around the auroral oval - on Jupiter (Rego et al., Nature, 399, 121-123). The detection was made during an unusual "auroral event", but raised the possibility that such electrojets might be detectable under "normal" auroral conditions. This work, currently in progress, is directed towards that aim. To accomplish this, high resolution infrared spectra and images of the Jovian aurora were taken on the nights of September 7-11(th) 1998, observing the nu_ {2} Q(1,0(-) ) line of H(+}_{3) at 3.953 mu m. The slit was aligned across the planet, perpendicular to the rotational axis, and the spectra were taken at 1 arcsec steps across the planet through the region of aurora. Each spectrum has been fitted row by row with a gaussian using height, width, background and central position as free parameters. This results in a measurement of how the relative central position varies across each spectra. Having processed the data, removing any systematic array effects, rotation, and instrumentally based spatial effects, we intend to show a measurable electrojet from the dopler shift it causes. This will be in the form of LOS maps of the auroral region at different CML taken over the 5 night observation period.
Wong, A Y; Chen, J; Lee, L C; Liu, L Y
2009-03-13
A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources.
An Overlooked Source of Auroral Arc Field-Aligned Current
NASA Astrophysics Data System (ADS)
Knudsen, D. J.
2017-12-01
The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.-W.; Gallagher, D. L.; Spann, J. F.; Mende, S. B.; Greenwald, R. A.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by Imager for Magnetopause-to- Aurora Global Exploration Far Ultra-Violet imager (IMAGE FUV) for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF By variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by Defense Meteorological Satellite Program (DMSP) above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more energetic ions were detected over the equatonvard part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from Super Dual Auroral Radar Network (SuperDARN) radar measurements showed a four-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP, and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
Information Technology Division’s Technical Paper Abstracts
1994-07-05
antenna systems. 86 Title: An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ...examined a number of potential sites for the location of the proposed High Frequency Active Auroral Research Program ( HAARP ) transmitter facility. The...proposed HAARP facility will consist of a large planar array of antennas excited by phased high power transmitters operating in the lower portion of the
NASA Astrophysics Data System (ADS)
Kubota, M.; Fukunishi, H.; Okano, S.
2001-07-01
A new optical instrument for studying upper atmospheric dynamics, called the Multicolor All-sky Imaging System (MAIS), has been developed. The MAIS can obtain all-sky images of airglow emission at two different wavelengths simultaneously with a time resolution of several minutes. Since December 1991, imaging observations with the MAIS have been conducted at the Zao observatory (38.09°N, 140.56°E). From these observations, two interesting events with wave structures have been detected in OI 630-nm nightglow images. The first event was observed on the night of June 2/3, 1992 during a geomagnetically quiet period. Simultaneous data of ionospheric parameters showed that they are caused by propagation of the medium-scale traveling ionospheric disturbance (TID). Phase velocity and horizontal wavelength determined from the image data are 45-100 m/s and ~280 km, and the propagation direction is south-westward. The second event was observed on the night of February 27/28, 1992 during a geomagnetic storm. It is found that a large enhancement of OI 630-nm emission is caused by a propagation of the large-scale TID. Meridional components of phase velocities and wavelengths determined from ionospheric data are 305-695 m/s (southward) and 930-5250 km. The source of this large-scale TID appears to be auroral processes at high latitudes.
Imaging plasmas at the Earth and other planets
NASA Astrophysics Data System (ADS)
Mitchell, D. G.
2006-05-01
The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are taking, what technologies and mission scenarios might best take advantage of them, and how our understanding of the Earth's and other planets' plasma environments may benefit from such advancements.
NASA Technical Reports Server (NTRS)
1997-01-01
Data from NASA's Galileo spacecraft were used to produce this false-color composite of Jupiter's northern aurora on the night side of the planet. The height of the aurora, the thickness of the auroral arc, and the small-scale structure are revealed for the first time. Images in Galileo's red, green, and clear filters are displayed in red, green, and blue respectively. The smallest resolved features are tens of kilometers in size, which is a ten-fold improvement over Hubble Space Telescope images and a hundred-fold improvement over ground-based images.
The glow is caused by electrically charged particles impinging on the atmosphere from above. The particles travel along Jupiter's magnetic field lines, which are nearly vertical at this latitude. The auroral arc marks the boundary between the 'closed' field lines that are attached to the planet at both ends and the 'open' field lines that extend out into interplanetary space. At the boundary the particles have been accelerated over the greatest distances, and the glow is especially intense.The latitude-longitude lines refer to altitudes where the pressure is 1 bar. The image shows that the auroral emissions originate about 500 kilometers (about 310 miles) above this surface. The colored background is light scattered from Jupiter's bright crescent, which is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees west and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by Galileo's Solid State Imaging (SSI) system.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http:// galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.The Role of the Auroral Processes in the Formation of the Outer Electron Radiation Belt
NASA Astrophysics Data System (ADS)
Stepanova, M. V.; Antonova, E. E.; Pinto, V. A.; Moya, P. S.; Riazantseva, M.; Ovchinnikov, I.
2016-12-01
The role of the auroral processes in the formation of the outer electron radiation belt during storms is analyzed using the data of RBSP mission, low orbiting satellites and ground based observations. We analyze fluxes of the low energy precipitating ions using data of the Defense Meteorological Satellite Program (DMSP). The location of the auroral electrojet is obtained from the IMAGE magnetometer network, and of the electron distribution in the outer radiation belt from the RBSP mission. We take into account the latest results on the auroral oval mapping in accordance with which the most part of the auroral oval maps not to the plasma sheet. It maps into the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. The development of the ring current and its high latitude continuation generates strong distortion of the Earth's magnetic field and corresponding adiabatic variation of the relativistic electron fluxes. This adiabatic variation should be considered for the analysis of the processes of the acceleration of relativistic electrons and formation of the outer radiation belt. We also analyze the plasma pressure profiles during storms and demonstrate the formation of sharp plasma pressure peak at the equatorial boundary of the auroral oval. It is shown that the observed this peak is directly connected to the creation of the seed population of relativistic electrons. We discuss the possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations.
Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset
NASA Astrophysics Data System (ADS)
Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.
2017-12-01
Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.
Sounding rocket study of auroral electron precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, J.P.
1985-01-01
Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation wasmore » found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984.« less
Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7
NASA Astrophysics Data System (ADS)
Grodent, Denis; Bonfond, B.; Yao, Z.; Gérard, J.-C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S. V.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Gladstone, G. R.; Greathouse, T.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; McComas, D. J.; Nichols, J. D.; Orton, G. S.; Roth, L.; Saur, J.; Valek, P.
2018-05-01
A large set of observations of Jupiter's ultraviolet aurora was collected with the Hubble Space Telescope concurrently with the NASA-Juno mission, during an eight-month period, from 30 November 2016 to 18 July 2017. These Hubble observations cover Juno orbits 3 to 7 during which Juno in situ and remote sensing instruments, as well as other observatories, obtained a wealth of unprecedented information on Jupiter's magnetosphere and the connection with its auroral ionosphere. Jupiter's ultraviolet aurora is known to vary rapidly, with timescales ranging from seconds to one Jovian rotation. The main objective of the present study is to provide a simplified description of the global ultraviolet auroral morphology that can be used for comparison with other quantities, such as those obtained with Juno. This represents an entirely new approach from which logical connections between different morphologies may be inferred. For that purpose, we define three auroral subregions in which we evaluate the auroral emitted power as a function of time. In parallel, we define six auroral morphology families that allow us to quantify the variations of the spatial distribution of the auroral emission. These variations are associated with changes in the state of the Jovian magnetosphere, possibly influenced by Io and the Io plasma torus and by the conditions prevailing in the upstream interplanetary medium. This study shows that the auroral morphology evolved differently during the five 2 week periods bracketing the times of Juno perijove (PJ03 to PJ07), suggesting that during these periods, the Jovian magnetosphere adopted various states.
On the Role of Ionospheric Ions in Sawtooth Events
NASA Astrophysics Data System (ADS)
Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.
2018-01-01
Simulations have suggested that feedback of heavy ions originating in the ionosphere is an important mechanism for driving sawtooth injections. However, this feedback may only be necessary for events driven by coronal mass ejections (CMEs), whereas in events driven by streaming interaction regions (SIRs), solar wind variability may suffice to drive these injections. Here we present case studies of two sawtooth events for which in situ data are available in both the magnetotail (Cluster) and the nightside auroral region (FAST), as well as global auroral images (IMAGE). One event, on 1 October 2001, was driven by a CME; the other, on 24 October 2002, was driven by an SIR. The available data do not support the hypothesis that heavy ion feedback is necessary to drive either event. This result is consistent with simulations of the SIR-driven event but disagrees with simulation results for a different CME-driven event. We also find that in an overwhelming majority of the sawtooth injections for which Cluster tail data are available, the O+ observed in the tail comes from the cusp rather than the nightside auroral region, which further casts doubt on the hypothesis that ionospheric heavy ion feedback is the cause of sawtooth injections.
Chandra Probes High-Voltage Auroras on Jupiter
NASA Astrophysics Data System (ADS)
2005-03-01
Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray Observatory detected the presence of highly charged particles crashing into the atmosphere above its poles. X-ray spectra measured by Chandra showed that the auroral activity was produced by ions of oxygen and other elements that were stripped of most of their electrons. This implies that these particles were accelerated to high energies in a multimillion-volt environment above the planet's poles. The presence of these energetic ions indicates that the cause of many of Jupiter's auroras is different from auroras produced on Earth or Saturn. Chandra X-ray Image of Jupiter Chandra X-ray Image of Jupiter "Spacecraft have not explored the region above the poles of Jupiter, so X-ray observations provide one of the few ways to probe that environment," said Ron Elsner of the NASA Marshall Space Flight Center in Huntsville, Alabama, and lead author on a recently published paper describing these results in the Journal for Geophysical Research. "These results will help scientists to understand the mechanism for the power output from Jupiter's auroras, which are a thousand times more powerful than those on Earth." Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the X-ray observations. These voltages would also explain the radio emission from energetic electrons observed near Jupiter by the Ulysses spacecraft. Schematic of Jupiter's Auroral Activity Production Schematic of Jupiter's Auroral Activity Production On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. Gusts of particles from the Sun can also produce auroras on Jupiter, but unlike Earth, Jupiter has another way of producing auroras. Jupiter's rapid rotation, intense magnetic field, and an abundant source of particles from its volcanically active moon, Io, create a huge reservoir of electrons and ions. These charged particles, trapped in Jupiter's magnetic field, are continually accelerated down into the atmosphere above the polar regions where they collide with gases to produce the aurora, which are almost always active on Jupiter. If the particles responsible for the aurora came from the Sun, they should have been accompanied by large number of protons, which would have produced an intense ultraviolet aurora. Hubble ultraviolet observations made during the Chandra monitoring period showed relatively weak ultraviolet flaring. The combined Chandra and Hubble data indicate that this auroral activity was caused by the acceleration of charged ions of oxygen and other elements trapped in the polar magnetic field high above Jupiter's atmosphere. Hubble Ultraviolet Image of Jupiter Hubble Ultraviolet Image of Jupiter Chandra observed Jupiter in February 2003 for four rotations of the planet (approximately 40 hours) during intense auroral activity. These Chandra observations, taken with its Advanced CCD Imaging Spectrometer, were accompanied by one-and-a-half hours of Hubble Space Telescope observations at ultraviolet wavelengths. The research team also included Noe Lugaz, Hunter Waite, and Tariq Majeed (University of Michigan, Ann Arbor), Thomas Cravens (University of Kansas, Lawrence), Randy Gladstone (Southwest Research Institute, San Antonio, Texas), Peter Ford (Massachusetts Institute of Technology, Cambridge), Denis Grodent (University of Liege, Belgium), Anil Bhardwaj (Marshall Space Flight Center) and Robert MacDowell and Michael Desch (Goddard Space Flight Center, Greenbelt, Md.) NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Fine structure of low-energy H(+) in the nightside auroral region
NASA Technical Reports Server (NTRS)
Liu, Chao; Perez, J. D.; Moore, T. E.; Chappell, C. R.; Slavin, J. A.
1994-01-01
Low-energy H(+) data with 6-s resolution from the retarding ion mass spectrometer instrument on Dynamics Explorer (DE) 1 have been analyzed to reveal the fine structure at middle altitudes of the nightside auroral region. A new method for deconvolving the energy-integrated count rate in the spin plane of the satellite has been used to derive the two-dimensional phase space density. A detailed analysis reveals an alternating conic-beam-conic pattern with the observed conics correlated with large earthward currents in the auroral region. The strong downward current (larger than 1 microamperes per sq m (equivalent value at ionosphere)) provides a free energy source for the perpendicular ion heating, that generates the ion conics with energies from several eV to tens of eV. The bowl shape distribution of the low-energy H(+) is caused by the extended perpendicular heating. The strong correlation between conics and large downward currents suggests that the current-driven electrostatic ion cyclotron wave is an appropriate candidate for the transverse heating mechanism.
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
NASA Technical Reports Server (NTRS)
Rees, D.
1986-01-01
Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.
Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs
NASA Technical Reports Server (NTRS)
Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.
1986-01-01
Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.
Small-Scale Features in Pulsating Aurora
NASA Technical Reports Server (NTRS)
Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc
2011-01-01
A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.
High-Latitude Ionospheric Dynamics During Conditions of Northward IMF
NASA Technical Reports Server (NTRS)
Sharber, J. R.
1996-01-01
In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.
HST/STIS Observations of Ganymede's Auroral Ovals at Eastern Elongation
NASA Technical Reports Server (NTRS)
Saur, J.; Duling, S.; Roth, L.; Feldman, P. D.; Strobel, D. F.; Retherford, K. D.; McGrath, M. A.; Wennmacher, A.
2011-01-01
We report on new Space Telescope Imaging Spectrograph (STIS) observations of Ganymede s auroral emissions obtained (to be obtained) during two visits with the Hubble Space Telescope (HST). The observations of the first visit, a five orbits, were obtained on November 19, 2010 and the second visit, also a five orbits, is scheduled for opposition in October/November 2011. We will present results of the full campaign, in case of a successful execution of the second visit. Our observations cover more than half a cycle of system III longitudes of Ganymede s positions within Jupiter s magnetosphere for each visit. We analyze the observations with respect to brightness and locations of Ganymede auroral ovals. Our goal is to set constrains on the interaction of Ganymede s mini-magnetosphere with Jupiter s magnetosphere, Ganymede s magnetic field and plasma environment, and if possible on Ganymede s neutral atmosphere.
Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket
NASA Astrophysics Data System (ADS)
Albarran, R. M.; Zettergren, M. D.
2017-12-01
The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.
Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket
NASA Astrophysics Data System (ADS)
Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.
2016-12-01
The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.
Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje
2017-01-01
ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833
OH line selection for nadir airglow gravity wave imaging in the auroral zone
NASA Astrophysics Data System (ADS)
Kumer, J. B.; Hecht, J.; Geballe, T. R.; Mergenthaler, J. L.; Rinaldi, M.; Claflin, E. S.; Swenson, G. R.
2003-04-01
For satellite borne nadir OH airglow wave imaging in the auroral zone the observed lines must be strong enough to give good signal to noise, coincident with strong atmospheric absorption lines to suppress structure in the image due to reflection of airglow and moonlight from tops of clouds and from high altitude terrain, and in a spectral region coincident with relatively weak aurora that its contribution to the observed structure can be corrected by data obtained in a guard band containing relatively strong auroral emission, and relatively weak, or no airglow. OH airglow spectra observed from high altitude, in our case Mauna Kea by the UKIRT CGS4 grating instrument, (see website http://www.jach.hawaii.edu/JACpublic/UKIRT/instruments/cgs4/maunakea/ohlines.html) provide an opportunity to identify lines that ARE NOT observed at that high altitude. These are most absorbed in the earths atmosphere. These occur in the regions near 1400 and 1900 nm of strong water vapor absorption. Our preliminary determination is that the 7-5 p1(2) line at 1899.01 nm and the p1(3) at 1911.41 nm are the best candidates. These are missing in the observed spectra, and this is confirmed by running FASCODE transmission calculations from top of Mauna Kea to space at .01 cm-1 resolution. Similar calculations for conditions at which the high resolution Kitt peak atlas data were taken confirmed the calculations. OH line positions and relative strengths within the band were derived from the HITRAN data base, and transmitted lines in the 7-5 band were used to determine the strength of these lines. Each are the order 10 kR, and are about four to six times brighter than atmospheric absorbed candidate lines in the 1400 nm region. Also, the aurora in the 1900nm region is considerably weaker than in the 1400nm region. In fact the region 1351 to 1358 contains relatively strong aurora, and practically no airglow, and is candidate for an instrumental auroral guard band. The nadir imaging instrument which utilizes a radiatively cooled near infrared two dimensional array detector will be described.
Planetary instrument definition and development program: 'Miniature Monochromatic Imager'
NASA Technical Reports Server (NTRS)
Broadfoot, A. L.
1991-01-01
The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.
NASA Technical Reports Server (NTRS)
1997-01-01
Jovian aurora on the night side of the planet. The upper bright arc is auroral emission seen 'edge on' above the planetary limb with the darkness of space as a background. The lower bright arc is seen against the dark clouds of Jupiter. The aurora is easier to see on the night side of Jupiter because it is fainter than the clouds when they are illuminated by sunlight. Jupiter's north pole is out of view to the upper right. The images were taken in the clear filter (visible light) and are displayed in shades of blue.
As on Earth, the auroral emission is caused by electrically charged particles striking the upper atmosphere from above. The particles travel along the magnetic field lines of the planet, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image to the right. In multispectral observations the aurora appears red, consistent with glow from atomic hydrogen in Jupiter's atmosphere. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in sequences of Galileo images.North is at the top of the picture. A grid of planetocentric latitude and west longitude is overlain on the images. The images were taken on November 5, 1997 at a range of 1.3 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Characteristics of spacecraft charging in low Earth orbit
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
2012-07-01
It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.
Energetic Charged Particle Component or the NO(y) Budget of the Polar Middle Atmosphere
NASA Technical Reports Server (NTRS)
Vitt, F. M.; Jackman, C. H.
1999-01-01
Analysis of nitrates measured in polar ice cap snow at a high resolution shows large variations in the nitrates. It has been shown that the nitrate signal may contain a signature of solar activity [Zeller and Dreschhoff, 19951. Reactive odd nitrogen production associated with solar particle events (SPEs) and auroral activity may be a source of some of the nitrate anomalies observed in the polar ice caps. Periods of large SPEs can lead to a production of polar atmospheric odd nitrogen in excess of the ambient sources in the polar stratosphere and mesosphere, and may leave a large nitrate signal stratified in the polar ice cap. Auroral electrons and photoelectrons produce odd nitrogen in the thermosphere, some of which may be transported to the polar (>50 degrees) mesosphere and stratosphere. Sources of odd nitrogen in the polar middle atmosphere associated with SPEs, galactic cosmic rays, and auroral electron precipitation have been quantified. The relative contributions by the energetic particles sources to the Noy budget of the polar middle atmosphere (from tropopause to 50 km, from 50 degrees to 90 degrees latitude) are compared with the nitrates observed in the polar ice sheets.
NASA Astrophysics Data System (ADS)
Henderson, M. G.
2006-12-01
During sawtooth events, the auroral distribution is typically comprised of an active and dynamic double oval configuration. In association with each tooth, the double oval evolves in a repeatable manner in which a wide double-oval configuration gradually thins down in association with an expansion of the polar cap and stretching of the tail field lines. This is followed by a localized substorm-like brightening of the auroral distribution in the dusk to midnight sector on the lower branch of the double oval which subsequently expands rapidly poleward and azimuthally. A new expanded double oval configuration emerges from this expansion phase activity and the cycle repeats itself for the duration of the sawtooth event. This behavior is highly consistent with the Akasofu picture of substorm onset occurring deep within the closed field-line region on the equator-most arc. Due to the large separation between the poleward boundary and the onset region during these types of substorms, the interaction between the onset region and poleward boundary intensifications, auroral streamers, inclined arcs, torches and omega bands are more easily determined. Here, we show that: (1) Sawtooth injections can be produced by the copious production of auroral streamers, without a substorm onset; (2) Auroral streamers typically evolve into torches and omega bands rather than leading to onsets; (3) Equatorward-moving "inclined arcs" can feed into the onset region. The observations might be explained by the scale-size-dependent behavior of earthward-moving depleted flux tubes in the tail. In this hypothesis, streamers can penetrate rapidly toward the earth (via interchange) and mitigate the pressure crisis in the near-earth region, while the slower-moving inclined arcs map to large-scale depleted flux tubes that do not efficiently penetrate earthward and hence do not alleviate the pressure crisis in the pre-midnight sector.
NASA Technical Reports Server (NTRS)
Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.;
2012-01-01
The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.
NASA Technical Reports Server (NTRS)
Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.;
2011-01-01
The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.
Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessler, A.J.; Chamberlain, J.W.
1979-06-15
Jupiter's internal magnetic field is markedly non-dipolar. We propose that Io- or Europa-generated auroral emissions (originating at the foot of either Io's or Europa's magnetic flux tube) are largely restricted to longitudes where Jupiter's ionospheric conductivity is enhanced. Trapped, energetic electrons that drift into Jupiter's atmosphere, in regions where the Jovian magnetic field is anomalously weak, produce the increased conductivity. The longitude range of enchanced auroral hot-spot emissions is thus restricted to an active sector that is determined from dekametric radio emission to lie in the northern hemisphere in the Jovian System III (1965) longitude range of 205/sup 0/ +-more » 30/sup 0/. Relatively weaker auroral hot spots should occur in the southern hemisphere along the mgnetic conjugate trace covering the longitude range of 215/sup 0/ +- 55/sup 0/. At other longitudes, the brightness of the hot spot should decrease by at least one order of magnitude. These results, with respect to both brightness and longitude, are in accord with the observations of Jovian auroral hot spots reported by Atreya et al. We show that the northern hemisphere foot of either Io's or Europa's magnetic flux tube was in the preferred longitude range (the active sector) at the time of each observation.« less
Dynamics Explorer guest investigator
NASA Technical Reports Server (NTRS)
Sojka, Jan J.
1991-01-01
A data base of satellite particle, electric field, image, and plasma data was used to determine correlations between the fields and the particle auroral boundaries. A data base of 8 days of excellent coverage from all instruments was completed. The geomagnetic conditions associated with each of the selected data periods, the number of UV image passes per study day that were obtained, and the total number of UV images for each day are given in tabular form. For each of the days listed in Table 1, both Vector Electric Field Instrument (VEFI) electric potential data and LAPI integrated particle energy fluxes were obtained. On the average, between 8 and 11 passes of useful data per day were obtained. These data are displayed in a format such that either the statistical electric field model potential or the statistical precipitation energy flux could be superimposed. The Heppner and Maynard (1987) and Hardy et al. (1987) models were used for the electric potential and precipitation, respectively. In addition, the auroral image intensity along the Dynamics Explorer-2 satellite pass could be computed and plotted along with the LAPI precipitation data and Hardy et al. (1987) values.
Archival Study of Energetic Processes in the Upper Atmosphere of the Outer Planets
NASA Technical Reports Server (NTRS)
Ballester, Gilda E.; Harris, Walter M.
1998-01-01
We compare International Ultraviolet Explorer (IUE) spectral observations of Jupiter's UltraViolet (UV) aurora in H-Lyman alpha (H-Lya) and H2 emissions with images of the UV aurora with HST to make more realistic interpretations of the IUE dataset. Use the limited spatial information in the IUE line-by-line spectra of the bright H-Lya line emission in the form of pseudo-monochromatic images at the IUE 3.5 arcsec resolution (Lya pseudo-images), to derive information on the emissions. Analysing of H2 spectra of Saturn's UV aurora to infer atmospheric level of auroral excitation from the methane absorption (color ratios). Analysing of a Uranus IUE dataset to determine periodicity in the emissions attributable to auroral emission fixed in magnetic longitude. Reviewing of the results from IUE observations of the major planets, upper atmospheres and interactions with the planets magnetospheres. Analysing of IUE spectra of the UV emissions from Io to identify excitation processes and infer properties of the Io-torus-Jupiter system.
Untangling the Space-Time Ambiguity of Auroral Emissions
NASA Astrophysics Data System (ADS)
Gjerloev, J. W.; Humberset, B.; Michell, R. G.; Samara, M.; Mann, I. R.
2012-12-01
In this paper we address the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) system as observed by an all-sky imager (ASI). We utilize 557.7 nm images obtained by a ground based ASI located under the dark ionosphere (~22 MLT) at Poker Flat, Alaska. The 19 min movie was recorded at 3.31 Hz during continuous moderately intense auroral activity driven by a southward IMF Bz of about -5 nT. We analyze this movie using a simple, yet robust, 2D FFT technique that allows us to determine the scale size dependent variability. When plotting the correlation pattern as a function of scale size and time separation we find a pattern with distinct regions of high and low correlation. Larger scale sizes are found to have longer duration. We interpret this remarkable result as indicative of a M-I system that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere. Our findings support the characteristics of the field-aligned currents as determined from multi-point satellite observations (ST-5, Gjerloev et al., Annales Geophysicae, 2011). Two different electromagnetic parameters, auroral emissions and field-aligned currents, display similar characteristics supporting our conclusion that this is indicative of a fundamental behavior of the M-I system.
Ion distribution effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1982-01-01
An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.
An approach to forecast major GIC events
NASA Astrophysics Data System (ADS)
Stauning, Peter
2013-04-01
In addition to provide fascinating auroral displays, the large and violent magnetic substorms may endanger power grids and cause problems for a variety of other important technical systems. Such substorms generally result from the build-up of excessive stresses in the magnetospheric tail region caused by imbalance between the transpolar antisunward convection of plasma and embedded magnetic fields and the sunward convection (return flow) at auroral latitudes. The stresses are subsequently released through substorm processes, which may, among other, cause rapidly varying ionospheric currents in the million-ampere range that in turn endanger power grids through the related "Geomagnetically Induced Current" (GIC) effects. The presentation will discuss the construction of a geomagnetic stress parameter based on a combination of polar cap indices and auroral electrojet monitoring to be used in the forecasting of major GIC events.
Mapping auroral activity with Twitter
NASA Astrophysics Data System (ADS)
Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.
2015-05-01
Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.
Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics
NASA Astrophysics Data System (ADS)
Riechert, Maik; Walsh, Andrew P.; Taylor, Matt
2014-05-01
Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in the southern hemisphere, but also for multi-point observations of the aurora borealis by combining with THEMIS and other imager arrays.
Comparison of solar wind driving of the aurora in the two hemispheres due to the solar wind dynamo
NASA Astrophysics Data System (ADS)
Reistad, Jone Peter; Østgaard, Nikolai; Magnus Laundal, Karl; Haaland, Stein; Tenfjord, Paul; Oksavik, Kjellmar
2014-05-01
Event studies of simultaneous global imaging of the aurora in both hemispheres have suggested that an asymmetry of the solar wind driving between the two hemispheres could explain observations of non-conjugate aurora during specific driving conditions. North-South asymmetries in energy transfer from the solar wind across the magnetopause is believed to depend upon the dipole tilt angle and the x-component of the interplanetary magnetic field (IMF). Both negative tilt (winter North) and negative IMF Bx is expected to enhance the efficiency of the solar wind dynamo in the Northern Hemisphere. By the same token, positive tilt and IMF Bx is expected to enhance the solar wind dynamo efficiency in the Southern Hemisphere. We show a statistical study of the auroral response from both hemispheres using global imaging where we compare results during both favourable and not favourable conditions in each hemisphere. By this study we will address the question of general impact on auroral hemispheric asymmetries by this mechanism - the asymmetric solar wind dynamo. We use data from the Wideband Imaging Camera on the IMAGE spacecraft which during its lifetime from 2000-2005 covered both hemispheres. To ease comparison of the two hemispheres, seasonal differences in auroral brightness is removed as far as data coverage allows by only using events having small dipole tilt angles. Hence, the IMF Bx is expected to be the controlling parameter for the hemispheric preference of strongest solar wind dynamo efficiency in our dataset. Preliminary statistical results indicate the expected opposite behaviour in the two hemispheres, however, the effect is believed to be weak.
GAIA virtual observatory - development and practices
NASA Astrophysics Data System (ADS)
Syrjäsuo, Mikko; Marple, Steve
2010-05-01
The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.
Convective cell generation by kinetic Alfven wave turbulence in the auroral ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Wu, D. J.; Yu, M. Y.
2012-06-15
Modulation of convective cells by kinetic Alfven wave (KAW) turbulence is investigated. The interaction is governed by a nonlinear dispersion relation for the convective cells. It is shown that KAW turbulence is disrupted by excitation of the large-scale convective motion through a resonant instability. Application of the results to the auroral ionosphere shows that cross-scale coupling of the KAW turbulence and convective cells plays an important role in the evolution of ionospheric plasma turbulence.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.
Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms
NASA Technical Reports Server (NTRS)
Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, W. Robin; Doornbos, Eelco; Zhang, Yongliang
2014-01-01
Poynting flux shows peaks around auroral zone AND inside polar cap. Energy enters IT system at all local times in polar cap. Track-integrated flux at DMSP often peaks at polar latitudes- probably due to increased area of polar cap during storm main phases. center dot lon temperatures at DMSP show large increases in polar region at all local times; cusp and auroral zones do not show distinctively high Ti. center dot I on temperatures in the polar cap are higher than in the auroral zones during quiet times. center dot Neutral densities at GRACE and GOCE show maxima at polar latitudes without clear auroral signatures. Response is fast, minutes from onset to density peaks. center dot GUVI observations of O/N2 ratio during storms show similar response as direct measurements of ion and neutral densities, i.e. high temperatures in polar cap during prestorm quiet period, heating proceeding from polar cap to lower latitudes during storm main phase. center dot Discrepancy between maps of Poynting flux and of ion temperatures/neutral densities suggests that connection between Poynting flux and Joule heating is not simple.
ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations
NASA Astrophysics Data System (ADS)
Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II
2017-12-01
E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.
NASA Astrophysics Data System (ADS)
Michell, R. G.; Lynch, K. A.; Heinselman, C. J.; Stenbaek-Nielsen, H. C.
2008-11-01
We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR). On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs), the first observed with PFISR. These times corresponded to (a) when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b) when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a) and (b) was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m-3. Broad-band extremely low frequency (BBELF) wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs) and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could have many implications. One specific example of interest is identifying and following the temporal and spatial evolution of regions of potential ion outflow over large spatial and temporal scales using ground-based optical observations.
NASA Astrophysics Data System (ADS)
Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.
2012-12-01
The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.
Evaluating the role of pre-onset streamers on substorm expansion - where do we go from here?
NASA Astrophysics Data System (ADS)
Kepko, L.
2017-12-01
Prior to the THEMIS mission there were two `standard' substorm models — inside out vs. outside in. The THEMIS era has fundamentally altered this dichotomy with the inclusion of the triggered inside-out scenario. This scenario was initially based on the observation of THEMIS ASI white light streamers flowing from the poleward edge of the auroral oval, arriving in the vicinity of the eventual breakup region. It has since been augmented with observations from radar and 630.0 nm ASI cameras. The validity of this scenario rests crucially on the interpretation of ground-based auroral imager data, which in many cases is a subjective analysis. Through an exhaustive examination of 443 events that formed the basis of the pre-onset streamer, triggered inside-out scenario, we have identified several distinct types of auroral intensifications and expansions, including events for which pre-onset streamers appeared to play a clear role. In this talk we suggest an organizational paradigm for interpretation and analysis of substorm events, identifying when and under what conditions pre-onset streamers appear to be associated with auroral activity. We further comment on the current observational and theoretical hurdles that are limiting our ability to reach closure on this topic, and make specific recommendations for achieving further progress.
Polar UVI observations of dayside auroral transient events
NASA Astrophysics Data System (ADS)
Vorobjev, V. G.; Yagodkina, O. I.; Sibeck, D. G.; Liou, K.; Meng, C.-I.
2001-12-01
We analyze Polar Ultraviolet Imager (UVI) observations of auroral transient events (ATEs) in the dayside Northern Hemisphere. During 5 winter months in 1996 and 1997, we found 31 prenoon ATEs but only 13 afternoon events. Prenoon and afternoon event characteristics differ. Prenoon ATEs generally appear as bright spots of auroral luminosity in the area from 0800 to 1000 magnetic local time (MLT) and 74.5° and 76.5° corrected geomagnetic latitude (CGL). Bright aurorae then quickly expand westward and poleward, accompanied by high-latitude magnetic impulsive events (MIE) and traveling convection vortices (TCV). Afternoon ATEs usually appear as a sudden intensification of aurorae in the area from 1400 to 1600 MLT and 75.5° to 78.5° CGL. Within 15-20 min the bright band of luminosity extends eastward to reach 2000-2100 MLT at 70°-72° CGL. Although midlatitude and low-latitude ground magnetograms in the evening sector record increases in the horizontal component of the magnetic field, no corresponding features occur at stations in the morning sector. Afternoon ATEs correspond to abrupt changes in the interplanetary magnetic field (IMF) orientation, but not to significant variations of the solar wind dynamic pressure, indicating that the auroral transient events occur as part of the magnetospheric response to abrupt changes in the foreshock geometry.
NASA Technical Reports Server (NTRS)
2007-01-01
This unusual image shows Io glowing in the darkness of Jupiter's shadow. It is a combination of eight images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) between 14:25 and 14:55 Universal Time on February 27, 2007, about 15 hours before the spacecraft's closest approach to Jupiter. North is at the top of the image. Io's surface is invisible in the darkness, but the image reveals glowing hot lava, auroral displays in Io's tenuous atmosphere and volcanic plumes across the moon. The three bright points of light on the right side of Io are incandescent lava at active volcanoes - Pele and Reiden (south of the equator), and a previously unknown volcano near 22 degrees north, 233 degrees west near the edge of the disk at the 2 o'clock position. An auroral glow, produced as intense radiation from Jupiter's magnetosphere bombards Io's atmosphere, outlines the edge of the moon's disk. The glow is patchy because the atmosphere itself is patchy, being denser over active volcanoes. In addition to the near-surface glow, there is a remarkable auroral glow suspended 330 kilometers (200 miles) above the edge of the disk at the 2 o'clock position; perhaps this glowing gas was ejected from the new volcano below it. Another glowing gas plume, above a fainter point of light, is visible just inside Io's disk near the 6 o'clock position; this plume is above another new volcanic eruption discovered by New Horizons. On the left side of the disk, near Io's equator, a cluster of faint dots of light is centered near the point on Io that always faces Jupiter. This is the region where electrical currents connect Io to Jupiter's magnetosphere. It is likely that electrical connections to individual volcanoes are causing the glows seen here, though the details are mysterious. Total exposure time for this image was 16 seconds. The range to Io was 2.8 million kilometers (1.7 million miles), and the image is centered at Io coordinates 7 degrees south, 306 degrees west. The image has been heavily processed to remove scattered light from Jupiter, but some artifacts remain, such as dark patches in the background.Spatial and Temporal Variability of Southern Auroral Emissions in the IR from JIRAM/Juno Data
NASA Astrophysics Data System (ADS)
Mura, A.; Altieri, F.; Moriconi, M. L.; Adriani, A.; Grassi, D.; Migliorini, A.; Gerard, J. C. M. C.; Dinelli, B. M.; Fabiano, F.; Filacchione, G.; Sindoni, G.; Tosi, F.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Sordini, R.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Levin, S.; Lunine, J. I.; Turrini, D.; Stefani, S.; Olivieri, A.; Plainaki, C.
2017-12-01
JIRAM (Jupiter Infrared Auroral Mapper) is the infrared imaging spectrometer on board the NASA Juno mission. The data collected since August 2016 on both Northern and Southern polar aurora at Jupiter have an unprecedented spatial. Moreover, the JIRAM scanning mirror allows observations of the same area at serveral adjacent time frames.In this work, we focus on the spatial and temporal variability of the Southern aurora. The JIRAM data of the L imager channel (3.3-3.6 µm) have been averaged in bins of 2.5°Lat × 2°Lon and variations of the signal have been investigated for 17:50 < time < 19:45, 27 August 2016. The time frames have been carefully selected in order to avoid possible instrumental residuals in the signal (Mura et al., 2017). We find that near the South Pole, for -87.5°
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, M. G.; Morley, S. K.; Kepko, L. E.
Quasi-periodic energetic particle injections have been observed at geosynchronous orbit on the dusk-side during a steady magnetospheric convection event. Here, we examine high resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive non-linear growth of a shear-flow-ballooning instability in the region where sub-auroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the ‘line-tying’more » effect will also be least stabilizing there. We also propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive ‘onset-like’ disturbance that can occur during intervals of strong convection.« less
Magnetotail energy dissipation during an auroral substorm
Panov, E.V.; Baumjohann, W.; Wolf, R.A.; Nakamura, R.; Angelopoulos, V.; Weygand, J. M.; Kubyshkina, M.V.
2016-01-01
Violent releases of space plasma energy from the Earth’s magnetotail during substorms produce strong electric currents and bright aurora. But what modulates these currents and aurora and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10-14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aurora. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1km/s. This observed auroral activity appears sufficient to dissipate the released energy. PMID:27917231
Henderson, M. G.; Morley, S. K.; Kepko, L. E.
2017-12-06
Quasi-periodic energetic particle injections have been observed at geosynchronous orbit on the dusk-side during a steady magnetospheric convection event. Here, we examine high resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive non-linear growth of a shear-flow-ballooning instability in the region where sub-auroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the ‘line-tying’more » effect will also be least stabilizing there. We also propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive ‘onset-like’ disturbance that can occur during intervals of strong convection.« less
NASA Astrophysics Data System (ADS)
Kauristie, K.; Mälkki, A.; Pulkkinen, A.; Nevanlinna, H.; Ketola, A.; Tulkki, V.; Raita, T.; Blanco, A.
2004-12-01
European Space Agency is currently supporting 17 Service Development Activities (SDA) within its Space Weather Pilot Project. Auroras Now!, one of the SDAs, has been operated during November 2003 - March 2004 as its pilot season. The service includes a public part freely accessible in Internet (http://aurora.fmi.fi) and a private part visible only to the customers of two hotels in the Finnish Lapland through the hotels' internal TV-systems. The nowcasting system is based on the magnetic recordings of two geophysical observatories, Sodankylä (SOD, MLAT ~64 N) and Nurmijärvi (NUR, MLAT ~57 N). The probability of auroral occurrence is continuously characterised with an empirically determined three-level scale. The index is updated once per hour and based on the magnetic field variations recorded at the observatories. During dark hours the near-real time auroral images acquired at SOD are displayed. The hotel service also includes cloudiness predictions for the coming night. During the pilot season the reliability of the three-level magnetic alarm system was weekly evaluated by comparing its prediction with auroral observations by the nearby all-sky camera. Successful hits and failures were scored according to predetermined rules. The highest credit points when it managed to spot auroras in a timely manner and predict their brightness correctly. Maximum penalty points were given when the alarm missed clear bright auroras lasting for more than one hour. In this presentation we analyse the results of the evaluation, present some ideas to further sharpen the procedure, and discuss more generally the correlation between local auroral and magnetic activity.
On the relation between GNSS phase scintillation and auroral brightness around satellite's IPP
NASA Astrophysics Data System (ADS)
Spanswick, E.; Mushini, S. C.; Skone, S.; Donovan, E.
2017-12-01
Aurora occurs in different well-known morphologies, or types, including arcs and patchy-pulsating aurora (PPA). Previous observational studies have demonstrated that global navigation satellite system (GNSS) signals transiting the ionosphere in regions of aurora can contain varying levels of scintillation. These scintillations are often attributed to the ionospheric disturbances associated with auroral precipitation, which in extreme cases can affect the accuracy of these systems. One question that remains unanswered is whether a satellite's line of sight transmission through the aurora is a sufficient condition for signal scintillation. Previous studies have used "level" or "strength" of auroral emission as a proxy indicator for scintillation using limited datasets. In general, these results are mixed and inconclusive. In this study, we use a large data set (700 Auroral arc events) to statistically study the relationship between aurora and scintillation of GPS signals. This is one of the largest datasets used in this type of studies. We utilize the THEMIS (Time History of Events and Macroscale Interactions during Substorms) All-Sky Imagers (ASIs) located at Fort Smith (59.9 N, 248.1 E geog.) and Gillam (56.5 N, 265.4 E geog.), Canada. Corresponding GPS data were obtained from CHAIN (Canadian High Arctic Ionospheric Network) GPS receivers collocated with the ASIs. These GPS receivers are custom made receivers capable of providing high rate GPS signal power and phase observations as well as scintillation indices. To obtain information how aurora is affecting the signal, brightness around satellite's Ionospheric Pierce Point (IPP) was calculated and correlated with sigma phi from the satellite's signal. A very low correlation of 0.003 was observed between them. Correlation between the rate of change of brightness around the satellite's IPP and sigma phi was also calculated and a correlation coefficient of 0.7 was observed between them. These results indicate that GPS signal scintillation is not a direct function of overall luminosity but instead related to the rate of change of brightness around the satellite's IPP. Spectral analysis was also performed on this data set to observe if there are any dominant frequencies in the brightness around the satellite signal's IPP when that signal is scintillated.
Electromagnetic plasma wave emissions from the auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1977-01-01
The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.
A search for thermospheric composition perturbations due to vertical winds
NASA Astrophysics Data System (ADS)
Krynicki, Matthew P.
The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.
Characterization and diagnostic methods for geomagnetic auroral infrasound waves
NASA Astrophysics Data System (ADS)
Oldham, Justin J.
Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with modulation of the electrojets due to energetic particle precipitation, dispersion due to coupling with gravity waves, and reflection and refraction effects in the intervening atmosphere all potential factors in the shaping of the waveforms observed.
SA13B-1900 Auroral Charging of the International Space Station
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Chandler, Michael O.; Wright, Kenneth H., Jr.
2011-01-01
Electrostatic potential variations of the International Space Station (ISS) relative to the space plasma environment are dominated by interaction of the negatively grounded 160 volt US photovoltaic power system with the plasma environment in sunlight and inductive potential variations across the ISS structure generated by motion of the vehicle across the Earth's magnetic field. Auroral charging is also a source of potential variations because the 51.6? orbital inclination of ISS takes the vehicle to sufficiently high magnetic latitudes to encounter precipitating electrons during geomagnetic storms. Analysis of auroral charging for small spacecraft or isolated insulating regions on ISS predict rapid charging to high potentials of hundreds of volts but it has been thought that the large capacitance of the entire ISS structure on the order of 0.01 F will limit frame potentials to less than a volt when exposed to auroral conditions. We present three candidate auroral charging events characterized by transient ISS structure potentials varying from approximately 2 to 17 volts. The events occur primarily at night when the solar arrays are unbiased and cannot therefore be due to solar array current collection. ISS potential decreases to more negative values during the events indicating electron current collection and the events are always observed at the highest latitudes along the ISS trajectory. Comparison of the events with integral >30 keV electron flux measurements from NOAA TIROS spacecraft demonstrate they occur within regions of precipitating electron flux at levels consistent with the energetic electron thresholds reported for onset of auroral charging of the DMSP and Freja satellites. In contrast to the DMSP and Freja events, one of the ISS charging events occur in sunlight.
Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations
NASA Astrophysics Data System (ADS)
Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.
2017-11-01
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.
X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.
2005-01-01
Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.
NASA Astrophysics Data System (ADS)
Gillies, D. M.; Knudsen, D. J.; Donovan, E.; Jackel, B. J.; Gillies, R.; Spanswick, E.
2017-12-01
We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) to derive a characteristic emission height for the optical emissions. In our 10 events we find that an altitude of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar (RISR-C), both of which are consistent with a characteristic emission height of 200 km. We also present the spatial error associated with georeferencing REdline Geospace Observatory (REGO) and THEMIS all-sky imagers (ASIs) and how it applies to altitude projections of the mapped image. Utilizing this error we validate the estimated altitude of redline aurora using two methods: triangulation between ASIs and field-aligned current profiles derived from magnetometers on-board the Swarm satellites.
Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.
2008-01-01
This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.
NASA Astrophysics Data System (ADS)
Fasel, G. J.; Flicker, J.; Sibeck, D. G.; Alyami, M.; Angelo, A.; Aylward, R. J.; Bender, S.; Christensen, M.; Kim, J.; Kristensen, H.; Orellana, Y.; Sahin, O.; Yoon, J.; Green, D.; Sigernes, F.; Lorentzen, D. A.
2013-12-01
The latitude of the equatorial edge of the dayside auroral oval has been shown to vary with the direction of the IMF Bz-component. The equatorward/poleward edge of the dayside auroral oval shifts equatorward/poleward when the IMF Bz-component is negative/positive [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. Past studies have shown that poleward-moving auroral forms (PMAFs) are a common feature during equatorward expansions of the dayside auroral oval. Horwitz and Akasofu [1977] noted a one-to-one correspondence of luminous PMAFs associated with an equatorward expansion of the dayside auroral oval. During the southward turning of the IMF Bz-component the merging rate on the dayside increases [Newell and Meng, 1987] leading to the erosion of the dayside magnetopause. The field line merging process is thought to be most efficient when the interplanetary magnetic field (IMF) Bz-component turns southward. Both Vorobjev et al. [1975] and Horwitz and Akasofu [1977] attributed these PMAFs to magnetic flux being eroded away from the dayside magnetopause and transported antisunward. Dayside poleward-moving auroral forms are also observed during periods of an expanded and stable dayside auroral oval for both northern and southern hemisphere observations [Sandholt et al., 1986, 1989, 1990; Rairden and Mende, 1989; Mende et al., 1990]. Poleward-moving auroral forms have also been observed during some dayside oval contractions but have not been discussed much in the literature. This study examines the dayside auroral oval during periods of expansion, contraction, and during periods of an expanded and stable dayside auroral oval. This statistical study will provide the following results: number of poleward-moving auroral forms that are generated during dayside auroral oval expansions/contractions and during periods of a stable and expanded dayside auroral oval, the average initial and final elevation angle of the dayside auroral oval, time for dayside auroral oval to expand or contract, and the solar wind parameters (IMF Bx, By, Bz, speed, and pressure) associated with each interval (expansion, contraction, or stable and expanded).
Lyman alpha line shapes from electron impact H2 dissociative processes in the Jovian auroral zone
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr.; Gladstone, G. R.
1992-01-01
Over the past two years several Lyman alpha line profile spectra of Jupiter were obtained using the International Ultraviolet Explorer (IUE) telescope. Several different regions of the planet were observed including the auroral zone, the low and mid latitudes, and the equatorial region which includes the Lyman alpha bulge region. These results have presented a very interesting picture of atomic hydrogen on Jupiter with explanations that range from ion outflow in the auroral zone to large thermospheric winds at low and mid latitudes. New data are needed to address the outstanding questions. Almost certainly, high resolution spectra from the Hubble Space Telescope will play a role in new observations. Better data also require better models, and better models require new laboratory data as inputs. The purpose of this program is two-fold: (1) to introduce a method by which new laboratory electron impact measurements of H2 dissociation can be used to calculate both the slow and fast H(S-2) and H(P-2) fragments in an H2 atmosphere; and (2) to determine the predicted Lyman alpha line shape that would result from electron impact production of these dissociative fragments in the Jovian auroral zone.
Short-term dynamics of the high-latitude auroral distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphree, J.S.; Elphinstone, R.D.; Cogger, L.L.
During two consecutive orbits of the Viking satellite on March 24, 1986, UV observations of the northern hemisphere auroral distribution revealed rapid growth and decay of large-scale polar arcs. Evolution of these features occurred from the nightside auroral distribution (to which they are optically connected) toward the dayside. The connection on the dayside was short-lived ({approx} 2 min) and the arc retreated at similar speeds to its development ({approx} 5 km/s). Time scales for growth (at least to the level of the sensitivity of the instrument) can also be less than 1 min. Examples of arc occurrences during a half-hourmore » time period show that arcs can extend from the nightside to the dayside and disappear and another extended arc can appear at a widely separated position. These types of dynamic polar features appear consistent with the dynamic energization and precipitation of boundary layer electrons at high latitudes.« less
Auroral particle acceleration: An example of a universal plasma process
NASA Astrophysics Data System (ADS)
Haerendel, G.
1980-06-01
The occurrence of discrete and narrow auroral arcs is attributed to a sudden release of magnetic tensions set up in a magnetospheric-ionospheric current circuit of high strength. At altitudes of several 1000 km the condition of frozen in magnetic fields can be broken temporarily in thin regions corresponding to the observed width of auroral arcs. This implies magnetic field-aligned potential drops of several kilovolts supported by certain anomalous transport processes which can only be maintained in a quasi-stationary fashion if the current density exceeds a critical limit. The region of field aligned potential drops is structured by two pairs of standing waves which are generalized Alfven waves of large amplitude across which the parallel electric field has a finite jump. The waves are emitted from the leading edge of the acceleration region which propagates slowly into the stressed magnetic field.
Auroral Proper Motion in the Era of AMISR and EMCCD
NASA Astrophysics Data System (ADS)
Semeter, J. L.
2016-12-01
The term "aurora" is a catch-all for luminosity produced by the deposition of magnetospheric energy in the outer atmosphere. The use of this single phenomenological term occludes the rich variety of sources and mechanisms responsible for the excitation. Among these are electron thermal conduction (SAR arcs), electrostatic potential fields ("inverted-V" aurora), wave-particle resonance (Alfvenic aurora, pulsating aurora), pitch-angle scattering (diffuse aurora), and direct injection of plasma sheet particles (PBIs, substorms). Much information about auroral energization has been derived from the energy spectrum of primary particles, which may be measured directly with an in situ detector or indirectly via analysis of the atmospheric response (e.g., auroral spectroscopy, tomography, ionization). Somewhat less emphasized has been the information in the B_perp dimension. Specifically, the scale-dependent motions of auroral forms in the rest frame of the ambient plasma provide a means of partitioning both the source region and the source mechanism. These results, in turn, affect ionospheric state parameters that control the M-I coupling process-most notably, the degree of structure imparted to the conductance field. This paper describes recent results enabled by the advent of two technologies: high frame-rate, high-resolution imaging detectors, and electronically steerable incoherent scatter radar (the AMISR systems). In addition to contributing to our understanding of the aurora, these results may be used in predictive models of multi-scale energy transfer within the disturbed geospace system.
Swarm Observation of Field-Aligned Currents Associated With Multiple Auroral Arc Systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E. F.; Burchill, J. K.
2017-10-01
Auroral arcs occur in regions of upward field-aligned currents (FACs); however, the relation is not one to one, since kinetic energy of the current-carrying electrons is also important in the production of auroral luminosity. Multiple auroral arc systems provide an opportunity to study the relation between FACs and auroral brightness in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms all-sky imagers, magnetometers and electric field instruments on board the Swarm satellites. In "unipolar FAC" events, each arc is an intensification within a broad, unipolar current sheet and downward return currents occur outside of this broad sheet. In "multipolar FAC" events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 17 events with unipolar FAC and 12 events with multipolar FACs, we find that (1) unipolar FAC events occur most frequently between 20 and 21 magnetic local time and multipolar FAC events tend to occur around local midnight and within 1 h after substorm onset. (2) Arcs in unipolar FAC systems have a typical width of 10-20 km and a spacing of 25-50 km. Arcs in multipolar FAC systems are wider and more separated. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) Electric fields are strong and highly structured on the edges of multiple arc system with unipolar FAC. The fact that arcs with unipolar FAC are much more highly structured than the associated currents suggests that arc multiplicity is indicative not of a structured generator deep in the magnetosphere, but rather of the magnetosphere-ionosphere coupling process.
Using Citizen Science Reports to Define the Equatorial Extent of Auroral Visibility
NASA Technical Reports Server (NTRS)
Case, N. A.; MacDonald, E. A.; Viereck, R.
2016-01-01
An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a "view line" to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than Is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91 percent.
Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows
NASA Astrophysics Data System (ADS)
Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.
2017-12-01
Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?
A study of a sector spectrophotometer and auroral O+(2P-2D) emissions
NASA Technical Reports Server (NTRS)
Swenson, G. R.
1976-01-01
The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).
NASA Astrophysics Data System (ADS)
Levitin, A. E.; Kleimenova, N. G.; Gromova, L. I.; Antonova, E. E.; Dremukhina, L. A.; Zelinsky, N. R.; Gromov, S. V.; Malysheva, L. M.
2015-11-01
Features of high-latitude geomagnetic disturbances during the magnetic storm ( Dst min =-144 nT) recovery phase were studied based on the observations on the Scandinavian profile of magnetometers (IMAGE). Certain non-typical effects that occur under the conditions of large positive IMF Bz values (about +20-25 nT) and large negative IMF By values (to-20 nT) were revealed. Thus, an intense (about 400 nT) negative bay in the X component of the magnetic field (the polar electrojet, PE) was observed in the dayside sector at geomagnetic latitudes higher than 70°. As the IMF B y reverses its sign from negative to positive, the bay in the X component was replaced by the bay in the Y component. The possible distribution of the fieldaligned currents of the NBZ system was analyzed based on the CHAMP satellite data. The results were compared with the position of the auroral oval (the OVATION model) and the ion and electron flux observations on the DMSP satellite. Analysis of the particle spectra indicated that these spectra correspond to the auroral oval dayside sector crossings by the satellite, i.e., to the dayside projection of the plasma ring surrounding the Earth. Arguments are presented for the assumption that the discussed dayside electrojet ( PE) is localized near the polar edge of the dayside auroral oval in a the closed magnetosphere. The features of the spectral and spatial dynamics of intense Pc5 geomagnetic pulsations were studied in this time interval. It was established that the spectrum of high-latitude (higher than ~70°) pulsations does not coincide with the spectrum of fluctuations in the solar wind and IMF. It was shown that Pc5 geomagnetic pulsations can be considered as resonance oscillations at latitudes lower than 70° and apparently reflect fluctuations in turbulent sheets adjacent to the magnetopause (the low-latitude boundary layer, a cusp throat) or in a turbulent magnetosheath at higher latitudes.
Far Ultraviolet Imaging from the Image Spacecraft
NASA Technical Reports Server (NTRS)
Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.
2000-01-01
Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.
VLF remote sensing of the ambient and modified lower ionosphere
NASA Astrophysics Data System (ADS)
Demirkol, Mehmet Kursad
2000-08-01
Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.
NASA Technical Reports Server (NTRS)
Knudsen, D. L.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, Robert F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pincon, J.-L.
2012-01-01
The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes.
Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)
NASA Astrophysics Data System (ADS)
Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.
2017-12-01
The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
IMAGE Observations of Plasmasphere/Ring Current Interactions
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Adrian, M. L.; Perez, J.; Sandel, B. R.
2003-01-01
Evidence has been found in IMAGE observations that overlap of the plasmasphere and the ring current may lead to enhanced loss of plasma into the ionosphere. It has long been anticipated that this mixing of plasma leads to coupling and resulting consequences on both populations. Wave generation, pitch angle scattering, and heating are some of the consequences that are anticipated. IMAGE plasmasphere ring current, and auroral observations will be presented and used to explore these interactions and their effects.
The DMSP Space Weather Sensors Data Archive Listing (1982-2013) and File Formats Descriptions
2014-08-01
environment sensors including the auroral particle spectrometer (SSJ), the fluxgate magnetometer (SSM), the topside thermal plasma monitor (SSIES... Fluxgate Magnetometer (SSM) for the Defense Meteorological Satellite Program (DMSP) Block 5D-2, Flight 7, Instrument Papers, AFGL-TR-84-0225; ADA155229...Flux) SSM The fluxgate magnetometer . (Special Sensor, Magnetometer ) SSULI The ultraviolet limb imager SSUSI The ultraviolet spectrographic imager
Modeling the Self-Organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics
NASA Astrophysics Data System (ADS)
Klimas, A.; Uritsky, V.; Baker, D.
2006-05-01
Analyses of Polar UVI auroral image data (Uritsky et al. JGR, 2002; GRL, 2003, 2006) show that bright night- side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study (Klimas et al. JGR, 2004; GRL 2005). The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.
The "Alfvén" proposal for the European Space Agency M5 Mission Call
NASA Astrophysics Data System (ADS)
Berthomier, M.; Fazakerley, A. N.
2017-12-01
The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations.
Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics
NASA Technical Reports Server (NTRS)
Klimas, Alex; Uritsky, Vadim; Baker, Daniel
2006-01-01
Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.
Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics
NASA Technical Reports Server (NTRS)
Klimas, Alexander J.
2006-01-01
Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.
NASA Technical Reports Server (NTRS)
Wilson, Gordon R.
2001-01-01
One of the chief mysteries in the LENA perigee pass data is the lack of an apparent auroral oval in the images. Another is that in some cases ENA are seen from any direction near the Earth regardless of the latitude of the spacecraft. These facts lead one to ask a fundamental question: Is the instrument responding to ENA primarily? One possible way to get out of the "ambiguity" of the data is to assume that at least part of the signal is produced by something other than ENA. The two main candidates for this "something else" are UV light and energetic charged particles. UV light could only effect the instrument when its fan shaped aperture points toward the source. The most intense of which will be the sun, with day glow being the second strongest and the auroral zone, the third. We can rule out UV light as a prime source of counts in the perigee pass data for the following reasons: 1) The perigee pass signal is different in form and much stronger than the sun pulse signal seen just before or just after perigee; 2) There is no indication of the auroral zone, which would produce at least two peaks in the counts versus spin phase curve; 3) Mike Colliers' analysis of the sun pulse signal shows that it varies with the flux of the solar wind and not with variations in the solar UV flux. Charge particles that enter the aperture of the instrument and produce counts would show up when the instrument looks in the direction from which they come. In all of the data I am analyzing voltages were being applied to the collimators so that most charged particles should have been excluded from the instrument but this effect could still show up where the flux of energetic particles is high enough. The most likely place would be in the auroral zone where energetic electrons and protons precipitate. If these particles are producing counts then they should be seen when the instrument looks in and near the zenith direction. In nearly all of the perigee passes the zenith direction is devoid of counts.
FAST satellite observations of large-amplitude solitary structures
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.
We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.
Summary of Quantitative Interpretation of Image Far Ultraviolet Auroral Data
NASA Technical Reports Server (NTRS)
Frey, H. U.; Immel, T. J.; Mende, S. B.; Gerard, J.-C.; Hubert, B.; Habraken, S.; Span, J.; Gladstone, G. R.; Bisikalo, D. V.; Shematovich, V. I.;
2002-01-01
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from thc magnetosphere into the atmosphere. This paper describes provides the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial and temporal resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman alpha emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman alpha images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy fluxun-. To accomplish this reliable modeling emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.
UV Remote Sensing Data Products - Turning Data Into Knowledge
NASA Astrophysics Data System (ADS)
Weiss, M.; Paxton, L.; Schaefer, R. K.; Comberiate, J.; Hsieh, S. W.; Romeo, G.; Wolven, B. C.; Zhang, Y.
2013-12-01
The DMSP/SSUSI instruments have been taking UV images of the upper atmosphere for more than a decade. Each of the SSUSI instruments takes complete global UV images on a daily basis. Although this scientific data is very valuable, it is not actionable information. Perhaps the simplest use of SSUSI data is the assimilation of radiances into the GAIM ionospheric forecast model; even then, the data must be massaged to get it into a GAIM-ingestable form. We describe a development effort funded by the DMSP program and the Air Force Weather Agency to turn the raw data into actionable information in the form of SSUSI environmental data parameters and other derived information. We will describe current nowcasts, forecasts, and other related actionable information (e.g. auroral oval forecasts) that is currently generated by the SSUSI ground processing system for AFWA, and also concepts we have for future tools (e.g., geomagnetic storm alerts, scintillation forecasts, HF radio propagation information, auroral radar clutter) to turn more of the SSUSI dataset into actionable knowledge.
Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints
NASA Astrophysics Data System (ADS)
Mura, A.; Adriani, A.; Altieri, F.; Connerney, J. E. P.; Bolton, S. J.; Moriconi, M. L.; Gérard, J.-C.; Kurth, W. S.; Dinelli, B. M.; Fabiano, F.; Tosi, F.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Sindoni, G.; Filacchione, G.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Turrini, D.; Stefani, S.; Amoroso, M.; Olivieri, A.
2017-06-01
The Jovian Infrared Auroral Mapper (JIRAM) is an imager/spectrometer on board NASA/Juno mission for the study of the Jovian aurorae. The first results of JIRAM's imager channel observations of the H3+ infrared emission, collected around the first Juno perijove, provide excellent spatial and temporal distribution of the Jovian aurorae, and show the morphology of the main ovals, the polar regions, and the footprints of Io, Europa and Ganymede. The extended Io "tail" persists for 3 h after the passage of the satellite flux tube. Multi-arc structures of varied spatial extent appear in both main auroral ovals. Inside the main ovals, intense, localized emissions are observed. In the southern aurora, an evident circular region of strong depletion of H3+ emissions is partially surrounded by an intense emission arc. The southern aurora is brighter than the north one in these observations. Similar, probably conjugate emission patterns are distinguishable in both polar regions.
The Ultraviolet Spectrograph on NASA's Juno Mission
NASA Astrophysics Data System (ADS)
Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François
2017-11-01
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.
Evolution of the Global Aurora During Positive IMP Bz and Varying IMP By Conditions
NASA Technical Reports Server (NTRS)
Cumnock, J. A.; Sharber, J. R.; Heelis. R. A.; Hairston, M. R.; Carven, J. D.
1997-01-01
The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of By during northward interplanetary magnetic field (IMF). Theta aurora are formed both from expanded duskside emission regions (By changes from positive to negative) and dawnside emission regions (By changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.
Meredith, C J; Alexeev, I I; Badman, S V; Belenkaya, E S; Cowley, S W H; Dougherty, M K; Kalegaev, V V; Lewis, G R; Nichols, J D
2014-03-01
We examine a unique data set from seven Hubble Space Telescope (HST) "visits" that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar "auroral oval" morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near ∼15° colatitude, together with intermittent patchy forms at ∼10° colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF B z , being present during all four visits with positive B z and absent during all three visits with negative B z . The most continuous such forms occur in the case of strongest positive B z . These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF B z however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras. We examine seven cases of joint HST Saturn auroral images and Cassini IMF dataThe persistent but variable dawn arc shows no obvious IMF dependencePatchy postnoon auroras are present for northward IMF but not for southward IMF.
Meredith, C J; Alexeev, I I; Badman, S V; Belenkaya, E S; Cowley, S W H; Dougherty, M K; Kalegaev, V V; Lewis, G R; Nichols, J D
2014-01-01
We examine a unique data set from seven Hubble Space Telescope (HST) “visits” that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar “auroral oval” morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near ∼15° colatitude, together with intermittent patchy forms at ∼10° colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF Bz, being present during all four visits with positive Bz and absent during all three visits with negative Bz. The most continuous such forms occur in the case of strongest positive Bz. These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF Bz however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras. Key Points We examine seven cases of joint HST Saturn auroral images and Cassini IMF data The persistent but variable dawn arc shows no obvious IMF dependence Patchy postnoon auroras are present for northward IMF but not for southward IMF PMID:26167441
NASA Astrophysics Data System (ADS)
Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II
2017-12-01
Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.
NASA Astrophysics Data System (ADS)
Raynaud, E.; Lellouch, E.; Maillard, J.-P.; Gladstone, G. R.; Waite, J. H.; Bézard, B.; Drossart, P.; Fouchet, T.
2004-09-01
We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm -1), allowed us to map emission from the H 2S1(1) quadrupole line and from several H 3+ lines. The H 2 and H 3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a "hot spot" near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H 2S1(1) emission. We also present the first images of the H 2 emission in the southern polar region. The spectra include a total of 14 H 3+ lines, including two hot lines from the 3 ν2- ν2 band, detected on Jupiter for the first time. They can be used to determine H 3+ column densities, rotational ( Trot) and vibrational ( Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H 3+ column densities. The thermostatic role played by H 3+ at ionospheric levels may provide an explanation. The exception is the northern "hot spot," which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H 2 and H 3+ emission are equally difficult to explain.
Engineering support for an ultraviolet imager for the ISTP mission
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1991-01-01
Design and development activities were carried out for the Ultraviolet Imager (UVI) to be flown on the Polar Spacecraft of the INternational Solar Terrestrial Physics (ISTP) Mission. The following tasks were performed: (1) design and fabrication of prototype/engineering model of the UVI imager; (2) preliminary design review; (3) vacuum ultraviolet filter design; (4) auroral energy deposition code; (5) model of LBH vehicle glow; (6) laboratory measurement program of collision cross-sections; and (7) support of ISTP meetings.
Imaging Magnetospheric Boundries at Ionospheric Heights
NASA Astrophysics Data System (ADS)
Baumgardner, J.; Nottingham, D.; Wroten, J.; Mendillo, M.
2001-12-01
Stable auroral red (SAR) arcs are excited by a downward heat flux within a narrow range of fluxtubes that define the plasmapause-ring current interaction region. Ambient F-region electrons near and above the peak height (300-500 km) are heated and collisionally excite atomic oxygen to the O(1D) state, thereby emitting 6300 A photons. At the same time, the diffuse aurora at 6300 A is excited by the precipitation of plasma sheet electrons into the lower thermosphere, exciting O(1D) to emit near 200 km. An all-sky imaging system operating at a sub-auroral site (e.g., at Millstone Hill) can readily record the SAR arc centroid location and the equatorial edge of the diffuse aurora in the same 6300 A image. We have analyzed 75 such cases showing where both stuctures occur in the ionosphere and then conducted field-line mapping to define the L-shell domains of origin in the equatorial plane of the inner magnetosphere (L ~ 2.5 - 4). To within the measurement and mapping accuracies, both boundaries coincide, i.e., the inner edge of the plasma sheet essentially falls along the plasmapause. Since the O(1D) 6300 A emission corresponds to ~2 ev of excitation by magnetospheric processes, this technique defines ELENA (Extremely Low Energetic Neutral Atom) imaging of magnetospheric structures.
Gas Analysis Using Auroral Spectroscopy.
NASA Astrophysics Data System (ADS)
Alozie, M.; Thomas, G.; Medillin, M.
2017-12-01
As part of the Undergraduate Student Instrumentation Project at the University of Houston, an Auroral spectroscope was designed and built. This visible light spectroscope was constructed out of carbon fiber, aluminum, and 3D printed parts. The spectroscope was designed to calculate the wavelengths of the spectral lines and analyze the emitted light spectrum of the gases. The spectroscope contains a primary parabolic 6" mirror and a smaller secondary 2.46" mirror. The light captured through these mirrors will be guided to an optical train that consist of five lenses (1" in diameter and focal length), a slit, and a visible transmission grating. The light will then be led to a Sony Alpha A6000 camera to take images of the spectral lines.
U.S. national report to the International Union of Geodesy and Geophysics
NASA Technical Reports Server (NTRS)
Gorney, D. J.
1987-01-01
This paper highlights progress by U.S. authors during 1983-1986 in the broad area of auroral research. Atmospheric emissions and their use as a tool for remote-sensing the dynamics, energetics, and effects of auroral activity is a subject which is emphasized here because of the vast progress made in this area on both observational and theoretical fronts. The evolution of primary auroral electrons, the acceleration of auroral ions, small-scale electric fields, auroral kilometric radiation, auroral empirical models and activity indices are also reviewed. An extensive bibliography is supplied.
US national report to the International Union of Geodesy and Geophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorney, D.J.
1987-04-01
This paper highlights progress by U.S. authors during 1983-1986 in the broad area of auroral research. Atmospheric emissions and their use as a tool for remote-sensing the dynamics, energetics, and effects of auroral activity is a subject which is emphasized here because of the vast progress made in this area on both observational and theoretical fronts. The evolution of primary auroral electrons, the acceleration of auroral ions, small-scale electric fields, auroral kilometric radiation, auroral empirical models and activity indices are also reviewed. An extensive bibliography is supplied.
Local-time survey of plasma at low altitudes over the auroral zones.
NASA Technical Reports Server (NTRS)
Frank, L. A.; Ackerson, K. L.
1972-01-01
Local-time survey of the low-energy proton and electron intensities precipitated into the earth's atmosphere over the auroral zones during periods of magnetic quiescence. This survey was constructed by selecting a typical individual satellite crossing of this region in each of eight local-time sectors from a large library of similar observations with the polar-orbiting satellite Injun 5. The trapping boundary for more-energetic electron intensities, E greater than 45 keV, was found to be a 'natural coordinate' for delineating the boundary between the two major types of lower-energy, 50 less than or equal to E less than or equal to 15,000 eV, electron precipitation commonly observed over the auroral zones at low altitudes. Poleward of this trapping boundary inverted 'V' electron precipitation bands are observed in all local-time sectors. These inverted 'V' electron bands in the evening and midnight sectors are typically more energetic and have greater latitudinal widths than their counterparts in the noon and morning sectors. In general, the main contributors to the electron energy influx into the earth's atmosphere over the auroral zones are the electron inverted 'V' precipitation poleward of the trapping boundary in late evening, the plasma-sheet electron intensities equatorward of this boundary in early morning, and both of these precipitation events near local midnight.
Statistical study of auroral omega bands
NASA Astrophysics Data System (ADS)
Partamies, Noora; Weygand, James M.; Juusola, Liisa
2017-09-01
The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT), lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.
Interhemispheric Propagation and Interactions of Auroral LSTIDs near the Equator
NASA Astrophysics Data System (ADS)
Pradipta, R.; Valladares, C.; Carter, B. A.; Doherty, P.
2016-12-01
In this work, we used experimental observations based on GPS total electron content (TEC) and ionosonde measurements to study some of the physics behind large-scale traveling ionospheric disturbances (LSTIDs) during the 26 September 2011 geomagnetic storm. In particular, we looked at how these LSTIDs propagate from the auroral zones all the way to the equatorial region and examined how the auroral LSTIDs from opposite hemispheres interact/interfere near the geomagnetic equator. We found that these LSTIDs had an overall propagation speed of ˜700 m/s. Furthermore, the resultant amplitude of the LSTID interference pattern was found to far exceed the sum of individual amplitudes of the incoming LSTIDs. We suspect that this peculiar intensification of auroral LSTIDs around the geomagnetic equator is facilitated by the significantly higher ceiling/canopy of the ionospheric plasma layer there. Normally, acoustic-gravity waves (AGWs) that leak upward (and thus increase in amplitude) would find a negligible level of plasma density at the topside ionosphere. However, the tip of the equatorial fountain at the geomagnetic equator constitutes a significant amount of plasma at a topside-equivalent altitude. The combination of increased AGW amplitudes and a higher plasma density at such altitude would therefore result in higher-amplitude LSTIDs in this particular region, as demonstrated in our observations and analysis.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Sandholt, P. E.; Burlaga, L. F.
1994-01-01
Auroral activity occurred in the late afternoon sector (approx. 16 MLT) in the northern hemisphere during the passage at Earth of an interplanetary magnetic cloud on January 14, 1988. The auroral activity consisted of a very dynamic display which was preceded and followed by quiet auroral displays. During the quiet displays, discrete rayed arcs aligned along the geomagnetic L shells were observed. In the active stage, rapidly evolving spiral forms centered on magnetic zenith were evident. The activity persisted for many minutes and was characterized by the absence of directed motion. They were strongly suggestive of intense filaments of upward field-aligned currents embedded in the large-scale region 1 current system. Distortions of the flux ropes as they connect from the equatorial magnetosphere to the ionosphere were witnessed. We assess as possible generating mechanisms three nonlocal sources known to be associated with field-aligned currents. Of these, partial compressions of the magnetosphere due to variations of solar wind dynamic pressure seem an unlikely source. The possibility that the auroral forms are due to reconnection is investigated but is excluded because the active aurora were observed on the closed field line region just equatorward of the convection reversal boundary. To support this conclusion further, we apply recent results on the mapping of ionospheric regions to the equatorial plane based on the Tsyganenko 1989 model (Kaufmann et al., 1993). We find that for comparable magnetic activity the aurora map to the equatorial plane at X(sub GSM) = approx. 3 R(sub E) and approx. 2 R(sub E) inward of the magnetopause, that is, the inner edge of the boundary layer close to dusk. Since the auroral forms are manifestly associated with magnetic field shear, a vortical motion at the equatorial end of the flux rope is indicated, making the Kelvin-Helmholtz instability acting at the inner edge of the low-latitude boundary layer the most probable generating source.
Investigating the auroral electrojets using Swarm
NASA Astrophysics Data System (ADS)
Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy
2016-04-01
The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http://nora.nerc.ac.uk/503037/ Vennerstrom, S. and Moretto, T., 2013. Monitoring auroral electrojets with satellite data. Space Weather, VOL. 11, 509-519, doi:10.1002/swe.20090
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.
2017-09-01
The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.
Modelling the Auroral Magnetosphere-Ionosphere Coupling System at Jupiter
NASA Astrophysics Data System (ADS)
Bunce, E. J.; Cowley, S.; Provan, G.
2016-12-01
The magnetosphere-ionosphere coupling system at Jupiter is a topic of central significance in understanding the fundamental properties of its large-scale plasma environment. Theoretical discussion of this topic typically considers the properties of the field-aligned current systems that form part of a large-scale magnetosphere-ionosphere coupling current system associated with momentum exchange between the ionosphere and the magnetosphere, communicated via the magnetic field. The current system associated with the main oval is believed to be related to centrifugally-driven outward radial transport of iogenic plasma that leads to sub-corotation in the middle magnetosphere. In addition to the magnetosphere-ionosphere coupling current system, upward-directed field-aligned currents may flow at the open-closed field line boundary due to the shear between outer closed field lines and open field lines, which may relate to emission poleward of the main oval. An axi-symmetric model of the plasma flow in the jovian system, the related coupling currents, and the consequent auroral precipitation based on these combined ideas was initially devised to represent typical steady-state conditions for the system and later extended to consider auroral effects resulting from sudden compressions of the magnetosphere. More recently, the model has been extended along model magnetic field lines into the magnetosphere in order to relate them to in situ observations from the NASA Juno spacecraft at Jupiter. The field-aligned coupling currents associated with the modelled current systems produce a readily-observable azimuthal field signature that bends the field lines out of magnetic meridians. Here we show the computed azimuthal fields produced by our model auroral current system throughout the region between the ionosphere and the magnetic equator, and illustrate the results by evaluation of various model parameters (e.g. field-aligned current density, accelerating voltages, accelerated energy flux) along the Juno orbits.
NASA Astrophysics Data System (ADS)
Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari
2017-12-01
We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.
NASA Astrophysics Data System (ADS)
Semenov, Alexey; Kuvshinov, Alexey
2012-12-01
The global 3-D electrical conductivity distribution in the mantle (in the depth range between 400 and 1600 km) is imaged by inverting C-responses estimated on a global net of geomagnetic observatories. Very long time-series (up to 51 years; 1957-2007) of hourly means of three components of the geomagnetic field from 281 geomagnetic observatories are collected and analysed. Special attention is given to data processing in order to obtain unbiased C-responses with trustworthy estimates of experimental errors in the period range from 2.9 to 104.2 d. After careful inspection of the obtained C-responses the data from 119 observatories are chosen for the further analysis. Squared coherency is used as a main quality indicator to detect (and then to exclude from consideration) observatories with a large noise-to-signal ratio. During this analysis we found that—along with the C-responses from high-latitude observatories (geomagnetic latitudes higher than 58°)—the C-responses from all low-latitude observatories (geomagnetic latitudes below 11°) also have very low squared coherencies, and thus cannot be used for global induction studies. We found that the C-responses from the selected 119 mid-latitude observatories show a huge variability both in real and imaginary parts, and we investigated to what extent the ocean effect can explain such a scatter. By performing the systematic model calculations we conclude that: (1) the variability due to the ocean effect is substantial, especially at shorter periods, and it is seen for periods up to 40 d or so; (2) the imaginary part of the C-responses is to a larger extent influenced by the oceans; (3) two types of anomalous C-response behaviour associated with the ocean effect can be distinguished; (4) to accurately reproduce the ocean effect a lateral resolution of 1°× 1° of the conductance distribution is needed, and (5) the ocean effect alone does not explain the whole variability of the observed C-responses. We also detected that part of the variability in the real part of the C-responses is due to the auroral effect. In addition we discovered that the auroral effect in the C-responses reveals strong longitudinal variability, at least in the Northern Hemisphere. Europe appears to be the region with smallest degree of distortion compared with North America and northern Asia. We found that the imaginary part of the C-responses is weakly affected by the auroral source, thus confirming the fact that in the considered period range the electromagnetic (EM) induction from the auroral electrojet is small. Assuming weak dependence of the auroral signals on the Earth's conductivity at considered periods, and longitudinal variability of the auroral effect, we developed a scheme to correct the experimental C-responses for this effect. With these developments and findings in mind we performed a number of regularized 3-D inversions of our experimental data in order to detect robust features in the recovered 3-D conductivity images. Although differing in details, all our 3-D inversions reveal a substantial level of lateral heterogeneity in the mantle at the depths between 410 and 1600 km. Conductivity values vary laterally by more than one order of magnitude between resistive and conductive regions. The maximum lateral variations of the conductivity have been detected in the layer at depths between 670 and 900 km. By comparing our global 3-D results with the results of independent global and semi-global 3-D conductivity studies, we conclude that 3-D conductivity mantle models produced so far are preliminary as different groups obtain disparate results, thus complicating quantitative comparison with seismic tomography or/and geodynamic models. In spite of this, our 3-D EM study and most other 3-D EM studies reveal at least two robust features: reduced conductivity beneath southern Europe and northern Africa, and enhanced conductivity in northeastern China.
Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism
NASA Technical Reports Server (NTRS)
Omidi, N.; Gurnett, D. A.; Wu, C. S.
1984-01-01
The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.
Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Clark, John
1997-01-01
This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast the airglow emission line, which is dominated by resonant scattering of solar emission, has no central absorption, but displays rapid time variations and broad wings, indicative of a superthermal component (or corona) in Jupiter's upper atmosphere. Modeling of the observed motions of the plumes produced after the impacts of the fragments of Comet S/L-9 with Jupiter in July 1994, from the HST WFPC 2 imaging series.
Generation of auroral kilometric radiation and the structure of auroral acceleration region
NASA Technical Reports Server (NTRS)
Lee, L. C.; Kan, J. R.; Wu, C. S.
1980-01-01
Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.
NASA Astrophysics Data System (ADS)
Dinelli, B. M.; Fabiano, F.; Adriani, A.; Altieri, F.; Moriconi, M. L.; Mura, A.; Sindoni, G.; Filacchione, G.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C. J.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Gèrard, J.-C.; Turrini, D.; Stefani, S.; Amoroso, M.; Olivieri, A.
2017-05-01
During the first orbit around Jupiter of the NASA/Juno mission, the Jovian Auroral Infrared Mapper (JIRAM) instrument observed the auroral regions with a large number of measurements. The measured spectra show both the emission of the H3+ ion and of methane in the 3-4 μm spectral region. In this paper we describe the analysis method developed to retrieve temperature and column density (CD) of the H3+ ion from JIRAM spectra in the northern auroral region. The high spatial resolution of JIRAM shows an asymmetric aurora, with CD and temperature ovals not superimposed and not exactly located where models and previous observations suggested. On the main oval averaged H3+ CDs span between 1.8 × 1012 cm-2 and 2.8 × 1012 cm-2, while the retrieved temperatures show values between 800 and 950 K. JIRAM indicates a complex relationship among H3+ CDs and temperatures on the Jupiter northern aurora.
GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment
NASA Astrophysics Data System (ADS)
Semeter, Joshua; Mrak, Sebastijan; Hirsch, Michael; Swoboda, John; Akbari, Hassan; Starr, Gregory; Hampton, Don; Erickson, Philip; Lind, Frank; Coster, Anthea; Pankratius, Victor
2017-10-01
Measurements from a dense network of GPS receivers have been used to clarify the relationship between substorm auroras and GPS signal corruption as manifested by loss of lock on the received signal. A network of nine receivers was deployed along roadways near the Poker Flat Research Range in central Alaska, with receiver spacing between 15 and 30 km. Instances of large-amplitude phase fluctuations and signal loss of lock were registered in space and time with auroral forms associated with a sequence of westward traveling surges associated with a substorm onset over central Canada. The following conclusions were obtained: (1) The signal corruption originated in the ionospheric E region, between 100 and 150 km altitude, and (2) the GPS links suffering loss of lock were confined to a narrow band (<20 km wide) along the trailing edge of the moving auroral forms. The results are discussed in the context of mechanisms typically cited to account for GPS phase scintillation by auroral processes.
JIRAM infrared observations of Jupiter Aurorae: results of the first year.
NASA Astrophysics Data System (ADS)
Mura, A.; Adriani, A.; Altieri, F.; Dinelli, B. M.; Moriconi, M. L.; Migliorini, A.; Bolton, S. J.; Connerney, J. E. P.; Cicchetti, A.; Noschese, R.; Sindoni, G.; Tosi, F.; Filacchione, G.; Fabiano, F.; Piccioni, G.; Turrini, D.; Amoroso, M.; Plainaki, C.; Olivieri, A.; Gerard, J.-C.
2017-09-01
JIRAM (Jovian Infrared Auroral Mapper) is an imaging spectrometer on board the Juno spacecraft, specifically designed to observe the aurorae of Jupiter. Here we show results on JIRAM's data after one year of observations. The footprints of Io, Europa and Ganymede have also been observed and characterized.
In situ analysis of measurements of auroral dynamics and structure
NASA Astrophysics Data System (ADS)
Mella, Meghan R.
Two auroral sounding rocket case studies, one in the dayside and one in the nightside, explore aspects of poleward boundary aurora. The nightside sounding rocket, Cascades-2 was launched on 20 March 2009 at 11:04:00 UT from the Poker Flat Research Range in Alaska, and flew across a series of poleward boundary intensifications (PBIs). Each of the crossings have fundamentally different in situ electron energy and pitch angle structure, and different ground optics images of visible aurora. The different particle distributions show signatures of both a quasistatic acceleration mechanism and an Alfvenic acceleration mechanism, as well as combinations of both. The Cascades-2 experiment is the first sounding rocket observation of a PBI sequence, enabling a detailed investigation of the electron signatures and optical aurora associated with various stages of a PBI sequence as it evolves from an Alfvenic to a more quasistatic structure. The dayside sounding rocket, Scifer-2 was launched on 18 January 2008 at 7:30 UT from the Andoya Rocket Range in Andenes, Norway. It flew northward through the cleft region during a Poleward Moving Auroral Form (PMAF) event. Both the dayside and nightside flights observe dispersed, precipitating ions, each of a different nature. The dispersion signatures are dependent on, among other things, the MLT sector, altitude, source region, and precipitation mechanism. It is found that small changes in the shape of the dispersion have a large influence on whether the precipitation was localized or extended over a range of altitudes. It is also found that a single Maxwellian source will not replicate the data, but rather, a sum of Maxwellians of different temperature, similar to a Kappa distribution, most closely reproduces the data. The various particle signatures are used to argue that both events have similar magnetospheric drivers, that is, Bursty Bulk Flows in the magnetotail.
Optical and SuperDARN Observations of the Shock Aurora
NASA Astrophysics Data System (ADS)
Liu, J.; Hu, H.; Desheng, H.
2017-12-01
Using ground-based high temporal and spatial optical aurora observations, we investigated aurora signature to illustrate the direct responses of the fine structure auroral emission to interplanetary shock. During the shock impact to the magnetosphere, the Chinese Arctic Yellow River Station (YRS) equipped with all-sky imagers (ASIs) was situated at the magnetic local noon region ( 1210 MLT) in the Northern Hemisphere, while the SuperDARN CUTLASS Finland HF radar covering the field of view (FOV) of the ASIs at YRS had fine ionospheric plasma convection measurement. We observed that an intensified red aurora manifesting as a discrete emission band at a higher latitude responds to the shock impact gradually, which results in a distinct broadening of the dayside auroral oval due to the equatorward shifting of its lower latitude boundary after the shock arrival. In contrast, the green diffuse aurora, manifesting as a relatively uniform luminosity structure, reacts immediately to the shock compression, displaying prompt appearance in the southern edge of the FOV and subsequent poleward propagation of its higher latitude boundary. Simultaneously, the CUTLASS Finland radar monitored enhanced backscatter echo power and increased echo number, which coincided with intensified discrete aurora in approximately the same latitudinal region. Doppler velocity measurement showed moving ionospheric irregularities with generally enhanced line-of-sight (LOS) speed, but with prominent sunward flow in the polar cap and antisunward flow in both the eastern and western regions. The SuperDARN global ionospheric convection pattern clearly presented a large-scale plasma flow divided in four circulation cells, with two reversed flow cells nested in the noon sector of the polar cap. These direct observations strongly suggest that the prompt shock compression intensified the wave-particle interaction in the inner magnetosphere and enhanced the lobe magnetic reconnection rate at agnetospheric high latitude. On the other hand, ASI measurements in Antarctic Zhongshan station in postnoon sector showed first decreased auroral intensity with reversed plasma flow before its subsequent obvious emission brightening.
HST observations of Jupiter's UV aurora during Juno's orbits PJ03, PJ04 and PJ05
NASA Astrophysics Data System (ADS)
Grodent, Denis; Gladstone, G. randall; Clarke, John T.; Bonfond, Bertrand; Gérard, Jean-Claude; Radioti, Aikaterini; Nichols, Jonathan D.; Bunce, Emma J.; Roth, Lorenz; Saur, Joachim; Kimura, Tomoki; Orton, Glenn S.; Badman, Sarah V.; Mauk, Barry; Connerney, John E. P.; McComas, David J.; Kurth, William S.; Adriani, Alberto; Hansen, Candice; Yao, Zhonghua
2017-04-01
The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present study addresses the three first Juno orbits (PJ03, 04 and 05) during which HST obtained parallel observations. These three campaigns basically consist of a 2-week period bracketing the time of Juno's closest approach of Jupiter (CA). At least one HST visit is scheduled every day during the week before and the week following CA. During the 12-hour period centered on CA and depending on observing constraints, several HST visits are programmed in order to obtain as many simultaneous observations with Juno-UVS as possible. In addition, at least one HST visit is obtained near Juno's apojove, when UVS is continuously monitoring Jupiter's global auroral power, without spatial resolution, for about 12 hours. We are using the Space Telescope Imaging Spectrograph (STIS) in time-tag mode in order to provide spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. We discuss the preliminary exploitation of the HST data and present these results in such a way as to provide a global magnetospheric context for the different Juno instruments studying Jupiter's magnetosphere, as well as for the numerous ground based and space based observatories participating to the Juno mission.
Theoretical study of the effect of ionospheric return currents on the electron temperature
NASA Technical Reports Server (NTRS)
Schunk, R. W.; Sojka, J. J.; Bowline, M. D.
1987-01-01
A time-dependent, three-dimensional model of the high-altitude ionosphere is presently used to study the effects of field-aligned ionospheric return currents on auroral electron temperatures for different seasonal and solar cycle conditions, as well as for different upper boundary heat fluxes. The average, large scale, return current densities, which are a few microamps/sq m, are too small to affect auroral electron temperatures. The thermoelectric effect exhibits a pronounced solar cycle and seasonal dependence, and its heat transport corresponds to an upward flow of electron energy which can be either a source or sink of electron energy depending on altitude and geophysical conditions.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Fok, M.-C.; Fuselier, S.; Gladstone, G. R.; Green, J. L.; Fung, S. F.; Perez, J.; Reiff, P.; Roelof, E. C.; Wilson, G.
1998-01-01
Simultaneous, global measurement of major magnetospheric plasma systems will be performed for the first time with the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Mission. The ring current, plasmasphere, and auroral systems will be imaged using energetic neutral and ultraviolet cameras. Quantitative remote measurement of the magnetosheath, plasmaspheric, and magnetospheric densities will be obtained through radio sounding by the Radio Plasma Imager. The IMAGE Mission will open a new era in global magnetospheric physics, while bringing with it new challenges in data analysis. An overview of the IMAGE Theory and Modeling team efforts will be presented, including the state of development of Internet tools that will be available to the science community for access and analysis of IMAGE observations.
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.
2002-01-01
The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.
2015-01-01
We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.
Global modeling of thermospheric airglow in the far ultraviolet
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.
2017-07-01
The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.
Global Ultraviolet Imaging Processing for the GGS Polar Visible Imaging System (VIS)
NASA Technical Reports Server (NTRS)
Frank, L. A.
1997-01-01
The Visible Imaging System (VIS) on Polar spacecraft of the NASA Goddard Space Flight Center was launched into orbit about Earth on February 24, 1996. Since shortly after launch, the Earth Camera subsystem of the VIS has been operated nearly continuously to acquire far ultraviolet, global images of Earth and its northern and southern auroral ovals. The only exceptions to this continuous imaging occurred for approximately 10 days at the times of the Polar spacecraft re-orientation maneuvers in October, 1996 and April, 1997. Since launch, approximately 525,000 images have been acquired with the VIS Earth Camera. The VIS instrument operational health continues to be excellent. Since launch, all systems have operated nominally with all voltages, currents, and temperatures remaining at nominal values. In addition, the sensitivity of the Earth Camera to ultraviolet light has remained constant throughout the operation period. Revised flight software was uploaded to the VIS in order to compensate for the spacecraft wobble. This is accomplished by electronic shuttering of the sensor in synchronization with the 6-second period of the wobble, thus recovering the original spatial resolution obtainable with the VIS Earth Camera. In addition, software patches were uploaded to make the VIS immune to signal dropouts that occur in the sliprings of the despun platform mechanism. These changes have worked very well. The VIS and in particular the VIS Earth Camera is fully operational and will continue to acquire global auroral images as the sun progresses toward solar maximum conditions after the turn of the century.
Motoba, T.; Ohtani, S.; Anderson, B. J.; ...
2015-10-27
In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoba, T.; Ohtani, S.; Anderson, B. J.
In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less
Spacecraft Charging Hazards In Low-earth Orbit
NASA Astrophysics Data System (ADS)
Anderson, P. C.
The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.
CEDAR/TIMED: Thermospheric Vertical Wind Observations from Three Sites in the Northern Auroral Zone
NASA Technical Reports Server (NTRS)
Lummerzheim, D.
2005-01-01
The objective of this project was to operate ground based Fabry-Perot Interferometers at several points under the auroral zone to analyze and quantify the vertical wind in the thermosphere. These measurements were made in conjunction with TIMED, especially GUVI data, to relate the observed wind to the resulting mixing and compositional changes in the thermosphere. The ground based wind measurements were obtained from a scanning Doppler imager (SDI) in Poker Flat, and a vertically aligned Fabry Perot Imager (FPI) in Inuvik. A third FPI at Eagle, Alaska, was operated for a brief overlapping period as well. The SDI at Poker Flat had been in operation for several years, and was continued to run with little support from this grant. The much more expensive operation, maintenance, and data acquisition of the remote Inuvik FPI was made possible with funds from this project. During the 2003/2004 and 2004/2005 seasons, we operated the Inuvik FPI from September to April during hours of darkness. Two trips to service the instrument were required per year, and a local caretaker was funded to help keep the instrument going during the winter seasons. The data were transfered via modem and phone line to Poker Flat and were then analyzed to obtain wind and temperature at the altitude of the auroral green line OI(557.7 nm). The final data product was archived and transferred to the GEDDS system at Poker Flat were it is available on the web: http://gedds.pfrr.alaska.edu/. The data set is also available from the CEDAR data base: http://cedarweb.hao.ucar.edu/.
Auroral oval kinematics program
NASA Technical Reports Server (NTRS)
Comfort, R. H.
1972-01-01
A computer program which determines the geographic location of the auroral oval for given universal time and level of geomagnetic activity was developed for use on the IBM 7094 computer. The program provides both printed output of geographic coordinates of auroral oval boundaries and polar plots of the auroral oval. In addition, there is available a time-integration option which indicates how long a given location is under the auroral oval during a specified period. A description is given of the program and its use.
Dayside auroral arcs and convection
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Burch, J. L.; Heelis, R. A.
1978-01-01
Recent Defense Meteorological Satellite Program and International Satellite for Ionospheric Studies dayside auroral observations show two striking features: a lack of visible auroral arcs near noon and occasional fan shaped arcs radiating away from noon on both the morning and afternoon sides of the auroral oval. A simple model which includes these two features is developed by reference to the dayside convection pattern of Heelis et al. (1976). The model may be testable in the near future with simultaneous convection, current and auroral light data.
Morphology of the UV aurorae Jupiter during Juno's first perijove observations
NASA Astrophysics Data System (ADS)
Bonfond, B.; Gladstone, G. R.; Grodent, D.; Greathouse, T. K.; Versteeg, M. H.; Hue, V.; Davis, M. W.; Vogt, M. F.; Gérard, J.-C.; Radioti, A.; Bolton, S.; Levin, S. M.; Connerney, J. E. P.; Mauk, B. H.; Valek, P.; Adriani, A.; Kurth, W. S.
2017-05-01
On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-UVS UV imaging spectrograph acquired at that time. Data were acquired during four sequences (three in the north, one in the south) from 5:00 UT to 13:00 UT. From these observations, we produced complete maps of the Jovian aurorae, including the nightside. The sequence shows the development of intense outer emission outside the main oval, first in a localized region (255°-295° System III longitude) and then all around the pole, followed by a large nightside protrusion of auroral emissions from the main emission into the polar region. Some localized features show signs of differential drift with energy, typical of plasma injections in the middle magnetosphere. Finally, the color-ratio map in the north shows a well-defined area in the polar region possibly linked to the polar cap.
Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.
1982-01-01
Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.
NASA Technical Reports Server (NTRS)
2007-01-01
New Horizons took this montage of images of Jupiter's volcanic moon Io, glowing in the dark of Jupiter's shadow, as the Pluto-bound spacecraft sped through the Jupiter system on Feb. 27, 2007. (A): In this picture from the Long-Range Reconnaissance Imager (LORRI), dark blotches and straight lines are artifacts. The brightest spots (including the volcanoes Pele [P] and East Girru [EG]) are incandescent lava from active volcanoes. The more diffuse glows, and the many faint spots, are from gas in the plumes and atmosphere, glowing due to bombardment by plasma in Jupiter's magnetosphere, in a display similar to the Earth's aurorae. (B): The same image with a latitude/longitude grid, showing that the cluster of faint spots is centered near longitude 0 degrees, the point on Io that faces Jupiter. The image also shows the locations of the plumes seen in sunlit images (indicated by red diamonds), which glow with auroral emission in eclipse. (C): Simulated sunlit view of Io with the same geometry, based on sunlit LORRI images. (D): A combination of the sunlit image (in cyan) and the eclipse image (in red), showing that all point-like glows in the eclipse image arise from dark volcanoes in the eclipse image. (E): This infrared image, at a wavelength of 2.3 microns, obtained by New Horizons Linear Etalon Spectral Imaging Array (LEISA) an hour after the LORRI image, showing thermal emission from active volcanoes. Elongation of the hot spots is an artifact. (F): Combined visible albedo (cyan) and LEISA thermal emission (red) image, showing the sources of the volcanic emission. That most of the faint point-like glows near longitude zero, seen in visible light in images A, B, and D, do not appear in the infrared view of volcanic heat radiation, is one reason scientists believe that these glows are due to auroral emission, not heat radiation. This image appears in the Oct. 12, 2007, issue of Science magazine, in a paper by John Spencer, et al.Auroral Infrasound Observed at I53US at Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Olson, J. V.
2003-12-01
In this presentation we will describe two different types of auroral infrasound recently observed at Fairbanks, Alaska in the pass band from 0.015 to 0.10 Hz. Infrasound signals associated with auroral activity (AIW) have been observed in Fairbanks over the past 30 years with infrasonic microphone arrays. The installation of the new CTBT/IMS infrasonic array, I53US, at Fairbanks has resulted in a greatly increased quality of the infrasonic data with which to study natural sources of infrasound. In the historical data at Fairbanks all the auroral infrasonic waves (AIW) detected were found to be the result of bow waves that are generated by supersonic motion of auroral arcs that contain strong electrojet currents. This infrasound is highly anisotropic, moving in the same direction as that of the auroral arc. AIW bow waves observed in 2003 at I53US will be described. Recently at I53US we have observed many events of very high trace velocity that are comprised of continuous, highly coherent wave trains. These waves occur in the morning hours at times of strong auroral activity. This new type of very high trace velocity AIW appears to be associated with pulsating auroral displays. Pulsating auroras occur predominantly after magnetic midnight (10:00 UT at Fairbanks). They are a usual part of the recovery phase of auroral substorms and are produced by energetic electrons precipitating into the atmosphere. Given proper dark, cloudless sky conditions during the AIW events, bright pulsating auroral forms were sometimes visible overhead.
Changes in the Martian atmosphere induced by auroral electron precipitation
NASA Astrophysics Data System (ADS)
Shematovich, V. I.; Bisikalo, D. V.; Gérard, J.-C.; Hubert, B.
2017-09-01
Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Foster, J. C.; Walsh, B.; Wygant, J. R.; Zhang, S.
2015-12-01
A number of studies over the past three decades have developed an increased understanding of the important redistribution of cold plasma from the ionosphere and inner magnetosphere to other elements of the near-Earth geospace system including the cusp, magnetopause, polar cap, and magnetotail. This redistribution process, especially prevalent during strong geomagnetic storm forcing, has been observed using a wide range of techniques encompassing ground-based and space-based imaging, modeling, and in-situ data. The large diversity of characteristics and location of these separate measurements and models has been reflected in a similarly large variety of nomenclature describing various aspects of the process, e.g. the plasmaspheric surge and drainage plume, storm enhanced density, sub-auroral polarization stream mass flow, and others. To emphasize the interconnections among these magnetosphere and ionosphere observations, we introduce the geospace plume as a unifying concept that recognizes cold plasma redistribution as a global coupling phenomenon, linking mid and sub-auroral ionospheric regions with high latitude cusp heavy ion outflow to the magnetopause and into the magnetotail. Cold redistributed plasma of ionospheric origin has many influences on reconnection, wave-particle interactions, and space weather effects. We will illustrate the continuity, morphology, and consequences of the geospace plume using observations from the March 2015 great geomagnetic storm. This interval has excellent coverage of the spatial extent and dynamics of the plume in the ionosphere (IS radar and GPS TEC mapping), plasmasphere boundary layer (Millstone Hill ISR, Van Allen Probes), and the magnetopause (THEMIS). Quantification of associated mass flows during the formation and evolution of plume structures is also possible at multiple space and time locations.
Danish auroral science history
NASA Astrophysics Data System (ADS)
Stauning, P.
2011-01-01
Danish auroral science history begins with the early auroral observations made by the Danish astronomer Tycho Brahe during the years from 1582 to 1601 preceding the Maunder minimum in solar activity. Included are also the brilliant observations made by another astronomer, Ole Rømer, from Copenhagen in 1707, as well as the early auroral observations made from Greenland by missionaries during the 18th and 19th centuries. The relations between auroras and geomagnetic variations were analysed by H. C. Ørsted, who also played a vital role in the development of Danish meteorology that came to include comprehensive auroral observations from Denmark, Iceland and Greenland as well as auroral and geomagnetic research. The very important auroral investigations made by Sophus Tromholt are outlined. His analysis from 1880 of auroral observations from Greenland prepared for the significant contributions from the Danish Meteorological Institute, DMI, (founded in 1872) to the first International Polar Year 1882/83, where an expedition headed by Adam Paulsen was sent to Greenland to conduct auroral and geomagnetic observations. Paulsen's analyses of the collected data gave many important results but also raised many new questions that gave rise to auroral expeditions to Iceland in 1899 to 1900 and to Finland in 1900 to 1901. Among the results from these expeditions were 26 unique paintings of the auroras made by the artist painter, Harald Moltke. The expedition to Finland was headed by Dan la Cour, who later as director of the DMI came to be in charge of the comprehensive international geomagnetic and auroral observations made during the Second International Polar Year in 1932/33. Finally, the article describes the important investigations made by Knud Lassen during, among others, the International Geophysical Year 1957/58 and during the International Quiet Sun Year (IQSY) in 1964/65. With his leadership the auroral and geomagnetic research at DMI reached a high international level that came to be the background for the first Danish satellite, Ørsted, successfully launched in 1999 and still in operation.
Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.
2017-12-01
Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.
A Rocket-Base Study of Auroral Electrodynamics Within the Current Closure Ionosphere
NASA Technical Reports Server (NTRS)
Kaeppler, Stephen R.; Kletzing, Craig; Bounds, Scott R.; Sigsbee, Kristine M.; Gjerloev, Jesper W.; Anderson, Brian Jay; Korth, Haje; Lessard, Marc; Labelle, James W.; Dombrowski, Micah P.;
2011-01-01
The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission, in conjunction with the PFISR Radar, was designed to observe the three-dimensional current system of a stable auroral arc system. ACES utilized two well instrumented payloads flown along very similar magnetic field footprints, at various altitudes with small temporal separation between both payloads. ACES High, the higher altitude payload (apogee 360 km), took in-situ measurements of the plasma parameters above the current closure region to provide the input signature into the lower ionosphere. ACES Low, the low-altitude payload (apogee 130 km), took similar observations within the current closure region, where cross-field currents can flow. We present results comparing observations of the electric fields, magnetic fields, electron flux, and the electron temperature at similar magnetic footpoints between both payloads. We further present data from all-sky imagers and PFISR detailing the evolution of the auroral event as the payloads traversed regions connected by similar magnetic footpoints. Current measurements derived from the magnetometers on both payloads are further compared. We examine data from both PFISR and observations on the high-altitude payload which we interpreted as a signature of electron acceleration by means of Alfv n waves. We further examine all measurements to understand ionospheric conductivity and how energy is being deposited into the ionosphere through Joule heating. Data from ACES is compared against models of Joule heating to make inferences regarding the effect of collisions at various altitudes.
NASA Astrophysics Data System (ADS)
Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.
2007-12-01
MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.
Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha
2018-01-01
Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.
Impacts of auroral current systems on ionospheric upflow/outflow
NASA Astrophysics Data System (ADS)
Burleigh, M.; Zettergren, M. D.; Lynch, K. A.; Lessard, M.; Harrington, M.; Varney, R. H.; Reimer, A.
2017-12-01
The downward current region of an auroral current system often contains large perpendicular DC electric fields. These DC electric fields frictionally heat the local ion population resulting in anisotropic increases in ion temperature that cause large pressure gradients which push the ions outward and upward. These ions may undergo further acceleration from transverse heating by broadband ELF waves and at high altitudes the mirror force can propel ions to escape velocities, resulting in outflow to the magnetosphere. Despite these processes being generally well-known, ion outflow remains difficult to predict due to the myriad of processes acting over a large range of altitudes and physical regimes. The resulting temperature anisotropies, which are known to be able to affect upflow, have an unclear degree of impact in highly variable situations like substorm expansions on the nightside or PMAFs/FTEs on the dayside.In this study we use an anisotropic fluid model, GEMINI-TIA, to examine detailed features of temperature anisotropies and resulting ion downflows/upflows/outflows occurring during the ISINGLASS and RENU2 sounding rocket campaigns. GEMINI-TIA is a 2D ionospheric model is based on a truncated 16-moment description and solves the conservation of mass, momentum, parallel energy, and perpendicular energy for species relevant to the E, F, and topside ionospheric regions. This model encapsulates ionospheric upflow and outflow processes through the inclusion of DC electric fields, and empirical descriptions of heating by soft electron precipitation and BBELF waves. The fluid transport equations are accompanied by an electrostatic current continuity equation to self-consistently describe auroral electric fields. Data used to constrain the model can include perpendicular electric fields, characteristic energy, and total energy flux from incoherent scatter radar, any available neutral density and wind measurements, and precipitating electron fluxes. Results from these constrained simulations are compared against in-situ observations. This allows for the ionospheric temperature anisotropies, which are notoriously difficult to observe, and their impacts on ion upflow response due to auroral drivers to be evaluated by enforcing realistic temporal and spatial dependencies on the drivers.
NASA Astrophysics Data System (ADS)
Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.
2018-04-01
Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.
The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, David
2003-01-01
The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellat, R.; Roux, A.
1979-09-01
The propagation of electrostatic plasma waves in an inhomogeneous and magnetized plasma is studied analytically. These waves, which are driven unstable by auroral beams of electrons, are shown to suffer a further geometrical amplification while they propagate toward cut-off. Simultaneously their group velocities tend to be aligned with the geomagnetic field. Then it is shown that the electrostatic energy tends to accumulate at or near ..omega../sub L/H and ..omega../sub U/H, the local lower and upper hybrid frequencies. Due to this process, large amplitude electrostatic waves with very narrow spectra should be observed near these frequencies at any place along themore » auroral field lines where intense beam driven instability takes place. These intense quasi-monochromatic electrostatic waves are then shown to give rise by a coherent nonlinear three wave process to an intense electromagnetic radiation. Provided that the ratio ..omega../sub p/e/..omega../sub c/e tends to be smaller than unity, it is shown that the most intense radiation should be observed at 2..omega../sub U/H in the extraordinary mode.« less
Comparison of substorms near two solar cycle maxima: (1999-2000 and 2012-2013)
NASA Astrophysics Data System (ADS)
Despirak, I.; Lubchich, A.; Kleimenova, N.
2016-05-01
We present the comparative analysis of the substorm behavior during two solar cycle maxima. The substorms, observed during the large solar cycle maximum (1999- 2000, with Wp> 100) and during the last maximum (2012-2013 with Wp~60), were studied. The considered substorms were divided into 3 types according to auroral oval dynamic. First type - substorms which are observed only at auroral latitudes ("usual" substorms); second type - substorms which propagate from auroral latitudes (<70?) to polar geomagnetic latitudes (>70°) ("expanded" substorms, according to expanded oval); third type - substorms which are observed only at latitudes above ~70° in the absence of simultaneous geomagnetic disturbances below 70° ("polar" substorms, according to contracted oval). Over 1700 substorm events have been analyzed. The following substorm characteristics have been studied: (i) the seasonal variations, (ii) the latitudinal range of the occurrence, (iii) solar wind and IMF parameters before substorm onset, (iiii) PC-index before substorm onset. Thus, the difference between two solar activity maxima could be seen in the difference of substorm behavior in these periods as well.
ESA's Cluster solved an auroral puzzle
NASA Astrophysics Data System (ADS)
2003-05-01
These aurorae - seen as bright spots in Earth’s atmosphere and called ‘dayside proton auroral spots’ - occur when fractures appear in the Earth’s magnetic field, allowing particles given out from the Sun to squirt through and collide with the molecules in our atmosphere. This is the first time that a precise and direct connection between the two events has been made. The Earth’s magnetic field acts like a shield, protecting Earth from the constant stream of tiny particles ejected by the Sun and known as the ‘solar wind’. The solar wind itself is made of hydrogen atoms, broken into their constituent pieces: protons and electrons. When electrons find routes into our atmosphere, they collide with and excite the atoms in the air. When these excited atoms release their energy, it is given out as light, creating the glowing ‘curtains’ we see as the aurora borealis (or the aurora australis in the southern hemisphere). Dayside proton auroral spots are caused by protons ‘stealing’ electrons from the atoms in our atmosphere. On 18 March last year, a jet of energetic solar protons collided with the Earth’s atmosphere and created a bright ‘spot’ seen by NASA’s IMAGE spacecraft, just as Cluster passed overhead and straight through the region where the proton jet was emanating. An extensive analysis of the Cluster results has now shown that the region was experiencing a turbulent event known as ‘magnetic reconnection’. Such a phenomenon takes place when the Earth’s usually impenetrable magnetic field fractures and has to find a new stable configuration. Until the field mends itself, solar protons leak through the gap and jet into Earth’s atmosphere creating the dayside proton aurora. Philippe Escoubet, ESA’s Cluster Project Scientist, comments, “Thanks to Cluster’s observations scientists can directly and firmly link for the first time a dayside proton auroral spot and a magnetic reconnection event.” Tai Phan, leading the investigation at the University of California, Berkeley, United States, now looks forward to a new way of studying the Earth’s protective shield. He says, “This result has opened up a new area of research. We can now watch dayside proton aurorae and use those observations to know where and how the cracks in the magnetic field are formed and how long the cracks remain open. That makes it a powerful tool to study the entry of the solar wind into the Earth’s magnetosphere.” The Earth’s interaction with the Sun is a current focus of scientific attention because of its importance in knowing how the Sun affects the Earth, most notably our climate. Also, while not immediately dangerous to us on Earth, it is also important for quantifying the danger to satellites, which can be damaged or destroyed by powerful solar flares. Note to Editors: Proton aurorae were globally imaged for the first time by NASA’s IMAGE spacecraft. The images revealed the presence of the ‘dayside proton auroral spots’. By a fortunate coincidence, IMAGE and Cluster both spotted the event on 18 March 2002. Combining with IMAGE’s observations, Cluster made it possible to establish the ground truth of the phenomenon. The paper on these results, Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF by Tai Phan and 24 other authors will be published in Geophysical Research Letters, 21 May 2003, Vol. 30, No. 10. The principal investigators responsible for the instruments that made these results possible are: Henri Rème of CESR/Toulouse, France (Cluster Proton Detectors), Andre Balogh of Imperial College, London, United Kingdom (Cluster Magnetic Field Instrument) and Stephen Mende of University of California, Berkeley, United States (IMAGE/FUV). More about Cluster ESA’s Cluster is a collection of four spacecraft, launched on two Russian rockets during the summer of 2000. They are now flying in formation around the Earth, relaying the most detailed ever information about how the solar wind affects our planet in 3D. The solar wind is the perpetual stream of subatomic particles given out by the Sun and it can damage communications satellites and power stations on the Earth. The Cluster mission is expected to continue until at least 2005. Cluster is part of the International Living with a Star programme (ILWS), in which space agencies worldwide get together to investigate how variations in the Sun affect the environment of Earth and the other planets. In particular, ILWS concentrate on those aspects of the Sun-Earth system that may affect mankind and society. ILWS is a collaborative initiative between Europe, the United States, Russia, Japan and Canada.
Study of plasmasphere dynamics using incoherent scatter data from Chatanika, Alaska radar facility
NASA Technical Reports Server (NTRS)
Shelley, E. G.
1975-01-01
Results of the study of Chatanika incoherent scatter radar data and Lockheed Palo Alto Research Laboratory satellite data are reported. Specific topics covered include: determination of the effective recombination coefficient in the auroral E region; determination of the location of the auroral oval; auroral boundary characteristics; and the relationship of auroral current systems, particle precipitation, visual aurora, and radar aurora.
Analysis of Auroral Data from Nasa's 1968 and 1969 Airborne Auroral Expedition
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a methodical compilation, reduction, and correlated analysis of spectrophotometric data obtained by various scientific groups during NASA's 1968 and 1969 Airborne Auroral Expedition are presented.
Problem of Auroral Oval Mapping and Multiscale Auroral Structures
NASA Astrophysics Data System (ADS)
Antonova, Elizaveta; Stepanova, Marina; Kirpichev, Igor; Vovchenko, Vadim; Vorobjev, Viachislav; Yagodkina, Oksana
The problem of the auroral oval mapping to the equatorial plane is reanalyzed taking into account the latest results of the analysis of plasma pressure distribution at low altitudes and at the equatorial plane. Statistical pictures of pressure distribution at low latitudes are obtained using data of DMSP observations. We obtain the statistical pictures of pressure distribution at the equatorial plane using data of THEMIS mission. Results of THEMIS observations demonstrate the existence of plasma ring surrounding the Earth at geocentric distances from ~6 till ~12Re. Plasma pressure in the ring is near to isotropic and its averaged values are larger than 0.2 nPa. We take into account that isotropic plasma pressure is constant along the field line and that the existence of field-aligned potential drops in the region of the acceleration of auroral electrons leads to pressure decrease at low altitudes. We show that most part of quite time auroral oval does not map to the real plasma sheet. It maps to the surrounding the Earth plasma ring. We also show that transverse currents in the plasma ring are closed inside the magnetosphere forming the high latitude continuation of the ordinary ring current. The obtained results are used for the explanation of ring like form of the auroral oval. We also analyze the processes of the formation of multiscale auroral structures including thin auroral arcs and discuss the difficulties of the theories of alfvenic acceleration of auroral electrons.
The asymmetric geospace - the most common state of the system
NASA Astrophysics Data System (ADS)
Ostgaard, Nikolai; Reistad, Jone P.; Tenfjord, Paul; Laundal, Karl M.; Rexer, Theresa; Haaland, Stein; Snekvik, Kristian; Hesse, Michael; Milan, Steve; Ohma, Anders
2017-04-01
Previous studies have shown that conjugate auroral features are significantly displaced in the two hemispheres when the interplanetary magnetic field (IMF) has a transverse (Y) component. Furthermore, it has been shown that a By component is induced in the closed magnetosphere due to the asymmetric loading of magnetic flux in the lobes following asymmetric dayside reconnection when IMF has a strong Y component. The magnetic field lines with azimuthally displaced footpoints map into a «banana» cell in one hemisphere and an «orange» cell in the other. This means that both the magnetosphere and the ionosphere are asymmetric during such conditions. As the most common orientation of IMF is to have a dominant By component an asymmetric geospace is in fact the most common state of the system. In this paper we study auroral features observed (IMAGE and Polar) and convection pattern (all available data) during a magnetic storm on August 17, 2001. Due to the combination of a strong IMF By component (>20 nT) and tilt angle of 23 degrees we observed conjugate auroral features, which were displaced as much as 4 MLT. Convection data are consistent with this asymmetric state of geospace. We also observed that the asymmetries were reduced by substorms during that period.
Periodic creation of polar cap patches from auroral transients in the cusp
NASA Astrophysics Data System (ADS)
Hosokawa, K.; Taguchi, S.; Ogawa, Y.
2016-06-01
On 24 November 2012, an interval of polar cap patches was identified by an all-sky airglow imager located near the dayside cusp. During the interval, the successive appearance of poleward moving auroral forms (PMAFs) was detected, which are known to represent ionospheric manifestations of pulsed magnetic reconnections at the dayside magnetopause. All of the patches observed during the interval appeared from these transient auroral features (i.e., there was a one-to-one correspondence between PMAFs and newly created baby patches). This fact strongly suggests that patches can be directly and seamlessly created from a series of PMAFs. The optical intensities of the baby patches were 100-150 R, which is slightly lower than typical patch luminosity on the nightside and may imply that PMAF-induced patches are generally low density. The generation of such patches could be explained by impact ionization due to soft particle precipitation into PMAFs traces. In spite of the faint signature of the baby patches, two coherent HF radars of the SuperDARN network observed backscatter echoes in the central polar cap, which represented signatures of plasma irregularities associated with the baby patches. These indicate that patches created from PMAFs have the potential to affect the satellite communications environment in the central polar cap region.
A Pulsating X-Ray Hot Spot on Jupiter
NASA Technical Reports Server (NTRS)
Gladstone, G. R.; Waite, J. H.; Grodent, D. C.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Majeed, T.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.;
2001-01-01
Previous observations of jovian auroral x-ray emissions provided limited spectral information and extensive but low spatial resolution images. These emissions have been thought to result from charge exchange and excitation of energetic sulfur and oxygen ions precipitating from the outer edge of the Io Plasma Torus; bremsstrahlung emission from precipitating energetic electrons is too inefficient to produce the x-ray emissions. However, new high spatial resolution observations demonstrate that most of Jupiter's northern auroral x-rays come from a hot spot located much further north than the footprint of the Io Plasma Torus and which is even poleward of the main ultraviolet auroral oval. The hot spot appears fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. Interestingly, the hot spot x-rays pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the region of the Io Plasma Torus. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.
Stellar Ablation of Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Moore, Thomas E.; Horwitz, J. L.
2007-01-01
We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.
Solar wind influence on Jupiter's magnetosphere and aurora
NASA Astrophysics Data System (ADS)
Vogt, Marissa; Gyalay, Szilard; Withers, Paul
2016-04-01
Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.
Powerful Auroras Found at Brown Dwarf
2017-12-08
This artist's concept shows an auroral display on a brown dwarf. If you could see an aurora on a brown dwarf, it would be a million times brighter than an aurora on Earth. Credits: Chuck Carter and Gregg Hallinan/Caltech --- Mysterious objects called brown dwarfs are sometimes called "failed stars." They are too small to fuse hydrogen in their cores, the way most stars do, but also too large to be classified as planets. But a new study in the journal Nature suggests they succeed in creating powerful auroral displays, similar to the kind seen around the magnetic poles on Earth. "This is a whole new manifestation of magnetic activity for that kind of object," said Leon Harding, a technologist at NASA's Jet Propulsion Laboratory, Pasadena, California, and co-author on the study. On Earth, auroras are created when charged particles from the solar wind enter our planet's magnetosphere, a region where Earth's magnetic field accelerates and sends them toward the poles. There, they collide with atoms of gas in the atmosphere, resulting in a brilliant display of colors in the sky. Read more: www.nasa.gov/jpl/powerful-auroras-found-at-brown-dwarf NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter
2004-01-01
Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.
Problems with mapping the auroral oval and magnetospheric substorms
NASA Astrophysics Data System (ADS)
Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.
2015-10-01
Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.
Problems with mapping the auroral oval and magnetospheric substorms.
Antonova, E E; Vorobjev, V G; Kirpichev, I P; Yagodkina, O I; Stepanova, M V
Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, C.; Eather, R.
1993-09-30
A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu ormore » mouse user interaction.« less
Auroral and photoelectron fluxes in cometary ionospheres
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.
1990-05-01
The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.
IUE observations of longitudinal and temporal variations in the Jovian auroral emission
NASA Technical Reports Server (NTRS)
Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Moos, H. W.
1984-01-01
The IUE's short wavelength spectrograph has been used to monitor the auroral emissions from Jupiter's northern hemisphere, yielding eight observations between January 1981 and January 1982 of H I Lyman-alpha and the H2 Lyman and Werner bands. Attention is given to an apparent periodic emission flux fluctuation, through detailed modeling of the emission geometry. Two possible auroral zones are defined at the north pole by mapping the magnetic field lines from the Io torus and the magnetotail onto the planet's atmosphere. The observed variation in flux with central meridian longitude is not consistent with a uniform brightness as a function of magnetic longitude in either auroral zone. The data can be fitted by confining the emissions to the region of the northern torus auroral zone, in qualitative agreement with the magnetic anomaly model. A similar emission from the magnetotail auroral zone cannot be ruled out.
NASA Technical Reports Server (NTRS)
Anderson, H. R.; Cloutier, P. A.
1975-01-01
A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.
NASA Astrophysics Data System (ADS)
Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary
2017-01-01
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.
Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary
2017-01-01
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.
Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach
NASA Astrophysics Data System (ADS)
Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand
2016-10-01
We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth.
Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations
NASA Astrophysics Data System (ADS)
Hirsch, Michael
During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward.
NASA Astrophysics Data System (ADS)
Barghouthi, I. A.
2005-06-01
We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F- region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ionneutral, O+-O collisions (resonant charge exchange and polarization interaction) as well as O+-O+ Coulomb self-collisions. At high altitudes, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and consequently, the influence of O+-O+ Coulomb collisions becomes significant. In this study we consider the effect of O+-O+ Coulomb collisions on the incoherent radar spectra in the presence of large electric field (100 mVm-1). As altitude increases (i.e. the ion-to-neutral density ratio increases) the role of O+-O+ Coulomb self-collisions becomes significant, therefore, the one-dimensional, 1-D, O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+-O+ Coulomb self-collisions act to isotropize the 1-D O+ velocity distribution by transferring thermal energy from the perpendicular direction to the parallel direction, however the convection electric field acts to drive the O+ ions away from equilibrium and consequently, non-Maxwellian O+ ion velocity distributions appeared. Therefore, neglecting O+-O+ Coulomb self-collisions overestimates the effect of convection electric field.
Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere
NASA Astrophysics Data System (ADS)
Lysak, R. L.; Song, Y.
2017-12-01
Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc formation.
Coordinated Ground and Space Measurements of Auroral Surge over South Pole.
1988-02-01
3y V. Coordinated Ground and Space Measurements of co an Auroral Surge over South Pole T. J. ROSENBERG and D. L. DETRICK Institute for Physical...Measurements of an Auroral Surge over South Pole 12. PERSONAL AUTHOR(S) Rosenberg, T. J., and DetrickD. L., University of Maryland; Mizera, Paul F., 13a. TYPE...premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a
NASA Astrophysics Data System (ADS)
Lopes, S. R.; Chian, A. C.-L.
1996-01-01
A coherent nonlinear theory of three-wave coupling involving Langmuir, Alfven and whistler waves is formulated and applied to the observation of auroral LAW events in the planetary magnetosphere. The effects of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics are analyzed. The relevance of this theory for understanding the fine structures of auroral whistler-mode emissions and amplitude modulations of auroral Langmuir waves is discussed.
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Germany, G. A.; Brittnacher, M. J.; Parks, G. K.; Elsen, R.
1997-01-01
The January 10-11, 1997 magnetic cloud event provided a rare opportunity to study auroral energy deposition under varying but intense IMF conditions. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The Polar Ultraviolet Imager (UVI) observed the aurora[ precipitation during the first encounter of the cloud with Earth's magnetosphere and during several subsequent substorm events. The UVI has the unique capability of measuring the energy flux and characteristic energy of the precipitating electrons through the use of narrow band filters that distinguish short and long wavelength molecular nitrogen emissions. The spatial and temporal characteristics of the precipitating electron energy will be discussed beginning with the inception of the event at the Earth early January 1 Oth and continuing through the subsidence of auroral activity on January 11th.
SAPS-Associated Explosive Brightening on the Duskside: A New Type of Onset-Like Disturbance
NASA Astrophysics Data System (ADS)
Henderson, M. G.; Morley, S. K.; Kepko, L. E.
2018-01-01
Quasiperiodic energetic particle injections have been observed at geosynchronous orbit on the duskside during a steady magnetospheric convection event. We examine high-resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive nonlinear growth of a shear flow-ballooning instability in the region where subauroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the "line-tying" effect will also be least stabilizing there. We propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive "onset-like" disturbance that can occur during intervals of strong convection.
Deriving Temperatures from the Homopause of Jupiter
NASA Astrophysics Data System (ADS)
Kim, Sang J.
2015-11-01
Recently, Kim et al. (Icarus, 2015) derived homopause temperatures from several places on the north and south polar regions of Jupiter by analyzing the 3-μm spectro-images of CH4, which were obtained using the Gemini Near-Infrared Spectrograph (GNIRS). The spectral resolution of the data was R~18,000, which is enough to resolve the sharp 3-μm emission lines of the P and Q branches of CH4. From the next year’s JUNO encounter with Jupiter, we are expecting low resolution spectra from JUNO’s IR 2-5 μm spectrograph, whose resolution is only R~300 at 3 μm. We will present a method to derive homopause temperatures from low-resolution spectra utilizing the gross envelopes of the P, Q, R branch lines of CH4. We will discuss possible sciences extracted from the constructed maps of homopause temperatures over the auroral or non-auroral regions of Jupiter.
NASA Astrophysics Data System (ADS)
Imber, S. M.; Milan, S. E.; Lester, M.
2012-04-01
We present a long term study, from 1995 - 2011, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during the solar maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum lead to an average HMB location that was further poleward than previous solar cycles. We also calculated the open-closed field line boundary (OCB) from auroral images during the years 2000-2002 and find that on average the HMB is located equatorward of the OCB by ~6°. We suggest that the HMB may be a useful proxy for the OCB when global auroral images are not available.
Copernicus measurement of the Jovian Lyman-alpha emission and its aeronomical significance
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Kerr, R. B.; Upson, W. L., II; Festou, M. C.; Donahue, T. M.; Barker, E. S.; Cochran, W. D.; Bertaux, J. L.
1982-01-01
It is pointed out that the intensity of the Lyman-alpha emission is a good indicator of the principal aeronomical processes on the major planets. The high-resolution ultraviolet spectrometer aboard the Orbiting Astronomical Observatory Copernicus was used in 1980 April and May to detect the Jovian Lyman-alpha emission by spectroscopically discriminating it from other Doppler shifted Lyman-alpha emissions such as those of the geocorona, and the interplanetary medium. Taking into consideration the reported emission data, it appears that an unusually large energy input due to the particle precipitation in the auroral region must have been responsible for the large observed Lyman-alpha intensity during the Voyager encounter. At most other times, the observed Jovian Lyman-alpha intensity can be explained, within the range of statistical uncertainty, by a model that takes into consideration the solar EUV flux, the solar Lyman-alpha flux, the high exospheric temperature, and the eddy diffusion coefficient without energy input from the auroral sources.
An S3-3 search for confined regions of large parallel electric fields
NASA Astrophysics Data System (ADS)
Boehm, M. H.; Mozer, F. S.
1981-06-01
S3-3 satellite passes through several hundred perpendicular shocks are searched for evidence of large, mostly parallel electric fields (several hundred millivolts per meter, total potential of several kilo-volts) in the auroral zone magnetosphere at altitudes of several thousand kilometers. The actual search criteria are that one or more E-field data points have a parallel component E sub z greater than 350 mV/m in general, or 100 mV/m for data within 10 seconds of a perpendicular shock, since double layers might be likely, in such regions. Only a few marginally convincing examples of the electric fields are found, none of which fits a double layer model well. From statistics done with the most unbiased part of the data set, upper limits are obtained on the number and size of double layers occurring in the auroral zone magnetosphere, and it is concluded that the double layers most probably cannot be responsible for the production of diffuse aurora or inverted-V events.
2001-03-15
order to characterize the auroral electrojet and the ambient and modified D-region directly above and near the HAARP (High Frequency Active Auroral...near the HAARP facility and along the west coast of Alaska. In addition in order to characterize the auroral electrojet on a continental scale and to...United States and Canada. Data from the complete array of D-region diagnostic systems was acquired during a number of Fall and Spring HAARP campaigns
NASA Astrophysics Data System (ADS)
O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.
2016-01-01
On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.
NASA Technical Reports Server (NTRS)
Carpenter, D. L.; Akasofu, S.
1972-01-01
Temporal variations of the westward component of the magnetospheric convection electric field in the outer plasmasphere were compared to auroral activity near L = 7, and to variations in the geomagnetic field at middle and high latitudes. The substorms occurred on July 29, 1965 near 0530 UT and on August 20, 1965 near 0730 UT. The results on westward electric field E(w) were obtained by the whistler method using data from Eights, Antarctica (L is approximately 4). All sky camera records were obtained from Byrd, Antarctica, (L is approximately 7), located within about 1 hour of Eights in magnetic local time. It was found that E(w) within the outer plasmasphere increased rapidly to substorm levels about the time of auroral expansion at nearby longitudes. This behavior is shown to differ from results on E(w) from balloons, which show E(w) reaching enhanced levels prior to the expansion. A close temporal relation was found between the rapid, substorm associated increases in E(w) and a well known type of nightside geomagnetic perturbation. Particularly well defined was the correlation of E(w) rise and a large deviation of the D component at middle latitudes.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.
1997-01-01
In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.
Multisite Optical Imaging of Artificial Ionospheric Plasmas (Postprint)
2011-11-09
Frequency Active Auroral Research Program ( HAARP ) facility in Gakona, Alaska (62.4◦ N 145◦ W) after the trans- mitter reached full 3.6-MW power, these...The experiment was carried out on November 19, 2009, between 02:26 UT and 02:43:50 UT. Optical images were acquired at the HAARP site at 557.7 nm (O 1S...noise and integrated for 5 s at a temperature of −40 ◦C. A second system located 160 km north of the HAARP near Delta Junction used an Apogee Alta
Narrowband NanoSat Scale Photometry for VUV Planetary and Heliophysics missions
NASA Astrophysics Data System (ADS)
Noto, J.; Doe, R. A.; Frey, H. U.
2015-12-01
Remote vacuum ultraviolet (VUV) soundings to support Explorer-class atmospheric research are typically enabled by large aperture, wideband spectrographs carefully pointed to measure a planet's disk and limb regions (i.e. TIMED/GUVI and MAVEN/UVS). An alternate measurement paradigm is to identify key aeronomical emission targets (i.e HI 121.6-nm, OI 135.6-nm, N2 Lyman-Birge-Hopfield band 135 - 155 nm) and create a series of narrowband photometers each with greater in-band sensitivity (relative to a spectrograph) due to enhanced out-of-band rejection and absence of a dispersive element. Recent advances in narrowband VUV coating and PMT miniaturization have enabled design of a dual-channel nanosatellite-scale VUV photometer with flight heritage significantly leveraged from the NASA POLAR UVI imager the Air Force CubeSat Tiny Ionospheric Photometer (CTIP). Herein we present further modeled sensitivity studies and current build status of the dual-channel thermosphere/ionosphere photometer (DTIP) and address notional missions including dayside O/N2 composition, auroral energetics, nightside plasma structuring and peak layer characterization, and hydrogen geocoronal tomographic imaging.
The role of in-situ measurements in scintillation modelling
NASA Astrophysics Data System (ADS)
Basu, S.; Basu, S.; Hanson, W. B.
It is shown that the conflicting equatorial scintillation observations obtained from greatly separated ground stations can be organized in the framework of a longitudinal variation of irregularity occurrence, given satellite-borne, in situ measurements of irregularity amplitude of the global F-region irregularity morphology's general features. High-inclination satellite data are used to delineate the morphological features of the polar cap by means of such a method. The lack of diurnal and magnetic control of the irregularity morphology within the low solar flux, northern winter polar cap distinguishes this region from the auroral oval regime. A polar-orbiting communication system sensitive to phase perturbations may observe large differences in the phase-to-amplitude scintillation ratio, as it traverses the auroral oval and proceeds into the polar cap, with its sun-aligned arc system.
The relationship of total Birkeland currents to the merging electric field
NASA Technical Reports Server (NTRS)
Bythrow, P. F.; Potemra, T. A.
1983-01-01
Magsat data were used to examine the behavior of Birkeland currents during 1100-2000 UT in consecutive orbits passing near the dawn-dusk meridian. The field was measured with a three-axis fluxgate instrument with a resolution of within 0.5 nT, with the sampling occurring every 1/16th sec. A total of 32 crossings of the Northern Hemisphere auroral zone were available for analysis. The changes in the magnetic readings were correlated more closely with variation in the IMF parameters than to the latitudinal width of the changes. Evidence was found for a relationship between the reconnection electric field and the intensity of the large-scale Birkeland current system. The total conductance of the auroral zone was calculated to be about 18.7 mhos.
NASA Technical Reports Server (NTRS)
2007-01-01
This image of Io eclipsed by Jupiter's shadow is a combination of several images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) between 09:35 and 09:41 Universal Time on February 27, 2007, about 28 hours after the spacecraft's closest approach to Jupiter. North is at the top of the image. In the darkness, only glowing hot lava, auroral displays in Io's tenuous atmosphere and the moon's volcanic plumes are visible. The brightest points of light in the image are the glow of incandescent lava at several active volcanoes. The three brightest volcanoes south of the equator are, from left to right, Pele, Reiden and Marduk. North of the equator, near the disk center, a previously unknown volcano near 22 degrees north, 233 degrees west glows brightly. (The dark streak to its right is an artifact.) The edge of Io's disk is outlined by the auroral glow produced as intense radiation from Jupiter's magnetosphere bombards the atmosphere. The glow is patchy because the atmosphere itself is patchy, being denser over active volcanoes. At the 1 o'clock position the giant glowing plume from the Tvashtar volcano rises 330 kilometers (200 miles) above the edge of the disk, and several smaller plumes are also visible as diffuse glows scattered across the disk. Bright glows at the edge of Io on the left and right sides of the disk mark regions where electrical currents connect Io to Jupiter's magnetosphere. New Horizons was 2.8 million kilometers (1.7 million miles) from Io when this picture was taken, and the image is centered at Io coordinates 2 degrees south, 238 degrees west. The image has been heavily processed to remove scattered light from Jupiter, but some artifacts remain, including a horizontal seam where two sets of frames were pieced together. Total exposure time for this image was 56 seconds.The Harang discontinuity in auroral belt ionospheric currents.
NASA Technical Reports Server (NTRS)
Heppner, J. P.
1972-01-01
Discussion of the nature of a discontinuity in the ionospheric current of the auroral belt whose existence was suggested by Harang in 1946. Convection characteristics, time variability, and current continuity in the auroral belt are considered in a context of observations and arguments supporting the reality of Harang's discontinuity.
Wave-particle interactions on the FAST satellite
NASA Technical Reports Server (NTRS)
Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.
1990-01-01
NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral zone from a 3500-km apogee polar orbit. FAST will give attention to wave, double-layer, and soliton production processes due to electrons and ions, as well as to wave-wave interactions, and the acceleration of electrons and ions by waves and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral zone, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.
Jupiter's auroral-related thermal infrared emission from IRTF-TEXES
NASA Astrophysics Data System (ADS)
Sinclair, James; Orton, Glenn; Greathouse, Thomas; Fletcher, Leigh; Irwin, Patrick
2015-11-01
Auroral processes on Jupiter can be observed at a large range of wavelengths. Charged particles of the solar wind are deflected by Jupiter’s magnetic field and penetrate the atmosphere at high latitudes. This results in ion and/or electron precipitation, which produces emission at X-ray, UV, visible, near-infrared and even radio wavelengths. These observations indicate three distinct features of the aurora: 1) filament-like oval structures fixed at the magnetic poles (~80°W (System III) in the south, ~180°W in the north), 2) spatially-continuous but transient aurora that fill these oval regions and 3) discrete spots associated with the magnetic footprints of Io and other Galilean satellites. However, observations in the thermal infrared indicate the aurora also modify the neutral atmosphere. Enhanced emission of CH4 is observed coincident with the auroral ovals and indicates heightened stratospheric temperatures possibly as a result of joule heating by the influx of charged particles. Stronger emission is also observed of C2H2, C2H4, C2H6 and even C6H6 though previous work has struggled to determine whether this is a temperature or compositional effect. In order to quantify the auroral effects on the neutral atmosphere and to support the 2016 Juno mission (which has no thermal infrared instrument) we have performed a retrieval analysis of IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph, 5- to 25-μm) spectra obtained on Dec 11th 2014 near solar maximum. The instrument slit was scanned east-west across high latitudes in each hemisphere and Jupiter’s rotation was used to obtain ~360° longitudinal coverage. Spectra of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission were measured at a resolving power of R = 85000, allowing a large vertical range in the atmosphere (100 - 0.001 mbar) to be sounded. Preliminary retrievals of the vertical temperature profile from H2 S(1) and CH4 measurements at 60°N, 180°W (on aurora), in comparison to 60°N, 60°W (quiescent) indicate the majority of auroral heating occurs from 10- to 1-μbar. We plan on further testing the temperature retrievals and adopting these results in the subsequent retrievals of C2H2, C2H4 and C2H6 to determine compositional contrasts.
Chandra Looks Back At The Earth
NASA Astrophysics Data System (ADS)
2005-12-01
In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co-investigator on this project and worked with Dr. Elsner at NASA's Marshall Space Flight Center while this research was conducted. The research team also includes Randy Gladstone (Southwest Research Institute, San Antonio, Texas); Nikolai Østgaard (University of Bergen, Norway); Hunter Waite and Tariq Majeed (University of Michigan, Ann Arbor); Thomas Cravens (University of Kansas, Lawrence); Shen-Wu Chang (University of Alabama, Huntsville); and, Albert E. Metzger (Jet Propulsion Laboratory, Pasadena, Calif). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov
The independent pulsations of Jupiter's northern and southern X-ray auroras
NASA Astrophysics Data System (ADS)
Dunn, W. R.; Branduardi-Raymont, G.; Ray, L. C.; Jackman, C. M.; Kraft, R. P.; Elsner, R. F.; Rae, I. J.; Yao, Z.; Vogt, M. F.; Jones, G. H.; Gladstone, G. R.; Orton, G. S.; Sinclair, J. A.; Ford, P. G.; Graham, G. A.; Caro-Carretero, R.; Coates, A. J.
2017-11-01
Auroral hot spots are observed across the Universe at different scales1 and mark the coupling between a surrounding plasma environment and an atmosphere. Within our own Solar System, Jupiter possesses the only resolvable example of this large-scale energy transfer. Jupiter's northern X-ray aurora is concentrated into a hot spot, which is located at the most poleward regions of the planet's aurora and pulses either periodically2,3 or irregularly4,5. X-ray emission line spectra demonstrate that Jupiter's northern hot spot is produced by high charge-state oxygen, sulfur and/or carbon ions with an energy of tens of MeV (refs 4-6) that are undergoing charge exchange. Observations instead failed to reveal a similar feature in the south2,3,7,8. Here, we report the existence of a persistent southern X-ray hot spot. Surprisingly, this large-scale southern auroral structure behaves independently of its northern counterpart. Using XMM-Newton and Chandra X-ray campaigns, performed in May-June 2016 and March 2007, we show that Jupiter's northern and southern spots each exhibit different characteristics, such as different periodic pulsations and uncorrelated changes in brightness. These observations imply that highly energetic, non-conjugate magnetospheric processes sometimes drive the polar regions of Jupiter's dayside magnetosphere. This is in contrast to current models of X-ray generation for Jupiter9,10. Understanding the behaviour and drivers of Jupiter's pair of hot spots is critical to the use of X-rays as diagnostics of the wide range of rapidly rotating celestial bodies that exhibit these auroral phenomena.
Swarm observation of field-aligned current and electric field in multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, M.; Donovan, E.; Burchill, J. K.
2017-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. These types of events are termed "unipolar FAC" events. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs, which are termed as "multipolar FAC" events. Comparisons of these two types of FAC events are presented with 17 "unipolar FAC" events and 12 "multipolar FAC" events. The results show that "unipolar FAC" and "multipolar FAC" events have systematic differences in terms of MLT, arc width and separation, and dependence on substorm onset time. For "unipolar FAC" events, significant electric field enhancements are shown on the edges of the broad upward current sheet. Electric field fluctuations inside the multiple arc system can be large or small. For "multipolar FAC" events, a strong correlation between magnetic and electric field indicate uniform conductance within each upward current sheet. The electrodynamical structures of multiple arc systems presented in this paper represents a step toward understanding arc generation.
Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials
NASA Technical Reports Server (NTRS)
Cornwall, J. M.
1994-01-01
This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.
Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations
NASA Astrophysics Data System (ADS)
Li, W.; Thorne, R. M.; Ma, Q.; Zhang, X.-J.; Gladstone, G. R.; Hue, V.; Valek, P. W.; Allegrini, F.; Mauk, B. H.; Clark, G.; Kurth, W. S.; Hospodarsky, G. B.; Connerney, J. E. P.; Bolton, S. J.
2017-10-01
Juno observed the low-altitude polar region during perijove 1 on 27 August 2016 for the first time. Auroral intensity and false-color maps from the Ultraviolet Spectrograph (UVS) instrument show extensive diffuse aurora observed equatorward of the main auroral oval. Juno passed over the diffuse auroral region near the System III longitude of 120°-150° (90°-120°) in the northern (southern) hemisphere. In the region where these diffuse auroral emissions were observed, the Jupiter Energetic Particle Detector Instrument (JEDI) and Jovian Auroral Distributions Experiment (JADE) instruments measured nearly full loss cone distributions for the downward going electrons over energies of 0.1-700 keV but very few upward going electrons. The false-color maps from UVS indicate more energetic electron precipitation at lower latitudes than less energetic electron precipitation, consistent with observations of precipitating electrons measured by JEDI and JADE. The comparison between particle and aurora measurements provides first direct evidence that these precipitating energetic electrons are mainly responsible for the diffuse auroral emissions at Jupiter.
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
Auroral photometry from the atmosphere Explorer satellite
NASA Technical Reports Server (NTRS)
Rees, M. H.; Abreu, V. J.
1984-01-01
Attention is given to the ability of remote sensing from space to yield quantitative auroral and ionospheric parametrers, in view of the auroral measurements made during two passes of the Explorer C satellite over the Poker Flat Optical Observatory and the Chatanika Radar Facility. The emission rate of the N2(+) 4278 A band computed from intensity measurements of energetic auroral electrons has tracked the same spetral feature that was measured remotely from the satellite over two decades of intensity, providing a stringent test for the measurement of atmospheric scattering effects. It also verifies the absolute intensity with respect to ground-based photometric measurements. In situ satellite measurments of ion densities and ground based electron density profile radar measurements provide a consistent picture of the ionospheric response to auroral input, while also predicting the observed optical emission rate.
Observation of hectometric auroral radio emissions in Iceland
NASA Astrophysics Data System (ADS)
Sato, Y.; Ono, T.; Iizima, M.; Sato, N.
2006-12-01
The Earth's auroral region is an active radio source at frequencies from a few hertz to several megahertz. In the hectometric range, it was found that Terrestrial Hectometric Radiation (THR) is related to auroras by observations of the Ohzora satellite [Oya et al.(1985)]. In resent research, Shinbori et al. [2003] showed that occurrence of THR follows SC by several minutes using the Akebono satellite data. On the ground, auroral roar and MF burst were discovered by Kellogg and Monson [1979, 1984] and Weatherwax et al. [1994] in the northern Canada, respectively. Because there is not enough physical and geophysical characterization of these radio emissions, the physical mechanism of these phenomena in the auroral ionosphere has not been fully understood yet. We set up new observation system at Husafell station in Iceland in September, 2005 and have started to observe auroral radio emissions. Radio signals, which are received by the cross loop antennas, are converted into left- and right- handed polarized components within the frequency range from 1 MHz to 5 MHz. Based on the calibration of system, it was found that the possibility of occurence would be smaller than expected due to the low sensitivity because average power spectrum densities of auroral roar and MF burst are 50-100 nV/m/Hz^1/2. So, the system was planed to be upgraded in this September, which makes it possible to detect auroral roar and MF burst. It is expected that the detail physical process will be elucidated by clarifying the spectrum, polarization, dependence on the geomagnetic activity, and so on. In this presentation, we will show the improved points of the new system and preliminary observation results. There is a basic question whether auroral roar and MF burst observed on the ground are generated by the same process as THR observed by satellites. By comparing the results from the ground-based observation and the Akebono satellite observation of THR, it becomes possible to obtain a new picture of auroral radio emissions.
Magnetospheric and auroral plasmas - A short survey of progress
NASA Technical Reports Server (NTRS)
Frank, L. A.
1975-01-01
Important milestones in our researches of auroral and magnetospheric plasmas for the past quadrennium 1971-1975 are reviewed. Many exciting findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking inverted V electron precipitation events, were reported during this period. Solutions to major questions concerning the origins and acceleration of these plasmas appear possible in the near future. A comprehensive bibliography of current research is appended to this brief survey of auroral and magnetospheric plasmas.
A mathematical model of the structure and evolution of small-scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, Charles E.
1990-01-01
A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.
Electron currents associated with an auroral band
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Anderson, H. R.
1975-01-01
Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.
A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.
2016-12-01
Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
NASA Astrophysics Data System (ADS)
Blokhina, M. S.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Barinova, V. O.; Khodachenko, M. L.; Topf, F.
2012-09-01
The Saturn and Earth auroral emissions have different generation mechanisms, however, both mechanisms are not understood very well till now (see [1]). Both of these phenomena have a long history of observations. For Saturn these are Hubble images and big onground telescope images, as well as the Cassini ones in recent time. For Earth these are the satellite visible and UV camera images and onground observations. In course of the EU-FP7 Project "Integrated Medium for Planetary Exploration" the Web services based on the paraboloid magnetospheric models were constructed . The model field lines tracing gives us a possibility to distinguish the closed and open field line bundles. Additionally, we can find a boundary between the dipole type field lines and determine a region of the tail-like field lines crossing the equatorial plane tailward from the inner edge of the tail current sheet. Projections of this boundary and of the boundary between open and closed field lines at the ionospheric level mark the terrestrial auroral oval boundaries. The final result depends on the solar wind parameters and the magnetospheric state. In the Earth's case we have the ACE solar wind monitoring data which should be used to determine the magnetospheric state (http://smdc.sinp.msu.ru/index.py? nav=paraboloid/index [Interactive Earth]). For Saturn we use the three levels of the solar wind dynamic pressure (http://smdc.sinp. msu.ru/index.py?nav=paraboloid/index [Interactive Saturn]).
NASA Astrophysics Data System (ADS)
LaBelle, J.; McAdams, K. L.; Trimpi, M. L.
High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.
Mirror instability and origin of morningside auroral structure
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.
1983-01-01
Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.
Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.
1995-01-01
Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.
NASA Technical Reports Server (NTRS)
Iijima, T.; Kim, J. S.; Sugiura, M.
1984-01-01
The development of the polar cap current and the relationship of that development to the evolution of auroral electrojets during individual polar geomagnetic disturbances is studied using 1 min average data from US-Canada IMS network stations and standard magnetograms from sites on the polar cap and in the auroral zone. It is found that even when the auroral electrojet activity is weak, polar cap currents producing fields of magnitude approximately 100-200 nT almost always exist. A normal convection current system exists quasi-persistently in the polar cap during extended quiet or weakly disturbed periods of auroral electrojet activity. After one such period, some drastic changes occur in the polar cap currents, which are followed by phases of growth, expansion, and recovery. Polar cap currents cannot all be completely ascribed to a single source mechanism.
NASA Technical Reports Server (NTRS)
Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.
2017-01-01
Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.
The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars
NASA Astrophysics Data System (ADS)
Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.
2008-12-01
In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.
Field-aligned particle currents near an auroral arc.
NASA Technical Reports Server (NTRS)
Choy, L. W.; Arnoldy, R. L.; Potter, W.; Kintner, P.; Cahill, L. J., Jr.
1971-01-01
A Nike-Tomahawk rocket equipped to measure electric and magnetic fields and charged particles from a few eV to several hundred keV energy was flown into an auroral band on April 11, 1970. The purpose of this flight was to obtain evidence of the low-energy electrons and protons that constitute a field-aligned sheet current, and also to obtain the magnetic signature of such a current and the electric field in and near the auroral-arc electric current system. Particular attention was given to a sudden increase in the field-aligned current associated with a prior sudden increase in the electric field and a sudden change in the magnetic field, all occurring near the edge of a visual auroral arc. Data obtained are discussed and analyzed; they present an important contribution to the problem of mapping of atmospheric auroral phenomena to the magnetospheric equatorial plane.
X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim
We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.
Jupiter's Auroras Acceleration Processes
2017-09-06
This image, created with data from Juno's Ultraviolet Imaging Spectrometer (UVS), marks the path of Juno's readings of Jupiter's auroras, highlighting the electron measurements that show the discovery of the so-called discrete auroral acceleration processes indicated by the "inverted Vs" in the lower panel (Figure 1). This signature points to powerful magnetic-field-aligned electric potentials that accelerate electrons toward the atmosphere to energies that are far greater than what drive the most intense aurora at Earth. Scientists are looking into why the same processes are not the main factor in Jupiter's most powerful auroras. https://photojournal.jpl.nasa.gov/catalog/PIA21937
All Sky Imager Network for Science and Education
NASA Astrophysics Data System (ADS)
Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.
2012-12-01
A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of auroral precipitation. The all sky imager package is designed to be a low-budget self-contained scientific instrument. The schools will need to only provide power and internet. The external package is an insulated, heat-controlled box roughly 2'x2'x1' in dimension. Inside, an astronomy-grade monochromatic camera is coupled with telecentric optics and a narrowband filter designed for the wavelength of the airglow or auroral phenomena of interest. Thus far, a prototype instrument has been installed at the Pescadero High School in Pescadero, CA after testing and calibration at the McDonald Observatory in Texas. A science seminar was delivered and science nuggets are being tested in an introductory science class as well as an upper level astronomy course. This poster will show all of the above mentioned aspects of this project.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
ISINGLASS campaign multi point sensors and data integration
NASA Astrophysics Data System (ADS)
Clayton, R.; Lynch, K. A.; Michell, R.; Hampton, D. L.; Samara, M.; Zettergren, M. D.; Hysell, D. L.; Lessard, M.
2016-12-01
The upcoming ISINGLASS mission will take place during February 2017 and will consist of 2 rockets launched out of Poker Flat Research Range, Alaska. Each rocket will deploy sensorcraft on the upleg to generate a localized multipoint measurement of the ionospheric plasma environment. Ground based measurements such as the PFISR and SuperDARN radar arrays, CCD cameras making maps of multi-wavelength energy flux and characteristic energy, and Scanning Doppler Imagers for neutral flows, will also be used in conjunction with the in situ rocket measurements. The GEMINI ionospheric model will be used to stitch together all of the various data products during the mission to provide a map of the relevant parameters during the duration of the campaign. The sensors built by Dartmouth for this mission are called Petite Ion Probes (PIPs), collimated RPAs with heritage on the MICA auroral mission. For the upcoming Isinglass flights, PIPs will be assembled into small ejectables, and four of these sensorcraft will be deployed from each of the two rockets on the upleg, creating a localized swarm for the duration of the flight through the F-region ionosphere. During the science portion of the flight, the sensorcraft will be spaced 1km apart from the main payload, which allows for the multipoint measurement of small-scale gradients in the F-region, such as across the edges of arcs. Interpretation of the data from the PIPs is aided by calibration done at Dartmouth in the Elephant plasma chamber. Comparison between the PIPs, and Langmuir and emissive probe measurements, provides verification of the PIP measurements, as well as verifying the field of view of the detector in the various configurations present on the payload. Observational goals for the campaign target a different type of auroral arc with each of the two rockets. The measured response of the thermal ionospheric plasma to different types and scale sizes of auroral precipitation drivers will provide two case studies quantifying the gradient scale lengths of auroral disturbances.
Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets
NASA Astrophysics Data System (ADS)
Toivanen, P. K.; Baker, D. N.; Peterson, W. K.; Li, X.; Donovan, E. F.; Viljanen, A.; Keiling, A.; Wygant, J. R.; Kletzing, C. A.
2001-09-01
We present observations of the Polar spacecraft of magnetospheric substorm signatures in the plasma sheet midway along auroral field lines between the ionosphere and the equatorial plasma sheet. On October 17, 1997, Polar was located in the onset meridian in conjunction with the Scandinavian magnetometer chain (International Monitor for Auroral Geomagnetic Effects; IMAGE). In addition, a geostationary spacecraft, LANL-97A, was located near the onset meridian. On August 29, 1997, Polar was magnetically conjugate to the Canadian magnetometer chain (Canadian Auroral Network for the OPEN Program Unified Study; CANOPUS) ~5 hours east of the onset meridian. In both cases, substorm activity was manifested as strong magnetic (20 nT) and electric (40 mVm-1) field variations with bursts of parallel Poynting flux (~1 ergcm-2s-1), predominantly directed toward the ionosphere. In the first event Polar was located in the plasma sheet near the plasma sheet boundary, and the field variations were initiated at the ground onset. In the second event, Polar crossed the plasma sheet boundary to the tail lobes a few minutes prior to a local plasma sheet expansion. As Polar was engulfed by the plasma sheet, the field variations occurred in the previously quiet plasma sheet boundary. This coincided with the auroral bulge reaching the CANOPUS stations. We compare these two events and argue that the field variations were most probably signatures of the reconnection of open field lines and the subsequent enhanced earthward flows. Furthermore, weak flow bursts were observed at Polar in both events ~9 min before the onset. In the first event, a gradual development toward a negative bay and a burst of Pi2 pulsations were associated with the flow bursts. We anticipate that these signatures, often described in terms of pseudobreakups, were a precursor of the substorm onset, the initiation of the reconnection of closed field lines.
Energetic electron precipitation and auroral morphology at the substorm recovery phase
NASA Astrophysics Data System (ADS)
Oyama, S. I.; Kero, A.; Rodger, C. J.; Clilverd, M. A.; Yoshizumi, M.; Partamies, N.; Turunen, E. S.; Tero, R.; Verronen, P. T.; Saito, S.
2017-12-01
It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundred keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based magnetometers, the Van Allen Probe satellites, Polar Operational Environmental Satellites (POES), and the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK). Here we undertake a detailed examination of two case studies. The selected two events suggest that the highest energy of EEP on those days occurred with auroral patch formation from post-midnight to dawn, coinciding with the substorm onset at local midnight. Measurements of the EISCAT radar showed ionization as low as 65 km altitude, corresponding to EEP with energies of about 500 keV. Enhancements of the deep ionospheric ionization induced by the EEP modify the chemical-reaction balance involving atmospheric minor species such as NOx and HOx. These species may cause reduction in the ozone density at the ionization altitude or the lower region where these species are transported by the vertical convection in the dynamics. Since the EEP is a typical phenomenon at the substorm recovery phase, the ozone density depletion may be a frequent signature although our understanding has not yet reached the maturity of the mechanism behind these evidences. This presentation will discuss the processes related to the EEP and its effects on the atmosphere through changes in the minor components.
The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Coroniti, F. V.; Pritchett, P. L.
2014-03-01
The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
NASA Astrophysics Data System (ADS)
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations.
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
NASA Astrophysics Data System (ADS)
Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.
2008-05-01
Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.
Development and Performance of a Suprathermal Electron Spectrometer to Study Auroral Precipitations
NASA Technical Reports Server (NTRS)
Ogasawara, Keiichi; Grubbs, Guy, II; Michell, Robert G.; Samara, Maria; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha
2016-01-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for greater than 20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker F1at Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.
2016-05-15
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation tomore » read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.« less
ELF waves and ion resonances produced by an electron beam emitting rocket in the ionosphere
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Abe, Y.; Erickson, K. N.
1986-01-01
Results are reported from the ECHO-6 electron-beam-injection experiment, performed in the auroral-zone ionosphere on March 30, 1983 using a sounding rocket equipped with two electron guns and a free-flying plasma-diagnostics instrument package. The data are presented in extensive graphs and diagrams and characterized in detail. Large ELF wave variations, superposed on the strong beam-sector-directed quasi-dc component, are observed in the 100-eV beam-induced plasma when the beam is injected in a transverse spiral, but not when it is injected upward parallel to the magnetic-field line. ELF activity is found to be suppressed whenever the rocket passed through field lines with auroral activity, suggesting that the waves are produced by the interaction of the beam potentials, plasma currents, and return currents neutralizing the accelerator payload.
NASA Technical Reports Server (NTRS)
Steen, A.; Collis, P. N.; Evans, D.; Kremser, G.; Capelle, S.; Rees, D.; Tsurutani, B. T.
1988-01-01
This paper describes a long-lasting large-amplitude pulsation event, which occurred on January 10, 1983 in the ionosphere and magnetosphere and was characterized by Steen and Rees (1983). Over the 4-h period (0200-0600 UT), the characteristics of the pulsations in the ionosphere changed from being Ps 6 auroral torches toward substorms and back to Ps 6. At GEO, the corresponding characteristics were a modulation of the high-energy particle intensity and plasma dropouts. Based on the ideas presented by Rostoker and Samson (1984), an interpretation of the event is offered, according to which the pulsations are caused by the Kelvin-Helmholtz instability during an interval of strong magnetospheric convection. On the basis of this explanation, a new interpretation of the substorm time sequence is proposed.
Using field-particle correlations to study auroral electron acceleration in the LAPD
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.
2017-10-01
Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.
1988-01-01
Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.
Exploring the Secrets of the Aurora
NASA Astrophysics Data System (ADS)
Siscoe, George
Short, professional autobiographies of the founders of space physics have been solicited by AGU's History Committee and published in special sections of Space Physics issues of the Journal of Geophysical Research. Here we have a book-length professional autobiography by the discoverer of magnetospheric substorms, which is arguably the most intensely researched topic in the field.Probably the book's most valuable contribution to the history of space physics is precisely the narration of the discovery of substorms. Exploring the Secrets of the Aurora has an epic quality. It starts with Akasofu's insight that the auroral zone—a circumpolar zone that auroras inhabit, with geographic borders established in the previous century—is a fiction. There followed a struggle to replace it with the concept of an expandable auroral oval, which has quite a different shape. The road to final success entailed Akasofu's installing a chain of aurora-imaging, “all-sky” cameras stretching the north-south length of Alaska. These proved the point and set a precedent for north-south aligned magnetometer chains.
Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2016-01-01
Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.
Field aligned currents and the auroral spectrum below 1 keV
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.
1973-01-01
Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.
Excitation of whistler waves by reflected auroral electrons
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Ziebell, L. F.; Freund, H. P.
1983-01-01
Excitation of electron waves and whistlers by reflected auroral electrons which possess a loss-cone distribution is investigated. Based on a given magnetic field and density model, the instability problem is studied over a broad region along the auroral field lines. This region covers altitudes ranging from one quarter of an earth radius to five earth radii. It is found that the growth rate is significant only in the region of low altitude, say below the source region of the auroral kilometric radiation. In the high altitude region the instability is insignificant either because of low refractive indices or because of small loss cone angles.
Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.
Albert, R D; Lindstrom, P J
1970-12-25
Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.
Global MHD Modeling of Auroral Conjugacy for Different IMF Conditions
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M. M.; Liu, Y. H.; Birn, J.; Rastaetter, L.
2016-12-01
The question whether auroral features are conjugate or not, and the search for the underlying scientific causes is of high interest in magnetospheric and ionospheric physics. Consequently, this topic has attracted considerable attention in space-based observations of auroral features, and it has inspired a number of theoretical ideas and related modeling activities. Potential contributing factors to the presence or absence of auroral conjugacy include precipitation asymmetries in case of the diffuse aurora, inter-hemispherical conductivity differences, magnetospheric asymmetries brought about by, e.g., dipole tilt, corotation, or IMF By, and, finally, asymmetries in field-aligned current generation primarily in the nightside magnetosphere. In this presentation, we will analyze high-resolution, global MHD simulations of magnetospheric dynamics, with emphasis on auroral conjugacy. For the purpose of this study, we define controlled conditions by selecting solstice times with steady solar wind input, the latter of which includes an IMF rotation from purely southward to east-westward. Conductivity models will include both auroral precipaition proxies as well as the effects of the aysmmetric daylight. We will analyze these simulations with respect to conjugacies or the lack thereof, and study the role of the effects above in determing the former.
NASA Technical Reports Server (NTRS)
Craven, J. D.; Frank, L. A.; Russell, C. T.; Smith, E. J.; Lepping, R. P.
1985-01-01
The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec.
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, M.; Parker, L. Neergaard; Minow, J. I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
The peak altitude of H3+ auroral emission: comparison with the ultraviolet
NASA Astrophysics Data System (ADS)
Blake, J.; Stallard, T.; Miller, S.; Melin, H.; O'Donoghue, J.; Baines, K.
2013-09-01
The altitude of Saturn's peak auroral emission has previously been measured for specific cases in both the ultraviolet (UV) and the infrared (IR). Gerard et al [2009] concludes that the night side H2 UV emission is within the range of 800 to 1300 km above the 1-bar pressure surface. However, using colour ratio spectroscopy, Gustin et al [2009] located the emission layer at or above 610 km. Measurements of the infrared auroral altitude was conducted by Stallard et al [2012] on H3+ emissions from nine VIMS Cassini images, resulting in a measurement of 1155 ± 25 km above the 1-bar pressure surface. Here we present data analysed in a manner similar to Stallard et al [2012] on the observations of H3+ emission in twenty images taken by the Visual Infrared Mapping Spectrometer (VIMS) aboard the spacecraft Cassini from the years 2006, 2008 and 2012. The bins covered were 3.39872, 3.51284, 3.64853, 4.18299 and 4.33280 μm. These observations were selected from a set of 15,000 as they contained a useful alignment of the aurorae on the limb and the body of the planet. The specific conditions that had to be met for each image were as follows; minimum integration time of 75 milliseconds per pixel, minimum number of pixels in the x and y direction of 32, the image must include the latitude range of 70 to 90 degrees for either hemisphere and the sub spacecraft angle must be between 0 and 20 degrees. This alignment allowed for the altitudinal profiles to be analysed in terms of the difference between the latitude of aurorae on the limb and on the body of Saturn; thus permitting an investigation into the effects of misalignment. In this instance, misalignment was defined as the difference between the latitude of the peak emission latitude on the planet and the latitude of the limb; assuming the aurorae to be approximately circular. A statistical study by Badman et al [2011] showed that centre of the oval is on average offset anti sunward of the pole by about 1.6 degrees. To account for this, the acceptable error in misalignment was set to be ± 4 degrees. The accepted error range for the altitudinal profiles was set to ± 250 km. It was determined that variations in the measured altitude of the aurorae are predominantly shifted by misalignment, though there is also some natural variation. Using a second order polynomial fit, the altitude with zero misalignment is measured at 1215 ± 119 km. Further still, through comparison of the IR and UV altitudinal emission profiles is had been discovered that regardless of the alignment, the Infrared auroral altitudinal profile drops off in intensity much faster and the Ultraviolet counterpart, declining to less than 10% of maximum intensity before reaching an altitude of 2000 km above the 1 bar pressure surface. Further work is currently underway to investigate the implication for the emissive behaviour of H3 + with altitude.
Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics
NASA Astrophysics Data System (ADS)
Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina
2016-07-01
We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.
NASA Technical Reports Server (NTRS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.;
2000-01-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
Low- to Middle-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter G.
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 24-26 February 2003 for approx. 40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each -8.5 hours long, were separated by an HRC-I exposure of approx. 20 hours. The low- to middle-latitude nonauroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to middle-latitude X-ray count rate shows a small but statistically significant hour angle dependence and depends on surface magnetic field strength. In addition, the X-ray spectra from regions corresponding to 3-5 gauss and 5-7 gauss surface fields show significant differences in the energy band 1.26-1.38 keV, perhaps partly due to line emission occurring in the 3-5 gauss region but not the 5-7 gauss region. A similar correlation of surface magnetic field strength with count rate is found for the 18 December 2000 HRC-I data, at a time when solar activity was high. The low- to middle-latitude disk X-ray count rate observed by the HRC-I in the February 2003 observation is about 50% of that observed in December 2000, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to middle-latitude X-ray emission does not show any oscillations similar to the approx. 45 min oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's nonauroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2.0 keV low- to middle-latitude X-ray spectra are harder than the auroral spectrum and are different from each other at energies above 0.7 keV, showing variability in Jupiter's nonauroral X-ray emission on a timescale of a day. The 0.3-2.0 keV X-ray power emitted at low to middle latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by the scattering and fluorescence of solar X rays in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the dependence of count rate on surface magnetic-field strength may indicate the presence of some secondary component, possibly ion precipitation from radiation belts close to the planet.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.
2000-08-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
What can we learn from the auroral footprints of the Jovian moons? (Invited)
NASA Astrophysics Data System (ADS)
Bonfond, B.
2010-12-01
The signature of electromagnetic interaction between the moons Io, Europa and Ganymede and the Jovian magnetosphere can be observed on Jupiter’s polar ionosphere in the form of auroral footprints. The observation campaigns carried out during the past few years by the Hubble Space Telescope in the Far UV domain provided not only a high spatial and temporal resolution but also an unprecedented System III longitude coverage. Consequently, these recent observations of the morphology and the dynamics of the footprints proved to be very powerful tools to probe these interactions. For example, the locations of the satellite footprints have been used as a valuable constraint for building Jovian magnetic field models. Moreover, analysis of the multiplicity of the Io footprint spots as well as their relative motion lead to new conclusions on the electron acceleration processes. The altitude of the Io footprint has also been used to infer the typical energy of the impinging electrons. Finally, the study of the three-dimensional shape and of the brightness of the different sub-structures of the footprints provides important clues on the processes at play between Io and the Jovian ionosphere. On the theoretical side, considerable efforts have also been recently carried out in order to model the propagation of the Alfvén waves generated at Io and the subsequent acceleration of auroral electrons. Coupled with HST images, radio decametric measurements and in situ data from the Galileo spacecraft, these advances provide a brand new understanding of the satellite footprints.
Distributed sensing of ionospheric irregularities with a GNSS receiver array
NASA Astrophysics Data System (ADS)
Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.
2017-08-01
We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.
NASA Astrophysics Data System (ADS)
Newell, P. T.; Liou, K.; Zhang, Y.; Paxton, L.; Sotirelis, T.; Mitchell, E. J.
2013-12-01
OVATION Prime is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power far better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each MLATxMLT bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input (as indeed they do). We here introduce OVATION Prime-2013, an upgrade to the 2008 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 12,000 (nT2/3 (km/s)4/3 which roughly corresponds to Kp = 5+ or 6-). The range of validity is thought to be about 0 < dΦMP/dt = 30000 (say Kp = 8 or 8+). Other upgrades include a reduced susceptibility to salt and pepper noise, and smoother interpolation across the postmidnight data gap. We will also provide a comparison of the advantages and disadvantages of other current precipitation models, especially OVATION-SuperMAG, which produces particularly good estimates for total auroral power, at the expense of working best on an historical basis. OVATION Prime-2013, for high solar wind driving, as TIMED GUVI data takes over from DMSP
NASA Astrophysics Data System (ADS)
Samara, M.; Michell, R. G.; Hampton, D. L.; Trondsen, T.
2012-12-01
The Multi-Spectral Observatory Of Sensitive EMCCDs (MOOSE) consists of 5 imaging systems and is the result of an NSF-funded Major Research Instrumentation project. The main objective of MOOSE is to provide a resource to all members of the scientific community that have interests in imaging low-light-level phenomena, such as aurora, airglow, and meteors. Each imager consists of an Andor DU-888 Electron Multiplying CCD (EMCCD), combined with a telecentric optics section, made by Keo Scientific Ltd., with a selection of available angular fields of view. During the northern hemisphere winter the system is typically based and operated at Poker Flat Research Range in Alaska, but any or all imagers can be shipped anywhere in individual stand-alone cases. We will discuss the main components of the MOOSE project, including the imagers, optics, lenses and filters, as well as the Linux-based control software that enables remote operation. We will also discuss the calibration of the imagers along with the initial deployments and testing done. We are requesting community input regarding operational modes, such as filter and field of view combinations, frame rates, and potentially moving some imagers to other locations, either for tomography or for larger spatial coverage. In addition, given the large volume of auroral image data already available, we are encouraging collaborations for which we will freely distribute the data and any analysis tools already developed. Most significantly, initial science highlights relating to aurora, airglow and meteors will be discussed in the context of the creative and innovative ways that the MOOSE observatory can be used in order to address a new realm of science topics, previously unachievable with traditional single imager systems.
Auroras light up the Antarctic night
2012-12-05
NASA acquired July 15, 2012 On July 15, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of the aurora australis, or “southern lights,” over Antartica’s Queen Maud Land and the Princess Ragnhild Coast. The image was captured by the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as city lights, auroras, wildfires, and reflected moonlight. In the case of the image above, the sensor detected the visible auroral light emissions as energetic particles rained down from Earth’s magnetosphere and into the gases of the upper atmosphere. The slightly jagged appearance of the auroral lines is a function of the rapid dance of the energetic particles at the same time that the satellite is moving and the VIIRS sensor is scanning. The yellow box in the top image depicts the area shown in the lower close-up image. Light from the aurora was bright enough to illuminate the ice edge between the ice shelf and the Southern Ocean. At the time, Antarctica was locked in midwinter darkness and the Moon was a waning crescent that provided little light. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Mike Carlowicz. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Sivjee, G. G.
1976-01-01
Auroral optical measurements made aboard NASA's CV 990 were analyzed. The measurements analyzed form a small part of extensive spectroscopic, photometric and photographic data gathered during the 1968 and 1969 Airborne Auroral Expeditions. Simultaneous particle measurements from ESRO IA satellite were used in the analysis. Information about magnetospheric boundaries, interaction between magnetosheath particles and the terrestrial ionosphere, the polar bulge in helium abundance and excitation mechanisms of the triplet state of atmospheric N2 in auroras was obtained. Further analysis of the data is required to elucidate the relation between 3466 and 5200 A emissions of NI and the excitation of 3726-3729 A emissions from atomic oxygen ions in auroras.
The spatial-temporal ambiguity in auroral modeling
NASA Technical Reports Server (NTRS)
Rees, M. H.; Roble, R. G.; Kopp, J.; Abreu, V. J.; Rusch, D. W.; Brace, L. H.; Brinton, H. C.; Hoffman, R. A.; Heelis, R. A.; Kayser, D. C.
1980-01-01
The paper examines the time-dependent models of the aurora which show that various ionospheric parameters respond to the onset of auroral ionization with different time histories. A pass of the Atmosphere Explorer C satellite over Poker Flat, Alaska, and ground based photometric and photographic observations have been used to resolve the time-space ambiguity of a specific auroral event. The density of the O(+), NO(+), O2(+), and N2(+) ions, the electron density, and the electron temperature observed at 280 km altitude in a 50 km wide segment of an auroral arc are predicted by the model if particle precipitation into the region commenced about 11 min prior to the overpass.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Astrophysics Data System (ADS)
Zakharenkova, I.; Astafyeva, E.; Cherniak, I.
2016-12-01
We investigate signatures of the large-scale travelling ionospheric disturbances (LSTIDs) that they leave in the ground-based total electron content (TEC) during the 2015 St. Patrick's Day Storm. We take advantage of a large number of the ground-based GPS/GNSS receivers to analyze simultaneous LSTIDs propagation in different sectors from very dense and multipoint observations. The region of interest includes the both Northern and Southern American sectors, as well as the whole European sector. We use measurements derived from more than 5000 GPS/GNSS receivers of numerous global and regional GNSS networks. We considerably increase number of available observations by processing signals from not only GPS but also from GLONASS. We retrieve a perturbation component of the resulted TEC maps constructed with high spatial and temporal resolution. LSTIDs originating in the auroral oval and propagating equatorward were clearly identified in both hemispheres. In this report we discuss features of the observed LSTIDs, in particular, 1) similarities and differences of their simultaneous propagation over American and European sectors ; 2) interhemispheric LSTIDs propagation in the American sector; 3) dependence of the LSTIDs characteristic parameters (velocity, wavelength) on the intensification of the auroral activity during the main phase of this storm.
NASA Technical Reports Server (NTRS)
Evans, David S.
1987-01-01
The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.
Morphology of Southern Hemisphere Riometer Auroral Absorption
2006-06-01
Departamento de Geofísica Universidad de Concepción, Concepción CHILE foppiano@udec.cl ABSTRACT A morphology of riometer auroral absorption is...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Departamento de Geofísica Universidad de ...range of frequencies used an inverse -square frequency dependence approximately holds. Morphology of Southern Hemisphere Riometer Auroral Absorption
Comparative Statistical Analysis of Auroral Models
2012-03-22
was willing to add this project to her extremely busy schedule. Lastly, I must also express my sincere appreciation for the rest of the faculty and...models have been extensively used for estimating GPS and other communication satellite disturbances ( Newell et al., 2010a). The auroral oval...models predict changes in the auroral oval in response to various geomagnetic conditions. In 2010, Newell et al. conducted a comparative study of
Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere
NASA Technical Reports Server (NTRS)
Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.
1981-01-01
The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.
2012-12-01
The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.
UCLA IGPP Space Plasma Simulation Group
NASA Technical Reports Server (NTRS)
1998-01-01
During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.
Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)
NASA Astrophysics Data System (ADS)
Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.
2013-12-01
Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space Climate, Volume 3, 12, 2013.
Observations of Jupiter From Cassini, Galileo and Hst
NASA Astrophysics Data System (ADS)
West, R. A.
This report summarizes recent scientific results for JupiterSs atmosphere from instru- ments sensing ultraviolet and visible wavelengths (to the CCD sensitivity limit near 1000 nm) on the Hubble Space Telescope and the Galileo and Cassini spacecraft. Most prominent among these have been images of the aurora which show the morphology and temporal behavior of the main oval as well as active regions inside the oval and Galilean satellite flux tube and wake interactions. Galileo and especially Cassini ul- traviolet spectrometers added to this picture by revealing auroral brightenings and, along with in situ plasma instruments establish a link between solar wind events and jovian auroral activity. Cassini spectra of the quiescent day and night glow provide compelling evidence for a dominating influence of soft electron excitation (probably secondary electrons) at high altitude and limit the possible contribution of fluores- cence to about 15 percent of the short-wave UV flux. Although fluorescence does not dominate the emission process sunlight is the ultimate source of the emission via photo excitation of vibrationally excited H2. Energetic H2 molecules can be excited by more abundant longer wavelength solar photons. This new insight goes a long way toward resolving the mystery of how the abundant UV flux is produced. At longer wave- lengths (200-300 nm) images by HST and by the Cassini ISS instrument reveal haze morphology and motions in the polar stratosphere. The most striking new discovery in that realm proved to be the formation and evolution of a large dark oval near latitude +60, about the same size and shape as JupiterSs Great Red Spot but ephemeral and invisible at longer wavelengths. Galileo and Cassini made new observations of light- ning. Lightning on the night side can be mapped to cloud features seen on the day side and illuminated by light from Io on the night side. High spatial resolution images in methane bands made by Galileo and Cassini are contributing to new analyses of cloud structure. Galileo and Cassini also made measurements of how the clouds polarize the light. Only a small fraction of these data have been analyzed to date. This work summarizes results from individuals and instrument teams on the Hubble Space Tele- scope, and the Galileo and Cassini spacecraft. Part of this work was performed at the Jet Propulsion Laboratory of the California Institute of Technology and was funded by NASA.
Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates
NASA Technical Reports Server (NTRS)
Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.
1997-01-01
Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.
NASA Technical Reports Server (NTRS)
Sitar, R. J.; Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Cumnock, J.; Germany, G. A.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.
1998-01-01
We present the analysis of a coordinated set of observations from the POLAR Ultraviolet Imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, DMSP and GOES satellites, focused on a traveling convection vortex (TCV) event on 24th July 1996. Starting at approximately 10:48 UT, around magnetometers in Greenland and northern Canada observe pulsations consistent with the passing overhead of a series of alternating TCV filed-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time images form the UVI instrument show a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the intensification fades. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the impulsive TCV related field aligned current systems as they pass through the field of view of the radar. Measurements of the solar wind from the V;IND and IMP-8 spacecraft suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in the orientation of the interplanetary magnetic field may have produced the intensification of the third TCV pair and the associated auroral brightening. Magnetometer data from the GOES satellite located over the eastern United States at geostationary orbit is consistent with a series of field-aligned moving tailward past the satellite. DMSP particle data indicated that the TCVs occur on field lines which map to the boundary plasma sheet (BPS).
Improved Background Removal in Sounding Rocket Neutral Atom Imaging Data
NASA Astrophysics Data System (ADS)
Smith, M. R.; Rowland, D. E.
2017-12-01
The VISIONS sounding rocket, launched into a substorm on Feb 7, 2013 from Poker Flat, Alaska had a novel miniaturized energetic neutral atom (ENA) imager onboard. We present further analysis of the ENA data from this rocket flight, including improved removal of ultraviolet and electron contamination. In particular, the relative error source contributions due to geocoronal, auroral, and airglow UV, as well as energetic electrons from 10 eV to 3 keV were assessed. The resulting data provide a more clear understanding of the spatial and temporal variations of the ion populations that are energized to tens or hundreds of eV.
Latitudinal Variations of Auroral-Zone Ionization Distribution.
1983-02-01
CONTRACT OR GRANT NUMBER(s) Robert M. Robinson F49620-80-C-0014 Roland T. Tsunoda 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT...scanned. A. Auroral Zone Ionospheric Conductivity A key element in modelling the magnetosphere-ionosphere circuit is the auroral zone ionospheric...while the maximum conductivity for the evening eastward electro- jet was less than 20 mho in our data set . In other words, both the south- ward field and
Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign
NASA Astrophysics Data System (ADS)
Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao
2006-09-01
The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.
Effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1981-01-01
A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.
Near-equinox spectro-imaging of Uranus aurorae sampling two planetary rotations
NASA Astrophysics Data System (ADS)
Lamy, Laurent
2012-10-01
A quarter of century after their discovery by Voyager 2 in 1986, HST sucessfully re-detected Uranus aurorae in 2011 {and also in 1998}, providing the first images of these emissions. Overall, they differ from other well-known planetary aurorae, and their characteristics vary at very different timescales, from minutes to decades. These results have provided the first insights on the poorly known Uranian magnetosphere in 26 years, and opened a rich field of investigation, together with a set of open questions. In addition, while solstice conditions prevailed in 1986, Uranus lay close to equinox in 2011, with the S and N magnetic poles alternately facing the Sun every half a rotation. This unique configuration of an asymmetric magnetosphere, extremely variable over a single rotation, had never been investigated before and deserved to be fully analyzed. New observations of the Uranian aurorae are therefore vital for our understanding of planetary magnetospheres, and HST is the only tool able to remotely investigate these emissions. We thus propose to re-observe Uranus with STIS spectro-imaging at next opposition {29 Sept. 2012} over two planetary rotations, in order to enlarge the set of positive detections and to sample the rotational dynamics of auroral processes and magnetosphere/solar wind interaction. To increase the probability of any possible auroral brightening triggered by magnetospheric compressions, observations will be scheduled in advance during active solar wind conditions at Uranus, near the maximum of solar cycle 24. Additional objectives will include the characterization of the extended neutral corona and the spectral response of atmospheric species.
An overview of high-latitude hf induced aurora from EISCAT
NASA Astrophysics Data System (ADS)
Kosch, M.; Gustavsson, B.; Rietveld, M.
The EISCAT HF facility is capable of transmitting over 200 MW into the ionosphere below 5.423 MHz using the low-gain antenna array. Over 1000 MW above 5.423 MHz is available using the high-gain antenna array. During O-mode pumping in the hours after sunset, F-region electrons can be accelerated sufficiently to excite the oxygen atoms and nitrogen molecules, resulting in observable optical emissions at 844.6 (O), 630 (O1D), 557.7 (O1S) and 427.8 (N2) nm above EISCAT. Initial success came in February 1999 with optical recordings by ALIS (Auroral Large Imaging System) from various Swedish locations south of EISCAT and DASI (Digital All-Sky Imager) from Skibotn, Norway, 50 km south-east of EISCAT. Several observations have features unique to high latitudes. Novel discoveries include: (1) Very large electron temperature enhancements of a few 1000 K, which maximise along the magnetic field line direction (2) Ion temperature enhancements of a few 100 K accompanied by large ion outflows, (3) The optical emission usually appears near the magnetic field line direction regardless of the HF transmitter beam pointing direction, (4) The optical emission appears below the HF pump reflection altitude as well as the upper-hybrid resonance height, (5) The optical emission and HF coherent radar backscatter disappears when pumping on the 3rd, 4th or 5th gyro-harmonic frequency, (6) The first artificial optical observations at 844.6 (O) and 427.8 (N2) nm and (7) Annular optical structures, which subsequently collapse into blobs.
Duration and extent of the great auroral storm of 1859
Green, James L.; Boardsen, Scott
2016-01-01
The great geomagnetic storm of August 28 through September 3, 1859 is, arguably, the greatest and most famous space weather event in the last two hundred years. For the first time observations showed that the sun and aurora were connected and that auroras generated strong ionospheric currents. A significant portion of the world’s 200,000 km of telegraph lines were adversely affected, many of which were unusable for 8 h or more which had a real economic impact. In addition to published scientific measurements, newspapers, ship logs, and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one “could read a newspaper by.” At its peak, the Type A red aurora lasted for several hours and was observed to reach extremely low geomagnetic latitudes on August 28–29 (~25°) and on September 2–3 (~18°). Auroral forms of all types and colors were observed below 50° latitude for ~24 h on August 28–29 and ~42 h on September 2–3. From a large database of ground-based observations the extent of the aurora in corrected geomagnetic coordinates is presented over the duration of the storm event. PMID:28066122
Formation of Electrostatic Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2001-01-01
In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.
Duration and Extent of the Great Auroral Storm of 1859
NASA Technical Reports Server (NTRS)
Green, James L.; Boardsen, Scott
2005-01-01
The great geomagnetic storm of August 28 through September 3,1859 is, arguably, the greatest and most famous space weather event in the last two hundred years. For the first time observations showed that the sun and aurora were connected and that auroras generated strong ionospheric currents. A significant portion of the world's 200,000 km of telegraph lines were adversely affected, many of which were unusable for 8 hours or more which had a real economic impact. In addition to published scientific measurements, newspapers, ship logs, and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." At its peak, the Type A red aurora lasted for several hours and was observed to reach extremely low geomagnetic latitudes on August 28-29 (-25") and on September 2-3 (-18"). Auroral forms of all types and colors were observed below 50" latitude for -24 hours on August 28-29 and -42 hours on September 2-3. From a large database of ground-based observations the extent of the aurora in corrected geomagnetic coordinates is presented over the duration of the storm event.
Global Auroral Energy Deposition Compared with Magnetic Indices
NASA Technical Reports Server (NTRS)
Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.
1997-01-01
Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.; Gallagher, D. L.; Spann, J. F., Jr.; Mende, S.; Greenwald, R.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
ULF waves associated with enhanced subauroral proton precipitation
NASA Astrophysics Data System (ADS)
Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.
Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.
SMILE: A new approach to exploring solar-terrestrial relationships
NASA Astrophysics Data System (ADS)
Branduardi-Raymont, Graziella; Wang, Chi; Steven, Sembay; Dai, Lei; Li, Lei; Donovan, Eric; Sun, Tianran; Kataria, Dhiren; Yang, Huigen; Read, Andrew; Whittaker, Ian; Spanswick, Emma; Sibeck, David; Kuntz, Kip; Escoubet, Philippe; Agnolon, David; Raab, Walfried; Zheng, Janhua
2017-04-01
SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) aims to investigate the coupling of the solar wind with the Earth's magnetosphere, and the geospace dynamics that ensue, in a novel and global manner never tried so far. From a highly elliptical and highly inclined polar orbit, SMILE will simultaneously image the soft X-rays produced by solar wind charge exchange to delineate the Earth's magnetic boundaries and polar cusps, image the northern auroral oval in ultraviolet emissions, and measure the solar wind/magnetosheath plasma and magnetic field input. SMILE measurements will inform the science underpinning our still limited understanding of solar-terrestrial relationships and of their fundamental drivers, and will validate both global empirical and first-principle models. For the first time we will be able to trace and link the processes governing magnetopause interactions to those causing charged particle precipitation into the cusps and the remainder of the auroral oval, mapping aspects of the global interaction including the evolution of energy and mass transport. SMILE is a joint space mission between the European Space Agency and the Chinese Academy of Sciences due for launch at the end of 2021. This presentation will cover the science that will be delivered by SMILE and will provide an overview of SMILE's payload and mission development, demonstrating the scientific potential of SMILE through simulations of the data that it will return.
Electron ionization of metastable nitrogen and oxygen atoms in relation to the auroral emissions
NASA Astrophysics Data System (ADS)
Pandya, Siddharth; Joshipura, K. N.
Atomic and molecular excited metastable states (EMS) are exotic systems due to their special properties like long radiative life-time, large size (average radius) and large polarizability along with relatively smaller first ionization energy compared to their respective ground states (GS). The present work includes our theoretical calculations on electron impact ionization of metastable atomic states N( (2) P), N( (2) D) of nitrogen and O( (1) S), O( (1) D) of oxygen. The targets of our present interest, are found to be present in our Earth's ionosphere and they play an important role in auroral emissions observed in Earth’s auroral regions [1] as also in the emissions observed from cometary coma [2, 3] and airglow emissions. In particular, atomic oxygen in EMS can radiate, the visible O( (1) D -> (3) P) doublet 6300 - 6364 Å red doublet, the O( (1) S -> (1) D) 5577 Å green line, and the ultraviolet O( (1) S -> (3) P) 2972 Å line. For metastable atomic nitrogen one observes the similar emissions, in different wavelengths, from (2) D and (2) P states. At the Earth's auroral altitudes, from where these emissions take place in the ionosphere, energetic electrons are also present. In particular, if the metastable N as well as O atoms are ionized by the impact of electrons then these species are no longer available for emissions. This is a possible loss mechanism, and hence it is necessary to analyze the importance of electron ionization of the EMS of atomic O and N, by calculating the relevant cross sections. In the present paper we investigate electron ionization of the said metastable species by calculating relevant total cross sections. Our quantum mechanical calculations are based on projected approximate ionization contribution in the total inelastic cross sections [4]. Detailed results and discussion along with the significance of these calculations will be presented during the COSPAR-2014. References [1] A.Bhardwaj, and G. R. Gladstone, Rev. Geophys., 38(3), 295-353 (2000) [2] A.Bhardwaj, and S. A. Haider, Adv. Space Res., 29(5), 745-750 (2002) [3] A. Bhardwaj and S. Raghuram, ApJ, 748:13 (2012) [4] S. H. Pandya et al.,Int. J. Mass Spectrom. 323-324, 28-33 (2012)
NASA Astrophysics Data System (ADS)
Nishi, K.; Kazuo, S.
2017-12-01
The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.
First Observations of 5fce Auroral Roar Emissions
NASA Astrophysics Data System (ADS)
Labelle, J. W.
2012-12-01
Auroral radio emissions reveal physics of beam-plasma interactions and provide possibilities to remotely sense ionospheric plasma processes. Sato et al. [2012] recently discovered that auroral roar emissions, long known to occur at two and three times the electron gyrofrequency (fce), also occur at 4fce. Using data from wave receivers in the British Antarctic Survey Automatic Geophysical Observatories (BAS AGOs), we confirm the existence of 4fce-roars and observe for the first time 5fce-roars. A search at higher frequencies did not find higher harmonics, however. Both 4fce- and 5fce-roars only occur in sunlit conditions near the summer soltices. The harmonic emissions scale as expected with the strength of the geomagnetic field, and combining data from four stations with a wide range of magnetic field strengths suggests that the source height of the 4fce may lie around 245 km, significantly lower than the ˜ 275 km estimated for 2fce-roars. These observations show that the auroral roar generation mechanism acts under a broader set of plasma densities than previously considered, highlight how ubiquitous and robust the mechanism must be in different plasma environments, and suggest a broader application for remote sensing methods exploiting auroral roar, such as those described by Weatherwax et al. [2002]. References: Sato, Y., T. Ono, N. Sato, and Y. Ogawa, First observations of 4fce auroral roar emissions, Geophys. Res. Lett., 39, L07101, doi:10.1029/2012GL051205, 2012. Weatherwax, A.T., P.H. Yoon, and J. LaBelle, Model results and interpretation related to topside observations of auroral roar, J. Geophys. Res., 107, 10.1029/2001JA000315, 2002.
Auroral magnetosphere-ionosphere coupling: A brief topical review
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Schulz, M.; Cornwall, J. M.
1979-01-01
Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.
NASA Technical Reports Server (NTRS)
Brekke, A.; Doupnik, J. R.; Banks, P. M.
1974-01-01
Auroral zone E-region neutral winds have been derived from simultaneous measurements of ion drift velocities in different altitudes by the incoherent radar facility at Chatanika, Alaska, on a quiet day before and during the great magnetospheric storm of Aug. 3-9, 1972. The neutral wind expected for a day-night pressure asymmetry appears to be strongly opposed by ion drag and local pressure gradients in the auroral oval.
The Aurora, Magnetosphere, and the IGY
NASA Astrophysics Data System (ADS)
McKim Malville, J.
2007-12-01
This retrospective of auroral research during the IGY will be from the perspective of the auroral observers in the Antarctic from 1956-58. The IGY served as a watershed divide in our understanding of auroral physics. Prior to the IGY the role of "solar corpuscular radiation” in exciting auroral radiation was the pre-eminent research question. The mechanisms for the acceleration of solar protons and electrons had not been resolved, nor had the role of plasma instabilities been envisioned. The spectroscopic research program during the IGY was dominated by the work of Aden Meinel and Joseph W. Chamberlain at Yerkes Observatory. The dynamics of precipitating solar protons into a dilute gas was a major research focus. The changes brought about by the discoveries of the radiation belts, the solar wind, and the magnetosphere resulted in a remarkable transformation and a paradigm shift in our understanding of the physics of the aurora. Antarctic observations during the IGY revealed the auroral oval, which is a signature of radiation belts distorted by the solar wind. High auroral rays could be explained by pitch angle distributions of trapped electrons. Sudden accelerations of electrons, resulting in red lower borders of aurora deep in the atmosphere, revealed the serious deficiencies of available theory. Whistlers, first detected in the Antarctic at Ellsworth Station in 1957, proved to be valuable probes of the magnetosphere.
A mathematical model of the structure and evolution of small scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1990-01-01
A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Liebrecht, C.; Berthelier, J.-J.; Parrot, M.; Lebreton, J.-P.
2008-01-01
Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are presented that were gathered with probes on the DEMETER and DMSP satellites during geomagnetic storms. Data from successive orbits reveal how the density structure and irregularities evolve with changes in the Dst. The observations reveal that precisely during the main phase of severe geomagnetic storms, increased ambient plasma densities and broad regions of irregularities are observed at 700 km, initially at storm commencement near the magnetic equator and then extending to mid- and sub-auroral latitudes within the approximately 8 hour period corresponding to the negative Dst excursions. Furthermore, intense, broadband electric and magnetic field irregularities are often observed at sub-auroral latitudes and are typically associated with the trough region and its poleward plasma density gradient. The observations provide a general framework showing how low, mid, and sub-auroral latitude plasma density structuring and associated irregularities respond to geomagnetic storms.
Correlations between solar wind parameters and auroral kilometric radiation intensity
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Dangelo, N.
1981-01-01
The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.
Contamination and Micropropulsion Technology
2012-07-01
23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904
Cyclotron maser emission of auroral Z mode radiation
NASA Technical Reports Server (NTRS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-01-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
Cyclotron maser emission of auroral Z mode radiation
NASA Astrophysics Data System (ADS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-12-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
NASA Technical Reports Server (NTRS)
Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.
2009-01-01
Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.
2014-08-15
The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominatingmore » branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.« less
Recent Advances in Observations of Ground-level Auroral Kilometric Radiation
NASA Astrophysics Data System (ADS)
Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.
2011-12-01
Recently LaBelle and Anderson [2011] reported the first definitive observations of AKR at ground level, confirmed through simultaneous measurements on the Geotail spacecraft and at South Pole Station, Antarctica. The initial observations consisted of three examples recorded in 2004. An Antarctic observing site is critical for observing ground level AKR which is obscured by man-made broadcast signals at northern hemisphere locations. Examination of 2008 austral winter radio data from Antarctic Automatic Geophysical Observatories (AGOs) of the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) network and South Pole Station reveals 37 ground level AKR events on 23 different days, 30 of which are confirmed by correlation with AKR observed with the Geotail spacecraft. The location of the Geotail spacecraft appears to be a significant factor enabling coincident measurements. Six of the AKR events are detected at two or three ground-level observatories separated by approximately 500 km, suggesting that the events illuminate an area comparable to a 500-km diameter. For 14 events on ten nights, photometer and all-sky imager data from South Pole and AGOs were examined; in ten cases, locations of auroral arcs could be determined at the times of the events. In eight of those cases, the AKR was detected at observatories poleward of the auroral arcs, and in the other two cases the aurora was approximately overhead at the observatory where AKR was detected. These observations suggest that the AKR signals may be ducted to ground level along magnetic field lines rather than propagating directly from the AKR source region of approximately 5000 km altitude. Correlations between structures in the AKR and intensifications of auroral arcs are occasionally observed but are rare. The ground-level AKR events have a local time distribution similar to that of AKR observed from satellites, peaking in the pre-midnight to midnight sector. This data base of >30 events observed coincidentally at ground level and on the Geotail spacecraft, including several events detected at multiple ground stations, will provide a measurements of the ratio of the ground level intensity to that observed on the satellite, with the latter adjusted for distance. This ratio of intensities, not well-determined from the original three events [LaBelle and Anderson, 2011], places an important constraint on the generation mechanism. Reference: LaBelle, J., and R.R. Anderson (2011), Ground-level detection of Auroral Kilometric Radiation, Geophys. Res. Lett., 38, L04104, doi:10.1029/2010GL046411.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Lyons, L. R.; Archer, W. E.; Gallardo-Lacourt, B.; Nishimura, Y.; Zou, Ying; Gabrielse, C.; Weygand, J. M.
2018-02-01
Omega bands are curved aurora forms that evolve from a quiet arc located along the poleward edge of a diffuse auroral band within the midnight to morningside auroral oval. They usually propagate eastward. Because omega bands are a significant contributor to an active magnetotail, knowledge about their generation is important for understanding tail dynamics. Previous studies have shown that auroral streamers, footprints of fast flows in the tail, can propagate into omega bands. Such events, however, are limited, and it is still unclear whether and how the flows trigger the bands. The ionospheric flows associated with omega bands may provide valuable information on the driving mechanisms of the bands. We examine these flows taking advantage of the conjunctions between the Swarm spacecraft and Time History of Events and Macroscale Interactions during Substorms all-sky imagers, which allow us to demonstrate the relative location of the flows to the omega bands' bright arcs for the first time. We find that a strong eastward ionospheric flow is consistently present immediately poleward of the omega band's bright arc, resulting in a sharp flow shear near the poleward boundary of the band. This ionospheric flow shear should correspond to a flow shear near the inner edge of the plasma sheet. This plasma sheet shear may drive a Kelvin-Helmholz instability which then distorts the quiet arc to form omega bands. It seems plausible that the strong eastward flows are driven by streamer-related fast flows or enhanced convection in the magnetotail.
NASA Astrophysics Data System (ADS)
Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.
2014-12-01
This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.
The Jovian UV aurorae as seen by Juno-UVS
NASA Astrophysics Data System (ADS)
Bonfond, Bertrand; Gladstone, Randy; Grodent, Denis; Hue, Vincent; Gérard, Jean-Claude; Versteeg, Maarten; Greathouse, Thomas; Davis, Michael; Bolton, Scott; Levin, Steven; Connerney, John; Bagenal, Fran
2017-04-01
The Juno spacecraft was inserted in orbit around Jupiter on July 4th 2016. Its highly elongated polar orbit brings it <5000 km above the cloud tops every 53,5 days, allowing spectacular and unprecedented views of its polar aurorae. The Juno-UVS instrument is an imaging spectrograph observing perpendicularly to the Juno spin axis. It is equipped with a moving scan mirror at the entrance of the instrument that allows the field of view to be directed up to +/-30° away from the spin plane. The 70-205 nm bandpass comprises key UV auroral emissions such as the H2 bands and the H Lyman alpha line, as well as hydrocarbon absorption bands. We present polar maps of the aurorae at Jupiter for the first three first few periapses. These maps offer the first high resolution observations of the night-side aurorae. We will discuss the observed auroral morphology, including the satellite footprints, the outer emissions, the main emission and the polar emissions. We will also show maps of the color ratio, comparing the relative intensity of wavelengths subject to different degrees of absorption by CH4. Such measurements directly relate to the energy of the precipitating particles, since the more energetic the particles, the deeper they penetrate and the stronger the resulting methane absorption. For example, we will show evidence of longitudinal shifts between the brightness peaks and color ratio peaks in several auroral features. Such shifts may be interpreted as the result of the differential particle drift in plasma injection signatures.
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.
1988-01-01
The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.
Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-07-01
The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.
Luminosity variations in several parallel auroral arcs before auroral breakup
NASA Astrophysics Data System (ADS)
Safargaleev, V.; Lyatsky, W.; Tagirov, V.
1997-08-01
Variation of the luminosity in two parallel auroral arcs before auroral breakup has been studied by using digitised TV-data with high temporal and spatial resolution. The intervals when a new arc appears near already existing one were chosen for analysis. It is shown, for all cases, that the appearance of a new arc is accompanied by fading or disappearance of another arc. We have named these events out-of-phase events, OP. Another type of luminosity variation is characterised by almost simultaneous enhancement of intensity in the both arcs (in-phase event, IP). The characteristic time of IP events is 10-20 s, whereas OP events last about one minute. Sometimes out-of-phase events begin as IP events. The possible mechanisms for OP and IP events are discussed.
Solar wind control of auroral zone geomagnetic activity
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Mcpherron, R. L.; Searls, C.; Kivelson, M. G.
1981-01-01
Solar wind magnetosphere energy coupling functions are analyzed using linear prediction filtering with 2.5 minute data. The relationship of auroral zone geomagnetic activity to solar wind power input functions are examined, and a least squares prediction filter, or impulse response function is designed from the data. Computed impulse response functions are observed to have characteristics of a low pass filter with time delay. The AL index is found well related to solar wind energy functions, although the AU index shows a poor relationship. High frequency variations of auroral indices and substorm expansions are not predictable with solar wind information alone, suggesting influence by internal magnetospheric processes. Finally, the epsilon parameter shows a poorer relationship with auroral geomagnetic activity than a power parameter, having a VBs solar wind dependency.
NASA Astrophysics Data System (ADS)
Valek, P. W.; Allegrini, F.; Angold, N. G.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Loeffler, C. E.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Reno, M. L.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Wilson, R. J.
2017-12-01
Juno observations of the Jovian plasma environment are made by the Jovian Auroral Distributions Experiment (JADE) which consists of two nearly identical electron sensors - JADE-E - and an ion sensor - JADE-I. JADE-E measures the electron distribution in the range of 100 eV to 100 keV and uses electrostatic deflection to measure the full pitch angle distribution. JADE-I measures the composition separated energy per charge in the range of 10 eV / q to 46 keV / q. The large orbit - apojove 110 Rj, perijove 1.05 Rj - allows JADE to periodically cross through the magnetopause into the magnetosheath, transverse the outer, middle, and inner magnetosphere, and measures the plasma population down to the ionosphere. We present here in situ plasma observations of the Jovian magnetosphere and topside ionosphere made by the JADE instrument during the first year in orbit. Dawn-side crossings of the plasmapause have shown a general dearth of heavy ions except during some intervals at lower magnetic latitudes. Plasma disk crossings in the middle and inner magnetosphere show a mixture of heavy and light ions. During perijove crossings at high latitudes when Juno was connected to the Io torus, JADE-I observed heavy ions with energies consistent with a corotating pickup population. In the auroral regions the core of the electron energy distribution is generally from about 100 eV when on field lines that are connected to the inner plasmasheet, several keVs when connected to the outer plasmasheet, and tens of keVs when Juno is over the polar regions. JADE has observed upward electron beams and upward loss cones, both in the north and south auroral regions, and downward electron beams in the south. Some of the beams are of short duration ( 1 s) implying that the magnetosphere has a very fine spatial and/or temporal structure within the auroral regions. Joint observations with the Waves instrument have demonstrated that the observed loss cone distributions provide sufficient growth rates to drive the cyclotron maser instability. The high velocity of the Juno spacecraft near perijove ( 50 km/s) allows observations for of very low energy ions in the spacecraft ram direction, down to below 1 eV/q for protons.
NASA Astrophysics Data System (ADS)
Donovan, E.; Spanswick, E. L.; Chicoine, R.; Pugsley, J.; Langlois, P.
2011-12-01
AuroraMAX is a public outreach and education initiative that brings auroral images to the public in real time. AuroraMAX utilizes an observing station located just outside Yellowknife, Canada. The station houses a digital All-Sky Imager (ASI) that collects full-colour images of the night sky every six seconds. These images are then transmitted via satellite internet to our web server, where they are made instantly available to the public. Over the last two years this program has rapidly become one of the most successful outreach programs in the history of Space Science in Canada, with hundreds of thousands of distinct visitors to the CSA AuroraMAX website, thousands of followers on social media, and hundreds of newspaper, magazine, radio, and television spots. Over the next few years, the project will expand to include a high-resolution SLR delivering real-time auroral images (also from Yellowknife), as well as a program where astronauts on the ISS will take pictures of the aurora with a handheld SLR. The objectives of AuroraMAX are public outreach and education. The ASI design, operation, and software were based on infrastructure that was developed for the highly successful ASI component of the NASA THEMIS mission as well as the Canadian Space Agency (CSA) Canadian GeoSpace Monitoring (CGSM) program. So from an education and public outreach perspective, AuroraMAX is a single camera operating in the Canadian north. On the other hand, AuroraMAX is one of nearly 40 All-Sky Imagers that are operating across North America. The AuroraMAX camera produces data that is seamlessly integrated with the CGSM ASI data, and made widely available to the Space Science community through open-access web and FTP sites. One of our objectives in the next few years is to incorporate some of the data from the THEMIS and CGSM imagers into the AuroraMAX system, to maximize viewing opportunities and generate more real-time data for public outreach. This is an exemplar of a program that promotes public interest in science, while at the same time producing highly valuable science data. AuroraMAX is a partnership between the CSA, Astronomy North, the University of Calgary, and the City of Yellowknife.
V and V Efforts of Auroral Precipitation Models: Preliminary Results
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael
2011-01-01
Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.
Auroral-E Observations: The First Year’s Data.
1993-02-01
incidence-sound- ing (VIS) ionograms. One group, generally called auroral-E, includes nighttime E (par- ticle E) of the k type and E of the r type (Esr...toward solar minimum. Auroral-E tended to occur in clusters or "swarms" during periods of increased geo- magnetic activity. Figures 15a, 15b, and 15c show...midnight and several hours after local midnight. In the hours between 2200 and 0300 local time, when the K index is sufficiently high to place the
Magnetospheric and auroral plasmas: A short survey of progress, 1971 - 1975
NASA Technical Reports Server (NTRS)
Frank, L. A.
1975-01-01
Milestones in researches of auroral and magnetospheric plasmas for the past quadrennium 1971 - 1975 are reviewed. Findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking 'inverted-V' electron precipitation events, are reported. Solutions to major questions concerning the origins and acceleration of these plasmas are discussed. A comprehensive bibliography of current research is included.
Mid-latitude Plasma Irregularities During Sub-Auroral Polarization Streams
NASA Astrophysics Data System (ADS)
Smith, N.; Loper, R. D.
2017-12-01
Geomagnetic storming impacts the ionosphere in different ways at different latitudes. In the mid latitudes, Sub-Auroral Polarization Streams (SAPS) may trigger a redistribution of plasma leading to the creation of ionospheric troughs, storm enhanced density plumes, and acceleration of sub-auroral ion drifts. Solar cycle data, real time space weather satellite data, and radar data will be analyzed to study mid-latitude plasma densities and characterize the plasma anomalies SAPS create in order to increase short-term mid-latitude space weather forecasting.
Storm-associated Alfvén Waves in the Polar Environment
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Dombeck, J. P.
2017-12-01
Global polar distribution maps of Alfvénic Poynting flux and Alfvén-wave-accelerated electrons now exist from a number of satellites, orbiting at various altitudes, including below and in the auroral acceleration region (AAR), above the AAR and in the equatorial plasma sheet. Together with auroral images, it has been established that the nightside aurora, in particular its premidnight to midnight dominance, is coupled to these waves. Moreover, global simulations have reproduced the observed nightside distribution of Alfvén waves, coming from the far-tail magnetospheric dynamo. While recent studies, using low-altitude and equatorial satellites, have shown a deviation from this average nightside pattern during storm times, as of now there is no such study to provide the link between these regions, namely just above the AAR. In this presentation, we will present Polar spacecraft-based data during storm times, covering the altitude range from 4 to 7 RE (geocentric distance) and spanning a time period of six years. The results will be put in context to published studies, in particular with regard to morphology and dissipation.
Impact of the Ionosphere on an L-band Space Based Radar
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.
2006-01-01
We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data. We conclude that, except for high latitude scintillation related effects, the ionosphere will not significantly impact the performance of an L-band InSAR mission in an appropriate orbit. We evaluated the strength of the ionospheric irregularities using GPS scintillation data collected at Fairbanks, Alaska and modeled the impact of these irregularities on azimuth resolution, azimuth displacement, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR). Although we predict that less than 5% of auroral zone data would show scintillation related artifacts, certain sites imaged near the equinoxes could be effected up to 25% of the time because the frequency of occurrence of scintillation is a strong function of season and local time of day. Our examination of ionospheric artifacts observed in InSAR data has revealed that the artifacts occur primarily in the polar cap data, not auroral zone data as was previously thought.
Investigating the auroral electrojets with low altitude polar orbiting satellites
NASA Astrophysics Data System (ADS)
Moretto, T.; Olsen, N.; Ritter, P.; Lu, G.
2002-07-01
Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8 0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field) is seen to play an important role, and in the winther hemisphere, it seems to be harder to drive currents on the nightside than on the dayside.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Stormtime substorm onsets: occurrence and flow channel triggering
NASA Astrophysics Data System (ADS)
Lyons, Larry R.; Zou, Ying; Nishimura, Yukitoshi; Gallardo-Lacourt, Bea; Angelopulos, Vassilis; Donovan, Eric F.
2018-05-01
Bright auroral emissions during geomagnetic storms provide a good opportunity for testing the proposal that substorm onset is frequently triggered by plasma sheet flow bursts that are manifested in the ionosphere as auroral streamers. We have used the broad coverage of the ionospheric mapping of the plasma sheet offered by the high-resolution THEMIS all-sky-imagers (ASIs) and chose the main phases of 9 coronal mass ejection (CME) related and 9 high-speed stream (HSS)-related geomagnetic storms, and identified substorm auroral onsets defined as brightening followed by poleward expansion. We found a detectable streamer heading to near the substorm onset location for all 60 onsets that we identified and were observed well by the ASIs. This indicates that substorm onsets are very often triggered by the intrusion of plasma with lower entropy than the surrounding plasma to the onset region, with the caveat that the ASIs do not give a direct measure of the intruding plasma. The majority of the triggering streamers are "tilted streamers," which extend eastward as their eastern tip tilts equatorward to near the substorm onset location. Fourteen of the 60 cases were identified as "Harang streamers," where the streamer discernibly turns toward the west poleward of reaching to near the onset latitude, indicating flow around the Harang reversal. Using the ASI observations, we observed substantially less substorm onsets for CME storms than for HSS storms, a result in disagreement with a recent finding of approximately equal substorm occurrences. We suggest that this difference is a result of strong non-substorm streamers that give substorm-like signatures in ground magnetic field observations but are not substorms based on their auroral signature. Our results from CME storms with steady, strong southward IMF are not consistent with the 2-4 h repetition of substorms that has been suggested for moderate to strong southward IMF conditions. Instead, our results indicate substantially lower substorm occurrence during such steady driving conditions. Our results also show the much more frequent occurrence of substorms during HSS period, which is likely due to the highly fluctuating IMF. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8;
2005-01-01
Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi-periodic radio outbursts.
NASA Astrophysics Data System (ADS)
Fukui, K.; Machida, S.; Miyashita, Y.; Yoshizumi, M.; Angelopoulos, V.
2017-12-01
Substorms and pseudosubstorms (pseudobreakups) are very similar phenomena. In terms of auroral morphology, pseudosubstorms are generally more localized and more short-lived, compared with substorms, and are not accompanied by poleward expansion. We examined auroral development for events from November 2007 through April 2010, using data from THEMIS all-sky imagers. We defined events accompanied and not accompanied by poleward expansion as substorms and pseudosubstorms, respectively. To understand the cause of auroral development, we investigated temporal and spatial development of the near-Earth magnetotail during substorms and pseudosubstorms, based on superposed epoch analysis of THEMIS data. We find that Vx begins to increase at -9.5 >X(GSM)>-11.5 Re around onset for both substorms and pseudosubstorms. This seems to be due to earthward flows caused by magnetic reconnection. The northward Bz also increases around onset at -9.5 >X>-10.5 Re both substorms and pseudosubstorms. The amount and rate of Bz change are larger for substorms than for pseudosubstorms. In the earthward (-7.5 >X>-9.5 Re) and tailward (-10.5 >X>-12.5 Re) regions, Bz increases substantially for substorms, whereas it does not increase very much for pseudosubstorms. These results indicate that dipolarization is weaker for pseudosubstorms than for substorms, and the dipolarization region does not spread extensively for pseudosubstorms. We, therefore, suggest that current disruption related to dipolarization does not develop tailward and hence auroral poleward expansion does not occur for pseudosubstorms. Meanwhile, the plasma and magnetic pressures increase at -6.5 >X>-7.5 Re after onset in association with dipolarization, particularly for substorms. The total pressure (the sum of the plasma and magnetic pressures) prior to the onset is larger in that region for substorms than for pseudosubstorms. At -7.5 >X>-8.5 Re the total pressure hardly differ between substorms and pseudosubstorms. Thus we conclude that the spatial gradient of the total pressure is a key that determines whether the current disruption takes place, that is, whether initial activation develops into a substorm or into a subsiding pseudosubstorm.
THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS
NASA Astrophysics Data System (ADS)
Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team
2018-01-01
In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic fields to determine if they occurred near open magnetic field lines. We will report on the results of these two studies, and the ramifications for Mars auroral processes.
2008-09-01
HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral...DF arrays, ground HF transmitters such as the Navy relocatable over the horizon radar (ROTHR) and the Air Force/Navy HAARP system would be employed...United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high
2017-09-06
This is a reconstructed view of Jupiter's northern lights through the filters of Juno's Ultraviolet Imaging Spectrometer (UVS) instrument on Dec. 11, 2016, as the Juno spacecraft approached Jupiter, passed over its poles, and plunged towards the equator. Such measurements present a real challenge for the spacecraft's science instruments: Juno flies over Jupiter's poles at 30 miles (50 kilometers) per second -- more than 100,000 miles per hour -- speeding past auroral forms in a matter of seconds. https://photojournal.jpl.nasa.gov/catalog/PIA21938
An Observational and Modeling Study of Auroral Upwelling in the Thermosphere
2016-04-28
0000UT) on each of the nights of 15 and 17 February 2015. The Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) provided additional line-of...photoionisation based on solar fluxes, Figure 5 Conventional Joule heating in the region 110-150 km (Thayer et al., 1995) Distribution A: Approved...i.e. 2100 UT). The simulations are for January solar minimum, using f10.7 value of 80 and quiet steady state conditions. Table 1: Four CMAT2
Visible aurora in Jupiter's atmosphere
NASA Technical Reports Server (NTRS)
Cook, A. F., II; Jones, A. V.; Shemansky, D. E.
1981-01-01
The darkside limb pictures obtained by the imaging experiment on Voyager 1 have been reexamined. It is concluded that the observed luminosity is very likely due at least in part to Io torus aurora. If the effective wavelength of the emission lies in the 4000- to 5000-A region, the slant intensity is estimated to be about 20 kR. The observed double structure may be due to a number of causes such as horizontal structure in auroral emission, aurora plus twilight or photochemical airglow plus aurora.
The Sondrestrom Research Facility All-sky Imagers
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.
2010-12-01
The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom facility is a color all-sky imager (CASI). The CASI instrument is a low-cost Keo Scientific Ltd. system similar to cameras designed for the THEMIS satellite ground-based imaging network. This camera captures all visible wavelengths simultaneously at a higher data rate than the ASI. While it is not possible to resolve fine spectral features as with narrowband filters on the ASI, this camera provides context on wavelengths not covered by other imagers, and makes it much simpler to distinguish clouds from airglow and aurora. As with the ASI, this imager collects data during periods of dark skies and the images are posted to the web for community viewing.
Infrasonic waves generated by supersonic auroral arcs
NASA Astrophysics Data System (ADS)
Pasko, Victor P.
2012-10-01
A finite-difference time-domain (FDTD) model of infrasound propagation in a realistic atmosphere is used to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves in the frequency range 0.1-0.01 Hz associated with the auroral electrojet. The results are consistent with original ideas of Swift (1973) and demonstrate that the synchronization of the speed of auroral arc and phase speed of the acoustic wave in the electrojet volume is an important condition for generation of magnitudes and frequency contents of infrasonic waves observable on the ground. The reported modeling also allows accurate quantitative reproduction of previously observed complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere.
1978 Diffuse Auroral Boundaries and a Derived Auroral Boundary Index
1982-12-28
they have nothing to do with the auroral precipitation, they must be differentiated from the auroral electrons when determining boundaries. Due to the...47.8 -54.6 -61.4 -68.0 -74.2 -79.4 -81.7 -78.9 -73.5 - 7.2 -60.6 GLON 121.0 118.5 115 S 1114 105.3 95.0 74.69 37.7 352.2 332.? 323:.1 317:3 M1LAY -56.2...1IN NN 1 1 NI M- I II- IN - N1 C , S~li-o N nol- O) N.010 DTN440 W00CO0 10011aN IIU0 )0 r,0 0 N0 t N1e . 0 MC0t)O0 r- ,J o 110 00 toC 0 0010 01 0t n 1
Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval
NASA Astrophysics Data System (ADS)
Yamamoto, T.
2012-02-01
The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.
NASA Astrophysics Data System (ADS)
Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.
2016-12-01
Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.
NASA Astrophysics Data System (ADS)
Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan
2018-01-01
We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.
Auroras observations of the MAIN in Apatity during 2014/15 winter season
NASA Astrophysics Data System (ADS)
Guineva, V.; Despirak, I.; Kozelov, B.
2017-08-01
In this work we review substorms, originated during the 2014/2015 winter season. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were estimated by the 1-min sampled OMNI data base from CDAWeb (http://cdaweb.gsfc.nasa.gov/cdaweb/ istp_public/). Auroral disturbances were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the review were the peculiarities in the development of substorms occurred during different geomagnetic conditions. The behavior of the substorms developed in non-storm time and during different phases of geomagnetic storms was discussed.
New frontiers in H-Beta auroral photometry
NASA Astrophysics Data System (ADS)
Unick, C.; Donovan, E.; Connors, M. G.; Spanswick, E.; Jackel, B. J.; Greffen, M. J.; Wilson, C.; Little, J.; Chaddock, D.; Schofield, I.; MacRae, A.; Chen, S.; Crowther, A.; James, S.; Read, A.; Willis, T.
2013-12-01
The proton aurora provides valuable information about magnetotail structure and dynamics. For example, the location of the equatorward boundary of the proton aurora is a robust indicator of magnetotail stretching. Also, proton auroral luminosities combined with in situ ion measurements provide important information about magnetic mapping between the inner CPS and the auroral ionosphere. In this paper, we present a new and innovative proton-auroral (H-Beta) meridian-scanning photometer (MSP) capable of higher spatial and temporal resolution than has been achieved in the past. This H-Beta MSP is the first of a new dual-wavelength (signal/background) MSP design with a single scanning mirror and no other moving parts. The novel filtering architecture allows for a near 100% duty cycle with a 30-second meridian scan and configurable operating modes. The new design is significantly more sensitive than the legacy CANOPUS MSPs. The increased SNR can be employed in a variety of ways, such as to achieve significantly higher time resolution. Here, we present the new instrument design, test data from a commissioning campaign in Athabasca, and some thoughts on how the enhance proton auroral capability can increase the science value of these measurements.
Auroral research at the Tromsø Northern Lights Observatory: the Harang directorship, 1928-1946
NASA Astrophysics Data System (ADS)
Egeland, Alv; Burke, William J.
2016-03-01
The Northern Lights Observatory in Tromsø began as Professor Lars Vegard's dream for a permanent facility in northern Norway, dedicated to the continuous study of auroral phenomenology and dynamics. Fortunately, not only was Vegard an internationally recognized spectroscopist, he was a great salesman and persuaded the Rockefeller Foundation that such an observatory represented an important long-term investment. A shrewd judge of talent, Vegard recognized the scientific and managerial skills of Leiv Harang, a recent graduate from the University of Oslo, and recommended that he become the observatory's first director. In 1929, subsequent to receiving the Rockefeller Foundation grant, the University of Oslo established a low temperature laboratory to support Vegard's spectroscopic investigations. This paper follows the scientific accomplishments of observatory personnel during the 18 years of Harang's directorship. These include: identifying the chemical sources of auroral emissions, discovering the Vegard-Kaplan bands, quantifying height distributions of different auroral forms, interpreting patterns of magnetic field variations, remotely probing auroral electron distribution profiles in the polar ionosphere, and monitoring the evolving states of the ozone layer. The Rockefeller Foundation judges got it right: the Tromsø Nordlysobservatoriet was, and for decades remained, an outstanding scientific investment.
NASA Astrophysics Data System (ADS)
Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.
2016-12-01
Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.
Mapping and distortions of auroral structures in the quiet magnetosphere
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen
1990-01-01
The closed quiet magnetosphere model of Beard (1979) and Beard et al. (1982) is used to identify those features of commonly observed dayside auroras that can be explained by either of two processes: mapping distortions or distortions caused by nearby Birkeland currents. It is shown that single and multiple linear and hooked auroral forms can be easily explained in terms of mapping distortions in a quiet magnetosphere. On the other hand, the shapes of bright twisted or folded auroral forms can be more easily explained as distortions produced by localized Birkeland currents.
Rocket measurement of auroral partial parallel distribution functions
NASA Astrophysics Data System (ADS)
Lin, C.-A.
1980-01-01
The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.
Auroral electrojets and evening sector electron dropouts at synchronous orbit
NASA Technical Reports Server (NTRS)
Erickson, K. N.; Winckler, J. R.
1973-01-01
Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.
The role of lower-hybrid-wave collapse in the auroral ionosphere.
Schuck, P W; Ganguli, G I; Kintner, P M
2002-08-05
In regions where lower-hybrid solitary structures (LHSS) are observed, the character of auroral lower-hybrid turbulence (LHT) (0-20 kHz) is investigated using the amplitude probability distribution of the electric field. The observed probability distributions are accurately described by a Rayleigh distribution with two degrees of freedom. The statistics of the LHT exhibit no evidence of the global modulational instability or self-similar wave collapse. We conclude that nucleation and resonant scattering in preexisting density depletions are the processes responsible for LHSS in auroral LHT.
Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)
NASA Astrophysics Data System (ADS)
Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.
2017-12-01
The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.
The source of O+ in the storm time ring current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.
2016-06-01
A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.
The Detectability of Radio Auroral Emission from Proxima b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According tomore » recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.« less
Monitoring Auroral Electrojet from Polar Cap Stations
NASA Astrophysics Data System (ADS)
Tan, A.; Lyatsky, W.; Lyatskaya, S.
2004-12-01
The auroral electrojet AL and AE geomagnetic activity indices are important for monitoring geomagnetic substorms. In the northern hemisphere these indices are derived from measurements at a set of geomagnetic observatories located in the auroral zone. In the southern hemisphere the major portion of the auroral zone is located on the ocean; this does not allow us to derive the auroral electrojet indices in the same way. We showed that monitoring the auroral electrojet is possible from magnetic field measurements at polar cap stations. For this purpose we used hourly values of geomagnetic field variations at four polar cap stations, distributed along polar cap boundary and occupying a longitudinal sector of about 14 hours, and calculated mean values of the total magnetic field disturbance T = (X2 + Y2 + Z2)1/2 where X, Y, and Z are geomagnetic field components measured at these polar cap stations. The set of the obtained values were called the T index. This index has a clear physical mining: it is the summary of geomagnetic disturbance in all three components averaged over the polar cap boundary. We found that correlation coefficients for the dependence of the T index on both AL and AE indices are as high as ~0.9 and higher. The high correlation of the T index with the AL and AE indices takes place for any UT hour when the stations were located at the night side. The T index further shows good correlation with solar wind parameters: the correlation coefficient for the dependence of the T index on the solar wind-geomagnetic activity coupling function is ~0.8 and higher, which is close to the correlation coefficient for AL index. The T index may be especially important in the cases when ground-based measurements in the auroral zone are impossible as in the southern hemisphere.
Sources, properties, and energization of auroral particle precipitation
NASA Astrophysics Data System (ADS)
Wing, S.; Johnson, J.; Khazanov, G. V.
2017-12-01
The sources of and the physical processes associated with the auroral ion and electron precipitation are studied with DMSP satellites. The electron aurora has been previously classified into three categories: diffuse, monoenergetic, and broadband aurorae. The diffuse auroral electrons can be observed mainly in 22:00 - 09:00 MLT, which coincides much with the spatial distribution of the whistler-mode chorus waves that have been shown to be the predominant mechanism for pitch-angle scattering magnetospheric electrons into the loss cone, but there appears to be a separate population near noon, which may be associated with solar wind particles. The broadband auroral electrons can be found mostly at 22:00 - 02:00 MLT and pre-noon where Alfvén waves, which cause broadband electron acceleration, are observed in the magnetosphere. On the other hand, the monoenergetic auroral electrons can be observed at dusk-midnight sector, pre- and post-noon. The monoenergetic electrons have been previously thought as magnetospheric electrons that have gone through a quasi-static parallel electric field in the upward field-aligned current regions. However, there may be a connection between monoenergetic and broadband electrons in that the low frequency Alfvén wave-electron interaction can result in monoenergetic electron signature. This is consistent with the observations where broadband and monoenergetic electrons are often spatially co-located. Precipitating electrons can ionize the neutrals in the ionosphere, which can travel upward, which can precipitate in the opposite hemisphere or reflected back to the same hemisphere by upward field-aligned potential drop. Either way, the upward flowing electrons can greatly modify the initial precipitating electron population. Substorm processes increase the power of the diffuse, monoenergetic, and broadband electron aurora by 310%, 71%, and 170%, respectively. Substorms energize the ion aurora mainly in the 21:00-05:00 MLT sector. The duration of the substorm cycle for monoenergetic and broadband auroral is 5 hr, but it is larger than 5 hr for diffuse auroral electrons.
The UV Imager and its Role in the SMILE Mission
NASA Astrophysics Data System (ADS)
Donovan, E.; Escoubet, C. P.; Branduardi-Raymont, G.; Wang, C.; Hubert, B. A.; Spanswick, E.; Wang, Y.; Raab, W.; Sibeck, D. G.; Sembay, S.; Read, A.; Wielders, A.; Dimmock, A. P.; Romstedt, J.; Loicq, J.
2017-12-01
The upcoming SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) mission promises to revolutionize our understanding of the global geospace and space weather consequences of the Solar Wind Magnetosphere interaction. SMILE will carry four instruments: two in situ instruments which will specify the magnetic field and energetic particles at the spacecraft, an X-ray imager for imaging the magnetopause and cusps, and a UV imager for observing the global (northern hemisphere) auroral oval. The high apogee, which is necessary for obtaining the in situ measurements, presents challenges for the UV imager, but will also support by far the longest duration continuous imaging of the global aurora. As well, inbound and outbound from perigee (for up to 8 hours during each orbit), the UV imager will be able to provide images that will compete with THEMIS-ASI in terms of resolution across an area larger than Canada. In this presentation, we will give an overview of SMILE and its objectives, and an in depth discussion of the UV imager and the role its data will play in the mission science.
Auroral electron distribution function
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Dusenbery, P. B.; Thomas, B. J.; Arnoldy, R. L.
1978-01-01
During a rocket flight over an active aurora, electron velocity distribution is studied in the 15-25 keV range. The results are then compared to optical observations made by all-sky cameras and a television system. A broad plateau produced by downcoming electrons was observed. Smaller plateaus were seen when the rocket was south of arcs evident in all-sky camera photographs. By extending to higher energies when the rocket passed out of auroral forms, the plateaus appeared to broaden. When the rocket left an arc or entered weak diffuse auroral structures, the plateaus shrank as the more energetic portions faded. When field-aligned rays were observed within the arcs, the plateau's high-velocity cutoff was found to fluctuate. The results indicate that the auroral plasma was very unstable above the rocket. It is suggested that plateaus are produced as an unstable plasma evolves toward a quasi-equilibrium state.
NASA Technical Reports Server (NTRS)
2004-01-01
The following research work was accomplished: 1. We operated high throughput spectrophotometers and interferometers at eight observatories in the Arctic, Antarctic and mid-latitude regions to record relatively high-resolution spectra of very low light level airglow and auroral line as well as band emissions. 2. Our Polar observations of auroral emissions from N2 and O emissions have been analyzed to derive the O/N2 ratios around 110 km height in the Polar thermosphere during different auroral events triggered by the precipitation of auroral electrons with average energy of about 10 keV. These results have been compared with similar ratios derived from TIMED satellite s GUVI measurements of N2 LBH and 01 1356A emissions. 3. Our airglow measurements show MLT density and temperature modulations by Planetary, Tidal and Gravity Waves. They also indicate Mesopause cooling preceding a Stratospheric Warming Event (SWE).
NASA Technical Reports Server (NTRS)
Waite, J. Hunter, Jr.
1992-01-01
The Jovian aurora is the most powerful aurora in the solar system, over 100 times more powerful than the Earth's aurora. These magnificent visual displays can provide important information about the planetary magnetosphere which is responsible for the acceleration of energetic particles that produce aurora at any planet. Similarities and differences in planetary auroral emissions are thus a viable means of classifying and studying both comparative atmospheric and magnetospheric processes. For instance, at Earth the solar wind is the primary source of auroral power while at Jupiter it is conjectured that the rotation of the planet is the major source of magnetospheric and auroral power. The purpose of this IR project was to develop a model: (1) for use in interpreting the existing set of multispectral observations of Jupiter's aurora; and (2) to design new experiments based on the findings to improve understanding of the underlying auroral processes.
The auroral current circuit and field-aligned currents observed by FAST
NASA Astrophysics Data System (ADS)
Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.
FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.
NASA Technical Reports Server (NTRS)
Livengood, T. A.; Strobel, D. F.; Moos, H. W.
1990-01-01
The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.
Comparison of the Jovian north and south pole aurorae using the IUE observatory
NASA Technical Reports Server (NTRS)
Skinner, T. E.; Moos, H. W.
1984-01-01
New results on the spatial and temporal variability of the auroral emissions from Jupiter have been obtained from three IUE observations of the south pole made during the period July 1983 to March 1984. The current observations, together with previous IUE studies of the north pole aurora, provide convincing evidence for persistent longitudinal asymmetries in the Jovian auroral emissions. The strongest emissions appear to originate from regions centered near lambda-III of about 0 deg at the south pole and lambda-III of about 185 deg at the north pole. Differences in surface magnetic field strength seem inadequate to explain the extent to which particles precipitating along field lines into a given longitude sector in one hemisphere are inhibited from precipitating along the same field lines into the opposite hemisphere. Thus, the IUE auroral results present a challenge to existing models of auroral production.
Non-equilibrium calculations of atmospheric processes initiated by electron impact.
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-05-01
Electron impact in the atmosphere produces ionisation, dissociation, electronic excitation and vibrational excitation of atoms and molecules. The products can then take part in chemical reactions, recombination with electrons, or radiative or collisional deactivation. While most such processes are fast, some longer--lived species do not reach equilibrium. The electron source (photoelectrons or auroral electrons) also varies over time and longer-lived species can move substantially in altitude by molecular, ambipolar or eddy diffusion. Hence non-equilibrium calculations are required in some circumstances. Such time-step calculations need to have sufficiently short steps so that the fastest processes are still calculated correctly, but this can lead to computation times that are too large. Hence techniques to allow for longer time steps by incorporating equilibrium calculations are described. Examples are given for results of atmospheric non-equilibrium calculations, including the populations of the vibrational levels of ground state N2, the electron density and its dependence on vibrationally excited N2, predictions of nitric oxide density, and detailed processes during short duration auroral events.
Observations of ionospheric electron beams in the plasma sheet.
Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K
2012-11-16
Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.
Jovian Small Orbiter for Magnetospheric and Auroral Studies
NASA Astrophysics Data System (ADS)
Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.
2005-12-01
Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.
NASA Astrophysics Data System (ADS)
Hajra, Rajkumar; Tsurutani, Bruce T.
2018-05-01
We present case studies of two interplanetary shock-induced supersubstorms (SSSs) with extremely high intensities (peak SML ‑4418 and ‑2668 nT) and long durations (∼1.7 and ∼3.1 hr). The events occurred on 2005 January 21 and 2010 April 5, respectively. It is shown that these SSSs have a different auroral evolution than a nominal Akasofu-type substorm. The auroras associated with the SSSs did not have the standard midnight onset and following expansion. Instead, at the time of the SML index peak, the midnight sector was generally devoid of intense auroras, while the most intense auroras were located in the premidnight and postmidnight magnetic local times. Precursor energy input through magnetic reconnection was insufficient to balance the large ionospheric energy dissipation during the SSSs. It is argued that besides the release of stored magnetotail energy during the SSSs, these were powered by additional direct driving through both dayside magnetic reconnection and solar wind ram energy.
Report on final recommendations for IMPS engineering-science payload
NASA Technical Reports Server (NTRS)
Garrett, H. B.
1984-01-01
Six general categories of key scientific and engineering concerns for the interactions measurements payload for shuttle (IMPS) mission are addressed: (1) dielectric charging; (2) material property changes; (3) electromagnetic interference, plasma interactions, and plasma wake effects associated with high-voltage solar arrays and large space structures; (4) radio frequency distortion and nonlinearities due to the enhanced plasma in the shuttle ram/wake; (5) shuttle glow and contamination; and (6) plasma interactions with the space-based radar. Lesser concerns are the interactions associated with EVA; the radiation and SEU effects peculiar to the auroral/polar cap environments; and space debris. The measurements needed to address the concerns associated with the general categories are described and a list of generic investigations capable of making the required measurements, emphasizing the spectrum of measurements necessary to quantize the interactions in the auroral/polar environments are included. A suggested ground-test plan for the IMPS project, a description of proposed follow-on IMPS missions, and a detailed bibliography for each of the interactions discussed are included.
Chang'e-3 Extreme Ultraviolet Camera Observations of the Dynamics of the Earth's Plasmasphere
NASA Astrophysics Data System (ADS)
Fok, M. C. H.; Zhang, X.; He, F.; Chen, B.; Wang, H. N.; Shen, C.; Ping, J.; Nakano, S.
2015-12-01
The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) lunar lander has successfully imaged the global plasmasphere on the Moon for the first time through detecting the resonantly scattered sunlight by plasmaspheric He+ at 30.4 nm with a spatial resolution of 0.1 RE and a time resolution of 10 min. The characteristics and the analyzing methods of the EUVC images are introduced in detail in this report. The plasmapause locations on the magnetic equator are reconstructed with the Minimum L Algorithm and are quantitatively compared with those extracted from in-situ observations by DMSP, THEMIS, and RBSP satellites. Then the plasmapause evolutions during substorms on February 21 2014 and April 21 2014 are investigated. It is found that the evolutions of plasmapause correlate well in both universal time and magnetic local time with the equatorial boundaries of auroral oval during substorms. During these two cases, the solar-wind-driven convection and the geomagnetic activity are relatively weak and steady, and the plasmapause motions can reliably be attributed to the substorms. It is proposed that correlations between the auroral signatures and the plasmapause motions may be due to the generation and Earthward-propagation of dipolarization front and resultant pitch angle scattering. In future work, we will search more in-situ and remote sensing data in both the plasmasphere and the magnetotail regions to investigate the correlations between the plasmaspheric erosions, the dipolarization fronts, and the energetic ions injections.