Science.gov

Sample records for austenitic ternary alloys

  1. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling

    SciTech Connect

    Okita, T; Wolfer, W G; Garner, F A; Sekimura, N

    2003-12-01

    Ternary austenitic model alloys were modified with 0.25 wt.% titanium and irradiated in FFTF reactor at dose rates ranging over more than two orders in magnitude. While lowering of dose rate strongly increases swelling by shortening the incubation dose, the steady state swelling rate is not affected by dose rate. Although titanium addition strongly alters the void microstructure, swelling at {approx} 420 C does not change with titanium additions, but the sensitivity to dose rate is preserved.

  2. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  3. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  4. Austenite decomposition in ternary manganese, molybdenum and tungsten steels

    NASA Astrophysics Data System (ADS)

    Hackenberg, Robert Errol

    A survey of austenite decomposition in Fe-(0.1, 0.2)C-(3, 4.2)Mn has revealed kinetic and morphological transitions which take place at substantial undercoolings below the paraequilibrium Ae3 temperature. An unusually long interval of transformation stasis was found in Fe-0.1C-3Mn, during which time the ferrite was free of carbides. A nodular product containing rod particles was observed in several of these alloys. The grain boundary bainite (GBB) and twin boundary bainite (TBB) morphologies at the bay in Fe-0.24C-4Mo were significantly more complex than previously assumed, with differing arrangements of bainite subunits; their thickening rates also differed. TEM revealed 10 nm steps at the bainite-austenite interfaces in GBB. Mo enrichment was found within GBB-austenite interfaces and extended ˜10 nm into the austenite. The M2C carbides are always enriched in Mo, possessing a non-equilibrium Mo content at earlier reaction times. The energies stored in the ferrite-carbide interfacial area and in carbides possessing non-equilibrium Fe/Mo ratios were considered to reduce the driving force for diffusion by up to 20%. GBB and TBB were found at and above the bay in Fe-0.3C-6.3W, while the bainite formed below the bay consisted of elongated subunits. M6C was found at all temperatures, while M2C was found only below the bay, both of which exhibited W partition. A dark-etching constituent of very high carbide density transformed the remaining pools of austenite at the late stages of reaction, a result consistent with the level of carbon in austenite rising with time. Transitions in carbide morphology were explored in Fe-0.2C-63W. At lower reaction temperatures, M6C precipitates with ferrite. At higher temperatures the cellular precipitation of quasilamellar M 6C in austenite occurs, and is considered to take place inside the ferrite + austenite + M6C three-phase field. The austenite inside the quasilamellar carbide nodules reverts to ferrite at long times, indicating a

  5. Corrosion of austenitic alloys in aerated brines

    SciTech Connect

    Heidersbach, R.; Shi, A.; Sharp, S.

    1999-11-01

    This report discusses the results of corrosion exposures of three austenitic alloys--3l6L stainless steel, UNS N10276, and UNS N08367. Coupons of these alloys were suspended in a series of brines used for processing in the pharmaceutical industry. The effects of surface finish and welding processes on the corrosion behavior of these alloys were determined. The 316L coupons experienced corrosion in several environments, but the other alloys were unaffected during the one-month exposures of this investigation. Electropolishing the surfaces improved corrosion resistance.

  6. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  7. Rational Development of Ternary Alloy Electrocatalysts

    SciTech Connect

    Wang, Chao; Li, Dongguo; Chi, Miaofang; Pearson, John; Rankin, Rees; Greeley, Jeff; Duan, Zhiyao; Wang, Guofeng; Van der Vliet, Dennis; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2012-01-01

    Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt{sub 3}(MN){sub 1} with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

  8. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  9. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  10. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  11. Austenitic alloy and reactor components made thereof

    DOEpatents

    Bates, John F.; Brager, Howard R.; Korenko, Michael K.

    1986-01-01

    An austenitic stainless steel alloy is disclosed, having excellent fast neutron irradiation swelling resistance and good post irradiation ductility, making it especially useful for liquid metal fast breeder reactor applications. The alloy contains: about 0.04 to 0.09 wt. % carbon; about 1.5 to 2.5 wt. % manganese; about 0.5 to 1.6 wt. % silicon; about 0.030 to 0.08 wt. % phosphorus; about 13.3 to 16.5 wt. % chromium; about 13.7 to 16.0 wt. % nickel; about 1.0 to 3.0 wt. % molybdenum; and about 0.10 to 0.35 wt. % titanium.

  12. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  13. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  14. Entropic stabilization of austenite in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Elliott, Ryan S.; Karls, Daniel S.

    2013-12-01

    Martensitic transformations (MTs) are the key phenomena responsible for the remarkable properties of Shape Memory Alloys (SMAs). Recent Density Functional Theory (DFT) electronic structure calculations have revealed that the austenite structure of many SMAs is a saddle-point of the material's potential energy landscape. Correspondingly, the austenite is unstable and thus unobservable at zero temperature. Thus, the observable high temperature austenite structure in many SMAs is entropically stabilized by nonlinear dynamic effects. This paper discusses the phenomenon of entropic stabilization of the austenite phase in SMAs and explicitly demonstrates it using Molecular Dynamics (MD) and a three-dimensional all-atom potential energy model whose equilibria crystal structures correspond to commonly observed SMA phases. A new technique is used to carefully select a model so that it is likely to lead to entropic stabilization of a B2 cubic austenite from a B19 orthorhombic martensite. This is accomplished by using a detailed branch-following and bifurcation (BFB) parametric study of the Morse pair potential binary alloy model. The results of the MD simulation clearly demonstrate the entropic stabilization of the B2 austenite phase at high temperature. Analysis of the dynamics of the B2 austenite phase indicates that its stabilization may be viewed as a result of individual atoms randomly visiting the B19 and αIrV phases (with only occasional visits to the B2 and L10 phases). This occurs without long-range correlations in such a way that each atom's time-average configuration corresponds to the B2 structure.

  15. Application of advanced austenitic alloys to fossil power system components

    SciTech Connect

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  16. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.

    1998-08-01

    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.

  17. Effects of focused ion beam milling on austenite stability in ferrous alloys

    SciTech Connect

    Knipling, K.E.; Rowenhorst, D.J.; Fonda, R.W.; Spanos, G.

    2010-01-15

    The susceptibility of fcc austenite to transform to bcc during focused ion beam milling was studied in three commercial stainless steels. The alloys investigated, in order of increasing austenite stability, were: (i) a model maraging steel, Sandvik 1RK91; (ii) an AISI 304 austenitic stainless steel; and (iii) AL-6XN, a super-austenitic stainless steel. Small trenches were milled across multiple austenite grains in each alloy using a 30 kV Ga{sup +} ion beam at normal incidence to the specimen surface. The ion beam dose was controlled by varying the trench depth and the beam current. The factors influencing the transformation of fcc austenite to bcc (listed in order of decreasing influence) were found to be: (i) alloy composition (i.e., austenite stability), (ii) ion beam dose (or trench depth), and (iii) crystallographic orientation of the austenite grains. The ion beam current had a negligible influence on the FIB-induced transformation of austenite in these alloys.

  18. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  19. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys

    PubMed Central

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma

    2009-01-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791

  20. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2015-12-01

    NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux

  1. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  2. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  3. Site Occupancy of Ternary Additions to B2 Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Amador, Carlos

    2002-01-01

    In this broad-based survey study, the substitutional site preference of ternary alloying additions to B2 compounds (stable at room temperature and 50/50 composition) is determined using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The method is applied to Ni, Al, Ti, Cr, Cu, Co, Fe, Ta, Hf, Mo, Nb, W, V and Ru additions to NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. The results are compared, when available, to experimental data and other theoretical results.

  4. Ternary ceramic alloys of Zr-Ce-Hf oxides

    DOEpatents

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  5. Ternary ceramic alloys of ZR-CE-HF oxides

    DOEpatents

    Becher, Paul F.; Funkenbusch, Eric F.

    1990-01-01

    A ternary ceramic alloy which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce.sub.x Hf.sub.y Zn.sub.1-x-y O.sub.2, is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites.

  6. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  7. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  8. First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel

    NASA Astrophysics Data System (ADS)

    Hepburn, D. J.; Ferguson, D.; Gardner, S.; Ackland, G. J.

    2013-07-01

    An extensive set of first-principles density functional theory calculations have been performed to study the behavior of He, C, and N solutes in austenite, dilute Fe-Cr-Ni austenitic alloys, and Ni in order to investigate their influence on the microstructural evolution of austenitic steel alloys under irradiation. The results show that austenite behaves much like other face-centered cubic metals and like Ni in particular. Strong similarities were also observed between austenite and ferrite. We find that interstitial He is most stable in the tetrahedral site and migrates with a low barrier energy of between 0.1 and 0.2 eV. It binds strongly into clusters as well as overcoordinated lattice defects and forms highly stable He-vacancy (VmHen) clusters. Interstitial He clusters of sufficient size were shown to be unstable to self-interstitial emission and VHen cluster formation. The binding of additional He and V to existing VmHen clusters increases with cluster size, leading to unbounded growth and He bubble formation. Clusters with n/m around 1.3 were found to be most stable with a dissociation energy of 2.8 eV for He and V release. Substitutional He migrates via the dissociative mechanism in a thermal vacancy population but can migrate via the vacancy mechanism in irradiated environments as a stable V2He complex. Both C and N are most stable octahedrally and exhibit migration energies in the range from 1.3 to 1.6 eV. Interactions between pairs of these solutes are either repulsive or negligible. A vacancy can stably bind up to two C or N atoms with binding energies per solute atom up to 0.4 eV for C and up to 0.6 eV for N. Calculations in Ni, however, show that this may not result in vacancy trapping as VC and VN complexes can migrate cooperatively with barrier energies comparable to the isolated vacancy. This should also lead to enhanced C and N mobility in irradiated materials and may result in solute segregation to defect sinks. Binding to larger vacancy clusters

  9. Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Eguchi, M.; Miyazaki, Y.

    2016-09-01

    The thermoelectric properties of ternary full-Heusler alloys, Co2 YZ, which are in a ferromagnetic state up to high temperature above 300 K, were measured and are discussed in terms of the crystal structure and electronic states. Among the full-Heusler alloys studied, the Co2MnSi sample exhibited the highest absolute value of Seebeck coefficient and also the highest electrical conductivity in the temperature range from 300 K to 1023 K. The highest power factor of 2.9 × 10-3 W/m-K2 was obtained for the Co2MnSi sample at 550 K, demonstrating the potential of half-metallic full-Heusler alloys as thermoelectric materials.

  10. Electronic structure and phase equilibria in ternary substitutional alloys

    SciTech Connect

    Traiber, A.J.S.; Allen, S.M.; Turchi, P.E.A.; Waterstrat, R.M.

    1996-04-26

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate {ital ab}{ital initio} calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr{sub 0.5}(Ru, Pd){sub 0.5}.

  11. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    SciTech Connect

    Negache, M.; Souami, N.

    2010-01-05

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(gamma), Ni{sub 3}Al(gamma'), Ni{sub 6}AlTa(tau{sub 3}), Ni{sub 3}Ta(delta) or in equilibrium: two solid phases (gamma'-tau{sub 3}), (tau{sub 3}-delta), (tau{sub 3}-gamma), (gamma-delta) or three solid phases (gamma'-tau{sub 3}-delta). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni{sub 75}Al{sub x}Ta{sub y} (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (gamma), the formed intermetallics compounds (gamma', tau{sub 3} and delta) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni{sub 3}Ta(delta) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  12. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  13. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  14. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  15. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  16. Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Yang, Z. N.; Xia, Y.; Enomoto, M.; Zhang, C.; Yang, Z. G.

    2016-03-01

    The growth of austenite from pearlite in high-carbon low alloy steel occurs with and without alloy element redistribution depending on the amount of superheating above the eutectoid temperature. The transition temperature of austenite growth (denoted PNTT) is calculated as a function of pearlite transformation temperature and subsequent holding time, which affect the degree of partitioning in pearlite, using experimental partition coefficients k θ/ α of Mn, Cr, Co, Si, and Ni reported in the literature. PNTT is the highest in Cr-containing alloys which have the largest k θ/ α in pearlite. Post-transformation aging, usually accompanied by cementite spheroidization, leads to a marked increase of PNTT in Mn and Cr alloys. PNTT of Ni alloy does not depend on pearlite transformation temperature because practically the formation of partitioned pearlite is severely limited in this alloy for kinetic reasons. Above PNTT, austenite growth occurs fast initially, but slows down in the order of ten seconds when the ferrite disappears, and the remaining small carbide particles dissolve very slowly under the control of alloy element diffusion.

  17. Evaluation of electrodeposited ternary Ni-alloys for thermal stability

    NASA Astrophysics Data System (ADS)

    Kim, Myong Jin; Kim, Joung Soo; Kim, Dong Jin; Kim, Hong Pyo

    2011-04-01

    Electroplating methods for ternary Ni-alloys, such as Ni-P-Fe and Ni-P-B, in a Ni sulfamate solution on the inner wall surfaces of Alloy 600 tubing have been developed in order to use them to repair steam generator tubes damaged by a variety of corrosion mechanisms, in particular, by stress corrosion cracking. In this study, the stability of their microstructures and mechanical properties were evaluated to check if they could be used for a long period of time at the operating temperature of a PWR (pressurized water reactor) in nuclear power plants. The specimens were heat treated at 325 °C and 400 °C for 10, 20 and 30 days, followed by observation of their microstructures and measurement of their microhardness and tensile property. According to the experiment results, there was no noticeable change in their microstructures or microhardness with the heat treatment temperature and time conditions used in this study. For a Ni-P-B deposit, the ultimate tensile strength (UTS) slightly increased with the heat treatment time, while their elongation decreased. In the case of a Ni-P-Fe deposit, however, its tensile property varied with the applied current density. For a Ni-P-Fe deposit plated at an applied current density of 50 mA/cm2, its UTS slightly decreased, but its elongation slightly increased with the heat treatment time. We concluded that the thermal stability of the ternary Ni-alloy deposits used in this study is good enough to be used with the materials of operating nuclear power plants.

  18. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

    DOEpatents

    Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

    1982-01-01

    A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

  19. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  20. Dynamical simulation of sputtering and reflection from a ternary alloy

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Yamaguchi, Y.; Yoshinaga, H.; Yamamura, Y.

    The sputtering and the reflection from a Tb0.2Fe0.7Co0.1 alloy due to Ar+ ion bombardment have been investigated by the Monte Carlo simulation code ACAT-DIFFUSE which include the compositional change induced by ion influence. In the Tb-Fe-Co system, Fe atoms are preferentially sputtered. The atomic size of a Tb atom is the largest of these three atoms, and so Tb atoms trap preferentially in vacancies. The steady-state concentration of Tb atoms at the topmost layer is larger than the bulk concentration for the low energy ions due to radiation-induced segregation and preferential sputtering of Fe atoms. As the ion fluence increases, the atomic fractions of sputtered atoms calculated by the ACAT-DIFFUSE code become those of the bulk concentration. The depth profiles of each element at the steady state depend on the incident energy. The total sputtering yield and the reflection coefficient from a Tb-Fe-Co alloy calculated by the ACAT-DIFFUSE code are larger than those by the ACAT code at near-threshold energies, where the ACAT code does not include the ion-influence effect. The energy spectra of back-scattered Ar atoms from the present ternary alloy have very similar profiles to those from a monoatomic Tb target, especially for low-energy Ar+ ions.

  1. Zinc oxysulfide ternary alloy nanocrystals: A bandgap modulated photocatalyst

    SciTech Connect

    Pandey, Shiv K.; Pandey, Shipra; Pandey, Avinash C.; Mehrotra, G. K.

    2013-06-10

    Herein, we report a green economic route for the synthesis of a series of Zinc Oxysulfide (ZOS) (ZnO{sub 1-x}S{sub x}; 0 {<=} x {>=} 1; x = Sulfur) alloys nanoparticles. The crystallographic features of ZnO, ZOS, and ZnS confirmed by X-Ray Diffraction and validated by Transmission Electron Microscopy reveal the variation of lattice spacing in binary and ternary compositions with homogenous elemental distribution. The photocatalytic analysis of ZOS (0.4) is performed and compared with Degussa P25 to ascertain its photocatalytic activity against methyl orange under irradiation of 365 nm UV-Vis light. A bandgap of 2.7 eV for ZOS (0.4) aptly establishes its prospects for sunlight driven photocatalysis.

  2. Thermal stability of the cellular structure of an austenitic alloy after selective laser melting

    NASA Astrophysics Data System (ADS)

    Bazaleeva, K. O.; Tsvetkova, E. V.; Balakirev, E. V.; Yadroitsev, I. A.; Smurov, I. Yu.

    2016-05-01

    The thermal stability of the cellular structure of an austenitic Fe-17% Cr-12% Ni-2% Mo-1% Mn-0.7% Si-0.02% C alloy produced by selective laser melting in the temperature range 20-1200°C is investigated. Metallographic analysis, transmission electron microscopy, and scanning electron microscopy show that structural changes in the alloy begin at 600-700°C and are fully completed at ~1150°C. Differential scanning calorimetry of the alloy with a cellular structure reveals three exothermic processes occurring upon annealing within the temperature ranges 450-650, 800-1000, and 1050-1200°C.

  3. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  4. The immiscibility of InAlN ternary alloy

    PubMed Central

    Zhao, Guijuan; Xu, Xiaoqing; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Ji, Zesheng; Meng, Yulin; Wang, Lianshan; Yang, Shaoyan

    2016-01-01

    We have used two models based on the valence force field and the regular solution model to study the immiscibility of InAlN ternary alloy, and have got the spinodal and binodal curves of InAlN. Analyzing the spinodal decomposition curves, we obtain the appropriate concentration region for the epitaxial growth of the InN-AlN pseudobinary alloy. At a temperature most common for the epitaxial growth of InAlN (1000 K), the solubility of InN is about 10%. Then we introduce the mismatch strain item into the Gibbs free energy, and the effect of different substrates is taken into consideration. Considering Si, Al2O3, InN, GaN, AlN as a substrate respectively, it is found that all the five systems are stabilized with the upper critical solution temperature largely reduced. Finally, InN and GaN are potential substrates for In-rich InAlN, while AlN and GaN substrates are recommended in the Al-rich region. Si and Al2O3 may be ideal substrates for thin InAlN film. PMID:27221345

  5. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGES

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; ...

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  6. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  7. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  8. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  9. STUDY OF GRAIN BOUNDARY CHARACTER ALONG INTERGRANULAR STRESS CORROSION CRACK PATHS IN AUSTENITIC ALLOYS

    SciTech Connect

    Guertsman, Valery Y.; Bruemmer, Stephen M.

    2001-05-25

    Samples of austenitic stainless alloys were examined by means of scanning and transmission electron microscopy. Misorientations were measured by electron backscattered diffraction. Grain boundary distributions were analyzed with special emphasis on the grain boundary character along intergranular stress-corrosion cracks and at crack arrest points. It was established that only coherent twin S3 boundaries could be considered as "special" ones with regard to crack resistance. However, it is possible that twin interactions with random grain boundaries may inhibit crack propagation. The results suggest that other factors besides geometrical ones play an important role in the intergranular stress-corrosion cracking of commercial alloys.

  10. Review of Reactivity Experiments for Lithium Ternary Alloys

    SciTech Connect

    Jolodosky, A.; Bolind, A.; Fratoni, M.

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  11. Silver-base ternary alloy proves superior for slip ring lead wires

    NASA Technical Reports Server (NTRS)

    Ernst, R. H.; Williams, D. N.

    1966-01-01

    Slip ring lead wires composed of ternary alloys of silver, have high electrical conductivity, a tensile strength of at least 30,000 psi, high ductility, and are solderable and weldable. An unexpected advantage of these alloys is their resistance to discoloration on heating in air.

  12. Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Mutoh, I.; Yagi, T.; Ikenaga, Y.

    1986-06-01

    The corrosion behavior of six austenitic alloys and reference Type 316 stainless steel (SS) has been examined in a flowing sodium environment at 700°C for up to about 4000 h. The alloys with a range of nickel content between ~ 15 and 43 wt% were designed and manufactured with an expectation of improved swelling resistance during fast neutron irradiation, compared to reference Type 316 SS. The corrosion loss of the alloys at zero downstream position and the concentrations of chromium, nickel and iron in the surface region were determined as a function of corrosion time. The selective dissolution of nickel and chromium played an important role in sodium corrosion of the alloys. During the initial period, accelerated corrosion took place and selective dissolution of chromium and nickel proceeded at a rapid rate. During the subsequent period, the overall corrosion rate and depletion of chromium and nickel decreased with increasing time until the corrosion rate and the surface concentrations of chromium, nickel and iron, which depended on composition of the alloys, reached the steady-state after about 2000 h. Also, the corrosion rate increased with increasing original nickel content of the alloys. Microstructural examination revealed surface attack of the alloys with higher nickel contents, in particular for the two precipitation strengthened Fe-Ni alloys. The alloys showed a trend of increasing carbon and nitrogen contents.

  13. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  14. The Austenitizing Behavior of a Low Alloy Steel

    DTIC Science & Technology

    1980-05-01

    to differences in melting and solidification between the two types of steels ; ESR exhibiting a more uniform dendritic grain structure and possibly...AD-AoVtS^ MCHNICAi; LIBRARY AD TECHNICAL REPORT ARLCB-TR-80013 TIE AUSIENITIZING BEHAVIOR OF A LDW ALLDY STEEL P, A. Thornton May 1980 US...Behavior of a Low Alloy Steel 5. TYPE OF REPORT 4 PERIOD COVERED 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORf*; 8. CONTRACT OR GRANT NUMBERf*) Peter A

  15. Ultrafine-Grained Structure of Fe-Ni-C Austenitic Alloy Formed by Phase Hardening.

    PubMed

    Danilchenko, Vitalij

    2016-12-01

    The X-ray and magnetometry methods were used to study α-γ transformation mechanisms on heating quenched Fe-22.7 wt.% Ni-0.58 wt.% С alloy. Variation of heating rate within 0.03-80 K/min allowed one to switch from diffusive to non-diffusive mechanism of the α-γ transformation. Heating up primary austenitic single crystal specimen at a rate of less than 1.0-0.5 K/min has led to formation of aggregate of grains with different orientation and chemical composition in the reverted austenite. Significant fraction of these grains was determined to have sizes within nanoscale range.

  16. Carburization of austenitic alloys by gaseous impurities in helium

    SciTech Connect

    Lai, G.Y.; Johnson, W.R.

    1980-03-01

    The carburization behavior of Alloy 800H, Inconel Alloy 617 and Hastelloy Alloy X in helium containing various amounts of H/sub 2/, CO, CH/sub 4/, H/sub 2/O and CO/sub 2/ was studied. Corrosion tests were conducted in a temperature range from 649 to 1000/sup 0/C (1200 to 1832/sup 0/F) for exposure time up to 10,000 h. Four different helium environments, identified as A, B, C, and D, were investigated. Concentrations of gaseous impurities were 1500 ..mu..atm H/sub 2/, 450 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 50 ..mu..atm H/sub 2/O for Environment A; 200 ..mu..atm H/sub 2/, 100 ..mu..atm CO, 20 ..mu..atm CH/sub 4/, 50 ..mu..atm H/sub 2/O and 5 ..mu..atm CO/sub 2/ for Environment B; 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and < 0.5 ..mu..atm H/sub 2/O for Environment C; and 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 1.5 ..mu..atm H/sub 2/O for Environment D. Environments A and B were characteristic of high-oxygen potential, while C and D were characteristic of low-oxygen potential. The results showed that the carburization kinetics in low-oxygen potential environments (C and D) were significantly higher, approximately an order of magnitude higher at high temperatures, than those in high-oxygen potential environments (A and B) for all three alloys. Thermodynamic analyses indicated no significant differences in the thermodynamic carburization potential between low- and high-oxygen potential environments. It is thus believed that the enhanced carburization kinetics observed in the low-oxygen potential environments were related to kinetic effects. A qualitatively mechanistic model was proposed to explain the enhanced kinetics. The present results further suggest that controlling the oxygen potential of the service environment can be an effective means of reducing carburization of alloys.

  17. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  18. Method for preparing homogeneous single crystal ternary III-V alloys

    DOEpatents

    Ciszek, Theodore F.

    1991-01-01

    A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

  19. Influence of Hold Time on Creep-Fatigue Behavior of an Advanced Austenitic Alloy

    SciTech Connect

    Mark Carroll; Laura Carroll

    2011-09-01

    An advanced austenitic alloy, HT-UPS (high temperature-ultrafine precipitate strengthened), is a candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS provides improved creep resistance through a composition based on 316 stainless steel (SS) with additions of Ti and Nb to form nano-scale MC precipitates in the austenitic matrix. The low cycle fatigue and creep-fatigue behavior of a HT-UPS alloy has been investigated at 650 C, 1.0% total strain, and an R ratio of -1 with hold times as long as 9000 sec at peak tensile strain. The cyclic deformation response of HT-UPS is compared to that of 316 SS. The cycles to failure are similar, despite differences in peak stress profiles and the deformed microstructures. Cracking in both alloys is transgranular (initiation and propagation) in the case of continuous cycle fatigue, while the primary cracks also propagate transgranularly during creep-fatigue cycling. Internal grain boundary damage as a result of the tensile hold is present in the form of fine cracks for hold times of 3600 sec and longer and substantially more internal cracks are visible in 316 SS than HT-UPS. The dislocation substructures observed in the deformed material are different. An equiaxed cellular structure is observed in 316 SS, whereas tangles of dislocations are present at the nanoscale MC precipitates in HT-UPS and no cellular substructure is observed.

  20. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2015-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn -like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based Monte Carlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found

  1. The role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    An investigation was conducted to determine softening and hardening behavior in ternary Mo alloys and to correlate these effects with electron concentration. Results showed that the hardness behavior of ternary Mo alloys could be correlated with results anticipated from binary data based upon expressions involving the number of s + d electrons contributed by the solute elements. It was further shown that combining alloying elements at concentrations that produce the maximum amount of softening in Mo does not result in additive softening in ternary Mo alloys. Once a critical electron concentration is exceeded, only alloy hardening is observed. A comparison of hardness behavior with literature data on Hall coefficient and magnetic susceptibility for W-Re alloys showed that hardness minima occur at Re concentrations where minima are observed for the physical property measurements. These observations, and the correlation of hardness with electron concentration, support the hypothesis that alloy softening in Group VI metals is an intrinsic characteristic of these metals and that electron concentration plays the dominant role in controlling hardness.

  2. Studies on microstructural changes and phase transition during preparation of FeGeNi ternary alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Lin, Fangting; Shi, Wangzhou; Jiang, Dongmei; Ma, Xueming; Shen, Gang

    2006-01-01

    FeGeNi ternary alloy has been prepared by mechanical alloying followed by thermal treatment. Microstructure of the as-milled and annealed samples as well as thermally induced phase transition and variations in degree of order were investigated through a combination of X-ray diffraction and Mössbauer spectroscopy. The results show that alloying in the (Fe 0.81Ni 0.19) 3.94Ge 2 ternary system initiates during ball milling, with the appearance of partially D0 3-ordered A2 solid solution phase and paramagnetic B8 2 FeGeNi ternary phase. A subsequent thermal treatment of 2 h at 800 K produces a remarkable increase in the degree of the D0 3 order, whilst ferromagnetic phase with amorphous character in the as-milled sample is transformed into paramagnetic B8 2 FeGeNi ternary phase where almost all Ni atoms occupy the vacant 2d site. Therefore in the annealed system coexist two phases, namely the D0 3 phase and paramagnetic B8 2 FeGeNi ternary phase.

  3. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    An investigation was conducted to determine the effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium. Both binary and ternary alloys were investigated by means of hardness tests at 77 and 300 K. Results showed that atomic size misfit plays a dominant role in controlling the hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  4. Orientation relationships between M2C carbide and the austenite matrix in an Fe-Mn-AI-Mo-C alloy

    NASA Astrophysics Data System (ADS)

    Peng, Shang-Wen; Chou, Chang-Pin

    1993-05-01

    M2C carbides were observed to precipitate within the austenite matrix of an Fe-24.6Mn-6.6Al-3. IMo-1.0C alloy after quenching from 1200 °C and aging at 750 °C. By means of transmission electron microscopy (TEM) and diffraction techniques, the orientation relationships between M2C (p) and the austenite (γ) matrix were determined to be: (0001)p//(111)γ, (11- bar 20)p// (1 bar 10)γ, ( bar 1100)p//(11 bar 2)γ. M2C carbide has been reported by many researchers to precipitate from the ferrite matrix or along austenite/ferrite boundaries in alloy steels containing Mo. However, little information concerning the formation of M2C in the austenite matrix has been provided. This investigation presents the first evidence for the existence of M2C carbide wholly within the austenite matrix and its relationship to the austenite. The energy-dispersive spectrometry (EDS) analyses were performed on M2C carbides, and the results indicate that the solubility of the M2C carbide for foreign atoms other than Mo is very limited.

  5. Modeling of the Site Preference in Ternary B2-Ordered Ni-Al-Fe Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Khalil, Joseph; Noebe, Ronald D.

    2002-01-01

    The underlying equilibrium structure, site substitution behavior, and lattice parameter of ternary Ni-Fe-Al alloys are determined via Monte Carlo-Metropolis computer simulations and analytical calculations using the BFS method for alloys for the energetics. As a result of the theoretical calculations presented, a simple approach based on the energetics of small atomic clusters is introduced to explain the observed site preference schemes.

  6. Investigation of the effect of cyclic laser heating for creating dispersed structures in the austenitic-martensitic alloys based on Fe-Cr-Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Mironov, V. D.; Petrovskii, V. N.; Orlov, A. V.; Libman, M. A.

    2016-09-01

    The effect of cyclic laser heating on the formation of the austenite structure in the austenitic-martensitic alloys based on Fe-Cr-Ni system is investigated. It is shown that under the influence of ultra-fast laser heating on the martensite, which was formed during plastic deformation, the reverse martensitic transformation occurs, and austenite with high strength characteristics is formed. Repeated and multiple laser heating effectively grinds areas of austenite to a size close to the large nanoparticles. There is an additional increase in the strength characteristics of austenite as a result of this fragmentation.

  7. Manufacture of Alumina-Forming Austenitic Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-10

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 301b heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(l-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions. AFA alloy properties to date have been obtained from small laboratory scale arc-castings made at ORNL. The goal of the ORNL-CarTech CRADA was to establish the viability for producing plate, sheet and foil of the AFA alloys by conventional casting and hot working approaches as a first step towards scale up and commercialization of the AFA alloys. The AFA alloy produced under this effort will then be evaluated in related CRADAs with two gas turbine engine manufacturers for gas turbine recuperator applications.

  8. Fatigue and Creep-Fatigue Deformation of an Ultra-Fine Precipitate Strengthened Advanced Austenitic Alloy

    SciTech Connect

    M.C. Carroll; L.J. Carroll

    2012-10-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. The low-cycle fatigue and creep-fatigue behavior of an HT-UPS alloy have been investigated at 650 °C and a 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain as long as 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in fatigue and creep-fatigue of both alloys at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present for hold times of 60 min and longer, and substantially more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ significantly; an equiaxed cellular structure is observed in 316 SS, whereas in HT-UPS the microstructure takes the form of widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as it evolves with continued cycling.

  9. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  10. Diffusion Research in BCC Ti-Al-Mo Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tang, Bin; Xu, Guanglong; Wang, Chuanyun; Kou, Hongchao; Li, Jinshan; Cui, Yuwen

    2014-04-01

    Interdiffusion in Ti-Al-Mo β solid solution was investigated at 1523 K (1250 °C) by analyzing diffusion couples. From the concentration profiles analytically represented by error function expansion (ERFEX), the ternary interdiffusion coefficients and impurity diffusivity were extracted by the Whittle-Green and generalized Hall methods. A comparison of the diffusion in five Ti-Al-X (Co, Cr, Fe, Mo, and V) ternaries reveals Ti-Al-Mo is comparably like Ti-Al-(Cr, V) while Ti-Al-(Co, Fe) are predominantly of interstitial nature.

  11. Development of 1100 °C Capable Alumina-Forming Austenitic Alloys

    DOE PAGES

    Brady, M. P.; Muralidharan, G.; Yamamoto, Y.; ...

    2016-11-18

    Recently dalumina-forming austenitic (AFA) alloys based on ~12–32 weight % (wt%) Ni have been developed and offer an attractive combination of oxidation resistance and creep resistance at relatively low alloy cost. But, they exhibit a transition to internal oxidation and nitridation of Al above ~750–950 °C depending on composition and exposure environment. In order to identify AFA compositions capable of higher-temperature operation for applications such as ethylene cracking, the oxidation behavior of a series of developmental, as-cast nominal Fe–(25–45)Ni–(10–25)Cr–(4–5)Al–1Si–0.15Hf–0.07Y–0.01B wt% base alloys with and without Nb, Ti, and C additions was evaluated at 1100 °C in air with 10% watermore » vapor. Furthermore, we observed protective alumina scale formation at levels of 35Ni, 25Cr, and 4Al with additions of Nb and C, indicating promise for 1100°C capable cast AFA alloys.« less

  12. Austenitic stainless steels and high strength copper alloys for fusion components

    NASA Astrophysics Data System (ADS)

    Rowcliffe, A. F.; Zinkle, S. J.; Stubbins, J. F.; Edwards, D. J.; Alexander, D. J.

    1998-10-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop Al25), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop Al25 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface.

  13. Development of 1100 °C Capable Alumina-Forming Austenitic Alloys

    SciTech Connect

    Brady, M. P.; Muralidharan, G.; Yamamoto, Y.; Pint, B. A.

    2016-11-18

    Recently dalumina-forming austenitic (AFA) alloys based on ~12–32 weight % (wt%) Ni have been developed and offer an attractive combination of oxidation resistance and creep resistance at relatively low alloy cost. But, they exhibit a transition to internal oxidation and nitridation of Al above ~750–950 °C depending on composition and exposure environment. In order to identify AFA compositions capable of higher-temperature operation for applications such as ethylene cracking, the oxidation behavior of a series of developmental, as-cast nominal Fe–(25–45)Ni–(10–25)Cr–(4–5)Al–1Si–0.15Hf–0.07Y–0.01B wt% base alloys with and without Nb, Ti, and C additions was evaluated at 1100 °C in air with 10% water vapor. Furthermore, we observed protective alumina scale formation at levels of 35Ni, 25Cr, and 4Al with additions of Nb and C, indicating promise for 1100°C capable cast AFA alloys.

  14. Utility of magneto-electropolished ternary nitinol alloys for blood contacting applications.

    PubMed

    Pulletikurthi, Chandan; Munroe, Norman; Stewart, Danique; Haider, Waseem; Amruthaluri, Sushma; Rokicki, Ryszard; Dugrot, Manuel; Ramaswamy, Sharan

    2015-10-01

    The thrombogenicity of a biomaterial is mainly dependent on its surface characteristics, which dictates its interactions with blood. Surface properties such as composition, roughness wettability, surface free energy, and morphology will affect an implant material's hemocompatibility. Additionally, in the realm of metallic biomaterials, the specific composition of the alloy and its surface treatment are important factors that will affect the surface properties. The utility of magneto-electropolished (MEP) ternary Nitinol alloys, NiTiTa, and NiTiCr as blood contacting materials was investigated. The hemcompatibility of these alloys were compared to mechanically polished (MP) metallic biomaterial counterparts. In vitro thrombogenicity tests revealed significantly less platelet adherence on ternary MEP Nitinol, especially MEP NiTi10Ta as compared to the MP metals (p < 0.05). The enhanced anti-platelet-adhesive property of MEP NiTi10Ta was in part, attributed to the Ta2 O5 component of the alloy. Furthermore, the formation of a dense and mixed hydrophobic oxide layer during MEP is believed to have inhibited the adhesion of negatively charged platelets. In conclusion, MEP ternary Nitinol alloys can potentially be utilized for blood-contacting devices where, complications resulting from thrombogenicity can be minimized.

  15. Thermophysical properties of substantially undercooled liquid Ti-Al-Nb ternary alloy measured by electromagnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Wei, B.

    2013-03-01

    The thermophysical properties of undercooled liquid alloys at high temperature are usually difficult to measure by experiment. Here, we report the specific heat of liquid Ti45Al45Nb10 ternary alloy in the undercooled state. By using electromagnetic levitation technique, a maximum undercooling of 287 K (0.15 T L) is achieved for this alloy. Its specific heat is determined to be 32.72 ± 2.51 J mol-1 K-1 over a broad temperature range of 1578-2010 K.

  16. Modeling of radiation-induced segregation in austenitic Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Allen, Todd Randall

    Radiation-induced segregation (RIS) was studied in Fe-Cr-Ni alloys irradiated with protons to better understand the mechanisms causing changes in grain boundary chemistry and to improve the ability to predict RIS in austenitic Fe-Cr-Ni alloys. Ni-18Cr, Ni-18Cr-9Fe, Ni-18Cr-0.08P, and Fe-20Cr-9Fe were irradiated with 3.2MeV protons at temperatures from 200sp°C to 500sp°C and to doses from 0.1 to 3 dpa. Grain boundary chemistry was measured using both Auger electron spectroscopy (AES) and scanning transmission electron microscopy with energy dispersive x-ray spectroscopy (STEM/EDS). The significant driving mechanism far segregation in Fe-Cr-Ni alloys is shown to be the inverse Kirkendall (IK) mechanism, specifically the coupling between alloying elements and the vacancy flux. The inclusion of interstitial binding effects to RIS models results in poor agreement between model predictions and segregation measurements, severely overpredicting the measured Ni enrichment and Fe depletion. Grain boundary segregation is unique for each bulk alloy composition in that the amount and the rate of segregation differs for alloys irradiated under the same conditions. Kinetic parameters must be known for each alloy to accurately predict segregation, but the kinetic parameters in Fe-Cr-Ni alloys at low temperature are not well studied. Additionally, short range ordering interactions are important in determining the segregation in all Fe-Cr-Ni alloys. Ordering enthalpies must be included in RIS models to correctly describe the segregation process. Therefore, to develop a predictive RIS model, a method for calculating diffusivities from the bulk composition that includes ordering enthalpies was developed. The Perks (IK) model has been modified to account for composition dependent segregation kinetics by calculating the migration energy using pair interaction potentials, ordering enthalpies, and the local concentration. Based on segregation measurements from seven different alloys

  17. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  18. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.

    PubMed

    Choe, Han-Cheol; Jeong, Yong-Hoon; Brantley, William A

    2010-07-01

    Ti-30Nb-xZr and Ti-30Ta-xNb alloys have been investigated using various methods of surface nanotube formation. Ternary Ti-30Nb-xZr (x = 3 and 15 wt%) and Ti-30Ta-xNb (x = 3 and 15 wt%) alloys were prepared by using high-purity sponge Ti (Grade 4, G&S Titanium, USA), Ta, Zr and Nb spheres. The two groups of ternary Ti alloys were prepared using a vacuum arc melting furnace. Nanotube formation was carried out with a conventional three-electrode configuration with the Ti alloy specimen, a platinum counterelectrode, and a saturated calomel (SCE) reference electrode. Experiments were performed in 1 M H3PO4 with small additions of NaF (0.1-0.8 wt%), using a potentiostat. Nanotubes formed on the surfaces of the two ternary Ti alloys were examined by field emission scanning electron microscopy, EDS and XRD. The Ti-30Ta-xZr alloys had microstructure with entirely needle-like constituents; the thickness of the needle-like alpha-phase increased as the Zr content increased. The Ti-30Nb-xZr alloys had equiaxed microstructures of the beta-phase, and increasing amounts of the needle-like alpha phase appeared at the grain boundaries of the beta-phase as the Zr content increased. The nanotubes were nucleated and grew mainly on the beta phase for the Ti-30Ta-3Zr and Ti-30Nb-3Zr alloys, which had nanotubes with uniform shape, but the nanotubes were nucleated at the alpha phase for the Ti-30Ta-15Zr and Ti-30Nb-15Zr alloys, which had nanotubes with irregular shape and diameters of two sizes. The diameter and depth of the nanotubes could be controlled, depending upon the alloy composition and composition of the surface oxide films (TiO2, Nb2O5, Ta2O5, and ZrO2). It is concluded that this research that selection of the appropriate alloying element can allow significant control of the nanotopography of these Ti alloy surfaces and that it is possible to control the surface nanotube size to promote long-term osseointegration for clinical dental or orthopedic use.

  19. The electrical, thermal conductivity, microstructure and mechanical properties of Al-Sn-Pb ternary alloys

    NASA Astrophysics Data System (ADS)

    Alper Billur, C.; Gerçekcioglu, E.; Bozoklu, M.; Saatçi, B.; Ari, M.; Nair, F.

    2015-08-01

    The structural, thermal, electrical and mechanical properties and micro-hardness of four different samples of Al-Sn-Pb ternary alloys (Al-[x] wt. % Sn-10 wt. % Pb) (x = 40, 30, 20 and 10) with constant lead concentrations were investigated for four different samples. Electrical resistivity and conductivity were measured by using (four-point probe measurement techniques) 4PPT techniques. The variations of thermal conductivity were determined by Wiedemann-Franz law (W-F) and Smith-Palmer (S-P) equation using the data obtained from electrical properties. The mechanical properties of the same alloys were obtained by the tensile test and the Vickers micro-hardness test.

  20. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    SciTech Connect

    Bali, Ashoka Chetty, Raju Mallik, Ramesh Chandra

    2014-04-24

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbS{sub x}Te{sub (1−x)} and PbSe{sub x}Te{sub (1−x)} (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

  1. HREM study on the ledge structures, transient lattices and dislocation structures at the austenite-martensite and austenite-bainite interfaces in Fe-based alloys

    NASA Astrophysics Data System (ADS)

    Kajiwara, S.

    2003-10-01

    High-resolution electron microscopy (HREM) has been performed to know the atomic arrangement of the austenite-martensite interface and the austenite-bainite interface in Fe-based alloys. The alloys studied are Fe-23.0Ni-3.8Mn, Fe-8.8Cr-l.lC, Fe-30.5Ni-lOCo-3Ti (mass %) for martensitic transformation and Fe-2Si-1.4C (mass %) for bainitic transformation. These alloys have various transformation characteristics depending on the alloy; for martensitic transformation, athermal and isothermal kinetics, the Kurdjumow-Sachs (K-S) and Nishiyama (N) orientation relationships, reversible and irreversible movement of the interface, and for bainitic transformation, upper bainite and lower bainite. All the interfaces observed had to be limited to 112 (macroscopically 225) or very close to 112 because of the geometrical condition that the atom rows of <110>f, b and <100>b must be observed parallel to the interface, i.e., the edge-on orientation. The austenite-martensite interface is (121)f with the K-S orientation relationship of (lll)f//(011)b and [ bar{1}01] f//[ bar{1}bar{1}1] b, and the interface is basically composed of the terrace of (lll)f and the ledge of (010)f, which have the average ratio of 2:1 for the number of atom rows of [ bar{1}01] //[ bar{1}bar{1}1] b on these planes. This interface always accompanies the transient lattice region with the thickness of 0.4-1.0 nm, where the lattice changes continuously from fcc to bcc (or bct). No extra-half plane is observed at the (121)f interface over a large distance of 100-200 lattice planes. The interface for both the upper and lower bainites is close to (112)f with the N orientation relationship of (lll)f/(011)b and [ bar{1}bar{1}0] f//[ bar{1}00] b'. Contrary to the interface for martensite, this interface for bainite has many extra-half planes except when the interface is close to (112)f. The interface is basically made up of the terrace of (lll)f/(011)b and the ledge of (0bar{1}l)b'//(bar{1}bar{1}2)f, and the

  2. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect

    K. Coulter

    2010-12-31

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary

  3. Performance of Alumina-Forming Austenitic Steels, Fe-base and Ni-base alloys exposed to metal dusting environments

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Unocic, Kinga A; Pint, Bruce A; Brady, Michael P

    2011-01-01

    A series of conventional Fe- and Ni- base, chromia- and alumina- forming alloys, and a newly developed creep-resistant, alumina-forming austenitic steel were developed and its performance relative to conventional Fe- and Ni-based chromia-forming alloys was evaluated in metal dusting environments with a range of water vapor contents. Five 500h experiments have been performed at 650 C with different water vapor contents and total pressures. Without water vapor, the Ni-base alloys showed greater resistance to metal dusting than the Fe-base alloys, including AFA. However, with 10-28% water vapor, more protective behavior was observed with the higher-alloyed materials and only small mass changes were observed. Longer exposure times are in progress to further differentiate performance.

  4. A comparative evaluation of welding consumables for dissimilar weids between 316LN austenitic stainless steel and Alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Shankar, V.; Sundaresan, S.

    2000-03-01

    Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

  5. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  6. Composition dependent band offsets of ZnO and its ternary alloys

    PubMed Central

    Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong

    2017-01-01

    We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1−xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1−xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 − 2.33x + 1.77x2 for Zn1−xMgxO and Zn1−xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics. PMID:28134298

  7. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  8. Ductility behaviour of cubic titanium niobium nitride ternary alloy: a first-principles study

    NASA Astrophysics Data System (ADS)

    Arockiasamy, M. L. S.; Sundareswari, M.; Rajagopalan, M.

    2016-02-01

    The ductility and hardness behaviour of NbxTi1-xN ( x = 0, .25, .5, .75 and 1) ternary alloy has been studied. Bulk modulus, Young's modulus, shear modulus, Poisson's ratio and anisotropy energy have been calculated. Analysis of G/B and Cauchy's pressure shows that TiN is brittle in nature in good agreement with other theoretical results. Systematic addition of Nb with TiN shows that Nb.75Ti.25N is ductile. The charge density plot shows weak directional contours that enclose Ti and N due to the ductile behaviour of the alloy, namely Nb.75Ti.25N. The estimated hardness of Nb.75Ti.25N is 19.78 GPa, which is 70 % of hardness value of TiN (29.4 GPa) and thus addition of niobium enhances the ductility of TiN. The Debye temperature of the present alloy system is also reported.

  9. Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Microturbines

    SciTech Connect

    Brady, M.P.; Matthews, W.J.

    2010-09-15

    Oak Ridge National Laboratory (ORNL) and Capstone Turbine Corporation (CTC) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for microturbine recuperator components. ORNL delivered test coupons of three different AFA compositions to CTC. The coupons were exposed in steady-state elevated turbine exit temperature (TET) engine testing, with coupons removed for analysis after accumulating ~1,500, 3,000, 4,500, and 6,000 hours of operation. Companion test coupons were also exposed in oxidation testing at ORNL at 700-800°C in air with 10% H2O. Post test assessment of the coupons was performed at ORNL by light microscopy and electron probe microanalysis. The higher Al and Nb containing AFA alloys exhibited excellent resistance to oxidation/corrosion, and thus show good promise for recuperator applications.

  10. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy

    PubMed Central

    Zhai, W.; Wang, B. J.; Liu, H. M.; Hu, L.; Wei, B.

    2016-01-01

    The production of Al based monotectic alloys with uniform microstructure is usually difficult due to the large density difference between the two immiscible liquid phases, which limits the application of such alloys. Here, we apply three orthogonal ultrasounds during the liquid phase separation process of ternary Al71.9Sn20.4Cu7.7 immiscible alloy. A uniform microstructure consisting of fine secondary (Sn) phase dispersed on Al-rich matrix is fabricated in the whole alloy sample with a large size of 30 × 30 × 100 mm. The numerical calculation results indicate that the coupled effect of three ultrasounds promotes the sound pressure level and consequently enlarges the cavitation zone within the alloy melt. The strong shockwaves produced by cavitation prevent the (Sn) droplets from coalescence, and keep them suspended in the parent Al-rich liquid phase. This accounts for the formation of homogeneous composite structures. Thus the introduction of three orthogonal ultrasounds is an effective way to suppress the macrosegregation caused by liquid phase separation and produce bulk immiscible alloys with uniform structures. PMID:27841283

  11. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy

    NASA Astrophysics Data System (ADS)

    Zhai, W.; Wang, B. J.; Liu, H. M.; Hu, L.; Wei, B.

    2016-11-01

    The production of Al based monotectic alloys with uniform microstructure is usually difficult due to the large density difference between the two immiscible liquid phases, which limits the application of such alloys. Here, we apply three orthogonal ultrasounds during the liquid phase separation process of ternary Al71.9Sn20.4Cu7.7 immiscible alloy. A uniform microstructure consisting of fine secondary (Sn) phase dispersed on Al-rich matrix is fabricated in the whole alloy sample with a large size of 30 × 30 × 100 mm. The numerical calculation results indicate that the coupled effect of three ultrasounds promotes the sound pressure level and consequently enlarges the cavitation zone within the alloy melt. The strong shockwaves produced by cavitation prevent the (Sn) droplets from coalescence, and keep them suspended in the parent Al-rich liquid phase. This accounts for the formation of homogeneous composite structures. Thus the introduction of three orthogonal ultrasounds is an effective way to suppress the macrosegregation caused by liquid phase separation and produce bulk immiscible alloys with uniform structures.

  12. Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes

    SciTech Connect

    O.N. Dogan; M.C. Gao; B.H. Howard

    2012-02-26

    CuPd alloys are among the most promising candidate materials for hydrogen separation membranes and membrane reactor applications due to their high hydrogen permeability and better sulfur resistance. In order to reduce the Pd content and, therefore, the cost of the membrane materials, efforts have been initiated to develop CuPdM ternary alloys having a bcc structure. The advantages of having Pd as a hydrogen separation membrane are: (1) high hydrogen selectivity; and (2) high hydrogen permeability. The disadvantages are: (1) high cost; (2) hydrogen embrittlement ({alpha} {yields} {beta} Pd hydride); and (3) sulfur poisoning. Experiments (XRD, SEM/EDS) verified that Mg, Al, La, Y and Ti are promising alloying elements to expand the B2 phase region in Cu-Pd binary system. HT-XRD showed that the B2 to FCC transition temperatures for Cu-Pd-X (X = Mg, Al, La, Y and Ti) are higher than that of Cu-Pd binary alloys. While the Cu-50Pd alloy had the highest corrosion resistance to the H2S containing syngas, the Cu-Pd-Mg alloy had a comparable resistance.

  13. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy.

    PubMed

    Zhai, W; Wang, B J; Liu, H M; Hu, L; Wei, B

    2016-11-14

    The production of Al based monotectic alloys with uniform microstructure is usually difficult due to the large density difference between the two immiscible liquid phases, which limits the application of such alloys. Here, we apply three orthogonal ultrasounds during the liquid phase separation process of ternary Al71.9Sn20.4Cu7.7 immiscible alloy. A uniform microstructure consisting of fine secondary (Sn) phase dispersed on Al-rich matrix is fabricated in the whole alloy sample with a large size of 30 × 30 × 100 mm. The numerical calculation results indicate that the coupled effect of three ultrasounds promotes the sound pressure level and consequently enlarges the cavitation zone within the alloy melt. The strong shockwaves produced by cavitation prevent the (Sn) droplets from coalescence, and keep them suspended in the parent Al-rich liquid phase. This accounts for the formation of homogeneous composite structures. Thus the introduction of three orthogonal ultrasounds is an effective way to suppress the macrosegregation caused by liquid phase separation and produce bulk immiscible alloys with uniform structures.

  14. In Situ Observation of Austenite Growth During Continuous Heating in Very-Low-Carbon Fe-Mn and Ni Alloys

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Wan, X. L.

    2017-02-01

    The growth of austenite during continuous heating was observed in situ under a confocal scanning laser microscope in Fe-Mn and Ni alloys containing less than 0.01 mass pct C. The advancements of the α/γ boundary were measured in the temperature range of ca. 40 K, which encompassed the Ae3 line of the alloys. Below Ae3, the growth rates were of the same order of magnitude as those predicted from the carbon diffusion-controlled negligible partition local equilibrium in the (α + γ) two-phase region, whereas those observed near and above the Ae3 were ca. two orders of magnitude greater. The α/γ boundary mobilities evaluated therefrom were somewhat smaller than those obtained previously in massive ferrite transformation during continuous cooling in the same alloys, albeit the experimental scatter was large and fell near the mobilities proposed in the literature. The α/γ boundary migrated probably with a carbon diffusion spike ahead of the boundary and the solute drag of the carbon or alloy element is unlikely to be operative during the growth of austenite.

  15. In Situ Observation of Austenite Growth During Continuous Heating in Very-Low-Carbon Fe-Mn and Ni Alloys

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Wan, X. L.

    2017-04-01

    The growth of austenite during continuous heating was observed in situ under a confocal scanning laser microscope in Fe-Mn and Ni alloys containing less than 0.01 mass pct C. The advancements of the α/ γ boundary were measured in the temperature range of ca. 40 K, which encompassed the Ae3 line of the alloys. Below Ae3, the growth rates were of the same order of magnitude as those predicted from the carbon diffusion-controlled negligible partition local equilibrium in the ( α + γ) two-phase region, whereas those observed near and above the Ae3 were ca. two orders of magnitude greater. The α/ γ boundary mobilities evaluated therefrom were somewhat smaller than those obtained previously in massive ferrite transformation during continuous cooling in the same alloys, albeit the experimental scatter was large and fell near the mobilities proposed in the literature. The α/ γ boundary migrated probably with a carbon diffusion spike ahead of the boundary and the solute drag of the carbon or alloy element is unlikely to be operative during the growth of austenite.

  16. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  17. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, J. S.; Nguyen-Manh, D.; Kurzydłowski, K. J.; Dudarev, S. L.

    2017-04-01

    The occurrence of segregation in dilute alloys under irradiation is a highly unusual phenomenon that has recently attracted attention, stimulated by the interest in the fundamental properties of alloys as well as by their applications. The fact that solute atoms segregate in alloys that, according to equilibrium thermodynamics, should exhibit full solubility, has significant practical implications, as the formation of precipitates strongly affects physical and mechanical properties of alloys. A lattice Hamiltonian, generalizing the so-called ‘ABV’ Ising model and including collective many-body inter-atomic interactions, has been developed to treat rhenium solute atoms and vacancies in tungsten as components of a ternary alloy. The phase stability of W–Re-vacancy alloys is assessed using a combination of density functional theory (DFT) calculations and cluster expansion (CE) simulations. The accuracy of CE parametrization is evaluated against the DFT data, and the cross-validation error is found to be less than 4.2 meV/atom. The free energy of W–Re-vacancy ternary alloys is computed as a function of temperature using quasi-canonical Monte Carlo simulations, using effective two, three and four-body interactions. In the low rhenium concentration range (<5 at. % Re), solute segregation is found to occur in the form of voids decorated by Re atoms. These vacancy-rhenium clusters remain stable over a broad temperature range from 800 K to 1600 K. At lower temperatures, simulations predict the formation of Re-rich rhenium–vacancy clusters taking the form of sponge-like configurations that contain from 30 to 50 at. % Re. The anomalous vacancy-mediated segregation of Re atoms in W can be rationalized by analyzing binding energy dependence as a function of Re to vacancy ratio as well as chemical Re–W and Re-vacancy interactions and short-range order parameters. DFT calculations show that rhenium–vacancy binding energies can be as high as 1.5 eV if the

  18. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.

    PubMed

    Wróbel, J S; Nguyen-Manh, D; Kurzydłowski, K J; Dudarev, S L

    2017-04-12

    The occurrence of segregation in dilute alloys under irradiation is a highly unusual phenomenon that has recently attracted attention, stimulated by the interest in the fundamental properties of alloys as well as by their applications. The fact that solute atoms segregate in alloys that, according to equilibrium thermodynamics, should exhibit full solubility, has significant practical implications, as the formation of precipitates strongly affects physical and mechanical properties of alloys. A lattice Hamiltonian, generalizing the so-called 'ABV' Ising model and including collective many-body inter-atomic interactions, has been developed to treat rhenium solute atoms and vacancies in tungsten as components of a ternary alloy. The phase stability of W-Re-vacancy alloys is assessed using a combination of density functional theory (DFT) calculations and cluster expansion (CE) simulations. The accuracy of CE parametrization is evaluated against the DFT data, and the cross-validation error is found to be less than 4.2 meV/atom. The free energy of W-Re-vacancy ternary alloys is computed as a function of temperature using quasi-canonical Monte Carlo simulations, using effective two, three and four-body interactions. In the low rhenium concentration range (<5 at.[Formula: see text]Re), solute segregation is found to occur in the form of voids decorated by Re atoms. These vacancy-rhenium clusters remain stable over a broad temperature range from 800 K to 1600 K. At lower temperatures, simulations predict the formation of Re-rich rhenium-vacancy clusters taking the form of sponge-like configurations that contain from 30 to 50 at.[Formula: see text]Re. The anomalous vacancy-mediated segregation of Re atoms in W can be rationalized by analyzing binding energy dependence as a function of Re to vacancy ratio as well as chemical Re-W and Re-vacancy interactions and short-range order parameters. DFT calculations show that rhenium-vacancy binding energies can be as high as 1

  19. Monte Carlo simulation of Prussian blue analogs described by Heisenberg ternary alloy model

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2015-11-01

    Within the framework of Monte Carlo simulation technique, we simulate magnetic behavior of Prussian blue analogs based on Heisenberg ternary alloy model. We present phase diagrams in various parameter spaces, and we compare some of our results with those based on Ising counterparts. We clarify the variations of transition temperature and compensation phenomenon with mixing ratio of magnetic ions, exchange interactions, and exchange anisotropy in the present ferro-ferrimagnetic Heisenberg system. According to our results, thermal variation of the total magnetization curves may exhibit N, L, P, Q, R type behaviors based on the Néel classification scheme.

  20. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    PubMed Central

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-01-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing. PMID:27622979

  1. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    NASA Astrophysics Data System (ADS)

    de Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-09-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing.

  2. Electronic Structure and Phase Equilibria in Ternary Substitutional Alloys: a Tight-Binding Approach

    NASA Astrophysics Data System (ADS)

    Traiber, Ariel Javier Sebastian

    1995-01-01

    The goal of this thesis is to develop and apply alloy theory methods to transition metals and alloys (particularly ternary systems) based on the tight-binding (TB) model of atomic cohesion in studies of stability and phase equilibria. At least two factors make this kind of formalism desirable: it can bring a clear understanding of the underlying physical mechanisms that many times get obscured in first-principles calculations, and it is easily adapted to complex problems and multicomponent solutions, at low computational cost. The original physical insight given by the TB method is demonstrated by the study of the relation between the atomic local environment and the relative stability of simple phases, through the calculation of the moments of the electronic density of states. We show that the relative stability of phases related to the Bain transformation is mainly controlled by the moment of order five, and we have identified the main contributions to this moment. We present a model for cohesive energy based on the assumption that it can be written as the sum of a band -structure contribution and a repulsive short-range contribution. We have calculated the band contribution using a TB Hamiltonian with d states and applied the linearized Green's function method based on the recursion technique. For the repulsive part of the energy we employ a Born-Mayer potential. The model was used to study total energies for Mo. We show that a six-moment approximation to the band energy is sufficient to reproduce more accurate results, using the standard recursion method, for the energetics of this transition metal. We describe a reliable and consistent scheme to study phase equilibria in ternary substitutional alloys based on the TB approximation. The TB electronic parameters are obtained from linear muffin-tin orbital calculations. The transfer integrals are scaled in distance with an orbital -dependent exponential decay parametrization, while the on-site energies are scaled

  3. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  4. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  5. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor.

    PubMed

    Gan, Wei; Han, Nannan; Yang, Chao; Wu, Peng; Liu, Qin; Zhu, Wen; Chen, Shuangming; Wu, Chuanqiang; Habib, Muhammad; Sang, Yuan; Muhammad, Zahir; Zhao, Jijun; Song, Li

    2017-02-28

    Here we demonstrate a ternary Cu2NiZn alloy substrate for controllably synthesizing monolayer graphene using a liquid carbon precursor cyclohexane via a facile CVD route. In contrast with elemental metal or bimetal substrates, the alloy-induced synergistic effects that provide an ideal metallic platform for much easier dehydrogenation of hydrocarbon molecules, more reasonable strength of adsorption energy of carbon monomer on surface and lower formation energies of carbon chains, largely renders the success growth of monolayer graphene with higher electrical mobility and lower defects. The growth mechanism is systemically investigated by our DFT calculations. This study provides a selective route for realizing high-quality graphene monolayer via a scalable synthetic method by using economic liquid carbon supplies and multialloy metal substrates.

  6. Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys and superlattices

    NASA Technical Reports Server (NTRS)

    Lambrecht, Walter R. L.

    1992-01-01

    This proposal was mainly concerned with the theoretical study of semiconductor compounds, alloys, and superlattices of interest for photovoltaic applications. In the last year (1991) a study was devoted to metal/graphite bonding in relation to use of graphite fiber reinforcement of Cu for high thermal conductivity applications. The main research topics addressed during the full period of the grant are briefly described: studies of the In-Ga-As ternary system; band-offsets at common anion and InAs/GaSb/AlSb heterojunctions; alloy theory (cluster variation method); and Cu/graphite bonding. Most of the work was described more extensively in previous yearly reports and renewal applications and in publications. The last topic is described more fully in a separate report attached. A list of publications resulting directly from this grant or from other grants but related to this work and of conference presentations is given at the end.

  7. Oxygen-induced Y surface segregation in a CuPdY ternary alloy

    SciTech Connect

    Tafen, D N.; Miller, J B.; Dogan, O N.; Baltrus, J P.; Kondratyuk, P

    2013-01-01

    We present a comprehensive theoretical and experimental study of the segregation behavior of the ternary alloy CuPdY in vacuum (i.e., the clean surface) and in the presence of oxygen. Theoretical prediction shows that for clean surface, yttrium will substitute first for Cu and then for Pd at the subsurface lattice site before segregating to the surface where it substitutes for Cu. XRD characterization of the surface of CuPdY indicates the presence of two major phases, B2 CuPd and Pd{sub 3}Y. In the presence of adsorbed oxygen, theory predicts that Y preferentially occupies surface sites due to its stronger oxygen affinity compared to Cu and Pd. XPS experiments confirm the computational results in the adsorbed oxygen case, showing that surface segregation of yttrium is induced by the formation of Y-oxides at the top-surface of the alloy.

  8. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Gorbatov, Oleg I.; Borgenstam, Annika; Ruban, Andrei V.; Hedström, Peter

    2017-01-01

    The deformation microstructure of austenitic Fe-18Cr-(10-12)Ni (wt pct) alloys with low stacking fault energies, estimated by first-principles calculations, was investigated after cold rolling. The ɛ-martensite was found to play a key role in the nucleation of α'-martensite, and at low SFE, ɛ formation is frequent and facilitates nucleation of α' at individual shear bands, whereas shear band intersections become the dominant nucleation sites for α' when SFE increases and mechanical twinning becomes frequent.

  9. Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Brenner, D. W.

    2017-04-01

    The surface energetics of two austenitic stainless steel alloys (Type 304 and 316) and three Ni-based alloys (Alloy 600, 690, and 800) are investigated using theoretical methods within the density functional theory. The relative stability of the low index surfaces display the same trend for all alloys; the most closely packed orientation and the most stable is the (111), followed by the (100) and the (110) surfaces. Calculations on the (111) surfaces using various surface chemical and magnetic configurations reveal that Ni has the tendency to segregate toward the surface and Cr has the tendency to segregate toward the bulk. The magnetic frustration present on the (111) surfaces plays an important role in the observed segregation tendencies of Ni and Cr. The stability of the (111) surfaces in contact with aqueous solution are evaluated as a function of temperature, pH, and concentration of aqueous species. The results indicate that the surface stability of the alloys decrease with temperature and pH, and increase slightly with concentration. Under conditions characteristic to an operating pressurized water reactor, the Ni-based alloy series appears to be of better quality than the stainless steel series with respect to corrosion resistance and release of aqueous species when in contact with aqueous solutions.

  10. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    SciTech Connect

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P; Pint, Bruce A; Pankiw, Roman; Voke, Don

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  11. Liquid immiscibility and core-shell morphology formation in ternary Al–Bi–Sn alloys

    SciTech Connect

    Dai, R.; Zhang, J.F.; Zhang, S.G. Li, J.G.

    2013-07-15

    The effects of composition on liquid immiscibility, macroscopic morphology, microstructure and phase transformation in ternary Al–Bi–Sn alloys were investigated. Three types of morphology, the core-shell type, the stochastic droplet type and uniform dispersion type, of Al–Bi–Sn particles prepared by a jet breakup process were distinguished, and the relationships between which were discussed. The phase transformation behaviors of the Al–Bi–Sn alloys were studied by thermal analysis, in agreement with the microstructural observation and microanalysis. The liquid immiscibility and formation of the core-shell morphology in Al–Bi–Sn alloys are easily achieved when the composition lies in the liquid miscibility gap. The particles exhibit a high melting point Al-rich core with a low melting point Sn–Bi-rich solder shell, showing promise for application as high-density electronic packaging materials. - Highlights: • The liquid demixing, morphology and microstructure in Al–Bi–Sn alloys were studied. • Three types of morphology were classified and discussed. • The conditions for formation of the core-shell morphology were obtained. • The phase transition behaviors agree with the microstructure characterization. • The Al/Sn–Bi core-shell particles show promise for use in electronic packaging.

  12. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes

    NASA Astrophysics Data System (ADS)

    Suresh Kannan, A. R.; Muralidharan, S.; Sarangapani, K. B.; Balaramachandran, V.; Kapali, V.

    Several attempts are being made to avoid the use of mercury-bearing zinc/zinc alloys as anodes in alkaline power sources. The work presented here suggests the possible use of some ternary alloys based on zinc of purity 99.9 to 99.95 wt.% as anodes in 10 M NaOH solution with sodium citrate, sodium stannate and calcium oxide as complexing agents and inhibitors. The corrosion of zinc and its alloys in 10 M NaOH solution is under cathodic control; in other alkaline electrolytes, it is under anodic control. Anode efficiency of up to 99.0% is achieved. The corrosion rates of zinc and its alloys are found to be comparable with those of mercury-bearing zinc in the chosen electrolytes. It is concluded that both dry cells and Zn-air batteries can be constructed with the above anodes and alkaline electrolytes. Thus, the presence of mercury, either in the anode or in the electrolyte, is avoided.

  13. An analysis of the kinetics, morphology, and mechanism of austenite formation during thermal processing of iron alloys

    NASA Astrophysics Data System (ADS)

    Schmidt, Eric

    The solid state phenomenon of austenite precipitation from ferrite occurs at some point during the thermal processing of nearly all steels. Austenitization in pure iron is expected to be controlled by processes which occur at the migrating austenite/ferrite interfaces. An analytic expression which accounts for these processes has been proposed which generally follows the transition state theory for thermally activated processes. The velocity of an interface controlled by this mechanism should be very fast (for pure iron, a velocity of 100s of mum/s in a temperature range from about 915°C to 940°C has been measured), will be linear with temperature, and is not time dependant. This model for interface-reaction controlled migrating interfaces has been found to be consistent with observations in pure iron, and in interstitial free steels. The morphology of austenite precipitates during the interface reaction controlled transformation suggests that this phase transformation is a massive transformation with incoherent interfaces and no partitioning of solute atoms. The mobility of interface reaction-controlled transformation boundaries reported in the present and previous investigations have been discussed in further detail. The morphology of austenite precipitates, with regard to the appearance of the migrating interfaces and the initial location of carbon in the microstructure, have been found to be consistent with the massive transformation in pure iron. This can he shown in binary iron-carbon alloy and in a set of carbon steels which contain various amounts of e.g. manganese, chromium, and nickel. The mobility of partitionless, massive transformation interfaces has been found generally to range over 6 orders of magnitude, and is a few to several orders of magnitude larger in pure iron than in Fe-C or Fe-C-X steels. If the transformation can be made to occur in the single phase austenite region for an alloy, the interface mobility may increase significantly at long

  14. Design of Ternary Nanoalloy Catalysts: Effect of Nanoscale Alloying and Structural Perfection on Electrocatalytic Enhancement

    SciTech Connect

    Wanjala, Bridgid N.; Fang, Bin; Shan, Shiyao; Petkov, Valeri; Zhu, Pengyu; Loukrakpam, Rameshwori; Chen, Yongsheng; Luo, Jin; Yin, Jun; Yang, Lefu; Shao, Minhua; Zhong, Chuan-Jian

    2012-10-22

    The ability to tune the atomic-scale structural and chemical ordering in nanoalloy catalysts is essential for achieving the ultimate goal of high activity and stability of catalyst by design. This article shows this ability with a ternary nanoalloy of platinum with vanadium and cobalt for oxygen reduction reaction in fuel cells. The strategy is to enable nanoscale alloying and structural perfection through oxidative–reductive thermochemical treatments. The structural manipulation is shown to produce a significant enhancement in the electrocatalytic activity of the ternary nanoalloy catalysts for oxygen reduction reaction. Mass activities as high as 1 A/mg of Pt have been achieved by this strategy based on direct measurements of the kinetic currents from rotating disk electrode data. Using a synchrotron high-energy X-ray diffraction technique coupled with atomic pair function analysis and X-ray absorption fine structure spectroscopy as well as X-ray photoelectron spectroscopy, the atomic-scale structural and chemical ordering in nanoalloy catalysts prepared by the oxidative–reductive thermochemical treatments were examined. A phase transition has been observed, showing an fcc-type structure of the as-prepared and the lower-temperature-treated particles into an fct-type structure for the particles treated at the higher temperature. The results reveal a thermochemically driven evolution of the nanoalloys from a chemically disordered state into chemically ordered state with an enhanced degree of alloying. The increase in the chemical ordering and shrinking of interatomic distances as a result of thermochemical treatment at increased temperature is shown to increase the catalytic activity for oxygen reduction reaction, exhibiting an optimal activity at 600 °C. It is the alloying and structural perfection that allows the optimization of the catalytic performance in a controllable way, highlighting the significant role of atomic-scale structural and chemical ordering

  15. Design of Ternary Nanoalloy Catalysts: Effect of Nanoscale Alloying and Structural Perfection on Electrocatalytic Enhancement

    SciTech Connect

    Wanjala, Bridgid N.; Fang, Bin; Shan, Shiyao; Petkov, Valeri; Zhu, Pengyu; Loukrakpam, Rameshwori; Chen, Yongsheng; Luo, Jin; Yin, Jun; Yang, Lefu; Shao, Minhua; Zhong, Chuan-Jian

    2012-11-27

    The ability to tune the atomic-scale structural and chemical ordering in nanoalloy catalysts is essential for achieving the ultimate goal of high activity and stability of catalyst by design. This article demonstrates this ability with a ternary nanoalloy of platinum with vanadium and cobalt for oxygen reduction reaction in fuel cells. The strategy is to enable nanoscale alloying and structural perfection through oxidative–reductive thermochemical treatments. The structural manipulation is shown to produce a significant enhancement in the electrocatalytic activity of the ternary nanoalloy catalysts for oxygen reduction reaction. Mass activities as high as 1 A/mg of Pt have been achieved by this strategy based on direct measurements of the kinetic currents from rotating disk electrode data. Using a synchrotron high-energy X-ray diffraction technique coupled with atomic pair function analysis and X-ray absorption fine structure spectroscopy as well as X-ray photoelectron spectroscopy, the atomic-scale structural and chemical ordering in nanoalloy catalysts prepared by the oxidative–reductive thermochemical treatments were examined. A phase transition has been observed, showing an fcc-type structure of the as-prepared and the lower-temperature-treated particles into an fct-type structure for the particles treated at the higher temperature. The results reveal a thermochemically driven evolution of the nanoalloys from a chemically disordered state into chemically ordered state with an enhanced degree of alloying. The increase in the chemical ordering and shrinking of interatomic distances as a result of thermochemical treatment at increased temperature is shown to increase the catalytic activity for oxygen reduction reaction, exhibiting an optimal activity at 600 °C. It is the alloying and structural perfection that allows the optimization of the catalytic performance in a controllable way, highlighting the significant role of atomic-scale structural and chemical

  16. Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Easton, Mark A.; Wang, Hao; Grandfield, John; Davidson, Cameron J.; StJohn, David H.; Sweet, Lisa D.; Couper, Malcolm J.

    2012-09-01

    An investigation into the hot tear susceptibility of ternary Al-Si-Mg alloys has been made using direct crack observation, measurement of load response, and predictions made by a modified Rappaz-Drezet-Gremaud (RDG) hot tearing model. A peak in both the hot tear susceptibility and the load at solidus occurred at approximately 0.2Si and 0.15Mg, and then the hot tear susceptibility decreased as the total solute content increased. In general, a good correlation was found among the observation of cracks, the load at solidus, and the predictions of the RDG hot tearing model, although it was shown that correlation with the RDG model depended critically on the fraction solid at which solid coalescence was assumed to occur. A combination of these approaches indicated that when the total Si+Mg content and the Si:Mg ratio increased toward four, a decrease occurred in the hot tear susceptibility because of an increase in the amount of final eutectic formed. At the lowest Si:Mg ratio of 0.25, the RDG model also predicted a lower relative hot tear susceptibility than that measured by the load at solidus. In these alloys, the final stages of solidification are predicted to occur over a large temperature range, and hence, both the predictions of the RDG model and the measurement of the load were dependent on which fraction solid was chosen for grain coalescence. In the alloys studied in this article, the formation of small amounts of the ternary eutectic Al+Mg2Si+Si caused the highest hot tear susceptibility.

  17. The optical spectrum of ternary alloy BBi1-xAsx

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Aslan, M.; Ozcan, M. H.; Rahnamaye Aliabad, H. A.

    2016-06-01

    Among the III-V semiconductors, boron BBi and BAs as well as their alloys have attracted both scientific and technological interest in recent years. We present a calculation of the structural, electronic and optical properties of ternary alloy BBi1-xAsx by means of the WIEN2k software package. The exchange-correlation potential is treated by the generalized gradient approximation (GGA) within the schema of Wu and Cohen. Also, we have used the modified Becke-Johnson (mBJ) formalism to improve the band gap results. All the calculations have been performed after geometry optimization. In this study, we have investigated structural properties such as the lattice constant (a0), bulk modulus (B0) and its pressure derivative (B‧), and calculated the electronic band structures of the studied materials. Accurate calculation of linear optical properties, such as real (ɛ 1) and imaginary (ɛ 2) dielectric functions, reflectivity (R), electron energy loss spectrum, absorption coefficient (α), refractive index (n) and sum rule (Neff) are investigated. Our obtained results for studied binary compounds, BBi and BAs, fairly coincide with other theoretical calculations and experimental measurements. According to the best of our knowledge, no experimental or theoretical data are presently available for the studied ternary alloy BBi1-xAsx (0 < x < 1). The role of electronic band structure calculation with regards to the linear optical properties of BBi1-xAsx is discussed. The effect of the spin-orbit interaction (SOI) is also investigated and found to be quite small.

  18. Flight Planning for the International Space Station-Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.

  19. Magnetostriction and texture development in binary and ternary iron-gallium-based alloys

    NASA Astrophysics Data System (ADS)

    Mungsantisuk, Pinai

    2005-07-01

    The rare earth-free bcc FeGa-based alloys have an excellent combination of large low-field magnetostriction at room temperature, good mechanical properties, low hysteresis, and relatively low cost. These alloys are attractive for use in numerous sensor and actuator devices. The first part of this dissertation examines the influence of partial substitutions of Ga with Al, Be, Si, Ge, and Sn and partial substitutions of Fe with Co and Ni. The work involved directional growth of [001] textured rods of these ternary alloys using a Vertical Bridgman process, X-ray diffraction analysis, magnetic property measurements using vibrating sample magnetometry, and magnetostriction measurements. It is shown that substitution of Ga with Al can be made in FeGa alloys in certain composition ranges without a reduction in magnetostriction, and the additions of Si, Ge, and Sn results in a sharp decrease of magnetostriction. The addition or substitute of Be, due to its smaller size than Fe, resulted in only a slight decrease of magnetostriction. Substitution of Fe with Ni and Co results in a significant decrease of the magnetostriction. The work also evaluated the elastic properties of Fe-x at. % Ga and Fe-(20-y) at. % Ga-y at. % Al polycrystalline alloys using resonant ultrasound spectroscopy. Young's modulus obtained for FeGa and FeGaAl alloys were in the range of 110 to 170 GPa which are several times that for Terfenol-D alloys. Thus, large-force delivery is possible from FeGa alloy based actuators even though saturation strain values are smaller than that of Terfenol-D. The second part of this work examined the development of an inexpensive thermomechanical processing method to obtain [001] textured polycrystalline Fe-15 at. % Ga alloys. The processing involved a sequence of controlled hot rolling, two-stage warm rolling with intermediate anneal, and texture anneal. Roll forces measured and the extent of reductions feasible indicated an excellent processability. Texture evolution

  20. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, Low Alloy, Steel

    SciTech Connect

    Sherman, D. H.; Cross, Steven M; Kim, Sangho; Grandjean, F.; Long, G. J.; Miller, Michael K

    2007-01-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct non-iron metallic elements. Mossbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 C) than for SAE 4130 steel ({approx}300 C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 C) than for carbon steels (100 C to 200 C and 200 C to 350 C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite

  1. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ˜1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  2. The compositional dependence of irradiation creep of austenitic alloys irradiated in PFR at 420{degrees}C

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Munro, B.

    1997-04-01

    Irradiation creep data are expensive and often difficult to obtain, especially when compared to swelling data. This requires that maximum use be made of available data sources in order to elucidate the parametric dependencies of irradiation creep for application to new alloys and to new environments such as those of proposed fusion environments. One previously untapped source of creep data is that of a joint U.S./U.K. experiment conducted in the Prototype Fast Reactor (PFR) in Dounreay, Scotland. In this experiment, five austenitic steels were irradiated in a variety of starting conditions. In particular, these steels spanned a large range (15-40%) of nickel contents, and contained strong variations in Mo, Ti, Al, and Nb. Some alloys were solution-strengthened and some were precipitation-strengthened. Several were cold-worked. These previously unanalyzed data show that at 420{degrees}C all austenitic steels have a creep compliance that is roughly independent of the composition of the steel at 2{+-}1 x 10{sup {minus}6}MPa{sup {minus}1} dpa{sup {minus}1}. The variation within this range may arise from the inability to completely separate the non-creep strains arising from precipitation reactions and the stress-enhancement of swelling. Each of these can be very sensitive to the composition and starting treatment of a steel.

  3. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    NASA Astrophysics Data System (ADS)

    Roy, Marion; Martinelli, Laure; Ginestar, Kevin; Favergeon, Jérôme; Moulin, Gérard

    2016-01-01

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10-9 and 5 10-4 g kg-1. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = -57584/T(K) -55.876T(K) + 254546 (R is the gas constant in J mol-1 K-1). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour.

  4. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

    NASA Astrophysics Data System (ADS)

    Şahin, M.; Çadırlı, E.

    2014-10-01

    A Bi-2.0Zn-0.2Al (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate ( V = 18.4 μm/s) under different temperature gradients ( G = 1.15-3.44 K/mm) and at a constant temperature gradient ( G = 2.66 K/mm) under different growth rates ( V = 8.3-500 μm/s) in a Bridgman-type directional solidification furnace. The dependence of microstructure parameter ( λ) on the solidification parameters ( G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity ( ρ) measurements of the studied alloy were performed using the standard four-point-probe method, and the temperature coefficient of resistivity ( α) was calculated from the ρ- T curve. The enthalpy (Δ H) and the specific heat ( C p ) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemann-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.

  5. Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships

    NASA Astrophysics Data System (ADS)

    Dennstedt, A.; Choudhury, A.; Ratke, L.; Nestler, B.

    2016-03-01

    Ternary eutectics, where three phases form simultaneously from the melt, present an opportunity to study the fundamental science of microstructural pattern formation during the process of solidification. In this paper we investigate these phenomena, both experimentally and by phase-field simulations. The aim is to develop necessary characterisation tools which can be applied to both experimentally determined and simulated microstructures for a quantitative comparison between simulations and experiments. In SEM images of experimental cross sections of directionally solidified Ag-Al-Cu ternary eutectic alloy at least six different types of microstructures are observed. Corresponding 3D phase-field simulations for different solidification conditions and compositions allow us to span and isolate the material parameters which influence the formation of three-phase patterns. Both experimental and simulated microstructures were analysed regarding interface lengths, triple points and number of neighbours. As a result of this integrated experimental and computational effort we conclude that neighbourhood relationships as described herein, turn out to be an appropriate basis to characterise order in patterns.

  6. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  7. A Spinodal Decomposition Model for the Prediction of the Glass-Forming Ability of Ternary Mg Alloys

    NASA Astrophysics Data System (ADS)

    Eshed, Eyal; Bamberger, Menachem; Katsman, Alexander

    2016-01-01

    The glass-forming ability (GFA) of two alloy systems, Mg-Y-La and Mg-Zn-Nd, was investigated using thermal and microstructural analysis. Rapid solidification was found to lead to microstructural refinement and partial amorphization of the most investigated alloys. The addition of Cu to the Mg-Y-La group was found to increase its tendency to undergo amorphization during rapid solidification, exemplified by the Mg86Y9.5Cu2.5La2 alloy exhibiting a pronounced crystallization peak in the differential scanning calorimetry trace. Two Mg-Zn-Nd alloys, Mg71Zn28Nd and Mg73.6Zn22.1Nd4.3, were found to exhibit significant amorphous behavior, with the former alloy being more amorphous than the latter. An innovative model predicting the GFA of alloys based on spinodal-like decomposition of supercooled alloys is formulated herein. New generalized thermo-kinetic criteria for spinodal decomposition of ternary alloys for time/space-correlated fluctuations were formulated. The time-dependent amplification factor of concentration fluctuations in ternary systems was found to provide adequate GFA evaluation for the compositions of both alloy systems: Mg-Y-La and Mg-Zn-Nd. The model was able to pinpoint the most amorphous alloy in each alloy system, and comparison between both systems pointed to Mg71Zn28Nd as having the best GFA, while also recognizing that it has a lower GFA than the widely known and highly glass-formable Mg65Cu25Y10 alloy. This model is expected to predict the GFA of any envisaged composition, thereby avoiding cumbersome trials.

  8. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  9. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    NASA Astrophysics Data System (ADS)

    Senturk Dalgic, S.; Celtek, M.

    2011-05-01

    The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD) method based on tight-binding (TB) potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA) parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  10. Atomic mobility in a ternary liquid Ga-In-Sn alloy of the eutectic composition

    NASA Astrophysics Data System (ADS)

    Nefedov, D. Yu.; Antonenko, A. O.; Podorozhkin, D. Yu.; Uskov, A. V.; Charnaya, E. V.; Lee, M. K.; Chang, J. L.; Haase, J.; Michel, D.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Bugaev, A. S.

    2017-02-01

    The nuclear spin-lattice relaxation and Knight shift of 71Ga, 69Ga, and 115In nuclei in a ternary liquid gallium-indium-tin alloy of the eutectic composition, which was introduced into pores of an opal matrix and porous glasses with pore sizes of 18 and 7 nm, have been investigated and compared with those for the bulk melt. It has been found that longitudinal relaxation is accelerated and the Knight shift is decreased, depending on the size of pores. The correlation time of the atomic motion has been calculated for the nanostructured melt in porous matrices. It has been shown that the atomic mobility in the melt decreases with decreasing size of pores in the glasses.

  11. Thermodynamic properties and phase transitions of ternary Co-Cu-Si alloys with equiatomic Co/Cu ratio

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hu, Liang; Zhou, Kai; Wei, Bingbo

    2016-04-01

    Different amounts of Si element were introduced into binary Co50Cu50 alloy to investigate the thermodynamic properties and phase transitions of ternary Co50-x/2Cu50-x/2Si x (x  =  10, 20, 30, 40 and 50 at%) alloys. Their liquidus and solidus temperatures versus Si content were determined by the differential scanning calorimetry (DSC) method. It was found that the addition of Si element depressed both the liquidus and solidus temperatures as compared with binary Co50Cu50 alloy. In particular, the additions of 10 and 20 at% Si remarkably reduced the critical undercooling for liquid demixing to only 3 and 1 K, whereas no liquid phase separation took place in other Co50-x/2Cu50-x/2Si x alloys. The relationship between the enthalpy of fusion and alloy composition was also established by a polynomial function on the basis of the measured data. The solidification microstructures of the DSC samples were investigated corresponding to the calorimetric signals, based on which the solidification pathway for each Co50-x/2Cu50-x/2Si x alloy was elucidated. The Si element displays stronger affinity with the Co element than the Cu element. As Si content rises, the pseudobinary eutectic (Co  +  Co2Si), (Co2Si  +  CoSi), (CoSi  +  CoSi2) and (Cu3Si  +  Si) structures were successively formed, and there were no ternary intermetallic compounds in these alloys. The thermal diffusivity of solid ternary Co50-x/2Cu50-x/2Si x alloys was determined by a laser flash method in a wide temperature range from 300 to 1180 K, which showed a decreasing tendency with the increase of Si content.

  12. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  13. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    SciTech Connect

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    end and should be considered secondary to elements such as strontium and barium that had overall better results. The results of this study along with other considerations such as thermodynamics, and chemical reactivity will help down select a preferred lithium ternary alloy.

  14. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGES

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...

    2016-04-09

    the higher end and should be considered secondary to elements such as strontium and barium that had overall better results. The results of this study along with other considerations such as thermodynamics, and chemical reactivity will help down select a preferred lithium ternary alloy.« less

  15. A scanning Hall probe imaging study of the field induced martensite-austenite phase transition in Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Moore, J D; Chattopadhyay, M K; Morrison, Kelly; Cohen, L F; Roy, S B

    2010-01-13

    The martensite to austenite phase transition in the off-stoichiometric Heusler alloy Ni(50)Mn(34)In(16) can be induced both by temperature change and by application of a magnetic field. We have used scanning Hall probe imaging to study the magnetic field induced martensite-austenite phase transition. The study provides clear visual evidence of the coexistence of the martensite and austenite phases across this field induced transition in both increasing and decreasing magnetic fields. Clear evidence of thermomagnetic history effects associated with the martensite-austenite phase transition is also obtained. Quantitative analysis of the magnetic field dependence of the volume fraction of the austenite phase in Ni(50)Mn(34)In(16) shows evidence of a nucleation and growth mechanism across the field induced martensite-austenite phase transition. The local M-H loops constructed from the Hall images indicate the presence of a landscape of the critical magnetic field (for the field induced transition) distributed over the sample volume and thus confirm the disorder influenced nature of this first-order magnetic phase transition.

  16. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1979-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  17. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1977-03-08

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  18. Aluminum nitride, Scandium nitride, and Aluminum-Scandium-Nitride ternary alloys : Structural, optical, and electrical properties

    NASA Astrophysics Data System (ADS)

    Deng, Ruopeng

    Al and Sc are iso-electric, both of which have three valence electrons. Their nitrides AlN and ScN both have high melting points, high hardness, and good chemical inertness. And their distinct properties find applications in different areas: AlN in piezoelectric acoustic-wave devices, and ScN as candidate for high-temperature thermoelectricity. While there are unsettled problems to solve for AlN and ScN alone, which are to obtain tilted c-axis texture in AlN for shear mode acoustic-wave devices to maximize performance, and to determine electronic band structure of ScN that has been long debated due to free carrier effect, the alloying between AlN and ScN is also intriguing in that the ternary alloy Al-Sc-N connects their similarity and opens even wider possibility and greater potential. The significantly enhanced piezoelectric coefficient in the alloy compared to pure AlN is one of the best examples that is little understood, and alternate bandgap engineering in LED fabrication would probably be another contribution from the alloy. Structural, optical, and electrical properties of AlN, ScN, and Al-Sc-N ternary alloys are thus studied in order to answer these questions, and to explore more fundamental physics characteristics within these nitride materials. For the purpose of achieving tilted c-axis texture in AlN, off-axis deposition is conducted with a variable deposition angle α = 0-84° in 5 mTorr pure N2 at room temperature. XRD pole figure analysis show that layers deposited from a normal angle (α = 0°) exhibit fiber texture, with the c-axis tilted by 42+/-2° off the substrate normal. However, as α is increased to 45°, two preferred in-plane grain orientations emerge, with populations I and II having the c-axis tilted towards and away from the deposition flux, by 53+/-2° and 47+/-1° off the substrate normal, respectively. Increasing alpha further to 65 and 84°, results in the development of a single population II with a 43+/-1° tilt. The observed tilt

  19. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  20. Mechanical properties and microstructures of β Ti-25Nb-11Sn ternary alloy for biomedical applications.

    PubMed

    Jung, Taek-Kyun; Semboshi, Satoshi; Masahashi, Naoya; Hanada, Shuji

    2013-04-01

    The mechanical properties and microstructures of β Ti-25%Nb-11%Sn ternary alloy rods were investigated for biomedical applications as a function of heat treatment temperature after swaging by an 86% reduction in cross-section area. An as-swaged rod consisting of a β (bcc) single phase shows a low Young's modulus of 53 GPa, which is interpreted in terms of both the metastable composition of the β alloy undergoing neither an athermal ω transformation nor a deformation-induced ω transformation and <110>texture development during swaging. Heat treatment at 673 K (400 °C) for 2h leads to a high strength of approximately 1330 MPa and a high spring-back ratio of yield stress to Young's modulus over 15×10(-3), with acceptable elongation. This high strength is attributable to needle-like α precipitates, which are identified by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and high-resolution electron microscopy (HREM).

  1. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-11-10

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  2. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  3. Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Santella, M. L.; Brady, M. P.; Bei, H.; Maziasz, P. J.

    2009-08-01

    The high-temperature creep properties of a series of alumina-forming austenitic (AFA) stainless steels based on Fe-20Ni-(12-14)Cr-(2.5-4)Al-(0.2-3.3)Nb-0.1C (weight percent) were studied. Computational thermodynamics were used to aid in the interpretation of data on microstructural stability, phase equilibria, and creep resistance. Phases of MC (M: mainly Nb), M23C6 (M: mainly Cr), B2 [ β-(Ni,Fe)Al], and Laves [Fe2(Mo,Nb)] were observed after creep-rupture testing at 750 °C and 170 MPa; this was generally consistent with the thermodynamic calculations. The creep resistance increased with increasing Nb additions up to 1 wt pct in the 2.5 and 3 Al wt pct alloy series, due to the stabilization of nanoscale MC particles relative to M23C6. Additions of Nb greater than 1 wt pct decreased creep resistance in the alloy series due to stabilization of the Laves phase and increased amounts of undissolved, coarse MC, which effectively reduced the precipitation of nanoscale MC particles. The additions of Al also increased the creep resistance moderately due to the increase in the volume fraction of B2 phase precipitates. Calculations suggested that optimum creep resistance would be achieved at approximately 1.5 wt pct Nb in the 4 wt pct Al alloy series.

  4. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels

    SciTech Connect

    Yamamoto, Yukinori; Santella, Michael L; Brady, Michael P; Bei, Hongbin; Maziasz, Philip J

    2009-01-01

    The high-temperature creep properties of a series of alumina-forming austenitic (AFA) stainless steels based on Fe-20Ni-(12-14)Cr-(2.5-4)Al-(0.2-3.3)Nb-0.1C (weight percent) were studied. Computational thermodynamics were used to aid in the interpretation of data on microstructural stability, phase equilibria, and creep resistance. Phases of MC (M: mainly Nb), M{sub 23}C{sub 6} (M: mainly Cr), B2 [{beta}-(Ni,Fe)Al], and Laves [Fe{sub 2}(Mo,Nb)] were observed after creep-rupture testing at 750 C and 170 MPa; this was generally consistent with the thermodynamic calculations. The creep resistance increased with increasing Nb additions up to 1 wt pct in the 2.5 and 3 Al wt pct alloy series, due to the stabilization of nanoscale MC particles relative to M{sub 23}C{sub 6}. Additions of Nb greater than 1 wt pct decreased creep resistance in the alloy series due to stabilization of the Laves phase and increased amounts of undissolved, coarse MC, which effectively reduced the precipitation of nanoscale MC particles. The additions of Al also increased the creep resistance moderately due to the increase in the volume fraction of B2 phase precipitates. Calculations suggested that optimum creep resistance would be achieved at approximately 1.5 wt pct Nb in the 4 wt pct Al alloy series.

  5. Impact of Mn on the solution enthalpy of hydrogen in austenitic Fe-Mn alloys: a first-principles study.

    PubMed

    von Appen, Jörg; Dronskowski, Richard; Chakrabarty, Aurab; Hickel, Tilmann; Spatschek, Robert; Neugebauer, Jörg

    2014-12-05

    Hydrogen interstitials in austenitic Fe-Mn alloys were studied using density-functional theory to gain insights into the mechanisms of hydrogen embrittlement in high-strength Mn steels. The investigations reveal that H atoms at octahedral interstitial sites prefer a local environment containing Mn atoms rather than Fe atoms. This phenomenon is closely examined combining total energy calculations and crystal orbital Hamilton population analysis. Contributions from various electronic phenomena such as elastic, chemical, and magnetic effects are characterized. The primary reason for the environmental preference is a volumetric effect, which causes a linear dependence on the number of nearest-neighbour Mn atoms. A secondary electronic/magnetic effect explains the deviations from this linearity.

  6. Static Softening in a Ni-30Fe Austenitic Model Alloy After Hot Deformation: Microstructure and Texture Evolution

    NASA Astrophysics Data System (ADS)

    Beladi, Hossein; Cizek, Pavel; Taylor, Adam S.; Rohrer, Gregory S.; Hodgson, Peter D.

    2017-02-01

    In the current study, the microstructure and texture characteristics of a model Ni-30Fe austenitic alloy were investigated during hot deformation and subsequent isothermal holding. The deformation led to the formation of self-screening arrays of microbands within a majority of grains. The microbands characteristics underwent rather modest changes during the post-deformation annealing, which suggests that limited dislocation annihilation occurs within the corresponding dislocation walls. The fraction of statically recrystallized (SRX) grains progressively increased with the holding time and closely matched the softening fraction measured from the offset flow stress approach. The corresponding texture was weak and preserved its character with the holding time. There was no pronounced temperature effect on the grain boundary character distribution after the completion of SRX. The Σ3 and Σ9 coincidence site lattice boundaries were characterized as (111) pure twist and (1-14) symmetric tilt types, respectively. Nonetheless, the recrystallization temperature slightly affected the grain boundary network.

  7. Electrical and magneto resistance studies of bulk Ga 1- xNi xSb ternary alloys

    NASA Astrophysics Data System (ADS)

    Kamilla, S. K.; Hazra, S. K.; Samantaray, B. K.; Basu, S.

    2011-01-01

    Ternary semiconductor alloys of Ga 1- xNi xSb were grown with different Ni concentrations by vertical Bridgman method with well-defined temperature profile for possible applications as Diluted Magnetic Semiconductor (DMS). The electrical properties of the grown samples were studied in the temperature range 78-300 K by Hall effect measurements using van der Pauw configurations. The positive sign of Hall coefficient confirmed p-type conductivity of the grown samples. The results of the measurements at 300 K indicate that resistivity, Hall coefficient and hole mobility decrease while the hole concentration increases with the increasing Ni concentrations from 0.5% to 2.8% in Ga 1- xNi xSb ternary alloys. The magneto resistance studies at different magnetic fields (≤10 kG) and in the temperature range 78-300 K showed positive magneto resistance and the Arrott plots revealed very low Curie temperature of the material ( <78 K).

  8. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  9. Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-12-01

    The effect of carbon and molybdenum on elevated temperature behavior of austenitic stainless steels was studied. It was revealed that carbon does not alter the overall grain coarsening behavior but molybdenum significantly retards the growth of grains toward higher temperatures and slower kinetics and effectively increases the grain growth activation energy due to an interaction energy between Mo and grain boundaries. These observations were based on especial activation energy plots, which facilitate the interpretation of results.

  10. Phase Structure and Site Preference Behavior of Ternary Alloying Additions to PdTi and PtTi Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    The phasc structure and concentration dependence of the lattice parameter and energy of formation of ternary Pd-'I-X and Pt-Ti-X alloys for a large number of ternary alloying additions X (X = Na, Mg, Al, Si, Sc. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir) are investigated with an atomistic modeling approach. In addition, a detailed description of the site preference behavior of such additions showing that the elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice is provided.

  11. Segregation of Sn and Sb in a ternary Cu(1 0 0)SnSb alloy

    NASA Astrophysics Data System (ADS)

    Asante, J. K. O.; Terblans, J. J.; Roos, W. D.

    2005-12-01

    Surface segregation studies of Sn and Sb in Cu(1 0 0)-0.14 at.% Sn-0.12 at.% Sb ternary alloy, have been done by making use of Auger Electron Spectroscopy. The method of Linear Temperature Ramp (LTR) was employed, whereby the sample was heated and cooled linearly at a constant rate. The positive heating rate showed both a kinetic segregation profile, as well as a narrow equilibrium segregation region, at higher temperatures. The equilibrium segregation profile was extended by cooling the sample. Sn was first to segregate to the surface due to its higher diffusion coefficient, mainly from a smaller activation energy ESn. Sb, due to its higher segregation energy, eventually replaced Sn from the surface. The modified Darken model was used to simulate the profile yielding the following segregation parameters: Do(Sn) = 6.3 × 10 -6 m 2/s, Do(Sb) = 2.8 × 10 -5 m 2/s; ESn = 175.4 kJ/mol, ESb = 186.3 kJ/mol; ΔGSn°=64.2 kJ/mol, ΔGSb°=84.3 kJ/mol; ΩCu-Sn = 3.4 kJ/mol, ΩCu-Sb = 15.9 kJ/mol and ΩSn-Sb = -5.4 kJ/mol.

  12. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  13. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  14. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  15. Preparation of ternary Cd1- x Zn x S nanocrystals with tunable ultraviolet absorption by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Huihui; Liu, Limin; Li, Shaohua; Murowchick, James B.; Wisner, Clarissa; Leventis, Nickolas; Peng, Zhonghua; Tan, Guolong

    2015-03-01

    Composition-tunable ternary Cd1- x Zn x S nanocrystals are among the most extensively studied alloyed semiconductor nanocrystals. However, they are almost exclusively prepared by wet chemical routes, which lead to surface-capped nanoparticles. Herein, we present a simple mechanical alloying process to prepare uncapped Zn1- x Cd x S nanocrystals throughout the entire composition range. The resulting nanocrystals have average sizes smaller than 9 nm, are chemically homogenous, and exhibit linear lattice parameter-composition and close-to-linear band-gap-composition relationships. Continuous lattice contraction of the Cd1- x Zn x S nanocrystals with the atomic Zn concentration results in a successional enlargement of their band gap energies expanding from the visible region to the ultraviolet (UV) region, demonstrating the ability for precise control of band gap engineering through composition tuning and mechanical alloying. [Figure not available: see fulltext.

  16. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  17. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  18. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  19. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High Temperature Strenth and Creep-Resistance

    SciTech Connect

    Maziasz, PJ

    2004-09-30

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation-Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metals. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815EC (1500EC) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  20. Influence of site occupancy on the structure, microstructure and magnetic properties of ternary and quasi-ternary alloys of Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Seshubai, V.; Kumar, A. Satish; Ramudu, M.

    2012-07-01

    A systematic study of the effect of cobalt, selectively substituted for Ni and Mn, in the modulated orthorhombic (7M) Ni50Mn29Ga21 alloy has led to interesting correlations between the resultant structure and microstructure. Substitution of Co for Mn resulted in the stabilization of a non-modulated tetragonal (NM) phase at higher Co content and caused suppression of long-range twin deformation leading to sporadic islands within which twin variants were confined. On the other hand, substitution of Co for Ni does not to alter either the superstructural ordering or the long-range twin deformation. A study of the compositional dependence of saturation magnetization measured at 5 K is shown to throw light on the site preference of cobalt and iron atoms substituted in Mn-rich alloys of quasi-ternary Ni-Mn-Ga-(Fe,Co) system. The study reveals that the dopant atoms occupy the regular Mn site, rather than the vacant Ga site, with ferromagnetic exchange relative to the moments on Ni and Mn sub-lattices. These effects are attributed to have their origin in minimizing the stresses generated by the corresponding atomic volume changes incorporated by doping.

  1. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  2. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    SciTech Connect

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-07-15

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B{sub 2} intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  3. Effect of silicon on stability of austenite during isothermal annealing of low-alloy steel with medium carbon content in the transition region between pearlitic and bainitic transformation

    NASA Astrophysics Data System (ADS)

    Jeníček, Š.; Vorel, I.; Káňa, J.; Ibrahim, K.; Kotěšovec, V.

    2017-02-01

    In a vast majority of steels, a prerequisite to successful heat treatment is the phase transformation of initial austenite to the desired type of microstructure which may consist of ferrite, pearlite, bainite, martensite or their combinations. Diffusion plays an important role in this phase transformation. Together with enthalpy and entropy, two thermodynamic quantities, diffusion represents the decisive mechanism for the formation of the particular phase. The basis of diffusion is the thermally-activated movement of ions of alloying and residual elements. It is generally known that austenite becomes more stable during isothermal treatment in the transitional region between pearlitic and bainitic transformation. This is due to thermodynamic processes which arise from the chemical composition of the steel. The transformation of austenite to pearlite or bainite is generally accompanied by formation of cementite. The latter can be suppressed by adding silicon to the steel because this element does not dissolve in cementite, and therefore prevents its formation. The strength of this effect of silicon depends mainly on the temperature of isothermal treatment. If a steel with a sufficient silicon content is annealed at a temperature, at which silicon cannot migrate by diffusion, cementite cannot form and austenite becomes stable for hours.

  4. CRADA NFE-08-01456 Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Industrial Gas Turbines

    SciTech Connect

    Brady, Michael P; Pint, Bruce A; Unocic, Kinga A; Yamamoto, Yukinori; Kumar, Deepak; Lipschutz, Mark D.

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Solar Turbines Incorporated (Solar) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for industrial gas turbine recuperator components. ORNL manufactured lab scale foil of three different AFA alloy compositions and delivered them to Solar for creep properties evaluation. One AFA composition was selected for a commercial trial foil batch. Both lab scale and the commercial trial scale foils were evaluated for oxidation and creep behavior. The AFA foil exhibited a promising combination of properties and is of interest for future scale up activities for turbine recuperators. Some issues were identified in the processing parameters used for the first trial commercial batch. This understanding will be used to guide process optimization of future AFA foil material production.

  5. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  6. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  7. Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate

    SciTech Connect

    Chen, Jun; Lv, Mengyang; Tang, Shuai; Liu, Zhenyu; Wang, Guodong

    2015-08-15

    The effects of retained austenite characteristics on tensile properties and low-temperature impact toughness have been investigated by means of transmission electron microscopy and X-ray diffraction. It was found that only part of austenite phase formed during heat treating was left at room temperature. Moreover, the film-like retained austenite is displayed between bcc-martensite laths after heat treating at 600 °C, while the block-form retained austenite with thin hcp-martensite laths is observed after heat treating at 650 °C. It has been demonstrated that the film-like retained austenite possesses relatively high thermal and mechanical stability, and it can greatly improve low-temperature impact toughness, but its contribution to strain hardening capacity is limited. However, the block-form retained austenite can greatly enhance ultimate tensile strength and strain hardening capacity, but its contribution to low-temperature impact toughness is poor. - Highlights: • Correlation between retained austenite and impact toughness was elucidated. • The impact toughness is related to mechanical stability of retained austenite. • The effect of retained austenite on tensile and impact properties is inconsistent.

  8. Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Su, Longxing; Zhu, Yuan; Zhang, Quanlin; Chen, Mingming; Wu, Tianzhun; Gui, Xuchun; Pan, Bicai; Xiang, Rong; Tang, Zikang

    2013-06-01

    Ternary alloy BeZnO and quaternary alloy BeMgZnO films were prepared on sapphire (0 0 1) substrate by radio-frequency plasma-assisted molecular beam epitaxy (RF-PAMBE). Based on X-ray diffraction (XRD) analysis, no phase segregation is observed for all the alloys. However, BexZn1-xO alloys exhibit a constantly worse crystal quality than BexMgyZn1-x-yO alloys at the similar incorporation contents (i.e. x in BeZnO approximately equals to x + y in BeMgZnO). Optical transmittance spectra were recorded to determine the energy band gap of the films. BeMgZnO was revealed more effective in widening the band gap. Finally, BeZnO and BeMgZnO based MSM structure UV detectors were fabricated. BeMgZnO alloys with better crystal quality showed a favorable optical response and the cutoff wavelength shifted continuously to deep ultraviolet range, while BeZnO based detectors were found no response. This is the first report on BeMgZnO based UV detector, which is a meaningful step forward to the real application.

  9. The independence of irradiation creep in austenitic alloys of displacement rate and helium to dpa ratio

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.; Grossbeck, M.L.

    1997-04-01

    The majority of high fluence data on the void swelling and irradiation creep of austenitic steels were generated at relatively high displacement rates and relatively low helium/dpa levels that are not characteristic of the conditions anticipated in ITER and other anticipated fusion environments. After reanalyzing the available data, this paper shows that irradiation creep is not directly sensitive to either the helium/dpa ratio or the displacement rate, other than through their possible influence on void swelling, since one component of the irradiation creep rate varies with no correlation to the instantaneous swelling rate. Until recently, however, the non-swelling-related creep component was also thought to exhibit its own strong dependence on displacement rate, increasing at lower fluxes. This perception originally arose from the work of Lewthwaite and Mosedale at temperatures in the 270-350{degrees}C range. More recently this perception was thought to extend to higher irradiation temperatures. It now appears, however, that this interpretation is incorrect, and in fact the steady-state value of the non-swelling component of irradiation creep is actually insensitive to displacement rate. The perceived flux dependence appears to arise from a failure to properly interpret the impact of the transient regime of irradiation creep.

  10. Ternary and Quaternary Interdiffusion in ? (fcc) Fe-Ni-Cr-X (X = Si, Ge) Alloys at 900?C

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2008-01-01

    Interdiffusion in Fe-Ni-Cr (fcc phase) alloys with small additions of Si and Ge at 900 C was studied using solid-to-solid diffusion couples. Alloy rods of Fe-24 at.%Ni, Fe-24 at.%Ni- 22at.%Cr, Fe-24 at.%Ni-22at.%Cr-4at.%Si and Fe-24 at.%Ni-22at.%Cr-1.7at.%Ge were cast using arc-melt, and homogenized at 900 C for 168 hours. Sectioned alloy disks from the rods were polished, and diffusion couples were assembled with in Invar steel jig, encapsulated in Argon after several hydrogen flushes, and annealed atz 900 C for 168 hours. Polished cross-sections of the diffusion couples were characterized to determine experimental concentration profiles using electron probe microanalysis with pure elemental standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion flux profiles were examined to determine the average ternary and quaternary interdiffusion coefficients. Effects of alloying additions on the interdiffusional behavior of Fe-Ni- Cr-X alloys at 900 C are presented with due consideration for the formation of protective Cr2O3 scale.

  11. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  12. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  13. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    SciTech Connect

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys.

  14. Characterization Study of Band Gap, Resistivity, Crystal Structure, and Phase Identification of CuInSe2 Ternary Alloy

    NASA Astrophysics Data System (ADS)

    Saing, Bungaran; Arto, Budi

    2016-01-01

    Characterization study of band gap, resistivity, crystal structure, and phase identification of CuInSe2 ternary alloy which is the synthesis result of Bridgman method by using modified simple single zone temperature, have been carried out. The phase identification and crystal structure of obtained polycrystal were characterized by X-ray diffraction. Then the X-ray diffractograms were analyzed by using crystallographic software package GSAS. Electrical resistivity and bandgap were measured by using Van der Pauw method. Identification and analysis of diffractogram show that ternary alloy of CuInSe2 has main phase of space group I ̅4 ad and lattice parameters a and c of 6,1173 A and 11,7144 Å respectively. The other coexisting phases were identified as CuIn5Se8 with the space group P ̅4 2 m and Se with the space group P3121. Result from the resistivity measurement shows the resistivity is between (1,596 - 9,666) × 10 -3Ωm, and Bandgap is around 1,03 - 1,61 eV.

  15. Characterization of Nonmetallic Inclusions in High-Manganese and Aluminum-Alloyed Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun; Kim, Dong-Jin; Min, Dong Joon

    2012-07-01

    The effects of Al and Mn contents on the size, composition, and three-dimensional morphologies of inclusions formed in Fe- xMn- yAl ( x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steels were investigated to enhance our understanding of the inclusion formation behavior in high Mn-Al-alloyed steels. By assuming that the alumina is a dominant oxide compound, the volume fraction of inclusions estimated from the chemical analysis, i.e., insoluble Al, in the Fe-Mn-3Al steels was larger than the inclusion volume fractions in the Fe-Mn-1Al and Fe-Mn-6Al steels. A similar tendency was found in the analysis of inclusions from a potentiostatic electrolytic extraction method. This finding could be explained from the terminal velocities of the compounds, which was affected by the thermophysical properties of Fe-Mn-Al steels. The inclusions formed in the Fe-Mn-Al-alloyed steels are classified into seven types according to chemistry and morphology: (1) single Al2O3 particle, (2) single AlN or AlON particle, (3) MnAl2O4 single galaxite spinel particle, (4) Al2O3(-Al(O)N) agglomerate, (5) single Mn(S,Se) particle, (6) oxide core with Mn(S,Se) skin (wrap), and (7) Mn(S,Se) core with Al2O3(-Al(O)N) aggregate (or bump). The Mn(S,Se) compounds were formed by the contamination of the steels by Se from the electrolytic Mn. Therefore, the raw materials (Mn) should be used carefully in the melting and casting processes of Fe-Mn-Al-alloyed steels.

  16. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  17. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA. Revision 1

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  18. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  19. Continuous and discontinuous precipitation in Fe-1 at.%Cr-1 at.%Mo alloy upon nitriding; crystal structure and composition of ternary nitrides

    NASA Astrophysics Data System (ADS)

    Steiner, Tobias; Ramudu Meka, Sai; Rheingans, Bastian; Bischoff, Ewald; Waldenmaier, Thomas; Yeli, Guma; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.; Mittemeijer, Eric J.

    2016-05-01

    The internal nitriding response of a ternary Fe-1 at.%Cr-1 at.%Mo alloy, which serves as a model alloy for many CrMo-based steels, was investigated. The nitrides developing upon nitriding were characterised by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy and atom probe tomography. The developed nitrides were shown to be (metastable) ternary mixed nitrides, which exhibit complex morphological, compositional and structural transformations as a function of nitriding time. Analogous to nitrided binary Fe-Cr and Fe-Mo alloys, in ternary Fe-Cr-Mo alloys initially continuous precipitation of fine, coherent, cubic, NaCl-type nitride platelets, here with the composition (Cr½,Mo½)N¾, occurs, with the broad faces of the platelets parallel to the {1 0 0}α-Fe lattice planes. These nitrides undergo a discontinuous precipitation reaction upon prolonged nitriding leading to the development of lamellae of a novel, hexagonal CrMoN2 nitride along {1 1 0}α-Fe lattice planes, and of spherical cubic, NaCl-type (Cr,Mo)Nx nitride particles within the ferrite lamellae. The observed structural and compositional changes of the ternary nitrides have been attributed to the thermodynamic and kinetic constraints for the internal precipitation of (misfitting) nitrides in the ferrite matrix.

  20. Influence of Surface Energy on Organic Alloy Formation in Ternary Blend Solar Cells Based on Two Donor Polymers.

    PubMed

    Gobalasingham, Nemal S; Noh, Sangtaik; Howard, Jenna B; Thompson, Barry C

    2016-10-05

    The compositional dependence of the open-circuit voltage (Voc) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT50-co-3HET50), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC61BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned Voc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the Voc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.

  1. Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating

    NASA Astrophysics Data System (ADS)

    Roy, S.; Chakrabarti, D.; Dey, G. K.

    2013-02-01

    Austenite-grain growth was investigated in a couple of microalloyed steels, one containing Ti and the other containing Nb, Ti, and V, using different reheating temperatures between 1273 K and 1523 K (1000 °C and 1250 °C). Nature and distribution of microalloy precipitates were quantitatively analyzed before and after reheating. Interdendritic segregation (or microsegregation) during casting can result in an inhomogeneous distribution of microalloy precipitates in the as-cast slabs, which can create austenite grain size variation (even grain size bimodality) after reheating. Ti addition reduced the grain size variation; however, it could not eliminate the grain size bimodality in Nb-containing steel, due to the differential pinning effect of Nb precipitates. A model was proposed for the prediction of austenite grain size variation in reheated steel by combining different models on microsegregation during solidification, thermodynamic stability, and dissolution of microalloy precipitates and austenite grain growth during reheating.

  2. Flight Planning for the International Space Station - Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification (LODESTARS)

    NASA Technical Reports Server (NTRS)

    Flemings, Merton C.; Matson, Douglas M.; Hyers, Robert W.; Rogers, Jan R.

    2003-01-01

    During rapid solidification, a molten sample is cooled below its equilibrium solidification temperature to form a metastable liquid. Once nucleation is initiated, growth of the solid phase proceeds and can be seen as a sudden rise in temperature. The heat of fusion is rejected ahead of the growing dendrites into the undercooled liquid in a process known as recalescence. Fe-Cr-Ni alloys may form several equilibrium phases and the hypoeutectic alloys, with compositions near the commercially important 316 stainless steel alloy, are observed to solidify by way of a two-step process known as double recalescence. During double recalescence, the first temperature rise is associated with formation of the metastable ferritic solid phase with subsequent conversion to the stable austenitic phase during the second temperature rise. Selection of which phase grows into the undercooled melt during primary solidification may be accomplished by choice of the appropriate nucleation trigger material or by control of the processing parameters during rapid solidification. Due to the highly reactive nature of the molten sample material and in order to avoid contamination of the undercooled melt, a containerless electromagnetic levitation (EML) processing technique is used. In ground-based EML, the same forces that support the weight of the sample against gravity also drive convection in the liquid sample. However, in microgravity, the force required to position the sample is greatly reduced, so convection may be controlled over a wide range of internal flows. Space Shuttle experiments have shown that the double recalescence behavior of Fe-Cr-Ni alloys changes between ground and space EML experiments. This program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.

  3. Near-Eutectic Ternary Mo-Si-B Alloys: Microstructures and Creep Properties

    NASA Astrophysics Data System (ADS)

    Hasemann, G.; Kaplunenko, D.; Bogomol, I.; Krüger, M.

    2016-11-01

    In the present work, the microstructural evolution during the solidification of different near-eutectic Mo-Si-B alloys was investigated. The alloy compositions were chosen from the vicinity of the eutectic region with respect to published liquidus projections. The aim was to identify a eutectic alloy composition in the Mo-rich region of the system, which would be suitable for directional solidification (DS). In a second step, two alloy compositions were prepared via DS and first creep results of these near-eutectic DS alloys are presented and discussed.

  4. Electrochemical Fabrication and Characterization of Corrosion-Resistant, Ternary, Lead-Based Alloys as a New Material for Steel Surface Protection

    NASA Astrophysics Data System (ADS)

    Aliyev, A. Sh.; Tahirli, H. M.; Elrouby, Mahmoud; Soltanova, N. Sh.; Tagiev, D. B.

    2016-06-01

    This article presents the study of the synthesis of the ternary Pb-Sb-Te alloy on the stainless steel substrate via electrochemical method. The corrosion resistance of the electrodeposited alloy has been investigated via subjecting the electro-synthesized alloy to a corrosive medium containing sulfide ions; this medium is similar to the petroleum refining environment. The resulting film of the electrodeposited alloy was analyzed by the scanning electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to determine the morphology and the phase structure of the electrodeposited film. It was found that the electrodeposited Pb-Sb-Te alloy thin film is a multiphase composition. The obtained data reveal that the most corrosion-resistant phase is the PbSb2Te4 alloy.

  5. Bactericidal activity of copper and niobium-alloyed austenitic stainless steel.

    PubMed

    Baena, M I; Márquez, M C; Matres, V; Botella, J; Ventosa, A

    2006-12-01

    Biofouling and microbiologically influenced corrosion are processes of material deterioration that originate from the attachment of microorganisms as quickly as the material is immersed in a nonsterile environment. Stainless steels, despite their wide use in different industries and as appliances and implant materials, do not possess inherent antimicrobial properties. Changes in hygiene legislation and increased public awareness of product quality makes it necessary to devise control methods that inhibit biofilm formation or to act at an early stage of the biofouling process and provide the release of antimicrobial compounds on a sustainable basis and at effective level. These antibacterial stainless steels may find a wide range of applications in fields, such as kitchen appliances, medical equipment, home electronics, and tools and hardware. The purpose of this study was to obtain antibacterial stainless steel and thus mitigate the microbial colonization and bacterial infection. Copper is known as an antibacterial agent; in contrast, niobium has been demonstrated to improve the antimicrobial effect of copper by stimulating the formation of precipitated copper particles and its distribution in the matrix of the stainless steel. Thus, we obtained slides of 3.8% copper and 0.1% niobium alloyed stainless steel; subjected them to three different heat treatment protocols (550 degrees C, 700 degrees C, and 800 degrees C for 100, 200, 300, and 400 hours); and determined their antimicrobial activities by using different initial bacterial cell densities and suspending solutions to apply the bacteria to the stainless steels. The bacterial strain used in these experiments was Escherichia coli CCM 4517. The best antimicrobial effects were observed in the slides of stainless steel treated at 700 degrees C and 800 degrees C using an initial cell density of approximately 10(5) cells ml(-1) and phosphate-buffered saline as the solution in which the bacteria came into contact with

  6. Creation of a sharp cube texture in ribbon substrates of Cu-40% Ni- M ( M = Fe, Cr, V) ternary alloys for high-temperature second generation superconductors

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Egorova, L. Yu.

    2016-11-01

    The structure and the process of texture formation in ribbons made of Cu-Ni- M ( M = Fe, Cr, V) ternary alloys have been studied upon cold rolling deformation to a degree of 99% and subsequent recrystallization annealing. The possibility of obtaining a perfect cube texture in a thin ribbon made of copper-nickel-based ternary alloys with additives of iron, chromium, and vanadium has been shown, which opens the prospects of the use of these alloys as substrates in the technology of production of tapes of high-temperature second-generation superconductors. Optimal annealing regimes have been determined, which make it possible to obtain a perfect biaxial texture close to single-crystalline one with the content of cube-oriented grains {001}<100>±10° more than 99% on the surface of the textured ribbon.

  7. Study of certain features of the electronic structure of the ternary alloys Ni2(Mn, Fe) and Ni3(Mn, Co)

    NASA Technical Reports Server (NTRS)

    Zhukova, V. M.; Fadin, V. P.

    1981-01-01

    The changes in electronic structure related to transport processes occurring during the alloying of he alloy Ni3Mn with iron and cobalt, and the ordering of the ternary alloys thus formed are presented. The Hall effect, the absolute thermal emf, the internal saturation induction, the Nernst-Ettingshausen constant, and the electrical resistivity were measured. Results show a decrease in the contribution of hole sections of the Fermi surface to the transport process occurs together with a considerable increase in the contribution of electron sections. In this case, the mobility of 3 dimensional holes decreases and the mobility of 4s electrons increases considerably.

  8. Formation, crystalline structure, and optical properties of Ge1-x-ySnxCy ternary alloy layers

    NASA Astrophysics Data System (ADS)

    Yamaha, Takashi; Terasawa, Kengo; Oda, Hiroki; Kurosawa, Masashi; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-04-01

    We have investigated the crystalline and optical properties of epitaxial layers of the ternary alloy Ge1-x-ySnxCy grown on a Si substrate. We achieved the formation of epitaxial Ge1-x-ySnxCy layers with a C content as high as 2% even with a high C incorporation efficiency. X-ray photoemission spectra and Raman scattering spectroscopy measurements revealed that C atoms preferentially bond with Sn atoms in the Ge matrix, which is considered to enhance C introduction into substitutional sites in Ge with local strain compensation. We also demonstrated the control of the energy bandgaps of epitaxial Ge1-x-ySnxCy layers by controlling Sn and C contents.

  9. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    SciTech Connect

    Isherwood, Patrick J. M. Walls, John M.; Butler, Keith T.; Walsh, Aron

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  10. Case reviews on the effect of microstructure on the corrosion behavior of austenitic alloys for processing and storage of nuclear waste

    NASA Astrophysics Data System (ADS)

    Kain, V.; Sengupta, P.; de, P. K.; Banerjee, S.

    2005-05-01

    This article describes the corrosion behavior of special austenitic alloys for waste management applications. The special stainless steels have controlled levels of alloying and impurity elements and inclusion levels. It is shown that “active” inclusions and segregation of chromium along flow lines accelerated IGC of nonsensitized stainless steels. Concentration of Cr+6 ions in the grooves of dissolved inclusions increased the potential to the transpassive region of the material, leading to accelerated attack. It is shown that a combination of cold working and controlled solution annealing resulted in a microstructure that resisted corrosion even after a sensitization heat treatment. This imparted extra resistance to corrosion by increasing the fraction of “random” grain boundaries above a threshold value. Randomization of grain boundaries made the stainless steels resistant to sensitization, IGC, and intergranular stress corrosion cracking (IGSCC) in even hot chloride environments. The increased corrosion resistance has been attributed to connectivity of random grain boundaries. The reaction mechanism between the molten glass and the material for process pot, alloy 690, during the vitrification process has been shown to result in depletion of chromium from the reacting surfaces. A comparison is drawn between the electrochemical behavior of alloys 33 and 22 in 1 M HCl at 65 °C. It is shown that a secondary phase formed during welding of alloy 33 impaired corrosion properties in the HCl environment.

  11. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W

    NASA Astrophysics Data System (ADS)

    Lee, K. B.; Kwon, H.; Kwon, H.; Yang, H. R.

    2001-07-01

    The effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior of martensitic steels containing both Mo and W were investigated. The secondary hardening response and properties of these steels are dependent on the composition and distribution of the carbides formed during aging (tempering) of the martensite, as modified by alloying additions and austenitizing treatments. The precipitates responsible for secondary hardening are M2C carbides formed during the dissolution of the cementite (M3C). The Mo-W steel showed moderately strong secondary hardening and delayed overaging due to the combined effects of Mo and W. The addition of Cr removed secondary hardening by the stabilization of cementite, which inhibited the formation of M2C carbides. The elements Co and Ni, particularly in combination, strongly increased secondary hardening. Additions of Ni promoted the dissolution of cementite and provided carbon for the formation of M2C carbide, while Co increased the nucleation rate of M2C carbide. Fracture behavior is interpreted in terms of the presence of impurities and coarse cementite at the grain boundaries and the variation in matrix strength associated with the formation of M2C carbides. For the Mo-W-Cr-Co-Ni steel, the double-austenitizing at the relatively low temperatures of 899 to 816 °C accelerated the aging kinetics because the ratio of Cr/(Mo + W) increased in the matrix due to the presence of undissolved carbides containing considerably larger concentrations of (Mo + W). The undissolved carbides reduced the impact toughness for aging temperatures up to 510 °C, prior to the large decrease in hardness that occurred on aging at higher temperatures.

  12. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Emo, Jonathan; Pareige, Cristelle; Saillet, Sébastien; Domain, Christophe; Pareige, Philippe

    2014-06-01

    This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography.

  13. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  14. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  15. Numerical Prediction of the Thermodynamic Properties of Ternary Al-Ni-Pd Alloys

    NASA Astrophysics Data System (ADS)

    Zagula-Yavorska, Maryana; Romanowska, Jolanta; Kotowski, Sławomir; Sieniawski, Jan

    2016-01-01

    Thermodynamic properties of ternary Al-Ni-Pd system, such as exGAlNPd, µAl(AlNiPd), µNi(AlNiPd) and µPd(AlNiPd) at 1,373 K, were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting exGAlNiPd values was regarded as calculation of values of the exG function inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of exG on all legs of the triangle are known (exGAlNi, exGAlPd, exGNiPd). This approach is contrary to finding a function value outside a certain area, if the function value inside this area is known. exG and LAl,Ni,Pd ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism were calculated numerically using the Excel program and Solver. The accepted values of the third component xx differed from 0.01 to 0.1 mole fraction. Values of LAlNiPd parameters in the Redlich-Kister formula are different for different xx values, but values of thermodynamic functions: exGAlNiPd, µAl(AlNiPd), µNi(AlNiPd) and µPd(AlNiPd) do not differ significantly for different xx values. The choice of xx value does not influence the accuracy of calculations.

  16. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    SciTech Connect

    Prajitno, Djoko Hadi; Soepriyanto, Syoni; Basuki, Eddy Agus; Wiryolukito, Slameto

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  17. New insights to the promoted bainitic transformation in prior deformed austenite in a Fe-C-Mn-Si alloy

    NASA Astrophysics Data System (ADS)

    Hu, Hai-jiang; Xu, Guang; Zhou, Ming-xing; Yuan, Qing

    2017-02-01

    The varying trends of the amount and rate of bainitic transformation with strains at low temperature were investigated through metallography, X-ray diffraction and dilatometry. The results show that deformation at 573 K promotes bainitic transformation, whereas the promotion degree on bainite transformation by ausforming is nonlinear with strains. The amount of bainite in deformed austenite first increases and then decreases with the increase of strains. There exists a maximum value of the promotion effect corresponding to a critical small strain at a low temperature. Bainitic transformation rate can be increased by ausforming at low temperature, whereas a large strain weakens the acceleration effect. The amount of bainite in deformed materials is synthetically depended on the effect of enhanced nucleation and repressed growth. In addition, the volume fraction of retained austenite is not completely consistent with carbon content, indicating that ausforming plays a important role in determining the amount of austenite.

  18. Solid-phase crystallization of Si1- x - y Sn x C y ternary alloy layers and characterization of their crystalline and optical properties

    NASA Astrophysics Data System (ADS)

    Yano, Shota; Yamaha, Takashi; Shimura, Yosuke; Takeuchi, Wakana; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-01-01

    The solid phase crystallization of Si1- x - y Sn x C y ternary alloy layers on an insulator has been examined. Amorphous Si1- x - y Sn x C y layers with a Sn content of 0-20% and a C content of 0-10% were deposited on quartz substrates using a radio-frequency magnetron sputtering method and annealed at temperatures from 400 to 800 °C to induce the solid-phase crystallization. The crystalline properties of the Si1- x - y Sn x C y layers and the influences of Sn and C introduction on their crystalline structures were investigated. It was found that Sn introduction effectively reduces the crystallization temperature of a Si1- x - y Sn x C y layer to 400 °C, while a Si1- y C y binary alloy layer is hardly crystallized even at 800 °C. In addition, X-ray photoelectron spectroscopy measurement revealed that the Sn introduction effectively enhances the introduction of C atoms into substitutional sites in the ternary alloys. The substitutional C content in a polycrystalline Si1- x - y Sn x C y layer was estimated to be as high as 7.2%, which exceeds the thermal equilibrium solid solubility of C in a Si matrix. The absorption spectra of Si1- x - y Sn x C y ternary alloys were also investigated.

  19. Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bucsek, Ashley N.; Hudish, Grant A.; Bigelow, Glen S.; Noebe, Ronald D.; Stebner, Aaron P.

    2016-03-01

    A general procedure to optimize shape memory alloys (SMAs) for specific engineering performance metrics is outlined and demonstrated through a study of ternary, NiTiX high-temperature SMAs, where X = Pd, Hf, Zr. Transformation strains are calculated using the crystallographic theory of martensite and compared to the cofactor conditions, both requiring only lattice parameters as inputs. Measurements of transformation temperatures and hysteresis provide additional comparisons between microstructural-based and transformation properties. The relationships between microstructural-based properties and engineering performance metrics are then thoroughly explored. Use of this procedure demonstrates that SMAs can be tuned for specific applications using relatively simple, fast, and inexpensive measurements and theoretical calculations. The results also indicate an overall trade-off between compatibility and strains, suggesting that alloys may be optimized for either minimal hysteresis or large transformation strains and work output. However, further analysis of the effects of aging shows that better combinations of uncompromised properties are possible through solid solution strengthening.

  20. First-principle calculations of the fundamental properties of CuBrxI1-x ternary alloy

    NASA Astrophysics Data System (ADS)

    Touam, S.; Boukhtouta, M.; Hamioud, L.; Ghemid, S.; Meradji, H.; El Haj Hassan, F.

    2015-11-01

    Ab initio full-potential linearised augmented plane wave (FP-LAPW) method within density functional theory is applied to study the effect of composition on the structural, electronic and thermodynamic properties of CuBrxI1-x ternary alloy. The structural properties at equilibrium are investigated by using the new form of generalised gradient approximations that are based on the optimisation of total energy. For band structure calculations, both Engel-Vosko and modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. Deviation of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence are observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ∆Hm as well as the phase diagram by calculating the critical temperatures. A numerical first-principle calculations of the elastic constants as function of pressure is used to calculate C11, C12 and C44.

  1. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  2. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  3. Nonlocal anomalous Hall effect in ternary alloys based on noble metals

    NASA Astrophysics Data System (ADS)

    Töpler, Franziska; Hönemann, Albert; Tauber, Katarina; Fedorov, Dmitry V.; Gradhand, Martin; Mertig, Ingrid; Fert, Albert

    2016-10-01

    We present a theoretical study of the nonlocal anomalous Hall effect induced by heavy-metal impurities in dilute magnetic alloys based on noble metals. The results of our first-principles calculations are shown in comparison to those obtained within a model consideration via Matthiessen's rule. Based on the transport properties of the constituent binary alloys, we reveal optimal host-impurity combinations to enhance the phenomenon. In particular, this allows us to explain experimental findings showing a strong effect in Cu-based alloys but a vanishing effect in the case of the Au host.

  4. Lattice Thermal Conductivity of the Binary and Ternary Group-IV Alloys Si-Sn, Ge-Sn, and Si-Ge-Sn

    NASA Astrophysics Data System (ADS)

    Khatami, S. N.; Aksamija, Z.

    2016-07-01

    Efficient thermoelectric (TE) energy conversion requires materials with low thermal conductivity and good electronic properties. Si-Ge alloys, and their nanostructures such as thin films and nanowires, have been extensively studied for TE applications; other group-IV alloys, including those containing Sn, have not been given as much attention as TEs, despite their increasing applications in other areas including optoelectronics. We study the lattice thermal conductivity of binary (Si-Sn and Ge-Sn) and ternary (Si-Ge-Sn) alloys and their thin films in the Boltzmann transport formalisms, including a full phonon dispersion and momentum-dependent boundary-roughness scattering. We show that Si-Sn alloys have the lowest conductivity (3 W /mK ) of all the bulk alloys, more than 2 times lower than Si-Ge, attributed to the larger difference in mass between the two constituents. In addition, we demonstrate that thin films offer an additional reduction in thermal conductivity, reaching around 1 W /mK in 20-nm-thick Si-Sn, Ge-Sn, and ternary Si-Ge-Sn films, which is near the conductivity of amorphous SiO2 . We conclude that group-IV alloys containing Sn have the potential for high-efficiency TE energy conversion.

  5. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  6. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  7. Multicomponent interdiffusion in austenitic nickel-, iron-nickel-base alloys and L1(2)-nickel-aluminum intermetallic for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Garimella, Narayana

    Interdiffusion in multicomponent-multiphase alloys is commonly encountered in many materials systems. The developments of multicomponent-multiphase alloys require control of microstructure through appropriate heat treatment, involving solid-state transformations, precipitation processes, and surface modification, where the interdiffusion processes play a major role. In addition, interdiffusion processes often control degradation and failure of these materials systems. Enhanced performance and reliable durability always requires a detailed understanding of interdiffusion. In this study, ternary and quaternary interdiffusion in Ni-Cr-X (X = Al, Si, Ge, Pd) at 900°C and 700°C, Fe-Ni-Cr-X (X = Si, Ge) at 900°C, and Ni3Al alloyed with Ir, Ta and Re at 1200°C were examined using solid-to-solid diffusion couples. Interdiffusion fluxes of individual components were calculated directly from experimental concentration profiles determined by electron probe microanalysis. Moments of interdiffusion fluxes were examined to calculate main and cross interdiffusion coefficients averaged over selected composition ranges from single diffusion couple experiments. Consistency in the magnitude and sign of ternary and quaternary interdiffusion coefficient were verified with interdiffusion coefficients determined by Boltzmann-Matano analysis that requires multiple diffusion couples with intersecting compositions. Effects of alloying additions, Al, Si, Ge and Pd, on the interdiffusion in Ni-Cr-X and Fe-Ni-Cr-X alloys were examined with respect to Cr2O 3-forming ability at high temperature. Effects of Ir, Ta and Re additions on interdiffusion in Ni3Al were examined with respect to phase stability and site-preference. In addition, a numerically refined approach to determine average ternary interdiffusion coefficients were developed. Concentrations and moments of interdiffusion fluxes are employed to generate multiple combinations of multicomponent interdiffusion coefficient as a function

  8. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.

    PubMed

    Vermeulen, Paul; van Thiel, Emile F M J; Notten, Peter H L

    2007-01-01

    In the search for hydrogen-storage materials with a high gravimetric capacity, Mg(y)Ti((1-y)) alloys, which exhibit excellent kinetic properties, form the basis for more advanced compounds. The plateau pressure of the Mg--Ti--H system is very low (approximately 10(-6) bar at room temperature). A way to increase this pressure is by destabilizing the metal hydride. The foremost effect of incorporating an additional element in the binary Mg--Ti system is, therefore, to decrease the stability of the metal hydride. A model to calculate the effect on the thermodynamic stability of alloying metals was developed by Miedema and co-workers. Adopting this model offers the possibility to select promising elements beforehand. Thin films consisting of Mg and Ti with Al or Si were prepared by means of e-beam deposition. The electrochemical galvanostatic intermittent titration technique was used to obtain pressure-composition isotherms for these ternary materials and these isotherms reveal a reversible hydrogen-storage capacity of more than 6 wt. %. In line with the calculations, substitution of Mg and Ti by Al or Si indeed shifts the plateau pressure of a significant part of the isotherms to higher pressures, while remaining at room temperature. It has been proven that, by controlling the chemistry of the metal alloy, the thermodynamic properties of Mg-based hydrides can be regulated over a wide range. Hence, the possibility to increase the partial hydrogen pressure, while maintaining a high gravimetric capacity creates promising opportunities in the field of hydrogen-storage materials, which are essential for the future of the hydrogen economy.

  9. Control of cryogenic intergranular fracture in high-manganese austenitic steels

    SciTech Connect

    Strum, M.J.

    1986-12-01

    The sources of cryogenic intergranular embrittlement in high-Mn austenitic steels and the conditions necessary for its control are examined. It is shown that the high-Mn alloys are inherently susceptible to intergranular embrittlement due to both their low grain boundary cohesion and heterogeneous deformation characteristics. Extrinsic sources of embrittlement which could account for the transition behavior are not observed. An Auger electron spectroscopy (AES) study shows no indication of impurity-segregation-induced embrittlement. No grain boundary precipitation is observed, and austenite stabilization does not ensure ductile fracture. The influence of chemistry modifications on the ductile-to-brittle transition behavior were also examined through additions of N, Cr, and C to binary Fe-31 Mn. Nitrogen additions increase the 77K yield strength at a rate of 2200 MPa per weight percent N, and increase the austenite stability, but also increase the susceptibility of ternary alloys to intergranular fracture. Quaternary Cr additions are effective in increasing the N solubility, and lower the transition temperature. Carbon additions result in complete suppression of intergranular fracture at 77K. Qualitatively significant changes in the deformation heterogeneity with chemistry modifications are not observed. The temper-toughening of Fe-Mn-Cr-N alloys is associated with the grain boundary segregation of boron and the redistribution of N. Both boron and carbon are expected to inhibit intergranular fracture through increases in grain boundary cohesion.

  10. Electro-oxidation of ethanol on ternary non-alloyed Pt-Sn-Pr/C catalysts

    NASA Astrophysics Data System (ADS)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2015-02-01

    Ternary Pt-Sn-Pr/C (70:10:20), (70:15:15) and (45:45:10) electro-catalysts were prepared by a modified formic acid method, and their activity for the ethanol oxidation reaction (EOR) was compared with that of Pt-Pr/C catalysts prepared by the same methods and that of commercial Pt-Sn/C (75:25) and Pt/C catalysts. Among all the catalysts, the Pt-Sn-Pr/C (45:45:10) catalyst presented both the highest mass activity and the highest specific activity. The steady state electrochemical stability of ternary Pt-Sn-Pr catalysts increased with the surface Sn/Pt atomic ratio. Following repetitive potential cycling (RPC), the activity for ethanol oxidation of Pt-Sn-Pr/C catalysts with high surface Sn/Pt atomic ratio was considerably higher than that of the corresponding as-prepared catalysts, and increased with increasing the Sn/Pt ratio. The increase of the EOR mass activity following RPC was ascribed to the increase of either the specific activity (for the Pt-Sn-Pr/C (70:15:15) catalyst) or the electrochemically active surface area (for the Pt-Sn-Pr/C (45:45:10) catalyst). Dissolution of Sn and Pr oxides from Pt-Sn-Pr/C catalyst surface was observed following RPC.

  11. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping.

    PubMed

    Wang, Yue; Leck, Kheng Swee; Ta, Van Duong; Chen, Rui; Nalla, Venkatram; Gao, Yuan; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong

    2015-01-07

    A blue (ca. 440 nm) liquid laser with an ultra-low threshold through which quasi-continuous wave pumping is accessible is achieved by engineering unconventional ternary CdZnS/ZnS alloyed-core/shell QDs. Such an achievement is enabled by exploiting the novel gain media with minimal defects, suppressed Auger recombination, and large gain cross-section in combination with high-quality-factor whispering gallery mode resonators.

  12. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  13. Ternary SnS2–xSex Alloys Nanosheets and Nanosheet Assemblies with Tunable Chemical Compositions and Band Gaps for Photodetector Applications

    PubMed Central

    Yu, Jing; Xu, Cheng-Yan; Li, Yang; Zhou, Fei; Chen, Xiao-Shuang; Hu, Ping-An; Zhen, Liang

    2015-01-01

    Ternary metal dichalcogenides alloys exhibit compositionally tunable optical properties and electronic structure, and therefore, band gap engineering by controllable doping would provide a powerful approach to promote their physical and chemical properties. Herein we obtained ternary SnS2−xSex alloys with tunable chemical compositions and optical properties via a simple one-step solvothermal process. Raman scattering and UV-vis-NIR absorption spectra reveal the composition-related optical features, and the band gaps can be discretely modulated from 2.23 to 1.29 eV with the increase of Se content. The variation tendency of band gap was also confirmed by first-principles calculations. The change of composition results in the difference of crystal structure as well as morphology for SnS2−xSex solid solution, namely, nanosheets assemblies or nanosheet. The photoelectrochemical measurements indicate that the performance of ternary SnS2−xSex alloys depends on their band structures and morphology characteristics. Furthermore, SnS2−xSex photodetectors present high photoresponsivity with a maximum of 35 mA W−1 and good light stability in a wide range of spectral response from ultraviolet to visible light, which renders them promising candidates for a variety of optoelectronic applications. PMID:26616539

  14. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  15. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  16. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Myasnikova, M. V.; Michurov, N. S.

    2016-02-01

    The macro- and microstructures and the distribution of elements and of the values of the microhardness and contact modulus of elasticity along the height and width of the weld metal and heat-affected zone of austenitic corrosion-resistant 12Kh18N10T steel (Russian analog of AISI 321) and titanium alloy VT1-0 (Grade 2) with an intermediate copper insert have been studied after laser welding under different conditions. The structural inhomogeneity of the joint obtained according to one of the regimes selected has been shown: the material of the welded joint represents a supersaturated solid solution of Fe, Ni, Cr, and Ti in the crystal lattice of copper with a uniformly distributed particles of intermetallic compounds Ti(Fe,Cr) and TiCu3. At the boundaries with steel and with the titanium alloy, diffusion zones with thicknesses of 0.1-0.2 mm are formed that represent supersaturated solid solutions based on iron and titanium. The strength of such a joint was 474 MPa, which corresponds to the level of strength of the titanium alloy. A numerical simulation of the mechanical behavior of welded joints upon the elastic tension-compression has been performed taking into account their structural state, which makes it possible to determine the amplitude values of the deformations of the material of the weld.

  17. Fine structure characterization of martensite/austenite constituent in low-carbon low-alloy steel by transmission electron forward scatter diffraction.

    PubMed

    Li, C W; Han, L Z; Luo, X M; Liu, Q D; Gu, J F

    2016-11-01

    Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low-carbon low-alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama-Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents.

  18. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  19. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, J. S.; Nguyen-Manh, D.; Dudarev, S. L.; Kurzydłowski, K. J.

    2017-02-01

    The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe50Cr25Ni25 and Fe55Cr15Ni30, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and <1 0 0> dumbbells are introduced in the Fe2CrNi intermetallic phase as well as in two Fe55Cr15Ni30 alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  20. Ni-Mo-Co ternary alloy as a replacement for hard chrome

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Anandan, C.; Grips, V. K. William

    2013-11-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel-molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°-600 °C. It was observed that the micro hardness of Ni-Mo-Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co-P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni-Mo-Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni-Mo-Co alloy was better than as-deposited Ni-Mo-Co and Ni-Mo coating.

  1. Critical behavior and exponent parameters of the austenitic phase in Ni50- x Pr x Mn37Sn13 alloys with x = 1

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Manh, T. V.; Ho, T. A.; Yu, S. C.; Dan, N. H.; Yen, N. H.; Thanh, T. D.

    2014-06-01

    We fabricated Huesler alloy ingots of Ni50- x Pr x Mn37Sn13 with x = 0 - 5 by using an arcmelting method. Crystalline-structural analyses revealed the coexistence of austenitic and martensitic phases in the samples with x = 0 and 1, in which the volume fraction of the austenitic phase for x = 1 was higher than that for x = 0. With higher Pr concentrations, x > 1, Pr- and Ni3Sn-related secondary phases, which reduced the magnetic order of the alloys, were formed. Thus, only the sample with x = 1 was more suitable for studying the critical behavior. Based on Landau's phase-transition theory and Banerjee's criteria, we found that this sample undergoes a second-order magnetic phase transition (SOMT) at a temperature around the Curie temperature T C ≈ 299 K. Using the modified Arrott plots, asymptotic relations, and a universal scaling law, we determined the values of the critical exponents β = 0.501 ± 0.009 and γ = 1.045 ± 0.006. These values are very close to those expected for the mean-field theory with β = 0.5 and γ = 1, proving the existence of long-range ferromagnetic (FM) order in the sample with x = 1. Particularly, around at temperature T C , the magnetic-entropy change reaches the maximum value (∆ S max ). Its magnetic-field dependences can be described by using a power law |∆ S max | ∝ H n , where n = 0.687 is close to the value 0.677 calculated from the theoretical relation n = 1 + ( β - 1)/( β + γ). We believe that the doping of a suitable Pr amount in Ni50- x Pr x Mn37Sn13 ( x ≈ 1) promotes the formation of the austenitic phase and results in long-range FM order. However, the persistence of the martensitic phase and secondary phases favors short-range FM order and thus decreases the FM order in Ni50- x Pr x Mn37Sn13.

  2. An APFIM/AEM Study of Phase Decompositions in Fe-Ni Alloys at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Miller, M. K.; Williams, D. B.; Goldstein, J. I.

    1992-01-01

    A combined atom probe field ion microscopy and analytical electron microscopy characterization has been performed on laboratory aged martensitic and austenitic specimens of FeNi and FeNiP alloys. These techniques revealed that the martensitic 24.1 and 28.6 at.% Ni alloys decomposed during aging for 1 year at 300 C to form face centered cubic precipitates of approx. 56 at.% Ni in a body centered cubic matrix containing approx. 20 at.% Ni. Some thin platelets were observed in the field ion micrographs of the austenitic Fe-42.9 at. % Ni alloy and the Fe-43.2 at.% Ni-0.44 at.% P alloy after aging at 400 and 350 C. Atom probe analysis revealed phosphorus clustering in the ternary alloy aged at 300 C.

  3. Preparation and characterization of ZnxCd1-xS ternary alloys micro/nanostructures grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Mahdi, M. A.; Hassan, Z.; Hassan, J. J.; Ng, S. S.; Kasim, S. J.

    2015-01-01

    Ternary alloy zinc cadmium sulfide (ZnxCd1-xS) micro/nanostructures were prepared onto various substrates using a thermal evaporation method. Morphological, structural, and optical properties were found to depend on growth temperature and substrate type. ZnxCd1-xS microparticles and flower-like structures were grown onto ITO-glass and Si(100) substrates at 520 °C. Microrods and nanosheets were formed on alumina and Si(100) substrates at 900 °C, as shown in scanning electron microscopy images. X-ray diffraction patterns confirmed that all prepared samples had a high-quality wurtzite (hexagonal) structure. The prepared samples emitted two bands, namely, a sharp one located in the green region corresponding to the near band edge and a broad band in the yellow region resulting from deep-level transition. The green photoluminescence peak location of the prepared samples blue shifted compared with the optical bandgap of bulk CdS, indicating that the prepared ZnxCd1-xS possessed a greater optical bandgap than that of CdS because of the Zn ratio.

  4. Determining the Presence of Ordering in Ternary Semiconductor Alloys Grown by Molecular Beam Epitaxy

    DTIC Science & Technology

    2013-01-01

    not usually detectable by the standard (004) x-ray diffraction (XRD) measurements typically used as a simple measurement of film quality. 15. SUBJECT...as a simple measurement of film quality. 2. Motivation and Army Interest One common example of ordering seen in many semiconductor alloys is copper...this will provide a III-V analog to direct bandgap mercury cadmium telluride (HgCdTe), with the benefits of higher quantum efficiencies (QEs) and

  5. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation.

    PubMed

    Wu, M; Li, J; Ludwig, A; Kharicha, A

    2014-09-01

    Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm(2)) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.

  6. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    DOEpatents

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  7. EIS and XPS investigations on the corrosion mechanism of ternary Zn-Co-Mo alloy coatings in NaCl solution

    NASA Astrophysics Data System (ADS)

    Winiarski, J.; Tylus, W.; Szczygieł, B.

    2016-02-01

    The changes in composition of the corrosion products of electrodeposited ternary Zn-Co-Mo alloy coatings on AISI 1015 steel during exposure to 0.5 mol dm-3 NaCl solution were investigated. XPS studies demonstrated that at the initial stage of corrosion on the surface of Zn-Co-Mo coating zinc hydroxide layer is formed. Hydroxyl groups react with chloride and carbonate ions which lead to the formation of zinc hydroxy carbonates and zinc hydroxy chlorides. The share of these compounds in the oxidation products is initially large. However, with time zinc hydroxy compounds slowly changes to zinc oxide, which is more stable corrosion product. It was estimated that after 24 h of exposure to NaCl solution nearly 60% of zinc detected on the surface of Zn-Co-Mo coating was present in the ZnO form, 18% in the form of zinc hydroxy chloride, and more than 21% as zinc hydroxy carbonate. XPS analyses revealed that the amount of zinc hydroxy chloride increases as the exposure time lengthens and it is significantly higher than at the surface of binary Zn-Co coating. The presence of crystalline zinc chloride hydroxide as a stable product of corrosion of ternary Zn-Co-Mo alloy coating in a 0.5 mol dm-3 NaCl solution was confirmed by XRD analysis. According to XRD and FTIR other zinc corrosion products like: ZnO, Zn(OH)2 and Zn5(CO3)2(OH)6 were also present. The results of XPS and EIS measurements allow us to assume that in the presence of Mo in the alloy, on the surface of ternary Zn-Co-Mo alloy (3.4 wt.% Co, 2.7 wt.% Mo) coating more zinc hydroxy chloride is formed, which favors higher corrosion resistance of this coating.

  8. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  9. Thermodynamic analysis on HVPE growth of InGaN ternary alloy

    NASA Astrophysics Data System (ADS)

    Hanaoka, Koshi; Murakami, Hisashi; Kumagai, Yoshinao; Koukitu, Akinori

    2011-03-01

    Growth of InGaN alloy using hydride vapor phase epitaxy (HVPE) was investigated. Thermodynamic analysis was performed, taking account of the source zones. It was found that InCl3 and GaCl3, which are known to be essential for appreciable InGaN growth by HVPE, could be generated preferentially at the source zone by using a group-III metal and Cl2 gas. The analysis for the growth zone revealed that a significantly large driving force for both InN and GaN deposition is possible. The calculated vapor-solid distribution was close to a linear relationship by using a high V/III ratio, inert carrier gas, and high temperature. These facts suggest that an InGaN thick layer can be grown with a high growth rate and enough controllability of solid composition by employing InCl3 and GaCl3 precursors.

  10. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial.

  11. Temperature Dependent E2 Raman Modes in the ZnCoO Ternary Alloy

    NASA Technical Reports Server (NTRS)

    Samanta, K.; Bhattacharya, P.; Katiyar, R. S.

    2007-01-01

    The anharmonic properties of low and high frequency E2 modes of ZnO and Co doped ZnO were investigated using Raman scattering spectroscopy. We have determined the behavior of frequency, linewidths, and lifetime of E2 modes in the temperature range from 80 to 800 K. In the case of E2(high) mode the frequency shift towards the lower energy side was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice, and the linewidth behavior was analyzed in terms of anharmonic effect of three-phonon decay mechanism. But in the case of E2(low), the linewidth and frequency behaved practically harmonic with respect to temperature and independent of Co substitutions. It is found that the E2(high) phonon anharmonicity is higher for ZnCoO alloys than in pure ZnO and it increases with the compositional disorder. The low temperature lifetime of E2 phonon in ZnO, 1 % and 3% Co doped ZnO were found to be 1.S2, 1.74, and 1.54 ps, respectively.

  12. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  13. Temperature dependent E2 Raman modes in the ZnCoO ternary alloy

    NASA Astrophysics Data System (ADS)

    Samanta, K.; Bhattacharya, P.; Katiyar, R. S.

    2007-01-01

    The anharmonic properties of low and high frequency E2 modes of ZnO and Co doped ZnO were investigated using Raman scattering spectroscopy. We have determined the behavior of frequency, linewidths, and lifetime of E2 modes in the temperature range from 80 to 800K . In the case of E2high mode the frequency shift towards the lower energy side was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice, and the linewidth behavior was analyzed in terms of anharmonic effect of three-phonon decay mechanism. But in the case of E2low , the linewidth and frequency behaved practically harmonic with respect to temperature and independent of Co substitutions. It is found that the E2high phonon anharmonicity is higher for ZnCoO alloys than in pure ZnO and it increases with the compositional disorder. The low temperature lifetime of E2 phonon in ZnO , 1% and 3% Co doped ZnO were found to be 1.82, 1.74, and 1.54ps , respectively.

  14. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1-x (Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-03-01

    We have investigated the structural and electronic properties of the BAs x Sb 1-x , AlAs x Sb 1-x , GaAs x Sb 1-x and InAs x Sb 1-x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  15. Heat capacities, magnetic properties, and resistivities of ternary RPdBi alloys where R = La, Nd, Gd, Dy, Er, and Lu

    SciTech Connect

    Riedemann, T.M.

    1996-05-01

    Over the past four and a half decades research on the rare earths, their compounds, and their alloys has yielded significant insights into the nature of materials. The rare earths can be used to systematically study a series of alloys or compounds. Magnetic ordering, crystalline fields, spin fluctuations, the magnetocaloric effect, and magnetostriction are a small sample of phenomena studied that are exhibited by the rare earth family. A significant portion of research has been conducted on the abundant RM{sub 2} and RM phases, where R is the rare earth and M is a transition metal. The natural progression of science has led to the study of related RMX ternary phases, where X is either another transition metal or semimetal. There are now over 1,000 known RMX phases. The focus of this study is on RPdBi where R = La, Nd, Gd, Dy, Er, and Lu. Their heat capacities, magnetic properties, and resistivities are studied.

  16. Ab initio study of structural, electronic and optical properties of ternary CdO1-xSex alloys using special quasi-random structures

    NASA Astrophysics Data System (ADS)

    Muhammad, Rashid; Fayyaz, Hussain; Muhammad, Imran; A. Ahmad, S.; A. Noor, N.

    2014-01-01

    The structural, electronic, and optical properties of binary CdO, CdSe, and their ternary CdO1-xSex alloys (0 <= x <= 1) in the rock salt and zinc blend phases have been studied by the special quasi-random structure (SQS) method. All the calculations are performed using full-potential linearized augmented plane wave plus local orbital's (FP-LAPW+lo) method within the framework of density function theory (DFT). We use Wu—Cohen (WC) generalized gradient approximation (GGA) to calculate structural parameters, whereas both Wu—Cohen and Engel—Vosko (EV) GGA have been applied to calculate electronic structure of the materials. Our predicted results of lattice constant and bulk modulus show only a slight deviation from Vegard's law for the whole concentrations. The obtained band structure indicates that for the rock-salt phase, the ternary alloys present semi-metallic behavior, while for the zinc blend phase, semiconductor behavior with direct bandgap is observed with decreasing order of x except for CdSe. Finally, by incorporating the basic optical properties, we discuss the dielectric function, refractive index, optical reflectivity, the absorption coefficient, and optical conductivity in terms of incident photon energy up to 14 eV. The calculated results of both binaries are in agreement with existing experimental and theoretical values.

  17. Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

    NASA Astrophysics Data System (ADS)

    Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2016-04-01

    Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8  ×  10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

  18. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  19. Development of a high strength, hydrogen-resistant austenitic alloy. [Fe-36 Ni-3 Ti-3 Ta-1. 3 Mo

    SciTech Connect

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance.

  20. Influence of ternary addition of transition elements (Cr, Si and Mn) on the microstructure and magnetic properties of nano-structured CuCo alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Basumallick, A.; Chattopadhyay, P. P.

    2012-09-01

    The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu-Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350-650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.

  1. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    SciTech Connect

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; Phani, P. Sudharshan

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation and symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.

  2. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  3. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Liu, C.T.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  4. Prediction of positron-annihilation parameters for vacancy-type defects in ternary alloy semiconductors by data-scientific approach

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Kino, Hiori; Uedono, Akira; Miyake, Takashi; Terakura, Kiyoyuki

    2017-01-01

    We calculated positron annihilation parameters for mono- and di-vacancies in ternary semiconductors Al0.5Ga0.5N and In0.5Ga0.5N. It has been found that the obtained annihilation parameters are well correlated with structural parameters. By constructing multiple linear regression models using selected (about 1/4 of the total) datasets as training sets in order to reduce computational cost, we could predict annihilation parameters for the rest.

  5. In Vitro Degradation Behavior of Ternary Mg-Zn-Se and Mg-Zn-Cu Alloys as Biomaterials

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah

    2013-01-01

    In this study, the corrosion behavior of Mg-Zn-Se and Mg-Zn-Cu alloys was investigated to evaluate their corrosion behavior related to use as implantable biomaterials. The corrosion behavior of these alloys and a commercially available Mg-Zn alloy were examined using static solution electrochemical testing, dynamic solution gravimetric testing, ion leaching testing, and microscopic evaluation. Fluctuations in the pH of the Dulbecco’s Modified Eagles Medium (DMEM) used for the gravimetric and ion leaching immersion testing were also recorded over the 30-day duration to assess whether the media conditions induced by the alloy degradation would permit for cellular survival. Weight loss experimentation and electrochemical tests revealed the Mg-Zn-Cu alloy to have the greatest corrosion rate. PMID:24465245

  6. Oxidation Behavior of Molten Cu-Be Binary and Cu-Be- X ( X = Ca or Zr) Ternary Alloys at 1423 K (1150 °C) Under Controlled Oxygen Partial Pressure

    NASA Astrophysics Data System (ADS)

    Tanahashi, Mitsuru; Miura, Jutaro; Iwadachi, Takaharu; Nojiri, Keigo; Fujisawa, Toshiharu; Yamauchi, Chikabumi

    2017-02-01

    The oxidation behavior of molten Cu-Be binary and Cu-Be- X (Ca or Zr) ternary alloys was investigated by exposing these molten alloy systems to various Ar-O2 atmospheres to control the oxygen partial pressure from 10 to 105 Pa at 1423 K (1150 °C). The experimental results clarified that the oxygen partial pressure in gas phase affects the morphology of the oxide formed on the surface of the alloy and the oxidation rate of beryllium. At lower oxygen partial pressure, a molten Cu-Be alloy is covered with a homogeneous and compact internal layer of BeO, which leads to a minimization of the beryllium oxidation rate. By adding a small amount of calcium or zirconium into the molten Cu-0.5 mass pct Be alloy, a protective BeO layer is formed even at higher oxygen partial pressure, resulting in achievement of a significant reduction in the beryllium oxidation rate.

  7. Ab Initio Investigation of the Structural, Electronic and Optical Properties of Cubic GaAs1- x P x Ternary Alloys Under Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Moussa, R.; Abdiche, A.; Abbar, B.; Guemou, M.; Riane, R.; Murtaza, G.; Omran, SAAD Bin; Khenata, R.; Soyalp, F.

    2015-12-01

    The structural, electronic and optical properties of the GaAs1- x P x ternary alloys together with their binary GaP and GaAs compounds were investigated in the zinc-blende (ZB) phase using the density functional theory. The lattice constant of the GaAs compound decreases while its bulk modulus increases when the doping concentration of the P dopant is increased. In addition, both parameters (lattice constant and bulk modulus) show small deviations from the linear concentration dependence. The energy band gap of the GaAs compound is of the direct nature, which increases with the increase in the P dopant concentration, whereas at higher P dopant concentration, the band gap shifts from direct to indirect character. On the other hand, the hydrostatic pressure has a significant effect on the band structure of the investigated compounds where the binary GaAs compound changes from a direct band gap semiconductor to an indirect band gap semiconductor at P ≥ 5 GPa. Furthermore, the pressure-dependence of the optical properties of the GaAs, GaP and GaAs0.75P0.25 alloy were also investigated, where the calculated zero frequency refractive index and the dielectric function are also compared with the experimental results as well as with different empirical models.

  8. Structural and dynamical properties of Bridgman-grown CdSexTe1-x (0ternary alloys

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2013-04-01

    Measurements of the Raman scattering and extended x-ray-absorption fine-structure (EXAFS) spectroscopy are reported on a series of Bridgman-grown zinc-blende CdTe1-xSex (0.35 ≥ x > 0.05) ternary alloys to empathize their lattice dynamical and structural properties. Low-temperature Raman spectra have revealed the classic CdTe-like (TO1, LO1) and CdSe-like (TO2, LO2) pairs of optical phonons. The composition-dependent peak positions of the LO2 modes exhibited shifts towards the higher-energy side, while those of the LO1 phonon frequencies have unveiled the slight redshifts. Detailed analyses of EXAFS data by using the first-principles bond orbital model have enabled us to estimate both the lattice relaxations and nearest-neighbor radial force constants around the Se/Te atoms in the CdTe/CdSe matrix. These results are methodically integrated in the “average t-matrix” formalism within the Green's-function theory for defining the impurity perturbations to comprehend the composition-dependent optical phonons in CdTe1-xSex alloys. Based on our comprehensive calculations of impurity modes in the low-composition regime x→ 0, we have assigned the weak phonon feature observed near ˜175 cm-1 in the low-temperature infrared reflectivity spectroscopy study to a SeTe localized vibrational mode.

  9. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    DOE PAGES

    Lan, Si; Wei, Xiaoya; Zhou, Jie; ...

    2014-11-18

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  10. Dependence of the nitriding rate of ferritic and austenitic substrates on the crystallographic orientation of surface grains; gaseous nitriding of Fe-Cr and Ni-Ti alloys

    NASA Astrophysics Data System (ADS)

    Akhlaghi, M.; Jung, M.; Meka, S. R.; Fonović, M.; Leineweber, A.; Mittemeijer, E. J.

    2015-12-01

    Gaseous nitriding of ferritic Fe-Cr and austenitic Ni-Ti solid solutions reveals that the extent of the uptake of dissolved nitrogen depends on the crystallographic orientation of the surface grains of the substrate. In both ferritic and austenitic substrates, the surface nitrogen concentration and the nitriding depth decrease upon increasing the smallest angle between the surface normal and the normal of a {1 0 0} plane of the surface grain considered. This phenomenon could be ascribed to the residual compressive macrostress developed during nitriding which varies as a function of crystallographic orientation of the (surface) grains due to the elastically anisotropic nature of ferrite and austenite solid solutions investigated in this study.

  11. Reproducible magnetostrain behavior induced by structure transformation for Ni46Co4Mn39Sn11 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Li, Z.; Xu, K.; Zhang, Y. L.; Jing, C.

    2015-01-01

    This paper presents the strain behavior associated with martensitic transformation for polycrystalline Ni46Co4Mn39Sn11. The unique reproducible magnetostrain in this alloy has been realized within a magnetic field change of 3 T, and its maximum value achieves about 0.012% at 225 K, which is almost ten times higher than that in Ni-Mn-Sn ternary alloy. Such a reproducible phenomenon could be attributed to the occurrence of the reversible transformation between multi-variant martensite and austenite under an applied isothermal magnetic field.

  12. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  13. The Evolution of As-cast Microstructure of Ternary Mg-Al-Zn Alloys: An Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A numerical formulation of solidification model which can predict the microsegregation and microstructural features for multicomponent alloys is presented. The model incorporates the kinetic features during solidification such as solute back diffusion, dendrite tip undercooling, and secondary arm coarsening. The model is dynamically linked to thermodynamic library for accurate input of thermodynamic data. The modeling results are tested against the directional solidification experiments for Mg-Al-Zn alloys. The experiments were conducted in the cooling rate range of 0.13 to 2.33 K/s and microstructural features such as secondary arm spacing, primary dendrite arm spacing, second phase fraction, and microsegregation were compared with the modeling results. Based on the model and the experimental data, a solidification map was built in order to provide guidelines for as-cast microstructural features of Mg-Al-Zn alloys in a wide range of solidification conditions.

  14. Comparison of Pt-based binary and ternary alloy anode catalysts for polymer electrolyte direct methanol fuel cells

    SciTech Connect

    Liu, R.; Ley, K.L.; Pu, C.

    1996-12-31

    As an anode catalyst, Pt is highly active for the adsorption and dehydrogenation of methanol, however, the surface is poisoned by CO. To oxidize CO to CO{sub 2}, a second oxygen atom is required from an adjacent adsorbed water molecule. Bifunctional alloys composed of Pt and a second metal M, able to activate H{sub 2}O (forming -OH{sub ads}) at low potentials, are candidate materials for methanol electro-oxidation catalysts A proposed mechanism is: Figure 2 shows that metals which enhance methanol oxidation activity when alloyed with Pt have similar M-O bond strengths (see bold print), suggesting that the best binary alloy catalysts have second metals that are optimized with respect to the ability to oxidatively adsorb water. and the ability to dissociate M-O bonds to yield CO{sub 2}.

  15. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    SciTech Connect

    Lan, Si; Wei, Xiaoya; Zhou, Jie; Lu, Zhaoping; Wu, Xuelian; Feygenson, Mikhail; Neuefeind, Jorg C.; Wang, Xun-Li

    2014-11-18

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  16. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  17. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.

    PubMed

    Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando

    2009-02-28

    The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type

  18. Extended x-ray absorption fine structure and micro-Raman spectra of Bridgman grown Cd1-xZnxTe ternary alloys

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2014-03-01

    We have performed low-temperature micro-Raman scattering and extended x-ray absorption fine-structure (EXAFS) measurements on the Bridgman-grown bulk zinc-blende Cd1-x Zn x Te (1.0 ≧̸ x ≧̸ 0.03) ternary alloys to comprehend their structural and lattice dynamical properties. The micro-Raman results are carefully appraised to authenticate the classical two-phonon mode behavior insinuated by far-infrared (FIR) reflectivity study. The composition-dependent EXAFS experiments have revealed a bimodal distribution of the nearest-neighbor bond lengths—its analysis by first-principles bond-orbital model enabled us to estimate the lattice relaxations around Zn/Cd atoms in CdTe/ZnTe to help evaluate the necessary force constant variations for constructing the impurity-perturbation matrices. The simulated results of impurity vibrational modes by average-t-matrix Green’s function (ATM-GF) theory has put our experimental findings of the gap mode ˜153 cm-1 near x ≈ 1 on a much firmer ground.

  19. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  20. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  1. FP-LAPW methodology based theoretical investigation of structural, electronic and optical properties of MgxPb1-xS, MgxPb1-xSe and MgxPb1-xTe ternary alloys

    NASA Astrophysics Data System (ADS)

    Chattopadhyaya, Surya; Bhattacharjee, Rahul

    2017-01-01

    The structural, electronic and optical properties of MgxPb1-xS, MgxPb1-xSe and MgxPb1-xTe alloys for 0≤ x≤1 in their rock-salt (B1) crystallographic phase have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method under the framework of density functional theory (DFT). Using the Wu-Cohen generalized-gradient approximation (WC-GGA) induced exchange-correlation potential scheme, the ground state structural parameters such as equilibrium lattice constants, bulk modulus and its pressure derivatives are calculated and deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence have been observed for the alloys. Electronic band structures and density of states have been calculated using Tran-Blaha modified Becke-Johnsoexit3b2tex.batn (TB-mBJ) parameterization scheme to study the electronic properties of the binary compounds and their ternary alloys. Using the approach of Zunger and co-workers, the microscopic origins of band gap bowing have been discussed in term of volume deformation, charge exchange and structural relaxation. Optical properties of the binary compounds and their ternary alloys have been calculated in terms of their respective dielectric function, refractive index, reflectivity and optical conductivity. Few calculated results are compared with available experimental and other theoretical data.

  2. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.

  3. Microstructural evolution of metastable austenitic steel during high-pressure torsion and subsequent heat treatment

    NASA Astrophysics Data System (ADS)

    Chen, S.; Shibata, A.; Zhao, L. J.; Gao, S.; Tian, Y. Z.; Tsuji, N.

    2014-08-01

    Metastable austenite in a Fe-24Ni-0.3C (wt.%) alloy was processed by high-pressure torsion and subsequently heat-treated. The HPT-processed material had lamellae structures composed of highly deformed austenite and deformation-induced martensite. The reverse transformation of the deformation-induced martensite and recovery/recrystallization of the retained austenite completed above 500 °C and resulted in fully annealed and single-phase austenite with different grain sizes. The ultrafine-grained and nanocrystalline austenite showed high yield strength and large ductility due to transformation-induced plasticity.

  4. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  5. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  6. Stable atomic structure of NiTi austenite

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that "on average" has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  7. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M11–xM2xB2 alloys with AlB2 type structure

    PubMed Central

    Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.

    2015-01-01

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11–xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1–xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2. PMID:25970763

  8. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M11-xM2xB2 alloys with AlB2 type structure

    NASA Astrophysics Data System (ADS)

    Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.

    2015-05-01

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11-xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2.

  9. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  10. The effects of double austenitization on the mechanical properties of a 0. 34C containing low-alloy Ni-Cr-Mo-V steel

    SciTech Connect

    Chang, E.; Chang, C.Y. . Dept. of Materials Science and Engineering); Liu, C.D. )

    1994-03-01

    This article considers five different microstructures of a tempered martensitic 0.34C, 3Ni-1.3Cr-0.4Mo-0.1V steel through various heat treatments, including double austenitization (DA) treatments, and how the impact toughnesses are influenced by microstructure. Of the four mechanisms considered to explain the beneficial effect of DA treatment, the roles of retained austenite, grain-boundary embrittlement by impurity segregation, and matrix flow stress are discounted. The 50 pct fracture appearance transition temperature (FATT) of this steel is found to be dependent on both the grain size and the carbide dissolution. The conventionally treated steel contains mainly platelike M[sub 3]C carbides. The DA treatment helps to dissolve VC carbides and coarsen and spheroidize M[sub 3]C carbides in favor of the precipitation of short rodlike M7C3 carbides with a lower aspect ratio. The improvement of impact toughness (upper shelf energy, ductile-to-brittle transition temperature (DBTT), and lower shelf energy) by DA treatment, explained in detail, is attributed to a change of this material's tensile and work-hardening behavior affected by a variation of carbide morphology.

  11. Site preference of ternary alloying elements in Ni3Al-X (X  =  Co,Nb): a first-principles calculations in combination with XPS study

    NASA Astrophysics Data System (ADS)

    Mitrokhin, Yu S.; Belash, V. P.; Klimova, I. N.; Stepanova, N. N.

    2017-02-01

    Using the XPS experiment with first-principles calculations, we perfomed a detailed study of the site occupancy of 3d (Co) and 4d (Nb) transition metal elements in the L12 Ni3Al matrix. Two different packages TB-LMTO-ASA and VASP were used in the first-principles calculations. The total density of states (DOS) obtained in both cases are similar. The smearing DOS are in good agreement with XPS experiment. It was found that in Ni3Al-X ternary alloy Co prefers Ni sites and Nb prefers Al sites.

  12. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  13. Effect of Temperature on the Deformation Behavior of B2 Austenite in a Polycrystalline Ni49.9Ti50.1 (at.Percent) Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Benafan, O.; Noebe, R. D.; Padula, S. A., II; Clausen, B.; Vogel, S.; Vaidyanathan, R.

    2013-01-01

    Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes.

  14. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel

    NASA Astrophysics Data System (ADS)

    Lai, Qingquan; Gouné, Mohamed; Perlade, Astrid; Pardoen, Thomas; Jacques, Pascal; Bouaziz, Olivier; Bréchet, Yves

    2016-07-01

    The austenitization from a spheroidized microstructure during intercritical annealing was studied in a Fe-0.1C-3.5Mn alloy. The austenite grains preferentially nucleate and grow from intergranular cementite. The nucleation at intragranular cementite is significantly retarded or even suppressed. The DICTRA software, assuming local equilibrium conditions, was used to simulate the austenite growth kinetics at various temperatures and for analyzing the austenite growth mechanism. The results indicate that both the mode and the kinetics of austenite growth strongly depend on cementite composition. With sufficiently high cementite Mn content, the austenite growth is essentially composed of two stages, involving the partitioning growth controlled by Mn diffusion inside ferrite, followed by a stage controlled by Mn diffusion within austenite for final equilibration. The partitioning growth results in a homogeneous distribution of carbon within austenite, which is supported by NanoSIMS carbon mapping.

  15. Fluctuations of chemical composition of austenite and their consequence on shape memory effect in Fe-Mn-(Si, Cr, Ni, C, N) alloys

    SciTech Connect

    Bliznuk, V.V.; Gavriljuk, V.G. . E-mail: gavr@imp.kiev.ua; Kopitsa, G.P.; Grigoriev, S.V.; Runov, V.V.

    2004-09-20

    Polycrystalline samples of shape memory iron-based alloys containing 17, and 30 mass% Mn and alloyed with Si, Cr, Ni, C, N were studied by means of small angle scattering of polarized neutrons (SAPNS). A direct correlation between chemical homogeneity of the Fe-Mn, Fe-Mn-Si, Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni solid solutions and the values of reversible strain caused by the {gamma} {yields} {epsilon} {yields} {gamma} martensitic transformation was found. The addition of silicon to the Fe-Mn alloys significantly improves chemical homogeneity of the fcc solid solution on the scale of larger than several nm, which correlates with the essential increase of reversible strain. A similar to silicon but weaker effect was observed in the case of nitrogen addition to the Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni alloys. Based on the obtained experimental data and in consistency with the previously expressed idea by Sade et al., the positive effect of silicon and nitrogen on chemical homogeneity and SME in Fe-Mn alloys is attributed to the short-range atomic ordering induced by these elements.

  16. Role of the Bogachev - Mints Concept of Metastability of Austenite in Choosing Wear-Resistant Materials

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Filippov, M. A.

    2005-01-01

    The significance of the Bogachev - Mints concept of metastability of austenite for the choice of strain-hardenable steel, cast iron, and facing alloys resisting mechanical kinds of wear (cavitation-, erosion-, and abrasion-induced) is discussed.

  17. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  18. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  19. Low-temperature sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N thin film alloys

    SciTech Connect

    Haider, Ali E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Ozgit-Akgun, Cagla; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr; Okyay, Ali Kemal

    2016-01-15

    In this work, the authors have performed sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N alloys at a growth temperature of 450 °C. Triethylboron, triethylgallium, trimethylindium, and N{sub 2} or N{sub 2}/H{sub 2} plasma have been utilized as boron, gallium, indium, and nitrogen precursors, respectively. The authors have studied the compositional dependence of structural, optical, and morphological properties of B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N ternary thin film alloys. Grazing incidence X-ray diffraction measurements showed that boron incorporation in wurtzite lattice of GaN and InN diminishes the crystallinity of B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N sample. Refractive index decreased from 2.24 to 1.65 as the B concentration of B{sub x}Ga{sub 1-x}N increased from 35% to 88%. Similarly, refractive index of B{sub x}In{sub 1-x}N changed from 1.98 to 1.74 for increase in B concentration value from 32% to 87%, respectively. Optical transmission band edge values of the B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N films shifted to lower wavelengths with increasing boron content, indicating the tunability of energy band gap with alloy composition. Atomic force microscopy measurements revealed an increase in surface roughness with boron concentration of B{sub x}Ga{sub 1-x}N, while an opposite trend was observed for B{sub x}In{sub 1-x}N thin films.

  20. Shear punch testing of {sup 59}Ni isotopically-doped model austenitic alloys after irradiation in FFTF at different He/dpa ratios

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1998-03-01

    A series of three model alloys, Fe-15Cr-25Ni, Fe-15Cr-25Ni-0.04P and Fe-15Cr45Ni were irradiated side-by-side in FFTF-MOTA in both the annealed and the cold worked condition in each of two variants, one using naturally occurring isotopic mixtures, and another doped with {sup 59}Ni to generate relatively high helium-to-dpa ratios. Previous papers in this series have addressed the influence of helium on radiation-induced evolution of microstructure, dimensional stability and mechanical properties, the latter using miniature-tensile specimens. In the final paper of this experimental series, three sets of irradiations conducted at different temperatures and displacement rates were examined by shear punch testing of standard microscopy disks. The results were used to determine the influence of helium generation rate, alloy starting condition, irradiation temperature and total neutron exposure. The results were also compared with the miniature tensile data obtained earlier. In general, all alloys approached saturation levels of strength and ductility that were relatively independent of He/dpa ratio and starting condition, but were sensitive to the irradiation temperature and total exposure. Some small influence of helium/dpa ratio on the shear strength is visible in the two series that ran at {approximately}490 C, but is not evident at 365 C.

  1. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  2. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  3. Method for residual stress relief and retained austenite destabilization

    DOEpatents

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  4. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  5. The influence of silicon and aluminum on austenite deformation behavior during fatigue and tensile loading

    NASA Astrophysics Data System (ADS)

    Lehnhoff, Gregory R.

    Advanced high strength steels (AHSS) for automobile light-weighting utilize Si and Al alloying to retain austenite in the microstructure during thermal partitioning treatments. This research project utilized fully austenitic steels with varied Si and Al compositions to understand the effect of these elements on austenite deformation response, including deformation induced martensite formation and deformation twinning. Specific focus was directed at understanding austenite deformation response during fatigue loading. Independent alloying additions of 2.5 wt pct Si and Al were made to a base steel composition of 15 Ni - 11 Cr - 1 Mn - 0.03 C (wt pct). Weak beam dark field transmission electron microscopy (TEM) imaging of dissociated dislocations was implemented to experimentally determine the influences of Si and Al on austenite stacking fault energy (SFE). The 2.5 wt pct Si alloying addition decreased the SFE by 6.4 mJ/m2, while the 2.5 wt pct Al alloying increased the SFE by 12 mJ/m2. Fully reversed, total strain controlled, low cycle fatigue (LCF) tests indicated that all four alloys underwent primary cyclic hardening and stabilization. Secondary cyclic strain hardening was correlated to BCC martensite formation using Feritscope magnetic fraction measurements of LCF specimens; the formation of 1 pct martensite led to 7 MPa of secondary hardening. TEM showed that martensite predominantly formed as parallel, irregular bands through strain induced nucleation on austenite shear bands. The austenite shear bands consisted of austenite {111} planes with concentrated dislocations, stacking faults, and/or HCP epsilon-martensite. Aluminum alloying promoted martensite formation during LCF, while Si suppressed martensite. Therefore, the strain induced nucleation process was not suppressed by the increased SFE associated with Al alloying. Tensile testing indicated that Si alloying promoted deformation twinning by lowering the SFE. Similarly to LCF loading, Al promoted

  6. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  7. Characterization of Stoichiometric and Aging Effects on NiTiHf High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Coughlin, Daniel Robert

    NiTiHf ternary alloys exhibit attractive high temperature shape memory alloy (HTSMA) properties. Material properties include moderate transformation strain, relatively high transformation temperature, stable pseudoelastic (PE) behavior, and very small irrecoverable strain during load biased tests. The addition of Hf is more attractive than Pt and Pd due to the fact that Hf has a lower cost. Four NiTiHf alloys with different chemical compositions spanning stoichiometry were used to analyze microstructure and mechanical behavior. Research will mainly be focused on the Ni-rich alloys based on that the Ni-lean alloys do not exhibit the previously mentioned HTSMA material properties. The alloys analyzed all had 20(at.)% Hf with varying Ti concentrations (29(at.)%, 29.7(at.)%, 30(at.)%, and 30.5(at.)%). All of the alloys were formed by induction melting, homogenized at 1050C for 72hrs, and then hot extruded with a diameter reduction of 7:1 at a temperature of 900C. In addition to the homogenized and extruded condition, several short-term aging cycles above 400C were completed on each of the alloys. Certain microstructure and mechanical properties are obtained when Hf is added to NiTi and a proper aging cycle is used. Results from isothermal compression tests that were executed above the austenite finish temperature determined that the Ni-rich NiTiHf alloys exhibited all the necessary properties to be considered for HTSMA applications. The test temperature range of the isothermal compression tests were chosen to characterize the transition from PE behavior to austenite plasticity and to examine the deformation behavior of the B2 phase at high temperatures. Results from compression tests showed a strengthening effect when the test temperature was increased through the PE test region. The strengthening effect is due to the yield stress and plasticity being related to the stress induced martensite that is created during the compression test executed above the austenite

  8. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  9. The development of alumina-forming austenitic stainless steels for high-temperature structural use

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Santella, Michael L; Maziasz, Philip J; Pint, Bruce A; Lu, Zhao Ping; Liu, Chain T; Bei, Hongbin

    2008-01-01

    Efforts at Oak Ridge National Laboratory to developAl2O3-forming austenitic (AFA) stainless steels for high-temperature (600-900 aC) structural use under aggressive oxidizing conditions are overviewed. Data obtained to date indicate the potential to achieve superior oxidation resistance to conventional Cr2O3-forming Fe- and Ni-base heat-resistant alloys, with creep strength comparable to state-of-the-art advanced austenitic stainless steels. Preliminary assessment also indicates the developed alloys are amenable to welding. Details of the alloy design approach and composition-microstructure-property relationships are presented.

  10. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  11. Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Fischer, K.; Segel, C.; Schreiber, G.; Biermann, H.

    2015-04-01

    A thermo-mechanical process consisting of cold rolling and subsequent reversion annealing was applied to high-alloy metastable austenitic CrMnNi steels with different nickel contents. As a result of the reversion annealing ultrafine grained material with a grain size in the range between 500 nm up to 4 μm were obtained improving the strength behavior of the material. The evolution of the texture of both the cold rolled states and the reversion-annealed states was studied either by X-ray diffraction or by EBSD measurements. The nickel content has a significant influence on the austenite stability and consequently also on the amount of the martensitic phase transformation. However, the developed textures in both steel variants with different austenite stability revealed the same behavior. In both investigated steels the texture of the reverted austenite is a pronounced Bs-type texture as developed also for the deformed austenite

  12. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  13. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGES

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; ...

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  14. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  15. Effet d'un enrichissement en nickel sur la stabilite mecanique de l'austenite de reversion lorsque soumise a de la fatigue oligocyclique

    NASA Astrophysics Data System (ADS)

    Godin, Stephane

    The effect of nickel enrichment on the mechanical stability of the reversed austenite contained in martensitic stainless steels 13%Cr-4%Ni and 13%Cr-6%Ni was investigated. The main objective of the study was to observe their microstructure and to compare the dynamic behaviour of the reversed austenite. Tempers made at different temperatures showed that the 6% Ni alloy began to form more austenite and at a lower temperature. SEM and TEM analysis were used to see the austenite and measure its chemical composition. It has been observed that it was richer in Ni than the surrounding martensite. This enrichment increased with tempering temperature and caused an impoverishment of the surrounding martensite. The study also showed that the chemical composition of the austenite formed at the peak (maximum) of both alloys was similar. For a same tempering, this suggests Ni can help to form more austenite but this austenite is not necessarily richer in Ni. The analysis also showed that the austenite was predominantly lamellar and located at the interface and/or inside the martensite laths. Low cycle fatigue tests have shown that the austenite of the 6% Ni alloy was the most mechanically stable even if its Ni content was lower than the 4% Ni alloy austenite. This behaviour was explained by a thinner and narrower morphology of this phase. For a different content of Ni and different quantity of austenite, the most mechanically stable one was in the 4% Ni alloy. It turned out that its reversed austenite was thinner and its surrounding martensite was a bit harder than the 6% Ni alloy austenite. The effect of Ni enrichment of an alloy would be beneficial regarding the mechanical stability if a suitable tempering is made. This tempering must form a thin lamellar austenite in a sufficiently hard martensite. More Ni in the austenite would not necessarily raise the mechanical stability. It could contribute but it seems that it is not be the main factor governing the mechanical stability

  16. First-principles calculations of the structural, electronic, elastic, phase diagram and thermal properties of Zn1-xBexTe ternary alloy

    NASA Astrophysics Data System (ADS)

    Boumaza, A.; Ghemid, S.; Chouahda, Z.; Meradji, H.; El Haj Hassan, F.

    2012-09-01

    The structural, electronic, elastic, thermal and thermodynamic properties of Zn1-xBexTe semiconductor alloys have been investigated using the full-potential linearized augmented plane wave method within density functional theory. We use both the Wu-Cohen and the Engel-Vosko generalized gradient approximations of the exchange-correlation energy that are based on the optimization of the total energy and the corresponding potential, respectively. The ground state properties such as lattice constants, bulk modulus and elastic constants are in good agreement with numerous experimental and theoretical data. The calculated band structures show that the band gap undergoes a direct to indirect transition at a given concentration. A regular-solution model is used to investigate the thermodynamic stability of the alloy that mainly indicates a phase miscibility gap. In addition, the quasi-harmonic Debye model is applied to determine the thermal properties of the alloy.

  17. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  18. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  19. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.

    PubMed

    Seol, Jae-Bok; Lee, B-H; Choi, P; Lee, S-G; Park, C-G

    2013-09-01

    We introduce a new experimental approach for the identification of the atomistic position of interstitial carbon in a high-Mn binary alloy consisting of austenite and ε-martensite. Using combined nano-beam secondary ion mass spectroscopy, atomic force microscopy and electron backscatter diffraction analyses, we clearly observe carbon partitioning to austenite. Nano-beam secondary ion mass spectroscopy and atom probe tomography studies also reveal carbon trapping at crystal imperfections as identified by transmission electron microscopy. Three main trapping sites can be distinguished: phase boundaries between austenite and ε-martensite, stacking faults in austenite, and prior austenite grain boundaries. Our findings suggest that segregation and/or partitioning of carbon can contribute to the austenite-to-martensite transformation of the investigated alloy.

  20. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  1. The isothermal decomposition of austenite in hot-rolled microalloyed steels

    NASA Astrophysics Data System (ADS)

    Crooks, M. J.; Chilton, J. M.

    1984-06-01

    The isothermal decomposition of austenite has been examined in a set of 0.1 C, 1.4 Mn steels containing small amounts of Ti, V, or Nb. The volume fraction of ferrite was measured as a function of transformation temperature and holding time, after hot rolling. Precipitation of carbonitrides, in both the austenite and the ferrite, was examined by electron microscopy of extraction replicas. The decomposition is slowest in the Nb-alloyed steel, in which the start of transformation is delayed and ferrite growth rates are much lower than in the other steels. In the V-alloyed steels, ferrite growth rates are lower than in the plain carbon or Ti alloyed steels. These results are discussed in terms of the effects of carbonitride precipitation in the austenite during high temperature deformation and in the ferrite during transformation. The roles of V and Nb in solution are also considered.

  2. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Szakálos, Peter

    2015-06-01

    Alumina forming austenitic steels (AFA) and commercial stainless steels have been exposed in liquid lead with 10-7 wt.% oxygen at 550 °C for up to one year. It is known that chromia forming austenitic stainless steels, such as 316L and 15-15 Ti, have difficulties forming protective oxides in liquid lead at temperatures above 500 °C, which is confirmed in this study. By adding Al to austenitic steels, it is in general terms possible to increase the corrosion resistance. However this study shows that the high Ni containing AFA alloys are attacked by the liquid lead, i.e. dissolution attack occurs. By lowering the Ni content in AFA alloys, it is possible to achieve excellent oxidation properties in liquid lead. Following further optimization of the microstructural properties, low Ni AFA alloys may represent a promising future structural steel for lead cooled reactors.

  3. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  4. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Stocks, G. M.; Újfalussy, B.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO{sub 3} lattice. An important finding is that the magnetic moments of transition metals in Fe{sub 3}Al and Co{sub 3}Al are ordered ferromagnetically, whereas the Ni{sub 3}Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  5. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.

  6. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  7. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  8. Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-Pressure Atmosphere

    NASA Astrophysics Data System (ADS)

    Kula, P.; Dybowski, K.; Lipa, S.; Januszewicz, B.; Pietrasik, R.; Atraszkiewicz, R.; Wołowiec, E.

    2014-11-01

    The effect of the content of retained austenite and of the initial austenite grain size on high-cycle fatigue of two low-alloy steels 16MnCr5 and 17CrNi6-6 after carburizing in a low-pressure atmosphere (acetylene, ethylene and hydrogen) and subsequent high-pressure gas quenching is investigated.

  9. Characterization of the sodium corrosion behavior of commercial austenitic steels

    SciTech Connect

    Shiels, S.A.; Bagnall, C.; Keeton, A.R.; Witkowski, R.E.; Anantatmula, R.P.

    1980-01-01

    During the course of an on-going evaluation of austenitic alloys for potential liquid metal fast breeder reactor (LMFBR) fuel pin cladding application, a series of commercial alloys was selected for study. The data obtained led to the recognition of an underlying pattern of behavior and enabled the prediction of surface chemistry changes. The changes in surface topographical development from alloy to alloy are shown and the important role played by the element molybdenum in this development is indicated. The presentation also illustrates how a total damage equation was evolved to encompass all aspects of weight loss and metal/sodium interactions: wall thinning ferrite layer formation and intergranular attack. The total damage equation represents a significant departure from the classical description of sodium corrosion in which weight loss is simply translated into wall thinning.

  10. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  11. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  12. Grain boundary diffusion of {sup 181}W in Fe-Cr ferritic alloys

    SciTech Connect

    Cermak, J.; Ruzickova, J.; Pokorna, A.

    1995-07-15

    The grain boundary diffusivity s{delta}D{sub b} of {sup 181}W in binary Fe-Cr alloys with 8--12 wt.% Cr, in a ternary alloy Fe-8Cr-0.17C and in two commercial modifications of 8% Cr ferritic steels were measured by the serial sectioning method in the temperature range 773--1,123 K. A variation of the Cr concentration in the range 8--12 wt.% does not influence s{delta}D{sub b}. The addition of carbon and, probably also phosphorus, decreases s{delta}D{sub b} similarly as it was observed in a previous study on iron diffusion in austenitic alloys Fe-Ni-Cr-C and Fe-Ni-Cr-P. The binary alloys could be considered pure, i.e. free of carbon, above 883 K, whereas at lower temperatures, probably due to residual carbon segregation to grain boundaries, a considerable decrease in s{delta}D{sub b} was observed compared with the extrapolated values from the high temperature region. The tungsten grain boundary diffusivity was found to be insensitive to small changes in the concentration of other alloying or impurity elements.

  13. Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions

    NASA Astrophysics Data System (ADS)

    Enloe, Charles M.; Findley, Kip O.; Speer, John G.

    2015-11-01

    Austenite grain growth and microalloy precipitate size and composition evolution during thermal processing were investigated in a carburizing steel containing various additions of niobium and molybdenum. Molybdenum delayed the onset of abnormal austenite grain growth and reduced the coarsening of niobium-rich precipitates during isothermal soaking at 1323 K, 1373 K, and 1423 K (1050 °C, 1100 °C, and 1150 °C). Possible mechanisms for the retardation of niobium-rich precipitate coarsening in austenite due to molybdenum are considered. The amount of Nb in solution and in precipitates at 1373 K (1100 °C) did not vary over the holding times evaluated. In contrast, the amount of molybdenum in (Nb,Mo)C precipitates decreased with time, due to rejection of Mo into austenite and/or dissolution of fine Mo-rich precipitates. In hot-rolled alloys, soaking in the austenite regime resulted in coarsening of the niobium-rich precipitates at a rate that exceeded that predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening. This behavior is attributed to an initial bimodal precipitate size distribution in hot-rolled alloys that results in accelerated coarsening rates during soaking. Modification of the initial precipitate size distribution by thermal processing significantly lowered precipitate coarsening rates during soaking and delayed the associated onset of abnormal austenite grain growth.

  14. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  15. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  16. Austenite grain growth simulation considering the solute-drag effect and pinning effect

    PubMed Central

    Fujiyama, Naoto; Nishibata, Toshinobu; Seki, Akira; Hirata, Hiroyuki; Kojima, Kazuhiro; Ogawa, Kazuhiro

    2017-01-01

    Abstract The pinning effect is useful for restraining austenite grain growth in low alloy steel and improving heat affected zone toughness in welded joints. We propose a new calculation model for predicting austenite grain growth behavior. The model is mainly comprised of two theories: the solute-drag effect and the pinning effect of TiN precipitates. The calculation of the solute-drag effect is based on the hypothesis that the width of each austenite grain boundary is constant and that the element content maintains equilibrium segregation at the austenite grain boundaries. We used Hillert’s law under the assumption that the austenite grain boundary phase is a liquid so that we could estimate the equilibrium solute concentration at the austenite grain boundaries. The equilibrium solute concentration was calculated using the Thermo-Calc software. Pinning effect was estimated by Nishizawa’s equation. The calculated austenite grain growth at 1473–1673 K showed excellent correspondence with the experimental results. PMID:28179962

  17. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    DOE PAGES

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; ...

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less

  18. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determined by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.

  19. Microstructural and Stress Corrosion Cracking Characteristics of Austenitic Stainless Steels Containing Silicon

    NASA Astrophysics Data System (ADS)

    Andresen, Peter L.; Chou, Peter H.; Morra, Martin M.; Lawrence Nelson, J.; Rebak, Raul B.

    2009-12-01

    Austenitic stainless steels (SSs) core internal components in nuclear light water reactors (LWRs) are susceptible to irradiation-assisted stress corrosion cracking (IASCC). One of the effects of irradiation is the hardening of the SS and a change in the dislocation distribution in the alloy. Irradiation may also alter the local chemistry of the austenitic alloys; for example, silicon may segregate and chromium may deplete at the grain boundaries. The segregation or depletion phenomena at near-grain boundaries may enhance the susceptibility of these alloys to environmentally assisted cracking (EAC). The objective of the present work was to perform laboratory tests in order to better understand the role of Si in the microstructure, properties, electrochemical behavior, and susceptibility to EAC of austenitic SSs. Type 304 SS can dissolve up to 2 pct Si in the bulk while maintaining a single austenite microstructure. Stainless steels containing 12 pct Cr can dissolve up to 5 pct bulk Si while maintaining an austenite structure. The crack growth rate (CGR) results are not conclusive about the effect of the bulk concentration of Si on the EAC behavior of SSs.

  20. Magneto-optical Kerr effect in L1{sub 0} FePdPt ternary alloys: Experiments and first-principles calculations

    SciTech Connect

    Ma, L.; Shi, Z.; Zhou, S. M. E-mail: shiming@tongji.edu.cn; Hu, J.; Costa, M.; Wu, R. Q. E-mail: shiming@tongji.edu.cn; Li, J.; Xu, X. G.; Jiang, Y.; Guo, G. Y.

    2014-05-14

    We have studied the magneto-optical Kerr effect (MOKE) of L1{sub 0} Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films with both experiments and first-principles calculations. In the visible region, negative Kerr rotation and ellipticity peaks are, respectively, observed in the regions of 1.5–2.0 eV and 1.7–2.6 eV. These peaks are shifted towards higher energies, and their magnitudes are enhanced for larger x. The MOKE evolution is mainly ascribed to the anomalous Hall conductivity contributed by the spin-down d{sub ↓,x{sup 2}−y{sup 2}} bands from Pd and Pt. We established a close correlation among the MOKE spectra, the spin orbit coupling strength, and the band feature for this prototypical system.

  1. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    PubMed

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-13

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt9RhFex (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt9RhFex/C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt9RhFe3/C when compared to Pt9Rh/C, Pt3Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt9RhFe3/C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt9Rh/C (0.326 V), Pt3Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt9RhFe3/C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt9RhFe3/C offers a promising anode catalyst for direct ethanol fuel cells.

  2. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  3. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    SciTech Connect

    Ma, Wanli; Luther, Joseph; Zheng, Haimei; Wu, Yue; Alivisatos, A. Paul

    2009-02-05

    We report solar cells based on highly confined nanocrystals of the ternary compound PbSxSe1-x. Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction. Rutherford back scattering and energy filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles. Photovoltaic devices made using ternary nanoparticles are more efficient than either pure PbS or pure PbSe based nanocrystal devices.

  4. Kinetic evaluation of intergranular fracture in austenitic stainless steels

    SciTech Connect

    Simonen, E.P.; Bruemmer, S.M.

    1995-12-31

    A second, higher-dose threshold exists for irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in non-oxidizing environments. The data supporting this concept have stimulated interest in the mechanical aspects of intergranular (IG) fracture. Cracking in a non-oxidizing environment suggests that mechanically-induced IG fracture may play an important role in the IASCC mechanism under these conditions. Radiation alters deformation processes in austenitic alloys and may influence the fracture mode during either in-situ or post-irradiation straining. Radiation effects that must be considered include radiation strengthening, radiation creep and radiation-induced flow localization. The present evaluation relates these radiation-induced phenomena to IG fracture relevant to IASCC. The evaluation indicates that radiation strengthening retards matrix deformation and allows intergranular fracture to occur at higher stresses and lower temperatures than expected for unirradiated stainless steel.

  5. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape

    SciTech Connect

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.; Asplund, Matthew C.; Shutthanandan, V.; Davis, Robert C.; Linford, Matthew R.

    2013-09-11

    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized by optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.

  6. DFT + U study of the structural and electronic properties of the ferromagnetic and antiferromagnetic ordering in the PbS-based ternary alloys Pb1-xEuxS (x = 0.25, 0.50, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Wong, Kin Mun; Alay-e-Abbas, S. M.; Shaukat, A.; Lei, Yong

    2013-04-01

    We use first-principles full-potential method to study the structural and electronic properties of the ferromagnetic (FM) and antiferromagnetic (AF) ordering in the PbS-based ternary alloys Pb1-xEuxS (0 ≤ x ≤ 1). It is shown that the generalized gradient approximation (GGA) functional of DFT in its standard form is not sufficient for obtaining the correct physical interpretation of the binary PbS and EuS compounds and, therefore, the calculations have been extended by considering spin-orbit coupling (SOC) in the Pb atoms and by treating strongly localized f electrons of Eu by the self-interaction correction (SIC) scheme. The Wu and Cohen (WC) generalized gradient approximation (GGA) functional has been used for structural optimization, whereas the GGA parameterization scheme formulated by Engel and Vosko (EV) has also been utilized for calculating the electronic properties of all the compounds. The experimental value of Coulomb parameter (Uf-expt.) within the SIC provide good description for the structural properties of all compounds but fails to predict an accurate EuS energy band structure. A comparison of the results obtained using the WC GGA + SOC + U and EV GGA + SOC + U shows that the later deliver much better band structure profiles of the ferromagnetic EuS and non-magnetic PbS. The ternary alloys constructed by substituting Eu for the Pb atoms in the rocksalt PbS have been used for computing the structural and electronic properties of FM and AF ordering in the Pb1-xEuxS. The stability of the alloys with respect to two magnetic orders has been analyzed and the effect of FM and AF coupling on the electronic properties of the alloys are carefully studied. In particular, the variation of the degree of contribution from the various electronic energy states from the different elements in the alloys has been elucidated in terms of the total and partial density of states for all the composition ranges. Importantly, our results predict that the ternary Pb1-x

  7. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  8. Austenite Stability and Tensile Properties of Warm-Extruded Trip Steels

    DTIC Science & Technology

    1976-05-01

    ductility in war-extruded TRIP steel. The austenite stability could be adjusted, however, by a tempering treatment to remove some carbon from solid ... solution , giving tensile properties equivalent or superior to those obtained by warm rolling. Difficulties in alloy composition control or temperature

  9. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  10. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  11. Alumina-Forming Austenitics: A New Class of Heat-Resistant Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Lu, Zhao Ping; Maziasz, Philip J; Liu, Chain T; Pint, Bruce A; Santella, Michael L

    2008-01-01

    A family of alumina (Al2O3)-forming austenitic (AFA) stainless steels is under development. These alloys offer the potential for significantly higher operating temperature and environmental durability than conventional chromia (Cr2O3)-forming stainless steels, without sacrificing other critical characteristics such as cost, creep resistance, and weldability. An overview of the alloy development approach and details of the oxidation and creep resistance properties achieved to date are presented.

  12. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    SciTech Connect

    Puli, Ramesh Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  13. Effect of austenite on mechanical properties in high manganese austenitic stainless steel with two phase of martensite and austenite

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, J. H.; Hwang, T. H.; Lee, J. Y.; Kang, C. Y.

    2015-05-01

    The effect of the austenite phase on mechanical properties of austenitic stainless steels was investigated using specimens with different volume fractions of retained and reversed austenite. Stainless steels with dual-phase coexisting martensite and austenite were successfully synthesized by deformation and reverse transformation treatment in the cold-rolled high manganese austenitic stainless steel and the ultrafine reverse austenite with less than 0.5 µm in size was formed by reverse transformation treatment in the temperature range of 500-750 °C for various times. With the increase of deformation degree, the volume fraction of retained austenite decreased, while that of the reversed austenite increased as the annealing time increased. From the results of the mechanical properties, it was obvious that as the volume fraction of retained and reversed austenite increased, hardness and strength rapidly decreased, while elongation increased. With regard to each austenite, reversed austenite indicated higher value of hardness and strength, while elongation suggested a lower value because of strengthening owing to grain refinement.

  14. Reduction of Inhomogeneous Broadening of Exciton Luminescence in CdxZn1-xSe Ternary Alloys and CdxZn1-xSe ZnSe Multiple Quantum Wells Grown by Molecular-Beam Epitaxy under Se-Excess Supply

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masakatsu; Shigematsu, Hiroshi; Senda, Kazuhiko; Yoshikawa, Mitsutoshi; Kubo, Hachiya; Yamada, Yoichi; Taguchi, Tsunemasa

    1999-06-01

    Optical and structural properties of CdxZn1-xSe ternary alloy layers grown by molecular-beam epitaxy (MBE) have been studied as a function of the Se/(Cd, Zn) beam pressure ratio (BPR). With increasing Se/(Cd, Zn) BPR, the inhomogeneous broadening of exciton luminescence and the rms roughness of surfaces decreased drastically. This indicates that Se-excess supply during MBE growth suppresses alloy composition fluctuation and also enhances two-dimensional growth nucleation. Furthermore, CdxZn1-xSe ZnSe multiple quantum well (MQW) structures have been fabricated under Se-excess supply. Biexciton luminescence from MQW structures was observed, even under a cw weak excitation condition (less than 100 mW/cm2). This observation reflects the finding that exciton lifetime increase as a result of the improvement of crystalline quality, which results in the enhancement of carrier accumulation.

  15. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels.

  16. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development.

  17. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    SciTech Connect

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolution of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.

  18. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    SciTech Connect

    Pappas, Nathaniel R; Watkins, Thomas R; Cavin, Odis Burl; Jaramillo, Roger A; Ludtka, Gerard Michael

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching. Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent

  19. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  20. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    PubMed Central

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-01-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis. PMID:27328764

  1. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis.

    PubMed

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-22

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  2. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    NASA Astrophysics Data System (ADS)

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  3. Structural and phase transformations in quasi-binary TiNi-TiCu alloys with thermomechanical shape-memory effects

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Makarov, V. V.; Pushin, A. V.; Korolev, A. V.; Kourov, N. I.

    2015-12-01

    The structure, thermoelastic martensitic transformations, and physical properties of the usual microcrystalline and rapidly quenched submicrocrystalline ternary alloys of the quasi-binary TiNi-TiCu section with a copper content to 35 at % have been studied in a wide temperature range. The fine structure of the alloys has been investigated by the methods of the analytical transmission and scanning electron microscopy, and selected-area electron diffraction, including the in situ heating and cooling in the column of the microscope. The main specific features of the premartensitic state of the B2 austenite, the morphology, and the fine structure of the B19 and B19' martensitic phases have been established, and their evolution upon the alloying with copper and upon grain refinement and cooling and heating in situ have been studied. According to the data of the temperature measurements of electrical resistance, magnetic susceptibility, and XRD analysis, generalized complete diagrams of the B2 ↔ B19', B2 ↔ B19 ↔ B19' and B2↔ B19 martensitic transformations that occur upon cooling in these alloys with an increase in the copper concentration in the limits of 0-8, 8-15, and 15-35 at %, respectively, have been constructed.

  4. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel

    NASA Astrophysics Data System (ADS)

    Zhou, Zhangjian; Yang, Shuo; Chen, Wanhua; Liao, Lu; Xu, Yingli

    2012-09-01

    An oxide dispersion strengthened (ODS) austenitic steel with a nominal chemical composition of Fe-18Cr-8Ni-1Mo-0.5Ti-0.35Y2O3 (in wt.%) was prepared by mechanical alloying (MA) combined with hot isostatic pressing (HIP). The morphology of MA powders was observed by SEM. The microstructure of the HIPed ODS austenitic steels and chemical composition of the oxide particles were examined by TEM combined with an energy dispersive spectrometry. The oxide dispersion particles with sizes less than 20 nm were determined to be complex Y-Ti-Si-O oxides. The tensile test showed that the fabricated ODS austenitic steel had very high strength and good ductility. The ultimate tensile strength was around 1000 MPa with a total elongation of 33.5% at room temperature, while at temperature of 700 °C, the ultimate tensile strength still reached around 500 MPa.

  5. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    NASA Astrophysics Data System (ADS)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  6. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts).

  7. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    SciTech Connect

    Pint, Bruce A; Brady, Michael P; Yamamoto, Yukinori; Santella, Michael L; Maziasz, Philip J; Matthews, Wendy

    2011-01-01

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  8. Electrochemical photovoltaic cell having ternary alloy film

    DOEpatents

    Russak, Michael A.

    1984-01-01

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  9. Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-04-01

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  10. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGES

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  11. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    SciTech Connect

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  12. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the {approx}923 K to 1173 K (650 C to 900 C) temperature range due to the formation of a protective Al{sub 2}O{sub 3} scale rather than the Cr{sub 2}O{sub 3} scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe{sub 2}(Mo,Nb)-Laves, Ni{sub 3}Al-L1{sub 2}, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  13. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  14. Modeling of Ternary Element Site Substitution in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    2000-01-01

    It is well recognized that ternary alloying additions can have a dramatic impact on the behavior of ordered intermetallic alloys such as nickel aluminides. Properties as diverse as yield strength, fracture strength, fracture mode, cyclic oxidation resistance, creep strength, and thermal and electrical diffusivity can change by orders of magnitude when a few percent or less of a ternary element is added. Yet our understanding of the resulting point defect structures and the simple site preferences of ternary alloying additions is poor because these are extremely difficult characteristics to determine. This disconnection between the understanding of the structure and properties in ordered alloys is at least in part responsible for the limited development and commercialization of these materials. Theoretical methods have provided useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. In an effort to overcome these limitations, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed. After a brief description of this approximate quantum mechanical approach, we use BFS to investigate the energetics of Si, Ti, V, Cr, Fe, Co, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W additions to B2-ordered, stoichiometric NiAl. In addition to determining the site preference for these alloying additions over a range of compositions, we include results for the concentration dependence of the lattice parameter. In this introductory paper, we performed our analyses in the absence of constitutional and thermal vacancies for alloys of the form Ni50(Al,X)50. Where data exist, a comparison between experimental, theoretical, and BFS results is also included.

  15. Investigation of austenitizing temperature on wear behavior of austempered gray iron (AGI)

    NASA Astrophysics Data System (ADS)

    Sarkar, T.; Sutradhara, G.

    2016-09-01

    This study is about finding the effect of austenitizing temperature on microstructure and wear behavior of copper alloyed austempered gray iron (AGI), and then comparing it with an as- cast (solidified) state. Tensile and wear tests specimens are prepared from as-cast gray iron material, and austenitized at different temperatures and then austempered at a fixed austempering temperature. Resulting microstructures are characterized through optical microscopy, scanning electron microscope (SEM) and X-Ray diffraction. Wear test is carried out using a block-on-roller multi-tribotester with sliding speed of 1.86 m/sec. In this investigation, wear behavior of all these austempered materials are determined and co-related with the micro structure. Hence the wear surface under scanning electron microscope showed that wear occurred mainly due to adhesion and delamination under dry sliding condition. The test results indicate that the austenitizing temperature has remarkable effect on resultant micro structure and wear behavior of austempered materials. Wear behavior is also found to be dependent on the hardness, tensile strength, austenite content and carbon content in austenite. It is shown that coarse ausferrite micro structure exhibited higher wear depth than fine ausferrite microstructure.

  16. Examination of Spheroidal Graphite Growth and Austenite Solidification in Ductile Iron

    NASA Astrophysics Data System (ADS)

    Qing, Jingjing; Richards, Von L.; Van Aken, David C.

    2016-12-01

    Microstructures of a ductile iron alloy at different solidification stages were captured in quenching experiments. Etched microstructures showed that spheroidal graphite particles and austenite dendrites nucleated independently to a significant extent. Growth of the austenite dendrite engulfed the spheroidal graphite particles after first contacting the nodule and then by forming an austenite shell around the spheroidal graphite particle. Statistical analysis of the graphite size distribution was used to determine the nodule diameter when the austenite shell was completed. In addition, multiple graphite nucleation events were discerned from the graphite particle distributions. Majority of graphite growth occurred when the graphite was in contact with the austenite. Circumferential growth of curved graphene layers appeared as faceted growth fronts sweeping around the entire surface of a spheroidal graphite particle which was at the early growth stage. Mismatches between competing graphene growth fronts created gaps, which divided the spheroidal graphite particle into radially oriented conical substructures. Graphene layers continued growing in each conical substructure to further extend the size of the spheroidal graphite particle.

  17. Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wolf, Steffen; Martin, Ulrich; Krüger, Lutz; Rafaja, David

    2016-01-01

    A high-alloy austenitic CrMnNi steel was deformed at temperatures between 213 K and 473 K (-60 °C and 200 °C) and the resulting microstructures were investigated. At low temperatures, the deformation was mainly accompanied by the direct martensitic transformation of γ-austenite to α'-martensite (fcc → bcc), whereas at ambient temperatures, the transformation via ɛ-martensite (fcc → hcp → bcc) was observed in deformation bands. Deformation twinning of the austenite became the dominant deformation mechanism at 373 K (100 °C), whereas the conventional dislocation glide represented the prevailing deformation mode at 473 K (200 °C). The change of the deformation mechanisms was attributed to the temperature dependence of both the driving force of the martensitic γ → α' transformation and the stacking fault energy of the austenite. The continuous transition between the ɛ-martensite formation and the twinning could be explained by different stacking fault arrangements on every second and on each successive {111} austenite lattice plane, respectively, when the stacking fault energy increased. A continuous transition between the transformation-induced plasticity effect and the twinning-induced plasticity effect was observed with increasing deformation temperature. Whereas the formation of α'-martensite was mainly responsible for increased work hardening, the stacking fault configurations forming ɛ-martensite and twins induced additional elongation during tensile testing.

  18. Electromotive Force Measurements in the Ternary System Bi-In-Zn

    NASA Astrophysics Data System (ADS)

    Knott, Sabine; Li, Zuoan; Wang, C.-H.; Mikula, Adolf

    2010-12-01

    The thermodynamic properties of the ternary Bi-In-Zn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Four different cross sections with constant In/Bi ratios of 1:2, 1:1, 2:1, and 9:1 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 973 K (700 °C). Zinc was added in steps of 5 at. pct from 5 to 90 pct. The partial free energies of Zn in liquid Bi-In-Zn alloys were determined as a function of concentration and temperature. The integral Gibbs free energy and the integral enthalpy of the ternary system at 873 K (600 °C) were calculated by Gibbs-Duhem integration. The ternary interaction parameters were evaluated using the Redlich-Kister-Muggianu polynomials.

  19. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons

    NASA Astrophysics Data System (ADS)

    Laird, George; Powell, Graham L. F.

    1993-04-01

    Chromium white cast irons are widely used in environments where severe abrasion resistance is a dominant requirement. To improve the wear resistance of these commercially important irons, the United States Bureau of Mines and CSIRO Australia are studying their solidification and solid-state transformation kinetics. A ternary Fe-Cr-C iron with 17.8 wt pct (pct) Cr and 3.0 pct C was compared with commercially available irons of similar Cr and C contents with Si contents between 1.6 and 2.2 pct. The irons were solidified and cooled at rates of 0.03 and 0.17 K · s-1 to 873 K. Differential thermal analysis (DTA) showed that Si depresses the eutectic reaction temperature and suggests that is has no effect upon the volume of eutectic carbides formed during solidification. Microprobe analysis revealed that austenite dendrites within the Si alloyed irons cooled at 0.03 and 0.17 K·s-1 had C and Cr contents that were lower than those of dendrites within the ternary alloy cooled at the same cooling rate and a Si alloyed iron that was water quenched from the eutectic temperature. These lower values were shown by image analysis to be the result of both solid-state growth (coarsening) of the eutectic carbides and some secondary carbide formation. Hardness measurements in the as-cast condition and after soaking in liquid nitrogen suggest an increase in the martensite start temperature as the Si content was increased. It is concluded that Si’s effect on increasing the size and volume fraction of eutectic carbides and increasing the matrix hardness should lead to improved wear resistance over regular high-chromium white cast irons.

  20. Nanostructurization of Fe-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Danilhenko, Vitaliy E.

    2017-03-01

    Data about an effect of cyclic γ-α-γ martensitic transformations on the structure state of reverted austenite Fe-31.7 wt.% Ni-0.06 wt.% C alloy are presented. The effect of multiple direct γ-α and reverse α-γ martensitic transformations on fragmentation of austenitic grains has been investigated by electron microscopy and X-ray diffraction methods. An ultrafine structure has been formed by nanofragmentation inside the initial austenite grains due to the successive misorientation of their crystal lattice. Austenite was nanofragmented as a result of multiple γ-α-γ martensitic transformations. Slow heating of the nanofragmented alloy at a rate below 2 °C/s results in nanograin refinement of the structure by multiplication of the reverted γ-phase orientations. The conditions of structure refinement up to ultrafine and nanocrystalline levels as a result of both shear and diffusion mechanisms of reverse α-γ transformation are determined.

  1. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  2. Topologically insulating states in ternary transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2017-01-01

    The topological and electronic properties of monolayered monoclinic transition metal dichalcogenide (TMD) alloys (1T '-M1-xNxX2 with M, N = Cr, Mo, W and X = S, Se) have been studied through calculations based on the projected Wannier functions obtained from first-principles calculations. We predict that the ternary compounds 1T '-Mo1-xCrxS2 with x up to 7/12 and all 1T '-Mo1-xWxSe2 host topologically insulating states with band gaps comparable to the pure systems. For Cr contained alloys, the mechanism of sign changing of Berry curvature is proposed to explain the trivial band topology of some configurations. The predicted topologically insulating ternary TMDs may be promising candidates for future realization of topological devices.

  3. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  4. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  5. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  6. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2008-01-01

    Work in fiscal year 2008 focused on the development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of an excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides [1-8]. High levels of Nb additions (> 1 wt.% Nb) and/or Ni additions (25-30 wt.%), at Al levels of 2.5-4 wt.%, were found to correlate with increased upper-temperature limit for Al2O3 scale formation in air ( 900 aC) and air with 10% water vapor ( 800 aC). Creep resistance also showed a strong dependence on the level of Nb additions, and was correlated with volume fraction of MC-type carbides using thermodynamic computational tools. A trial heat of a 50 lb AFA alloy ingot was made using conventional single-melt vacuum techniques, and the alloy was successfully hot-rolled without any cracking [2]. This heat showed good weldability, using filler material of the same alloy.

  7. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy.

  8. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels

    SciTech Connect

    Bei, Hongbin; Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L

    2010-01-01

    Isothermal aging and tensile evaluation were conducted for recently developed alumina-forming austenitic stainless steels (AFAs). Microstructural observation reveals that NiAl-type B2 and Fe{sub 2}(Mo,Nb)-type Laves phase precipitates form as dominant second phases in the austenitic matrix during aging at 750 C. At room temperature these precipitates increase the strength but decrease the ductility of the AFA alloys. However, when tested at 750 C, the AFA alloys did not show strong precipitation hardening by these phases, moreover, the elongation to fracture was not affected by aging. Fracture surface and cross-sectional microstructure analysis after tensile testing suggests that the difference of mechanical behaviors between room temperature and 750 C results from the ductile-brittle transition of the B2 precipitates. At room temperature, B2 precipitates are strong but brittle, whereas they become weak but ductile above the ductile-brittle transition temperature (DBTT).

  9. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-12-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  10. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    SciTech Connect

    Hu, Bin; Baker, Ian

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  11. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry. Final technical report, June 1, 1988--November 30, 1993

    SciTech Connect

    Wei, R.P.

    1994-01-05

    A multi-disciplinary research program was undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous solutions. Focus was placed on austenitic iron-chromium-nickel alloys.

  12. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  13. New ternary praseodymium germanides

    SciTech Connect

    Fedyna, M.F.; Pecharskii, V.K.; Bodak, O.I.

    1987-09-01

    Using the powder method (DRON-2.0 diffractometer; Fe K/sub ..cap alpha../ radiation; theta/2theta recording method, sin theta/sub max//lambda = 5 nm/sup -1/), the crystal structure of the ternary compounds Pr/sub 1-x/(NiGe)/sub 13/ (x = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ (x = 0.46) were determined. The germanides P/sub 1-x/(NiGe)/sub 13/ and Pr/sub 1-x/(NiGe)/sub 13/ belong to the structural type of CeNi/sub 8.5/Si/sub 4.5/ and the ternary compounds Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ crystallize in the structural types of U/sub 3/Ni/sub 4/Si/sub 4/, U/sub 2/Co/sub 3/Si/sub 5/, and BaNiSn/sub 3/. During investigations of the equilibrium phase diagrams of the systems Pr-/Fe, Co, Ni/-Ge, new ternary compounds were discovered, viz., Pr/sub 1-x/(NiGe)/sub 13/ (X = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, PrFe/sub 1-x/Ge/sub 3/ (x = 0.46).

  14. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels

    SciTech Connect

    Mousavi Anijdan, S.H.; Rezaeian, Ahmad; Yue, Steve

    2012-01-15

    In this investigation, by using continuous cooling torsion (CCT) testing, the transformation behavior of four microalloyed steels under two circumstances of austenite conditioning and non-conditioning was studied. A full scale hot-rolling schedule containing a 13-pass deformation was employed for the conditioning of the austenite. The CCT tests were then employed till temperature of {approx} 540 Degree-Sign C and the flow curves obtained from this process were analyzed. The initial and final microstructures of the steels were studied by optical and electron microscopes. Results show that alloying elements would decrease the transformation temperature. This effect intensifies with the gradual increase of Mo, Nb and Cu as alloying elements added to the microalloyed steels. As well, austenite conditioning increased the transformation start temperature due mainly to the promotion of polygonal ferrite formation that resulted from a pancaked austenite. The final microstructures also show that CCT alone would decrease the amount of bainite by inducing ferrite transformation in the two phase region. In addition, after the transformation begins, the deformation might result in the occurrence of dynamic recrystallization in the ferrite region. This could lead to two different ferrite grain sizes at the end of the CCT. Moreover, the Nb bearing steels show no sign of decreasing the strength level after the transformation begins in the non-conditioned situation and their microstructure is a mix of polygonal ferrite and bainite indicating an absence of probable dynamic recrystallization in this condition. In the conditioned cases, however, these steels show a rapid decrease of the strength level and their final microstructures insinuate that ferrite could have undergone a dynamic recrystallization due to deformation. Consequently, no bainite was seen in the austenite conditioned Nb bearing steels. The pancaking of austenite in the latest cases produced fully polygonal ferrite

  15. Phonon dispersion in austenitic stainless steel Fe18Cr12Ni2Mo

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Danilkin, S. A.; Hoser, A.; Ehrenberg, H.; Wieder, T.; Fuess, H.

    The phonon dispersion of Fe18Cr12Ni2Mo austenitic stainless steel was measured along the symmetry directions [001], [110] and [111]. Data were analysed in the frame of the Born-von Karman model of lattice dynamics. The obtained force constants were used to evaluate the elastic constants and the engineering elastic moduli. Our results for the elastic constants confirm empirical relationships between the elastic constants found for FCC FeCrNi alloys.

  16. Effect of Internal Hydrogen on Delayed Cracking of Metastable Low-Nickel Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Papula, Suvi; Talonen, Juho; Todoshchenko, Olga; Hänninen, Hannu

    2014-10-01

    Metastable austenitic stainless steels, especially manganese-alloyed low-nickel grades, may be susceptible to delayed cracking after forming processes. Even a few wppm of hydrogen present in austenitic stainless steels as an inevitable impurity is sufficient to cause cracking if high enough fraction of strain-induced α'-martensite and high residual tensile stresses are present. The role of internal hydrogen content in delayed cracking of several metastable austenitic stainless steels having different alloying chemistries was investigated by means of Swift cup tests, both in as-supplied state and after annealing at 673 K (400 °C). Hydrogen content of the test materials in each state was analyzed with three different methods: inert gas fusion, thermal analysis, and thermal desorption spectroscopy. Internal hydrogen content in as-supplied state was higher in the studied manganese-alloyed low-nickel grades, which contributed to susceptibility of unstable grades to delayed cracking. Annealing of the stainless steels reduced their hydrogen content by 1 to 3 wppm and markedly lowered the risk of delayed cracking. Limiting drawing ratio was improved from 1.4 to 1.7 in grade 204Cu, from 1.7 to 2.0 in grade 201 and from 1.8 to 2.12 in grade 301. The threshold levels of α'-martensite and residual stress for delayed cracking at different hydrogen contents were defined for the test materials.

  17. Development and Exploratory Scale-Up of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Maziasz, Philip J; Santella, Michael L; Pint, Bruce A; Bei, Hongbin

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  18. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2016-08-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low-temperature nitriding results in improved properties of both bulk and surface.

  19. Evaluation of Mn substitution for Ni in alumina-forming austenitic stainless steels

    SciTech Connect

    Yamamoto, Yukinori; Santella, Michael L; Liu, Chain T; Evans, Neal D; Maziasz, Philip J; Brady, Michael P

    2009-01-01

    There has been increasing interest in the substitution of low-cost Mn for Ni in austenitic stainless steels due to the rising price of Ni. This paper investigates the possibility of such a substitution approach for the recently developed alumina (Al{sub 2}O{sub 3})-forming austenitic (AFA) class of heat-resistant stainless steels. Computational thermodynamic tools were utilized to predict the alloy composition range to maintain an austenitic matrix microstructure when Mn is substituted for Ni in the presence of Al, which is a strong body-centered-cubic (BCC) phase stabilizer. Phase equilibria, oxidation behavior, and creep properties of Fe-(10-14)Cr-(5--15)Mn-(4-12)Ni-(2.5-3)Al-Cu-Nb-C-B (in weight percent) based alloys were studied. The alloys based on Fe-14Cr-2.5Al-(5-9)Mn-(10-12)Ni exhibited the best balance of oxidation and creep resistance, which represents approximately 50% reduction in Ni content compared to previously developed AFA alloys. These low-Ni, high-Mn AFA alloys formed protective Al{sub 2}O{sub 3} scales up to 973-1073 K in air and at 923 K in air with 10% water vapor. Creep-rupture lives of the alloys under a severe screening condition of 1023 K and 100 MPa were in the 7.2 x 10{sup 5}-1.8 x 10{sup 6} s (200-500 h) range, which is comparable to or somewhat improved over that of type 347 stainless steel (Fe-18Cr-11Ni base).

  20. Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; de Moor, E.; Merwin, M. J.; Clausen, B.; Speer, J. G.; Matlock, D. K.

    2011-12-01

    Manganese enrichment of austenite during prolonged intercritical annealing was used to produce a family of transformation-induced plasticity (TRIP) steels with varying retained austenite contents. Cold-rolled 0.1C-7.1Mn steel was annealed at incremental temperatures between 848 K and 948 K (575 °C and 675 °C) for 1 week to enrich austenite in manganese. The resulting microstructures are comprised of varying fractions of intercritical ferrite, martensite, and retained austenite. Tensile behavior is dependent on annealing temperature and ranged from a low strain-hardening "flat" curve to high strength and ductility conditions that display positive strain hardening over a range of strain levels. The mechanical stability of austenite was measured using in-situ neutron diffraction and was shown to depend significantly on annealing temperature. Variations in austenite stability between annealing conditions help explain the observed strain hardening behaviors.

  1. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  2. The ternary system cerium-rhodium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-15

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 deg. C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 deg. C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: tau{sub 7}-Ce{sub 3}RhSi{sub 3}, (Ba{sub 3}Al{sub 2}Ge{sub 2}-type), tau{sub 8}-Ce{sub 2}Rh{sub 3-x}Si{sub 3+x} (Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}-type), tau{sub 10}-Ce{sub 3}Rh{sub 4-x}Si{sub 4+x} (U{sub 3}Ni{sub 4}Si{sub 4}-type), tau{sub 11}-CeRh{sub 6}Si{sub 4} (LiCo{sub 6}P{sub 4}-type), tau{sub 13}-Ce{sub 6}Rh{sub 30}Si{sub 19.3} (U{sub 6}Co{sub 30}Si{sub 19}-type), tau{sub 18}-Ce{sub 4}Rh{sub 4}Si{sub 3} (Sm{sub 4}Pd{sub 4}Si{sub 3}-type), tau{sub 21}-CeRh{sub 2}Si (CeIr{sub 2}Si-type), tau{sub 22}-Ce{sub 2}Rh{sub 3+x}Si{sub 1-x} (Y{sub 2}Rh{sub 3}Ge-type) and tau{sub 24}-Ce{sub 8}(Rh{sub 1-x}Si{sub x}){sub 24}Si (Ce{sub 8}Pd{sub 24}Sb-type). For tau{sub 25}-Ce{sub 4}(Rh{sub 1-x}Si{sub x}){sub 12}Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for tau{sub 3}-CeRhSi{sub 2} (CeNiSi{sub 2}-type) and tau{sub 6}-Ce{sub 2}Rh{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of tau{sub 4}-Ce{sub 22}Rh{sub 22}Si{sub 56}, tau{sub 5}-Ce{sub 20}Rh{sub 27}Si{sub 53} and tau{sub 23}-Ce{sub 33.3}Rh{sub 58.2-55.2}Si{sub 8.5-11.5} are unknown. High temperature compounds with compositions Ce{sub 10}Rh{sub 51}Si{sub 33} (U{sub 10}Co{sub 51}Si{sub 33}-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in

  3. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    SciTech Connect

    Ernst, Frank

    2016-10-13

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance.

  4. Optimization of Melt Treatment for Austenitic Steel Grain Refinement

    NASA Astrophysics Data System (ADS)

    Lekakh, Simon N.; Ge, Jun; Richards, Von; O'Malley, Ron; TerBush, Jessica R.

    2017-02-01

    Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.

  5. Atomic configuration and properties of austenitic steels at finite temperature: Effect of longitudinal spin fluctuations

    NASA Astrophysics Data System (ADS)

    Ruban, A. V.; Dehghani, M.

    2016-09-01

    High-temperature atomic configurations of fcc Fe-Cr-Ni alloys with alloy composition close to austenitic steel are studied in statistical thermodynamic simulations with effective interactions obtained in ab initio calculations. The latter are done taking longitudinal spin fluctuations (LSF) into consideration within a quasiclassical phenomenological model. It is demonstrated that the magnetic state affects greatly the alloy properties, and in particular, it is shown that the LSF substantially modify the bonding and interatomic interactions of fcc Fe-Cr-Ni alloys even at ambient conditions. The calculated atomic short-range order is in reasonable agreement with existing experimental data for Fe0.56Cr0.21Ni0.23 , which has strong preference for the (001)-type ordering between Ni and Cr atoms. A similar ordering tendency is found for the Fe0.75Cr0.17Ni0.08 alloy composition, which approximately corresponds to the widely used 304 and 316 austenitic steel grades.

  6. Phase composition and hardening of steels of the Fe-Cr-Ni-Co-Mo system with martensite-austenite structure

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Shal'kevich, A. B.

    2007-03-01

    The phase composition and mechanical properties of maraging steels of the Fe-Cr-Ni-Co-Mo system are studied as a function of the alloying and of the temperatures of quenching and aging. The intermetallic phases strengthening martensite in different aging stages are determined. The degree of the hardening and the variation of the impact toughness at cryogenic temperatures are compared for steels with different structures (martensite and martensite-austenite) in the stages of maximum hardening and overaging. The effect of retained and reverted austenite on the resistance to crack propagation under impact loading is determined for steels with martensite of a different nature and amount of hardening phases.

  7. Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates

    NASA Astrophysics Data System (ADS)

    Gorbachev, I. I.; Pasynkov, A. Yu.; Popov, V. V.

    2015-11-01

    Kinetic calculations of the evolution of carbonitride precipitates in low-alloy steels with Nb and Ti have been performed for different temperatures of austenitizing. Based on the data of the kinetic simulation of the ensembles of carbonitride precipitates, the expected size of the austenite grain has been calculated using different models. The results obtained have been compared with experimental data. It has been shown that the best agreement with the experiment is achieved for the high-temperature region (1150-1250°C) when using the Gladman model (with the parameter Z = 2) with allowance for the polydispersity of the ensemble of precipitates.

  8. Constitutive flow behaviour of austenitic stainless steels under hot deformation: artificial neural network modelling to understand, evaluate and predict

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Sivaprasad, P. V.; Venugopal, S.; Murthy, K. P. N.

    2006-09-01

    An artificial neural network (ANN) model is developed to predict the constitutive flow behaviour of austenitic stainless steels during hot deformation. The input parameters are alloy composition and process variables whereas flow stress is the output. The model is based on a three-layer feed-forward ANN with a back-propagation learning algorithm. The neural network is trained with an in-house database obtained from hot compression tests on various grades of austenitic stainless steels. The performance of the model is evaluated using a wide variety of statistical indices. Good agreement between experimental and predicted data is obtained. The correlation between individual alloying elements and high temperature flow behaviour is investigated by employing the ANN model. The results are found to be consistent with the physical phenomena. The model can be used as a guideline for new alloy development.

  9. Fatigue crack growth in metastable austenitic stainless steels

    SciTech Connect

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  10. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  11. Swelling suppression in phosphorous-modified Fe-Cr-Ni alloys during neutron irradiation

    SciTech Connect

    Lee, E.H.; Packan, N.H.

    1988-01-01

    Phosphorous-containing austenitic alloys in the solution annealed condition were irradiated at 745--760/degree/K. The alloys were variations on Fe--13Cr--15Ni--0.05P with respective additions of 0.8 Si, 0.2 Ti, or 0.8 Si /plus/ 0.2 Ti; also included were low (0.01) and zero P compositions (all values in wt. %). The reference ternary and the two phosphorous-only variations contained little precipitation and numerous voids and swelled rapidly, while the three variants containing P with Si and/or Ti showed little or no void formation and profuse phosphide precipitation. Results indicate that phosphorous in solution alone does not have a major influence on void swelling, whereas fine-scale phosphide precipitation is quite effective at eliminating void formation. The principal mechanism restricting swelling is the effect of the dense precipitate microstructure. These precipitates foster profuse cavity nucleation which in turn dilutes the helium atoms (and more time) in order for individual cavities to surpass their critical size and number of gas atoms necessary for subsequent growth as voids. This mechanism for swelling suppression was not found to be particularly sensitive to moderate variations in either the dislocation or cavity densities; the mechanism is strongest at elevated temperature where the critical quantities are large and is less effective at lower temperatures where the critical quantities are small. 19 refs., 10 figs., 3 tabs.

  12. Modeling the austenite decomposition into ferrite and bainite

    NASA Astrophysics Data System (ADS)

    Fazeli, Fateh

    2005-12-01

    during the industrial treatments. The thermodynamic boundary conditions for the kinetic model were assessed with respect to paraequilibrium. The potential interaction between the alloying atoms and the moving ferrite-austenite interface, referred to as solute drag effect, was accounted for rigorously in the model. To quantify the solute drag pressure the Purdy-Brechet approach was modified prior to its implementation into the model. (Abstract shortened by UMI.)

  13. Phase transformation and stabilization of a high strength austenite

    NASA Technical Reports Server (NTRS)

    Jin, S.; Huang, D.

    1976-01-01

    An investigation of the phase transformation and the austenite stabilization in a high strength austenite has been made. An Fe-29Ni-4.3Ti austenite age-hardened by gamma-prime (Ni3Ti) precipitates showed a further increase of strength after martensitic and reverse martensitic phase transformations. The stability of ausaged austenite as well as ausaged and transformation-strengthened austenite was improved significantly through an isothermal treatment at 500 C. The Ms temperature of the strengthened austenite was restored to nearly that of annealed austenite while the austenite was hardened to R(C) 41 through precipitation and phase transformations. The observed austenite stabilization is attributed to the formation of GP zones or short-range order of less than about 10A in size.

  14. Al and Zn Impurity Diffusion in Binary and Ternary Magnesium Solid-Solutions

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Magnesium alloys are considered for implementation into structural components where energy-efficiency and light-weighting are important. Two of the most common alloying elements in magnesium alloys are Aluminum and Zinc. The present work examines impurity diffusion coefficients of Al and Zn in Mg(Zn) and Mg(Al) binary solid solutions, respectively. Experimental investigation is carried out with ternary diffusion couples with polycrystalline alloys. Concentration profiles were measured by electron microprobe micro-analysis and the impurity diffusion coefficients were determined by the Hall Method. Results of Al and Zn impurity diffusion in Mg solid solutions are reported, and examined as a function of composition of Mg solid solution.

  15. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  16. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  17. The ternary system cerium-rhodium-silicon

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-01

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 °C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 °C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: τ7—Ce 3RhSi 3, (Ba 3Al 2Ge 2-type), τ8—Ce 2Rh 3-xSi 3+x (Ce 2Rh 1.35Ge 4.65-type), τ10—Ce 3Rh 4-xSi 4+x (U 3Ni 4Si 4-type), τ11—CeRh 6Si 4 (LiCo 6P 4-type), τ13—Ce 6Rh 30Si 19.3 (U 6Co 30Si 19-type), τ18—Ce 4Rh 4Si 3 (Sm 4Pd 4Si 3-type), τ21—CeRh 2Si (CeIr 2Si-type), τ22—Ce 2Rh 3+xSi 1-x (Y 2Rh 3Ge-type) and τ24—Ce 8(Rh 1-xSi x) 24Si (Ce 8Pd 24Sb-type). For τ25—Ce 4(Rh 1-xSi x) 12Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for τ3—CeRhSi 2 (CeNiSi 2-type) and τ6—Ce 2Rh 3Si 5 (U 2Co 3Si 5-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of τ4—Ce 22Rh 22Si 56, τ5—Ce 20Rh 27Si 53 and τ23—Ce 33.3Rh 58.2-55.2Si 8.5-11.5 are unknown. High temperature compounds with compositions Ce 10Rh 51Si 33 (U 10Co 51Si 33-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in the phase equilibria at 800 °C.

  18. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  19. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  20. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  1. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  2. Wurtzite-derived ternary I-III-O2 semiconductors.

    PubMed

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-04-01

    Ternary zincblende-derived I-III-VI2 chalcogenide and II-IV-V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I-III-O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I-III-O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I-III-O2 semiconductors.

  3. Wurtzite-derived ternary I–III–O2 semiconductors

    PubMed Central

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-01-01

    Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors. PMID:27877769

  4. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2013-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  5. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  6. Thermodynamic properties of liquid Mg-ln-Cd ternary solutions

    NASA Astrophysics Data System (ADS)

    Moser, Z.; Gasior, W.; Panek, Z.

    1984-09-01

    By means of concentration cells of the following type: Mg(s)∣MgCl2 in (LiCl-KCl)eut( l)∣Mg-In or Mg-ln-Cd( l), the partial thermodynamic data of Mg in Mg-ln and Mg-ln-Cd liquid solutions have been obtained in the composition range 0.1 ≤ XMg ≤ 0.7 for binary while for ternary alloys for t = 0.4, 0.6, and 0.8 (where t = XIn/(XIn + XCd)) and at various mangesium concentrations 0.1≤ XMg ≤ 0.6. Both ternary and binary alloys were investigated at a temperature range 750 to 900 K. Experimental partial excess Gibbs energies of Mg were interpreted by the Pelton and Flengas method. Results for Mg-ln system show a slight difference in comparison with previously published data for the same system also from emf studies. Results of this study for Mg-ln system exhibit negative and positive excess entropies of magnesium and the same is observed in ternary system Mg-ln-Cd at the range of concentration close to Mg-ln.

  7. TEM microscopical examination of the magnetic domain boundaries in a super duplex austenitic-ferritic stainless steel

    SciTech Connect

    Fourlaris, G.; Gladman, T.; Maylin, M.

    1996-12-31

    It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic-ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite `island` dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material. However, the 2205 type DSS exhibits {open_quotes}marginal{close_quotes} corrosion protection in a marine environment, so that a study has been undertaken to examine whether the beneficial effects exhibited by the 2205 DSS, are also present in a 2507 type super-DSS.

  8. Correlation of microstructure and fracture toughness in high-chromium white iron hardfacing alloys

    SciTech Connect

    Lee, S.; Choo, S.H.; Kim, N.J.; Baek, E.R.; Ahn, S.

    1996-12-01

    A correlation is made of microstructure and fracture toughness in hypereutectic high-chromium white iron hardfacing alloys. In order to investigate the matrix effect of these alloys, in particular, four different matrices such as pearlite, austenite, and a mixture of pearlite and austenite were employed by changing the ratio of Mn/Si, while the total volume fraction of carbides was fixed. The hardfacing alloys were deposited twice on a mild steel plate by the self-shielding flux-cored arc-welding method. Fracture toughness was increased by increasing the volume fraction of austenite in the matrix, whereas hardness and abrasion resistance were nearly constant. In situ observation of the fracture process showed that cracks initiated at large primary carbides tended to be blocked at the austenitic matrix. This suggested that fracture toughness was controlled mainly by the amount of austenite in the matrix, thereby yielding the better toughness in the hardfacing alloy having the austenitic matrix. Considering both abrasion resistance and fracture toughness, therefore, the austenitic matrix was preferred for the high-chromium white iron hardfacing alloys.

  9. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  10. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  11. Influence of the PM-Processing Route and Nitrogen Content on the Properties of Ni-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lefor, Kathrin; Walter, M.; Weddeling, A.; Hryha, E.; Huth, S.; Weber, S.; Nyborg, L.; Theisen, W.

    2015-03-01

    Ni-free austenitic steels alloyed with Cr and Mn are an alternative to conventional Ni-containing steels. Nitrogen alloying of these steel grades is beneficial for several reasons such as increased strength and corrosion resistance. Low solubility in liquid and δ-ferrite restricts the maximal N-content that can be achieved via conventional metallurgy. Higher contents can be alloyed by powder-metallurgical (PM) production via gas-solid interaction. The performance of sintered parts is determined by appropriate sintering parameters. Three major PM-processing routes, hot isostatic pressing, supersolidus liquid phase sintering (SLPS), and solid-state sintering, were performed to study the influence of PM-processing route and N-content on densification, fracture, and mechanical properties. Sintering routes are designed with the assistance of thermodynamic calculations, differential thermal analysis, and residual gas analysis. Fracture surfaces were studied by X-ray photoelectron spectroscopy, secondary electron microscopy, and energy dispersive X-ray spectroscopy. Tensile tests and X-ray diffraction were performed to study mechanical properties and austenite stability. This study demonstrates that SLPS process reaches high densification of the high-Mn-containing powder material while the desired N-contents were successfully alloyed via gas-solid interaction. Produced specimens show tensile strengths >1000 MPa combined with strain to fracture of 60 pct and thus overcome the other tested production routes as well as conventional stainless austenitic or martensitic grades.

  12. Microstructures and Mechanical Properties of Nano/Ultrafine-Grained N-Bearing, Low-Ni Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Saeedipour, S.; Kermanpur, A.; Najafizadeh, A.; Abbasi, M.

    2015-02-01

    The nitrogen (N)-bearing austenitic stainless steels are new materials with interesting mechanical properties such as high strength and ductility, desirable toughness and work hardening, and good corrosion resistance. This work attempted to investigate the effect of N addition from 0.08 to 0.35 wt.% on grain refinement of the 201L austenitic stainless steel using the martensite thermomechanical process. This process was composed of cold rolling up to the thickness reduction of 90 % followed by reversion annealing at 800 °C for 60 and 1800 s. It was found that increasing N content resulted in an increase in the austenite grain size for short annealing duration (e.g. 60 s), but caused a decrease in the austenite grain size for long annealing duration (e.g. 1800 s). The smallest austenite grain size of about 150 nm was achieved for the 201L steel containing 0.08 wt.% N after reversion annealing at 800 °C for 60 s. The mechanical properties of the reversion-annealed N-bearing steels were enhanced due to both N alloying and grain refinement.

  13. Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Isasti, N.; Jorge-Badiola, D.; Taheri, M. L.; López, B.; Uranga, P.

    2011-12-01

    Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.

  14. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  15. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect

    Dugan, Sandra; Wagner, Sabine

    2014-02-18

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  16. High-temperature corrosion observed in austenitic coils and tubes in a direct reduction process

    SciTech Connect

    Campillo, B.; Gonzalez, C.; Hernandez-Duque, G.; Juarez-Islas, J.A.

    2000-02-01

    The subject of this study is related to the performance of austenitic steel coils and tubes, in a range of temperatures between 425 and 870 C for the transport of reducing gas, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high-temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils and metal dusting took place in HK-40 tubes, a high resistance alloy. The role of continuous injection of H{sub 2}S into the process is suggested to avoid the high resistance metal dusting corrosion mechanism found in this kind of installation.

  17. Stationary and quasistationary models of carbon redistribution in austenitic steel weldments: II. Polycomponent systems

    NASA Astrophysics Data System (ADS)

    Kučera, Jar; Kozák, V.; Million, B.; Stránský, K.

    1986-04-01

    In this IInd part of our paper (Czech. J. Phys. B 35 (1985) 1355) the analysis of carbon uphill diffusion data is presented. The analysed data were measured in the polycomponent steel weldments. All of the data satisfy well the conditions for stationary model application. On the basis of the present analysis the carbon diffusivities ( D {1/*}) appertaining to a non-alloyed austenite, the activity (ɛ{C/s}) and diffusion ( β {C/s}) interaction coefficients are evaluated. A “Si anomaly” in Darken's experiments is observed and discussed. On the contrary to the other substitutional elements Mn, Cr and Mo, which decrease simultaneously C-activity and C-diffusivity, silicon increases the carbon activity and, at the same time, decreases its diffusivity in the Fe-C-Xs austenitic solid solutions.

  18. Study of intergranular embrittlement in Fe-12Mn alloys

    SciTech Connect

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO/sub 2/ along the prior austenite boundaries. An AES study with Ar/sup +/ ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000/sup 0/C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450/sup 0/C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150/sup 0/C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures.

  19. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  20. Localized deformation and IASCC initiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Was, G. S.

    2008-12-01

    Localized deformation may play a key role in the underlying mechanism of irradiation assisted stress corrosion cracking (IASCC) in light water reactor core components. In this study, four austenitic alloys, 18Cr8Ni, 15Cr12Ni, 13Cr15Ni and 21Cr32Ni, with different stacking fault energies were irradiated to 1 and 5 dpa at 360 °C using 3.2 MeV protons. Interrupted constant extension rate tensile (CERT) tests were conducted in a simulated BWR environment to determine IASCC susceptibility. In order to characterize the localized deformation in slip channels and grain boundaries, parallel CERT experiments were also performed in an argon atmosphere. Results show that the IASCC susceptibility of the tested alloys increases with increasing irradiation dose and decreasing stacking fault energy. IASCC tends to initiate at locations where slip channels intersect grain boundaries. Localized deformation in the form of grain boundary sliding due to the interaction of slip channels and grain boundaries is likely the primary cause of the observed cracking initiation.

  1. Composition Dependence of Bulk Alloy Properties

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1994-01-01

    We introduce an approximate expression for the direct calculation of properties of alloys in terms of the pure components. This rule can be obtained as a particular case from the Bozzolo-Ferrante-Smith (BFS) method, a recently developed semiempirical method for alloys. In particular, we examine the application of this rule to several examples of the concentration dependence of the lattice parameter of binary and ternary alloys.

  2. Development of a Nano-Satellite Micro-Coupling Mechanism with Characterization of a Shape Memory Alloy Interference Joint

    DTIC Science & Technology

    2010-12-01

    3 Endothermic for martensite to austenite transformation. Exothermic for austenite to martensite transformation. 4 Note that the...original work by definition . Unique contributions to the related art of coupling devices and shape memory alloys are as follows: 1) A zero impact

  3. Effect of alloying on the self-diffusion activation energy in γ-iron

    NASA Astrophysics Data System (ADS)

    Vasilyev, A. A.; Sokolov, S. F.; Kolbasnikov, N. G.; Sokolov, D. F.

    2011-11-01

    The experimental data on the self-diffusion coefficient of austenite with different chemical compositions obtained by the radioactive isotope method have been analyzed quantitatively. The self-diffusion activation energy in pure γ-iron is shown to be ˜312 kJ/mol. Alloying of austenite with such elements as Mn, Mo, Nb, Ti, and Si (to a lower degree) increases the self-diffusion activation energy, and alloying with C, V, or Cr (for the element content ≥3 at %) decreases it. The empirical formula is derived for calculation of the self-diffusion activation energy in austenite solid solutions with complex composition.

  4. Alumina-Forming Austenitics: A New Approach to Thermal and Degradation Resistant Stainless Steels for Industrial Use

    SciTech Connect

    David A Helmick; John H Magee; Michael P Brady

    2012-05-31

    A series of developmental AFA alloys was selected for study based on: 25 Ni wt.% (alloys A-F), 20 wt% Ni (alloys G-H), and 12 Ni wt.% (alloys I-L). An emphasis in this work was placed on the lower alloy content direction for AFA alloys to reduce alloy raw material cost, rather than more highly alloyed and costly AFA alloys for higher temperature performance. Alloys A-D explored the effects of Al (3-4 wt.%) and C (0.05-0.2 wt.%) in the Fe-25Ni-14Cr-2Mn-2Mo-1W-1Nb wt.% base range; alloys E and F explored the effects of removing costly Mo and W additions in a Fe-25Ni-14Cr-4Al-2.5Nb-2Mn-0.2C base, alloys G and H examined Nb (1-2.5wt.%) and removal of Mo, W in a Fe-20Ni-14Cr-3Al-2Mn-0.2 C wt.% base; and alloys I-L examined effects of C (0.1-0.2 wt.%) and Mn (5-10 wt.%) on a low cost Fe-14Cr-12Ni-3Cu-2.5Al wt.% base (no Mo, W additions). Creep testing resulted in elemental trends that included the beneficial effect of higher carbon and lower niobium in 20-25%Ni AFA alloys and, the beneficial of lower Mn in 12%Ni AFA alloys. Corrosion tests in steam and sulfidation-oxidation environments showed, in general, these alloys were capable of a ten-fold improvement in performance when compared to conventional austenitic stainless steels. Also, corrosion test results in metal-dusting environments were promising and, warrant further investigation.

  5. Surface and Interfacial Properties of Ga0.47In0.53As Alloys.

    DTIC Science & Technology

    2014-09-26

    S. TYPE OF REPORT & PERIOD COVERED Surface and Interfacial Properties of Final Report Ga0 471n0 53As Alloys April 1. 󈨘 to March 31,󈨙S. PERFORMING...for growing binary and ternary III-V alloy semiconducting layers. Gallium arsenide layers grown with this MBE system have electrical properties which... properties and impurity * 2 doping with both donors and acceptors of this system. However, the availability of the two ternary alloys : Ino 52A10 48As

  6. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  7. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  8. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  9. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  10. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  11. Status and prospects for ternary organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Kelly, Mary Allison; You, Wei; Yu, Luping

    2015-08-01

    In the past few years, ternary organic solar cells (OSCs) featuring multiple donor or acceptor materials in the active layer have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary OSCs. Power conversion efficiencies around 10% have been achieved for conjugated polymers in a ternary structure, showing the great potential of ternary systems. In this review, we summarize progress in developing ternary OSCs and discuss many of the designs, chemistries and mechanisms that have been investigated. We conclude by highlighting the challenges and future directions for further development in the field of ternary blend OSCs.

  12. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  13. A Study of Thermo-mechanically Processed High Stiffness NiTiCo Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Manjeri, R. M.; Norwich, D.; Sczerzenie, F.; Huang, X.; Long, M.; Ehrlinspiel, M.

    2016-03-01

    This work investigates a vacuum induction melted-vacuum arc re-melted (VIM-VAR) and thermo-mechanically processed ternary NiTiCo shape memory alloy. The NiTiCo ingot was hot processed to 6.35-mm-diameter coiled wire. The coiled wire was subsequently cold drawn to a final wire diameter of 0.53 mm, with interpass anneals. The wires were shape set at 450 °C for 3.5 min. After electropolishing, the wires were subjected to microstructural, thermal, and mechanical characterization studies. Microstructural analysis was performed by transmission electron microscope (TEM), thermal analyses by differential scanning calorimeter (DSC), and bend-free recovery and mechanical testing by uniaxial tensile testing. TEM did not reveal Ni-rich precipitates—either at the grain boundary or in the grain interior. Energy dispersive x-ray spectroscopy showed a uniform distribution of Ni, Ti, and Co in the sample. The DSC results on the shape set wire showed a single-step transformation between the austenite and the R-phase, in the forward and reverse directions. Cyclic tensile tests of the shape set wire, processed under optimum conditions, showed minimum residual strain and a stable upper plateau stress. Further, the fatigue behavior of NiTi and NiTiCo alloys was studied by rotating beam testing. The results showed that the fatigue properties of NiTiCo, under zero mean strain, are equivalent to that of binary NiTi in the high-cycle and medium-cycle regimes, taking into account the higher stiffness of NiTiCo. The above analyses helped in establishing the processing-structure-property correlation in a VIM-VAR-melted NiTiCo shape memory alloy.

  14. Austenitic steel corrosion in IGCC environment. Characterisation by photon and nuclear microprobes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Weulersse, Katia; Regad, Belkacem; Moulin, Gérard; Barrett, Ray; Bonnin-Mosbah, Michelle; Lequien, Stéphane; Berger, Pascal

    2001-07-01

    An austenitic steel sample was treated simulating particular working conditions of an integrated gasification combined cycle (IGCC) power plant. Several classical characterisation techniques were used to investigate the oxide scales. In addition, micro-particle-induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) analyses were performed and permit us to identify several phases constitutive of the oxide. Moreover, micro-X-ray absorption near edge structure (XANES) experiments allow us to determine the valence of the vanadium incorporated in the scale in the form of microscopic islets. The comparison of all these results leads to the proposal of a corrosion mechanism for this alloy.

  15. Micromagnetic and Moessbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    SciTech Connect

    Meszaros, I.; Kaldor, M.; Hidasi, B.; Vertes, A.; Czako-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Moessbauer spectroscopic investigations were performed to characterize the amount of {alpha}{prime}-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Moessbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  16. Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-04-01

    Scanning transmission electron microscopy was conducted on welds exhibiting a variety of skeletal, or vermicular ferrite morphologies in addition to one lathy ferrite morphology. These ferrite morphologies result from primary ferrite solidification followed by a solid state transformation upon cooling. During cooling, a large fraction of the ferrite transforms to austenite leaving a variety of ferrite morphologies. Comparison of composition profiles and alloy partitioning showed both the skeletal and lathy ferrite structures result from a diffusion controlled solid state transformation. However, the overall measured composition profiles of the weld structure are a result of partitioning during both solidification and the subsequent solid state transformation.

  17. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment.

    SciTech Connect

    Chopra, O. K.; Gruber, E. E.; Shack, W. J.

    2007-01-01

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. Exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). We look at the results of a study of simulated light-water reactor coolants, material chemistry, and irradiation damage and their effects on the susceptibility to stress-corrosion cracking of various commercially available and laboratory-melted stainless steels.

  18. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  19. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  20. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  1. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  2. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    SciTech Connect

    Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  3. The effect of cooling speed on the structure and properties of the heat affected zone in welded compounds of ferrite-austenitic steels

    NASA Astrophysics Data System (ADS)

    Gonik, I. L.; Gurulev, D. N.; Bondareva, O. P.

    2017-02-01

    Such parameters as the maximum heating temperature, duration of stay at high temperatures, the rate of cooling influence greatly the structure and properties of the heat-affected zone of welded joints of steels and alloys. In the present work, the effect of different cooling speed upon the impact of the thermal cycle of welding on the structure, the fine structure and toughness of ferrite-austenitic steels is investigated. It is established that the cooling speed after welding has a great influence on the shock impact toughness, the phase composition and the structure of the zone of ferrite-austenitic steels.

  4. Mössbauer spectroscopic investigation of retained-austenite content of high-carbon tool steel during isothermal tempering of as-quenched samples

    NASA Astrophysics Data System (ADS)

    Bała, Piotr; Krawczyk, Janusz; Hanc, Aneta

    2009-04-01

    This work presents the results of investigations using Mössbauer spectroscopy technique and their interpretation concerning retained austenite (RA) and its transformation during tempering in relation to previously conducted dilatometric, microscopic and mechanical investigations. This research was conducted on a new high-carbon alloy steel 120 MnCrMoV8-6-4-2, which was designed in 1998, in Phase Transformations Research Group at the AGH UST. The influence of the tempering time on the mechanical and chemical stability of retained austenite and on the products of its transformation, nucleation and solubility of ɛ carbides and cementite nucleation and growth, was determined.

  5. One-Step Synthesis and Magnetic Phase Transformation of Ln-TM-B Alloy by Chemical Reduction.

    PubMed

    Kim, Chang Woo; Kim, Young Hwan; Cha, Hyun Gil; Lee, Don Keun; Kang, Young Soo

    2007-04-11

    Binary and ternary intermetallic alloy systems are of interest for a variety of academic and technological applications. Despite recent advances in synthesizing binary alloy, there are very few reports of ternary alloy related to lanthanide series. The purpose of this work is to contribute to ternary alloy systems such as lanthanide-transition metal-boron with a simple chemical method and analysis of its magnetic behavior. Ternary Nd-Fe-B amorphous alloy was successfully synthesized with borohydride. The magnetic behavior in the process of formation of ternary Nd-Fe-B alloy and Nd2Fe14B from amorphous phase alloy is reported. Compared with the synthesis of a transition metal, the existence of a lanthanide ion makes aggregates-like particles with a diameter of 2 nm possible in the formation of a nanosphere, which is a significantly important result in terms of acceleration of the reduction-diffusion reaction for the formation of ternary alloy. In the process of reduction and diffusion, the Nd phase is diffused into the Fe-based phase, and then the ternary Nd2Fe14B intermetallic compound is fabricated.

  6. Influence of silicon on friction and wear of iron-cobalt alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Sliding friction and wear experiments were conducted with ternary ordered alloys of iron and cobalt containing various amounts of silicon to 5 weight percent. The friction and wear of these alloys were compared to those for binary iron-cobalt alloys in the ordered and disordered states and to those for the conventionally used bearing material, 440-C. Environments in which experiments were conducted included air, argon, and 0.25percent stearic acid in hexadecane. Results indicate that a ternary iron - cobalt - 5-percent-silicon alloy exhibits lower friction and wear than the simple binary iron-cobalt alloy. It exhibits lower wear than 440-C in all three environments. Friction was lower for the alloy in argon than in air. Auger analysis of the surface of the ternary alloy indicated segregation of silicon at the surface as a result of sliding.

  7. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  8. Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium

    SciTech Connect

    Pavlina, Erik J.; Van Tyne, C.J.; Speer, J.G.

    2015-04-15

    The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite. - Highlights: • We examine combined Si and Mo additions on microalloy precipitation in austenite. • Precipitate size tends to decrease with increasing deformation steps. • Combined Si and Mo alloying additions increase the diffusivity of Nb in austenite.

  9. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation

    SciTech Connect

    Zhang Xin . E-mail: xzhang@stu.edu.cn; Zhang Feng; Guan Renfeng; Chan, K.-Y.

    2007-02-15

    Ternary platinum-ruthenium-nickel nanoparticles are prepared by water-in-oil reverse microemulsions of water/Triton X-100/propanol-2/cyclohexane. Nanoparticles formed in the microemulsions are characterized by transmission electron microscopy (TEM), electron diffraction (ED), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX). These resulting materials showed a homogenous alloy structure, the mono-dispersion and an average diameter of 2.6 {+-} 0.3 nm with a narrow particle size distribution. The composition and particle size of ternary Pt-Ru-Ni nanoparticles can be controlled by adjusting the initial metal salt solution and preparation conditions. Pt-Ru-Ni ternary metallic nanoparticles showed an enhanced catalytic activity towards methanol oxidation compared to Pt-Ru bimetallic nanoparticles.

  10. Nondestructive Evaluation of Ni-Ti Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Meir, S.; Gordon, S.; Karsh, M.; Wiezman, A.; Ayers, R.; Olson, D. L.

    2011-06-01

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  11. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  12. On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900?aC in Air

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Pint, Bruce A; Santella, Michael L; Maziasz, Philip J; Walker, Larry R

    2008-01-01

    A family of creep-resistant, Al2O3-forming austenitic (AFA) stainless steels was recently developed. The alloys exhibit excellent oxidation resistance up to 800 aC, but are susceptible to internal attack of Al at higher temperatures. In the present work, higher levels of Ni, Cr, Al, and Nb additions were found to correlate with improved oxidation behavior at 900 aC in air. The alloys generally appeared to be initially capable of external Al2O3 scale formation, with a subsequent transition to internal attack of Al (internal oxidation and internal nitridation) that is dependent on alloy composition. Compositional profiles at the alloy/scale interface suggest that the transition to internal oxidation is preceded by subsurface depletion of Al. Alloy design directions to increase the upper-temperature limit of protective Al2O3 scale formation in these alloys are discussed

  13. The ternary system cerium-palladium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Murashova, Elena; Seropegin, Yurii; Giester, Gerald; Kalmykov, Konstantin

    2009-09-15

    Phase relations in the ternary system Ce-Pd-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 deg. C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of tau{sub 8}-Ce{sub 3}Pd{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), tau{sub 16}-Ce{sub 2}Pd{sub 14}Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for tau{sub 18}-CePd{sub 1-x}Si{sub x} (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of tau{sub 5}-Ce{sub 3}PdSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and tau{sub 13}-Ce{sub 3-x}Pd{sub 20+x}Si{sub 6} (0<=x<=1, Co{sub 20}Al{sub 3}B{sub 6}-type, Fm3-barm; a=1.21527(2) nm). The ternary compound Ce{sub 2}Pd{sub 3}Si{sub 3} (structure-type Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 deg. C. Phase equilibria in Ce-Pd-Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium-palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for tau{sub 2}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (AlB{sub 2}-derivative type), tau{sub 6}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (ThSi{sub 2}-type) and tau{sub 7}-CePd{sub 2-x}Si{sub 2+x}. The crystal structures of compounds tau{sub 4}-Ce{sub a}pprox{sub 8}Pd

  14. A new constitutive model for nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Fréchard, S.; Lichtenberger, A.; Rondot, F.; Faderl, N.; Redjaïmia, A.; Adoum, M.

    2003-09-01

    Quasi-static, quasi-dynamic and dynamic compression tests have been performed on a nitrogen alloyed austenitic stainless steel. For all strain rates, a high strain hardening rate and a good ductility have been achieved. In addition, this steel owns a great strain rate sensitivity. The temperature sensitivity bas been determined between 20°C and 400°C. Microstructural analysis has been performed after different loading conditions in relation to the behaviour of the material. Johnson-Cook and Zerilli-Armstrong models have been selected to fit the experimental data into constitutive equations. These models do not reproduce properly the behaviour of this type of steel over the complete range. A new constitutive model that fits very well all the experimental data at different strain, strain rate and temperature has been determined. The model is based on empirical considerations on the separated influence of the main parameters. Single Taylor tests have been realized to validate the models. Live observations of the specimen during impact have been achieved using a special CCD camera set-up. The overall profile at different times are compared to numerical predictions using LS-DYNA code.

  15. Evolution of Austenite Recrystallization and Grain Growth Using Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Moreau, A.; Militzer, M.; Poole, W. J.

    2008-04-01

    Laser ultrasonics is a noncontacting technique with which the attenuation of ultrasonic signals can be measured and related to the grain size of the investigated material. In the present article, a laser-ultrasonic grain-size measurement technique previously developed for various C-Mn and microalloyed steels has been extended to examine austenite recrystallization and subsequent grain growth following hot deformation. The ultrasonic measurements were conducted on a low-carbon (0.05 wt pct) steel that contains Mn, Mo, and Nb as the three main alloying/microalloying elements. The grain-size data measured by ultrasonic experiments were analyzed to quantify the effect of deformation conditions on the evolution of recrystallized grain size and subsequent grain growth. A significant effect of deformation temperature, applied strain, and initial grain size on the grain-size evolution was observed, while strain rate had a negligible effect. Phenomenological modeling approaches were employed to describe the recrystallized grain-size and grain-growth behavior of the present steel.

  16. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  17. Formation of laves phase in a refractory austenitic steel due to long-term heating

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Shal'kevich, A. B.

    2011-07-01

    Steels of the Fe - Cr - Ni -Mo - Nb - Al - C system are studied by methods of phase physicochemical analysis and electron microscopy with the aim to determine the causes of changes in mechanical properties after long-term heating at a temperature of 600 - 700°C. Grain-boundary formation of particles of a Laves phase is shown to cause decrease in the impact toughness and transformation of particles of γ'-phase under conditions of creep. The effect of alloying elements on the chemical composition of the multicomponent Laves phase is studied depending on the temperatures of hardening, aging, and subsequent heating. Concentration correspondence between the chemical composition of the austenite and the intermetallic tcp phase formed in aging is discovered. A computational scheme for predicting the possibility of formation of Laves phases in multicomponent alloys is suggested.

  18. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  19. Crystallography of lath martensite and stabilization of retained austenite

    SciTech Connect

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  20. The effect of niobium on the hardenability of microalloyed austenite

    NASA Astrophysics Data System (ADS)

    Fossaert, C.; Rees, G.; Maurickx, T.; Bhadeshia, H. K. D. H.

    1995-01-01

    The powerful effect that varying the extent of niobium-carbide dissolution has on the “hardenability” of microalloyed austenite is demonstrated using dilatometric measurement of the critical cooling rate required to from microstructures containing >95 Pct martensite. The results can be rationalized on the hypothesis that the hardenability of austenite is enhanced by niobium in solid solution, possibly by its segregation to austenite grain boundaries, but is decreased by precipitation of niobium-carbide particles. This effect appears analogous to that of boron in steels and is found to be independent of variations in the austenite grain size.

  1. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  2. Microstructural changes within similar coronary stents produced from two different austenitic steels.

    PubMed

    Weiss, Sabine; Meissner, Andreas; Fischer, Alfons

    2009-04-01

    Coronary heart disease has become the most common source for death in western industrial countries. Since 1986, a metal vessel scaffold (stent) is inserted to prevent the vessel wall from collapsing [Puel, J., Joffre, F., Rousseau, H., Guermonprez, B., Lancelin, B., Valeix, B., Imbert, G., Bounhoure, J.P, 1987. Endo-prothéses coronariennes autoexpansives dans la Préevention des resténoses apés angioplastie transluminale. Archives des Maladies du Coeur et des Vaisseaux, 1311--1312]. Most of these coronary stents are made from CrNiMo-steel (AISI 316L). Due to its austenitic structure, the material shows strength and ductility combined with corrosion resistance and a satisfactory biocompatibility. However, recent studies indicate that Nickel is under discussion as to its allergenic potential. Other typically used materials like Co-Base L605 or Tantalum alloys are relatively expensive and are not used so often. Newly developed austenitic high-nitrogen CrMnMoN-steels (AHNS) may offer an alternative. Traditional material tests revealed that strength and ductility, as well as corrosion resistance and biocompatibility, are as good as or even better than those of 316L [Vogt, J.B., Degallaix, S., Foct J., 1984. Low cycle fatigue life enhancement of 316L stainless steel by nitrogen alloying. International Journal of Fatigue 6 (4), 211-215, Menzel, J., Stein, G., 1996. High nitrogen containing Ni-free austenitic steels for medical applications. ISIJ Intern 36 (7), 893-900, Gavriljuk, V.G., Berns, H., 1999. High nitrogen steels, Springer Verlag, Berlin, Heidelberg]. However, because of a strut diameter of about 100 microm, the cross section consists of about five to ten crystal grains (oligo-crystalline). Thus very few, or even just one, grain can be responsible for the success or failure of the whole stent. During implantation, the structure of coronary artery stents is subjected to distinct inhomogeneous plastic deformation due to crimping and dilation.

  3. Calculation of the Ti(C y N1- y )-Ti4C2S2-MnS-austenite equilibrium in Ti-bearing steels

    NASA Astrophysics Data System (ADS)

    Liu, W. J.; Jonas, J. J.

    1989-08-01

    A thermodynamic model is presented for the equilibria among various precipitates (Ti(C y N1- y ), Ti4C2S2, and MnS) and austenite containing six alloying elements (C, Mn, N, S, Si, and Ti). This model is applied to four microalloyed steels with Ti levels of 0.05, 0.11, 0.18, and 0.25 pct. The calculations show that the Ti in these steels cannot be completely dissolved over the austenite temperature range. However, the compositions of the undissolved Ti carbonitrides differ significantly from pure TiN, as 10 to 40 pct of the nitrogen is replaced by carbon. An expression for the Gibbs energy for the formation of Ti4C2S2 in austenite is estimated. The present predictions are compared with those of the Hudd, Jones, and Kale (HJK) model; considerable differences are observed at temperatures below 1250°C.

  4. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.

    PubMed

    Endo, K; Suzuki, M; Ohno, H

    2000-03-01

    The corrosion behaviors of four ferric stainless steels and two austenitic stainless steels were examined in a simulated physiological environment (0.9% NaCl solution) to obtain basic data for evaluating the appropriate composition of stainless steels for dental magnetic attachments. The corrosion resistance was evaluated by electrochemical techniques and the analysis of released metal ions by atomic absorption spectrophotometry. The surface of the stainless steels was analyzed by X-ray photoelectron spectroscopy (XPS). The breakdown potential of ferric stainless steels increased and the total amount of released metal ions decreased linearly with increases in the sum of the Cr and Mo contents. The corrosion rate of the ferric stainless steels increased 2 to 6 times when they were galvanically coupled with noble metal alloys but decreased when coupled with commercially pure Ti. For austenitic stainless steels, the breakdown potential of high N-bearing stainless steel was approximately 500 mV higher than that of SUS316L, which is currently used as a component in dental magnetic attachments. The enriched nitrogen at the alloy/passive film interface may be effective in improving the localized corrosion resistance.

  5. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  6. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGES

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  7. The role of irradiated microstructure in the localized deformation of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Was, G. S.

    2010-12-01

    Localized deformation has emerged as a potential factor in irradiation-assisted stress corrosion cracking of austenitic stainless steels in LWR environments and the irradiated microstructure may be a critical factor in controlling the degree of localized deformation. Seven austenitic alloys with various compositions were irradiated using 2-3 MeV protons to doses of 1 and 5 dpa at 360 °C. The irradiated microstructure consisting of dislocation loops and voids was characterized using transmission electron microscopy. The degree of localized deformation was characterized using atomic force microscopy on the deformed samples after conducting constant extension rate tension tests to 1% and 3% strain in argon. Localized deformation was found to be dependent on the irradiated microstructure and to correlate with hardening originating from dislocation loops. Dislocation loops enhance the formation of dislocation channels and localize deformation into existing channels. On the contrast, voids mitigate the degree of localized deformation. The degree of localized deformation decreases with SFE with the exception of alloy B. Localized deformation was found to have similar dependence on SFE as loop density suggesting that SFE affects localized deformation by altering irradiated microstructure.

  8. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  9. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    PubMed

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release.

  10. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  11. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    SciTech Connect

    Ashdown, B.G.

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  12. Composition, Microstructure, and Water Vapor Effects on Internal/External Oxidation of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Santella, Michael L; Walker, Larry R

    2009-01-01

    A family of creep-resistant austenitic stainless steels based on alumina (Al2O3) scale formation for superior high-temperature oxidation resistance was recently identified. Results of long-term cyclic oxidation studies (100 h cycles and total exposure duration for up to 7500 h) from 650-800 aC in air and/or air with 10% water vapor for a series of 2.5, 3, and 4 wt.% Al AFA compositions, with varying levels of Nb and Ni additions, are presented. Water vapor was observed to enhance subscale Al consumption in the AFA alloys relative to dry air exposure, presumably via enhanced alumina scale cracking and reformation. Water vapor also increased the tendency for internal oxidation. Increased levels of Nb additions were found to significantly improve oxidation resistance, as were reactive element additions of Hf and Y. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2Nb base Laves phase precipitates were used to guide interpretation of oxidation behavior alloy composition trends in terms of two-phase oxidation theory, reservoir effect, and the third-element effect of Cr. The implications of these findings for the upper-temperature service limit for this new class of alloys and the potential for AFA alloy modification for increased service temperatures are discussed.

  13. The influence of heat treatment on the high-stress abrasion resistance and fracture toughness of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Sare, I. R.; Arnold, B. K.

    1995-07-01

    The influence of a range of austenitizing and subcritical (tempering) heat treatments on the high-stress abrasion resistance and fracture toughness of four commercially significant grades of alloy white cast iron was investigated. Complementing an earlier study[1] on the influence of a more limited range of heat treatments on the gouging abrasion performance of the same alloys, the results showed that the effect of austenitizing temperature on high-stress abrasion pin test weight loss differed for each alloy. With increasing austenitizing temperature, these results ranged from a substantial improvement in wear performance and retention of hardness through to vir-tually no change in wear performance and substantial falls in hardness. Fracture toughness, however, increased markedly in all alloys with increasing austenitizing temperature. Tempering treatments in the range 400 °C to 600 °C, following hardening at the austenitizing temperature used commonly in industrial practice for each alloy, produced significant changes in both hard-ness and wear performance, but negligible changes in fracture toughness. Most importantly, the data showed that selection of the correct temperature for subcritical heat treatment to reduce the retained austenite content for applications involving repeated impact loading is critical if abrasion resistance is not to suffer.

  14. In vitro biocompatibility of novel Au-Pt-based metal-ceramic alloys.

    PubMed

    Johnson, Anthony; Shiraishi, Takanobu; Hurrell-Gillingham, Kathryn

    2011-09-01

    The aim of this research was to evaluate the effect of individual metallic elements within experimental Au-Pt-based metal-ceramic alloys on in vitro biocompatibility. A binary Au-10 at.% Pt alloy (AP10) was designed as a parent alloy. Six ternary AP10-X (X = In/Fe/Sn/Zn) alloys and four quaternary (AP10-In2)-Y (Y = Fe/Sn/Zn) with different compositions were cast into square plates with size 10X10X0.5 mm(3) and subjected to porcelain-firing thermal cycling. A commercial alloy was used as a control. In vitro biocompatibility was investigated using L929 murine aneuploid fibrosarcoma cell line. The test samples and cells were incubated at 37°C in a 5% CO(2) atmosphere for 72 h. Alamar™ Blue Assay was carried out to determine the respiratory viability of cultures maintained in the presence of the different materials. The cell only control showed significantly higher levels of cell viability than all six of the ternary alloys and two of the four quaternary alloys, (AP10-In2)-Zn2.1 and (AP10-In2)-Sn1.0 (P < 0.05). The quaternary alloys showed slightly higher levels of cell viability than the ternary alloys, with the exception of AP10-Sn0.9. No statistical differences were seen between the ternary and quaternary alloy groups. Acceptable cell viability was observed on the surfaces of all the alloys.

  15. Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon

    2010-12-01

    Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.

  16. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  17. The effects of aluminum alloy compositions in DIMOX process

    SciTech Connect

    Kim, Chang Wook; Kim, Cheol Soo

    1996-12-31

    Al{sub 2}O{sub 3}-Al composites have been produced by the directed oxidation of binary and ternary aluminum alloys. The Mg, Si, Zn, Sn, Cu, Ni, Ca and Ce have been investigated as alloying elements. The oxidation amount of Al-1wt%Mg alloy was more than that of Al-3wt%Mg alloy. The ternary systems such as Al-Mg-(Si, Sn) alloys were fabricated in the form of porous composites with large amount of oxidation. The amount of oxidation in Al-Mg-(Cu, Ni) was relatively less than that in Al-Mg-(Si, Sn) with some micro pores. Al{sub 2}O{sub 3}-Al composite is always locally growing in Al-xMg-xZn alloys at 1200{degrees}C.

  18. Structure of Al-Ti-C master alloys

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Brodova, I. G.; Yablonskikh, T. I.; Shirinkina, I. G.; Barbin, N. M.; Bodrova, L. E.; Dolmatov, A. V.; Pastukhov, E. A.; Vatolin, N. A.; Chebykin, V. V.; Chernov, Ya. B.

    2011-06-01

    A binary Al-Ti master alloy of hyperperitectic composition, whose structural characteristics ensure high modifying efficiency, has been prepared by the aluminothermy method. The treatment of the alloy by low-frequency vibrations (LFVs) and its interaction with the carbon emitter of LFVs in the process of crystallization lead to the formation of a ternary Al-Ti-C alloy containing titanium aluminide Al3Ti and titanium carbide TiC. The presence of these phases creates favorable conditions for the formation of solidification nuclei in the aluminum melt when using a ternary master alloy as a modifier. A comparison of the efficiency of the structure refinement when using experimental master alloys and the standard Al-Ti master alloy poured into a metallic chill mold has been performed.

  19. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  20. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  1. Shape-memory transformations of NiTi: minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states.

    PubMed

    Zarkevich, N A; Johnson, D D

    2014-12-31

    NiTi is the most used shape-memory alloy; nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudged elastic band method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between a body-centered orthorhombic (bco) ground state and a newly identified stable austenite ("glassy" B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R phase), and between martensite variants (bco orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. These high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  2. Field and laboratory evaluations of commercial and next–generation alumina-forming austenitic foil for advanced recuperators

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Brady, Michael P.; ...

    2016-07-19

    Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. Furthermore, to reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testingmore » at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.« less

  3. A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chopra, O. K.; Rao, A. S.

    2011-02-01

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

  4. Influence of nitrogen on the sensitization, corrosion, mechanical, and microstructural properties of austenitic stainless steels. First annual progress report

    SciTech Connect

    Clark, W.A.T.; Macdonald, D.D.

    1982-04-01

    During this first year of the project, the research effort has concentrated on the electrochemical aspects of the effect of nitrogen on austenitic steels. The status of all the individual project tasks are outlined briefly, and then more detailed results of the electrochemical studies conducted so far are reported. Highlights of this quarter are: (1) nitrogen additions of up to 0.16 wt % retard sensitization of 18Cr-8Ni austenitic stainless steels. However, nitrogen additions to levels above approx. 0.25 wt % promote sensitization; (2) the retardation of sensitization by nitrogen can possibly be explained as being due to retardation of the nucleation or rate of growth of chromium carbides; and (3) polarization studies in high temperature 0.01 M Na/sub 2/SO/sub 4/ solutions at 250/sup 0/C demonstrate that the sensitized alloys are electrochemically more active than the solution annealed materials thereby indicating that they are susceptible to intergranular attack.

  5. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  6. A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels.

    SciTech Connect

    Chopra, O. K.; Roa, A. S.; Environmental Science Division; U.S. NRC

    2010-12-15

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

  7. Field and laboratory evaluations of commercial and next–generation alumina-forming austenitic foil for advanced recuperators

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Brady, Michael P.; Yamamoto, Yukinori; Ruan, Bo; Robert D. McKeirnan, Jr.

    2016-07-19

    Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. Furthermore, to reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.

  8. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  9. Lazarevicite-type short-range ordering in ternary III-V nanowires

    NASA Astrophysics Data System (ADS)

    Schnedler, M.; Lefebvre, I.; Xu, T.; Portz, V.; Patriarche, G.; Nys, J.-P.; Plissard, S. R.; Caroff, P.; Berthe, M.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Grandidier, B.

    2016-11-01

    Stabilizing ordering instead of randomness in alloy semiconductor materials is a powerful means to change their physical properties. We used scanning tunneling and transmission electron microscopies to reveal the existence of an unrecognized ordering in ternary III-V materials. The lazarevicite short-range order, found in the shell of InAs1 -xSbx nanowires, is driven by the strong Sb-Sb repulsion along <110 > atomic chains during their incorporation on unreconstructed {110 } sidewalls. Its spontaneous formation under group-III-rich conditions of growth offers the prospect to broaden the limited classes of ordered structures occurring in III-V semiconductor alloys.

  10. Composition dependences of thermodynamical properties associated with Pb-free ternary, quaternary, and quinary solder systems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.

    2016-05-01

    In the present study, Chou's General Solution Model (GSM) has been used to predict the enthalpy and partial enthalpies of mixing of the liquid Ag-In-Sn ternary, Ag-In-Sn-Zn quaternary, and Ag-Au-In-Sn-Zn quinary systems. These are of technical importance to optimize lead-free solder alloys, in selected cross-sections: x In/ x Sn = 0.5/0.5 (ternary), Au-In0.1-Sn0.8-Zn0.1, Ag-In0.1-Sn0.8-Zn0.1 (quaternary), and t = x Au/ x In = 1, x In = x Sn = x Zn (quinary) at 1173, 773, and 773 K, respectively. Moreover, the activity of In content in the ternary alloy system Ag-In-Sn has been calculated and its result is compared with that determined from the experiment, while the activities of Ag contents associated with the alloys mentioned above have been calculated. The other traditional models such as of Colinet, Kohler, Muggianu, Toop, and Hillert are also included in calculations. Comparing those calculated from the proposed GSM with those determined from experimental measurements, it is seen that this model becomes considerably realistic in computerization for estimating thermodynamic properties in multicomponent systems.

  11. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  12. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity

    SciTech Connect

    Smith, Danielle K.; Luther, Joseph M; Semonin, Octavi Escala; Nozik, Arthur J; Beard, Matthew C

    2011-01-25

    We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe{sub x}Te{sub 1-x}, PbS{sub x}Te{sub 1-x}, and PbS{sub x}Se{sub 1-x}. This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS{sub 2})-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio.

  13. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  14. CF8C-Plus: A New High Temperature Austenitic Casting for Advanced Power Systems

    SciTech Connect

    Shingledecker, John P; Maziasz, Philip J; Evans, Neal D; Santella, Michael L

    2006-01-01

    A new cast austenitic stainless steel, CF8C plus, has been developed by Oak Ridge National Laboratory and Caterpillar for a wide range of transportation and energy applications. CF8C plus steel has improved high temperature tensile, creep, fatigue, and creep-fatigue properties compared with standard CF8C steel. Changes to the CF8C steel composition, including additions of Mn and N, result in changes to the solidification behaviour and final microstructure of the alloy, which directly relate to the improved mechanical properties. Additionally, CF8C plus is a relatively inexpensive steel which exhibits good castability. The mechanical properties of the alloy have generated significant interest for the production/design of cast components for diesel engine turbochargers and other exhaust components, natural gas reciprocating engines for distributed power, and turbine end covers and casings for land based turbines. In the present paper, the microstructural evolution of CF8C and CF8C plus are presented in more detail, and the mechanical properties of the alloys are compared with each other and other engineering alloys.

  15. Void Swelling and Microstructure of Austenitic Stainless Steels Irradiated in the BOR - 60 Reactor

    SciTech Connect

    Chen, Y.; Yang, Yong; Huang, Yina; Allen, T.; Alexandreanu, B.; Natesan, K.

    2012-11-01

    As nuclear power plants age and neutron fluence increases, detrimental effects resulting from radiation damage have become an increasingly important issue for the operational safety and structural integrity of core internal components. In this study, irradiated specimens of reactor core internal components were characterized by transmission electron microscopy. The specimens had been irradiated to 5.5-45 dpa in the BOR-60 reactor at a dose rate close to 10-6 dpa/s and temperature of about 320°C. No voids were observed in the austenitic stainless steels and nickel alloys at all doses. Despite the possibility that fine voids below the TEM resolution limit may be present, it was clear that void swelling was insignificant in all examined alloys up to 45 dpa. Irradiated microstructures of the studied alloys were dominated by a high density of Frank loops. The mean size and density of the Frank loops varied from one material to another, but saturated with increasing dose above ~10 dpa. While no irradiation-induced precipitations were present below 24.5 dpa, fine precipitates were evident in several alloys at 45 dpa.

  16. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    DOEpatents

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  17. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels

    NASA Astrophysics Data System (ADS)

    Seol, J. B.; Lim, N. S.; Lee, B. H.; Renaud, L.; Park, C. G.

    2011-06-01

    The grain boundary segregation of boron atoms in high strength low alloy steels containing 50 ppm boron was accomplished using atom probe tomography (APT) and nano-beam secondary ion mass spectroscopy (SIMS). The formation of boro-carbides under an excessive addition of boron to the steels was identified through the SIMS and TEM. The APT was performed in order to evaluate the composition of the alloying elements, such as, boron and carbon, segregated at prior austenite grain boundaries. The boron contents at the prior austenite grain boundaries were approximately 1.7 ± 0.2 at.%, which was approximately 70 times more than the amount of boron added to the steels.

  18. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  19. Synergetic effect in modifying with master alloys having an aluminide cubic structure

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Kotenkov, P. V.; Pastukhov, E. A.

    2016-02-01

    Experimental data on the preparation of test master alloys Al-Sc-(Zr, Ti, Y), Al-Zr-(Ti, Y), and Al-Ti-Y, which contain two transition metals and are characterized by the formation of aluminides with the L12 cubic lattice (which is identical to the crystal lattice of an aluminum-alloy matrix), are presented. The growth forms of aluminides in alloys of various compositions are demonstrated. Using Al-4% Cu model alloys (experiments were carried out with 15 and 200 g samples cooled at different cooling rates), the modifying ability of the test ternary master alloys and industrial binary master alloys (used for comparison) has been estimated. Synergetic effects of two transition metals, which consist in grain refining in Al-4% Cu alloys, and a substantial difference in the modifying effects of the binary and ternary master alloys have been shown.

  20. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.