Science.gov

Sample records for author taylor jessica

  1. Interview with Jessica Utts

    ERIC Educational Resources Information Center

    Rossman, Allan; Utts, Jessica

    2014-01-01

    This article offers a transcript of author Allan Rossman's interview with Jessica Utts, Professor and Chair of Statistics at the University of California-Irvine. Utts is also a Fellow of the American Statistical Association and a recipient of a Founders Award from ASA. Additionally, she has been elected as President of ASA for the year 2016. The…

  2. Jessica's Journey: Transforming School Culture

    ERIC Educational Resources Information Center

    Grover, Kenneth O.

    2014-01-01

    Kenneth Grover, the principal at Innovations Early College High School in Salt Lake City, Utah, describes a student he calls Jessica who is, unfortunately, one of thousands of students across the country entering and walking away from high school during their first year. These students' efforts are sincere, their attendance superb, and their…

  3. Reflections on the Historical Narrative of Jessica Park, an Artist with Autism

    ERIC Educational Resources Information Center

    Furniss, Gillian J.

    2010-01-01

    This viewpoint discusses the history of Jessica Park, a professional artist who is an adult with autism. The narrative was constructed from historical descriptive research conducted by the author using published accounts and interviews with the artist, her mother, and two childhood companions. Examples of artwork produced in elementary through…

  4. Twenty-Five Years and Counting of "Sweet Valley": Jessica and Elizabeth in Romance Novels for Young Children?

    ERIC Educational Resources Information Center

    Roberts, Sherron Killingsworth

    2010-01-01

    With the 2008 reissue of Francine Pascal's (1983) "Sweet Valley High", the popular cultural icons of twins Jessica and Elizabeth have been revitalized. Jessica and Elizabeth are the much-beloved protagonists in romance novels strategically targeted for young adults in "Sweet Valley High" or "Sweet Valley U", and for first- and second-grade readers…

  5. A Comparison of Documentary Approaches: Margaret Bourke-White and Erskine Caldwell, Authors of "You Have Seen Their Faces," and Dorothea Lange and Paul S. Taylor, Authors of "An American Exodus."

    ERIC Educational Resources Information Center

    Hanson, Art

    Two books that use documentary photography to examine social problems--"You Have Seen Their Faces," a 1937 study of Southern sharecroppers by Margaret Bourke-White and Erskine Caldwell, and "An American Exodus," a 1939 examination of the migration of farm families by Dorothea Lange and Paul S. Taylor--are compared in this…

  6. Taylor-Made Libraries

    ERIC Educational Resources Information Center

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  7. Authority.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1987

    1987-01-01

    Offers a lesson designed to help students recognize a key philosophical principle embodied in the U.S. Constitution: that the consent of the governed is the ultimate source of authority in our political system. (JDH)

  8. Meet Jessica and Elizabeth from Sweet Valley: Who Are the Female Role Models in Popular Romance Novels for Children?

    ERIC Educational Resources Information Center

    Roberts, Sherron Killingsworth

    Jessica and Elizabeth are two female characters, twins, featured throughout Francine Pascal's Sweet Valley series, the Bantam Publishers popular series for girls from elementary school through junior high, high school, university, and well into adulthood. This paper notes that these books are a part of the same formula that are used for romance…

  9. Reply to Taylor.

    ERIC Educational Resources Information Center

    Stanovich, Keith E.; West, Richard F.

    1994-01-01

    Responds to Denny Taylor's critique in the same issue of an article by Richard F. West, Keith E. Stanovich, and H. R. Mitchell entitled "Reading in the Real World and Its Correlates," published in an earlier issue of "Reading Research Quarterly." (HB)

  10. Baker & Taylor's George Coe

    ERIC Educational Resources Information Center

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  11. Large deviations in Taylor dispersion

    NASA Astrophysics Data System (ADS)

    Kahlen, Marcel; Engel, Andreas; Van den Broeck, Christian

    2017-01-01

    We establish a link between the phenomenon of Taylor dispersion and the theory of empirical distributions. Using this connection, we derive, upon applying the theory of large deviations, an alternative and much more precise description of the long-time regime for Taylor dispersion.

  12. Magnetically Induced Rotating Rayleigh-Taylor Instability.

    PubMed

    Scase, Matthew M; Baldwin, Kyle A; Hill, Richard J A

    2017-03-03

    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses(1), rocketry(2) or linear electric motors(3) to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors(e.g.)(4)(,)(5)(,)(6) have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10(-6) - 10(-5), compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.

  13. Incompressible Rayleigh–Taylor Turbulence

    NASA Astrophysics Data System (ADS)

    Boffetta, Guido; Mazzino, Andrea

    2017-01-01

    Basic fluid equations are the main ingredient in the development of theories of Rayleigh–Taylor buoyancy-induced instability. Turbulence arises in the late stage of the instability evolution as a result of the proliferation of active scales of motion. Fluctuations are maintained by the unceasing conversion of potential energy into kinetic energy. Although the dynamics of turbulent fluctuations is ruled by the same equations controlling the Rayleigh–Taylor instability, here only phenomenological theories are currently available. The present review provides an overview of the most relevant (and often contrasting) theoretical approaches to Rayleigh–Taylor turbulence together with numerical and experimental evidence for their support. Although the focus is mainly on the classical Boussinesq Rayleigh–Taylor turbulence of miscible fluids, the review extends to other fluid systems with viscoelastic behavior, affected by rotation of the reference frame, and, finally, in the presence of reactions.

  14. Authorizing Authority.

    ERIC Educational Resources Information Center

    Deutelbaum, Wendy

    In contrast to a teacher-dominated literature classroom where authority rests with the one who has the power to grade, a classroom dedicated to cultivating the creative process breaks down the traditional hierarchies (such as theory and practice, text and reader, and organization and improvisation) and concentrates on the needs of the individual…

  15. An Attempt to Extend Taylor-Spence Drive Theory to Vocational Choice Behavior

    ERIC Educational Resources Information Center

    Sharf, Richard S.

    1972-01-01

    Predictions were made from Taylor-Spence drive theory about vocational choice behavior. Although the results did not specifically support the predictions made from Taylor-Spence theory, they indicated the potential usefulness of certain concepts in this theory and suggested several lines of inquiry for further research. (Author)

  16. The Remainder in Taylor's Formula.

    ERIC Educational Resources Information Center

    Poffald, Esteban I.

    1990-01-01

    Presented is a mean-value theorem that generalizes the Taylor-Lagrange formula. Discussed is the asymptotic behavior of the remainder term of the formula. Several numerical schemes are derived to approximate the solution to initial-valued first order differential equations. (KR)

  17. Rayleigh-Taylor Shock Waves

    SciTech Connect

    Olson, B J; Cook, A W

    2007-08-30

    Beginning from a state of hydrostatic equilibrium, in which a heavy gas rests atop a light gas in a constant gravitational field, Rayleigh-Taylor instability at the interface will launch a shock wave into the upper fluid. The rising bubbles of lighter fluid act like pistons, compressing the heavier fluid ahead of the fronts and generating shocklets. These shocklets coalesce in multidimensional fashion into a strong normal shock, which increases in strength as it propagates upwards. Large-eddy simulations demonstrate that the shock Mach number increases faster in three dimensions than it does in two dimensions. The generation of shocks via Rayleigh-Taylor instability could have profound implications for astrophysical flows.

  18. Rotating Rayleigh-Taylor turbulence

    NASA Astrophysics Data System (ADS)

    Boffetta, G.; Mazzino, A.; Musacchio, S.

    2016-09-01

    The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.

  19. Is the magnetopause Rayleigh-Taylor unstable sometimes?

    SciTech Connect

    Gratton, F.T.; Farrugia, C.J.; Cowley, S.W.H.

    1996-03-01

    The authors examine the question of whether the magnetopause is Rayleigh-Taylor stable. The magnetopause tends to be in continuous motion because of the effect of the dyanmic pressure from the solar wind. When there is a sudden drop in solar wind pressure, and the magnetopause tends to accelerate sunward, a situation is created where the magnetopause may go unstable. The authors look at two possible stabilizing effects, first the magnetic shear which exists across the magnetopause, and then the viscous nature of the magnetosheath plasma. They find that large shear leads to stability for the Rayleigh-Taylor mode. When there is a strong northward component in the magnetosheath field, they find that the magnetopause may be unstable to this mode for both global and internal modes. They also discuss the effect of such instabilities on observations.

  20. Exact axisymmetric Taylor states for shaped plasmas

    SciTech Connect

    Cerfon, Antoine J. O'Neil, Michael

    2014-06-15

    We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

  1. On Taylor's justification of medical informed consent.

    PubMed

    Varelius, Jukka

    2012-05-01

    In contemporary Western biomedical ethics, informed consent practices are commonly justified in terms of the intrinsic value of patient autonomy. James Stacey Taylor maintains that this conception of the moral grounding of medical informed consent is mistaken. On the basis of his reasoning to that effect, Taylor argues that medical informed consent is justified by the instrumental value of personal autonomy. In this article, I examine whether Taylor's justification of medical informed consent is plausible.

  2. Rotating Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Scase, M. M.; Baldwin, K. A.; Hill, R. J. A.

    2017-02-01

    The effect of rotation upon the classical Rayleigh-Taylor instability is investigated. We consider a two-layer system with an axis of rotation that is perpendicular to the interface between the layers. In general, we find that a wave mode's growth rate may be reduced by rotation. We further show that in some cases, unstable axisymmetric wave modes may be stabilized by rotating the system above a critical rotation rate associated with the mode's wavelength, the Atwood number, and the flow's aspect ratio.

  3. Quasiperiodic Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Coughlin, Katie

    1990-01-01

    We present analysis and computations of the transition from wavy vortex flow to modulated wavy (or quasiperiodic) flow in the axially periodic Taylor-Couette system. We derive the correct functional form for quasiperiodic solutions to the Navier-Stokes equations, and show that all the space -time symmetry properties follow directly. The fluid equations are solved numerically using a pseudo-spectral initial value code for a number of wave, modulated wave, and weakly chaotic flows. At high Reynolds number R > 7R_{c}, where R _{c} is the critical value for transition to Taylor vortex flow, our solutions can be compared directly to experimentally observed flows. A simple physical picture is associated with the modulation, which we argue arises as an instability of the vortex outflow jet. Numerical evidence suggests that the transition from modulated waves to chaos in these flows is also associated with an instability of the outflow, and can be described with a low-dimensional model. In addition, we have discovered examples of modulated waves at low Reynolds number. This quasiperiodic flow goes through a period-doubling cascade to chaos, with the modulation period relative to the frame rotating with the first wave doubling as R increases.

  4. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  5. Taylorism and the Logic of Learning Outcomes

    ERIC Educational Resources Information Center

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  6. Douglas Taylor School: Rooted in Community

    ERIC Educational Resources Information Center

    Rourke, James; Boone, Elizabeth

    2009-01-01

    Inspiring students to become teachers and community leaders is a goal of Douglas Taylor School's leadership team. A feeling of continuity and connection are important to the school, which opened in the 19th century. Housed in a beautiful old school building in Chicago's South Side, Douglas Taylor School contains grades preK-8. To maintain the…

  7. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  8. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union...

  9. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union...

  10. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union...

  11. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union...

  12. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union...

  13. Spectral stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1986-01-01

    In a global sense it is shown that the two-dimensional Taylor vortex array, an exact solution of the Navier-Stokes equation, is absolutely and monotonically stable with respect to infinitesimal disturbances of all discrete frequencies as long as the viscosity is positive. It is suggested that the Taylor vortex array may also be stable with respect to finite amplitude disturbances.

  14. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  15. Nonideal Rayleigh-Taylor mixing

    SciTech Connect

    Sharp, David Howland; Lin, Hyun K; Iwerks, Justin G; Gliman, James G

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  16. Temperature, size, and depth of the magma reservoir for the Taylor Creek Rhyolite, New Mexico

    USGS Publications Warehouse

    Duffield, W.A.; du Bray, E.A.

    1990-01-01

    The 55 km3 mid-Tertiary Taylor Creek Rhyolite in southwestern New Mexico consists of 20 lava domes and flows. This rhyolite is metaluminous to weakly peraluminous. Compositional zonation in feldspar phenocrysts is very minor and nonsystematic. The compositions of each feldspar species vary little throughout the suite of analyzed samples. This chemical homogeneity of phenocrysts reflects similar whole-rock homogeneity and suggests that the lavas were tapped from a single large reservoir of magma. Ages of sanidine phenocrysts determined using 40Ar/39Ar indicate that the Taylor Creek Rhyolite lavas were emplaced during a period of less than 0.42 my. and possibly less than 0.13 m.y., which is consistent with the single-reservoir scenario. Two-feldspar geothermometry suggests that Taylor Creek Rhyolite phenocrysts crystallized at about 775??C, at an assumed pressure of 2 kbar. Fe-Ti-oxide geothermometry suggests phenocryst growth at about 800??C. Experimental studies suggest that quartz and potassium-feldspar crystals that grow from H2O-undersaturated granitic magmas should exhibit resorption texture, a texture ubiquitous to Taylor Creek Rhyolite quartz and sanidine phenocrysts. We tentatively conclude that the Taylor Creek Rhyolite magma was H2O undersaturated and subliquidus at an unspecified pressure greater than 0.5 kbar during phenocryst growth and that Taylor Creek Rhyolite pyroclastic deposits formed because volatile saturation developed during the ascent of magma to sites of eruption. -from Authors

  17. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV) standard instrument approach procedures at Taylor Airport. This will improve the safety...

  18. Taylor dispersion analysis of mixtures.

    PubMed

    Cottet, Hervé; Biron, Jean-Philippe; Martin, Michel

    2007-12-01

    Taylor dispersion analysis (TDA) is a fast and simple method for determining hydrodynamic radii. In the case of sample mixtures, TDA, as the other nonseparative methods, leads to an average diffusion coefficient on the different molecules constituting the mixture. We set in this work the equations giving, on a consistent basis, the average values obtained by TDA with detectors with linear response functions. These equations confronted TDA experiments of sample mixtures containing different proportions of a small molecule and a polymer standard. Very good agreement between theory and experiment was obtained. In a second part of this work, on the basis of monomodal or bimodal molar mass distributions of polymers, the different average diffusion coefficients corresponding to TDA were compared to the z-average diffusion coefficient (D(z)) obtained from dynamic light scattering (DLS) experiments and to the weight average diffusion coefficient (D(w)). This latter value is sometimes considered as the most representative of the sample mixture. From these results, it appears that, for monomodal distribution and relatively low polydispersity (I = 1.15), the average diffusion coefficient generally derived from TDA is very close to Dw. However, for highly polydisperse samples (e.g., bimodal polydisperse distributions), important differences could be obtained (up to 35% between TDA and D(w)). In all the cases, the average diffusion coefficient obtained by TDA for a mass concentration detector was closer to the Dw value than the z-average obtained by DLS.

  19. Rayleigh--Taylor spike evaporation

    SciTech Connect

    Schappert, G. T.; Batha, S. H.; Klare, K. A.; Hollowell, D. E.; Mason, R. J.

    2001-09-01

    Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150 {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.

  20. Taylor impact of glass rods

    SciTech Connect

    Willmott, G.R.; Radford, D.D.

    2005-05-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below {approx}2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above {approx}3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at {approx}4 GPa, the average failure front velocities were 4.7{+-}0.5 and 4.6{+-}0.5 mm {mu}s{sup -1} for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density.

  1. Rayleigh-Taylor mixing in supernova experiments

    SciTech Connect

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-10-15

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  2. Deformity correction in Haiti with the Taylor Spatial Frame.

    PubMed

    Alexis, Francel; Herzenberg, John E; Nelson, Scott C

    2015-01-01

    The Taylor Spatial Frame (TSF) is an external-fixator that corrects deformities in 6 axes, and can successfully manage disorders involving multiplanar deformities. In the developing-world, orthopaedic surgeons are often faced with deformities from neglected trauma and birth defects more severe than those typically seen in developed-countries. This article evaluates the applicability of TSF in the challenging medical environment of Haiti. At Haiti Adventist Hospital, the authors treated 80 cases using the TSF with a minimum follow-up of 1-year. Good results were observed in 99% of the cases (79 out of 80), approaching similar outcomes than those described in literature.

  3. Resistance law for a turbulent Taylor-Couette flow at very large Taylor numbers

    NASA Astrophysics Data System (ADS)

    Balonishnikov, A. M.

    2016-11-01

    Based on the semi-empirical model of the transport of the specific rate of turbulence energy dissipation, it has been concluded that the resistance laws are observed for a turbulent Taylor-Couette flow between independently rotating coaxial cylinders for very large Taylor numbers.

  4. New directions for Rayleigh-Taylor mixing.

    PubMed

    Glimm, James; Sharp, David H; Kaman, Tulin; Lim, Hyunkyung

    2013-11-28

    We study the Rayleigh-Taylor (RT) mixing layer, presenting simulations in agreement with experimental data. This problem is an idealized subproblem of important scientific and engineering problems, such as gravitationally induced mixing in oceanography and performance assessment for inertial confinement fusion. Engineering codes commonly achieve correct simulations through the calibration of adjustable parameters. In this sense, they are interpolative and not predictive. As computational science moves from the interpolative to the predictive and reduces the reliance on experiment, the quality of decision making improves. The diagnosis of errors in a multi-parameter, multi-physics setting is daunting, so we address this issue in the proposed idealized setting. The validation tests presented are thus a test for engineering codes, when used for complex problems containing RT features. The RT growth rate, characterized by a dimensionless but non-universal parameter α, describes the outer edge of the mixing zone. Increasingly accurate front tracking/large eddy simulations reveal the non-universality of the growth rate and agreement with experimental data. Increased mesh resolution allows reduction in the role of key subgrid models. We study the effect of long-wavelength perturbations on the mixing growth rate. A self-similar power law for the initial perturbation amplitudes is here inferred from experimental data. We show a maximum ±5% effect on the growth rate. Large (factors of 2) effects, as predicted in some models and many simulations, are inconsistent with the experimental data of Youngs and co-authors. The inconsistency of the model lies in the treatment of the dynamics of bubbles, which are the shortest-wavelength modes for this problem. An alternative theory for this shortest wavelength, based on the bubble merger model, was previously shown to be consistent with experimental data.

  5. Accelerated Taylor plumes for MIF targets

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Schaffner, D. A.; Parks, H. L.; Rock, A. B.

    2015-11-01

    The SSX plasma device has been converted to a 2.5 m merging plasma wind tunnel configuration. Experiments are underway to study merging and stagnation of high density, helical Taylor states to employ as a potential target for magneto-inertial fusion. Eventually, SSX Taylor states will be accelerated to over 100 km / s and compressed to small volumes either by stagnation or merging. Initial un-accelerated merging studies produce peak proton densities of 5 ×1015cm-3 . Densities are measured with a precision quadrature He-Ne laser interferometer. Typical merged plasma parameters are Ti = 20 eV, Te = 10 eV, B = 0 . 4 T with lifetimes of 100 μs. Results from a single prototype acceleration coil will be presented, as well as initial simulation studies of Taylor state plasma acceleration using multiple staged, pulsed theta-pinch coils. Work supported by DOE ARPA-E ALPHA program.

  6. Taylorism in a post-modern age?

    PubMed

    Freemantle, N

    1995-02-01

    F.W. Taylor made an early and important contribution to the organisation of work in an industrial society. His ideas, or versions of his ideas, are once again receiving attention. Some commentators even describe a new or neo Taylorism (Pollitt, 1990). This paper argues that the only theoretical justification for the re-introduction of Taylorist strategies in the workplace is found in the notion of the post-modern world; where rationality is replaced by a ritual of signs and work becomes part of that ritual; where form replaces rationale, and strategies for work are governed by processes of survival in the remnants of modernity.

  7. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  8. 20. TURNTABLE WITH CABLE CAR BAY & TAYLOR: View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TURNTABLE WITH CABLE CAR - BAY & TAYLOR: View to northwest of the Bay and Taylor turntable. The gripman and conductor are turning the car around. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  9. Motivation, Time Course, and Heterogeneity in Obsessive-Compulsive Disorder: Response to Taylor, McKay, and Abramowitz (2005)

    ERIC Educational Resources Information Center

    Woody, Erik Z.; Szechtman, Henry

    2005-01-01

    In response to commentary by S. Taylor, D. McKay, and J. S. Abramowitz, the authors discuss the distinctive features of their theory of obsessive-compulsive disorder outlined in their original article, which explains the disorder as a dysfunction of a security-motivation system. The authors address issues of the interrelation of emotion,…

  10. Damage modeling for Taylor impact simulations

    NASA Astrophysics Data System (ADS)

    Anderson, C. E., Jr.; Chocron, I. S.; Nicholls, A. E.

    2006-08-01

    G. I. Taylor showed that dynamic material properties could be deduced from the impact of a projectile against a rigid boundary. The Taylor anvil test became very useful with the advent of numerical simulations and has been used to infer and/or to validate material constitutive constants. A new experimental facility has been developed to conduct Taylor anvil impacts to support validation of constitutive constants used in simulations. Typically, numerical simulations are conducted assuming 2-D cylindrical symmetry, but such computations cannot hope to capture the damage observed in higher velocity experiments. A computational study was initiated to examine the ability to simulate damage and subsequent deformation of the Taylor specimens. Three-dimensional simulations, using the Johnson-Cook damage model, were conducted with the nonlinear Eulerian wavecode CTH. The results of the simulations are compared to experimental deformations of 6061-T6 aluminum specimens as a function of impact velocity, and conclusions regarding the ability to simulate fracture and reproduce the observed deformations are summarized.

  11. Neo-Taylorism in Educational Administration?

    ERIC Educational Resources Information Center

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography…

  12. Characterization of Taylor plumes on SSX

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Kaur, M.; Han, J.; Shrock, J. E.; Schaffner, D. A.

    2016-10-01

    We have added a 1 m glass extension to the SSX plasma wind tunnel device. Initial experiments have been performed to characterize velocity, density, and magnetic field of relaxed helical Taylor states formed in the glass boundary. We are also experimenting with resistive and mesh liners to provide some flux conservation of the Taylor states. Under construction is a theta pinch coil and pulsed power supply to accelerate the fully relaxed (tilted) Taylor states. Once characterization studies are complete, one or two prototype theta pinch coils will be used to accelerate the Taylor states to over 100 km / s and compressed to small volumes by stagnation. A segmented resistive or mesh flux conserver may also be employed. Preliminary un-accelerated characterizaton studies produce peak proton densities of 1015cm-3 . Densities are measured with a precision quadrature He-Ne laser interferometer located in an expansion volume downstream of the glass extension. Temperatures will be measured by an ion Doppler spectrometer. Stagnated plasma parameters will be ne 1016cm-3 with Ti >= 20eV , B >= 0.5 T with lifetimes over 100 μs . Results from a single prototype acceleration coil will be presented. Work supported by DOE ARPA-E ALPHA program.

  13. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  14. Application of Taylor's series to trajectory propagation

    NASA Technical Reports Server (NTRS)

    Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.

    1986-01-01

    This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.

  15. PEOPLE IN PHYSICS: Interview with Charles Taylor

    NASA Astrophysics Data System (ADS)

    Pople, Conducted by Stephen

    1996-07-01

    Charles Taylor started his university teaching career at UMIST in 1948. In 1965 he became Professor and Head of the Department of Physics at University College, Cardiff. He was a Vice-President of the Institute of Physics from 1970 to 1975, and Professor of Experimental Physics at the Royal Institution from 1977 until 1989. Over the years, Professor Taylor has delighted audiences of all ages with his demonstration lectures, including the Royal Institution Christmas Lectures televised in 1971 and 1989. In 1986 he became the first recipient of the Royal Society's Michael Faraday Award for contributions to the public understanding of science. His many books include Exploring Music, The Art and Science of the Lecture Demonstration, and also the Oxford Children's Book of Science, co-written with interviewer Stephen Pople.

  16. Rayleigh-Taylor Mix experiment on Pegasus

    SciTech Connect

    Sheppard, M.G.; Atchison, W.L.; Anderson, W.E.

    1997-09-01

    The Rayleigh-Taylor Mix project will attempt to diagnose and understand the growth of a mixing layer at the interface between an imploding metal liner and a polystyrene foam core in a series of pulsed power experiments on the Pegasus capacitor bank. Understanding the effects of material strength will be an important part of the study. During the initial phase of the implosion, the linear/foam interface is Rayleigh-Taylor (RT) stable; however, as the foam is compressed, it decelerates the liner, causing it to bound and to go RT unstable. This paper reports 1D and 2D MHD simulations of the first experiment in the series and preliminary results.

  17. CTH simulation of PBX-9501 Taylor tests /

    SciTech Connect

    Koby, Joseph R.

    2011-09-01

    During March-May 2011, multiple Taylor impact tests were conducted at LANL, examining the behavior of PBXN-9 and PBX-9501 under rapid loading. Subsequently, a computational hydrodynamics code (CTH) model was developed to mimic the deformation behavior observed in these impact tests with PBX-9501 would likely initiate upon impact. Also examined was whether an inert slud behind the explosive would lead to initiation at lower, more easily attainable velocities. The simplified model used here showed a minimum velocity for ignition of 530 m/s which was unchanged by the addition of a plastic slud behind the sample. The use of a lead slug did lower the minimum velocity to 460 m/s. These values are likely more qualitative at this point because multiple simplifications are currently used in the materials properties and test geometry. The results do show that this approach is capable of determining ignition due to Taylor impact.

  18. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  19. Fluctuation scaling, Taylor's law, and crime.

    PubMed

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  20. Inward propagating chemical waves in Taylor vortices

    NASA Astrophysics Data System (ADS)

    Thompson, Barnaby W.; Novak, Jan; Wilson, Mark C. T.; Britton, Melanie M.; Taylor, Annette F.

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses—also observed experimentally.

  1. Predictability of Rayleigh-Taylor instability

    SciTech Connect

    Viecelli, J.A.

    1986-03-27

    Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs.

  2. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  3. Author! Author! Beverly Cleary

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2005-01-01

    This article presents a brief biography of author Beverly Cleary. Born on April 12, 1916 in McMinnville, Oregon (Yamhill County), Beverly Cleary celebrated her eighty-ninth birthday in 2005. Cleary is probably best known for creating "Ramona" and the other children's book characters who live on Klickitat Street in Portland, Oregon. A selective…

  4. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... project area. The exploratory drilling in this area would be phased over the course of six years; 51 holes... drilling on the Cibola National Forest, Mount Taylor Ranger District. There are two areas identified for exploration; the Bajillos project area is approximately 2,894 acres and is located in T. 12 N, R. 8...

  5. Fully nonlinear mode competitions of nearly bicritical spiral or Taylor vortices in Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Deguchi, K.; Altmeyer, S.

    2013-04-01

    Interactions between nearly bicritical modes in Taylor-Couette flow, which have been concerned with the framework of weakly nonlinear theory, are extended to fully nonlinear Navier-Stokes computation. For this purpose, a standard Newton solver for axially periodic flows is generalized to compute any mixed solutions having up to two phases, which typically arise from interactions of two spiral or Taylor vortex modes. Also, a simple theory is developed in order to classify the mixed solutions. With these methods, we elucidate pattern formation phenomena, which have been observed in a Taylor-Couette flow experiment. Focusing on the counter-rotating parameter range, all possible classes of interaction of various solutions with different azimuthal and axial wave numbers are considered within our computational restriction, and we observe numerous connection branches, e.g., footbridge solutions. Some of the mixed solutions result in a three-dimensional wavy spiral solution with axial relative periodicity or an axially doubly periodic toroidally closed vortex solution. The possible connection of the former solution family to spiral turbulence, which has been observed in highly counter-rotating Taylor-Couette flow, is discussed.

  6. Fully nonlinear mode competitions of nearly bicritical spiral or Taylor vortices in Taylor-Couette flow.

    PubMed

    Deguchi, K; Altmeyer, S

    2013-04-01

    Interactions between nearly bicritical modes in Taylor-Couette flow, which have been concerned with the framework of weakly nonlinear theory, are extended to fully nonlinear Navier-Stokes computation. For this purpose, a standard Newton solver for axially periodic flows is generalized to compute any mixed solutions having up to two phases, which typically arise from interactions of two spiral or Taylor vortex modes. Also, a simple theory is developed in order to classify the mixed solutions. With these methods, we elucidate pattern formation phenomena, which have been observed in a Taylor-Couette flow experiment. Focusing on the counter-rotating parameter range, all possible classes of interaction of various solutions with different azimuthal and axial wave numbers are considered within our computational restriction, and we observe numerous connection branches, e.g., footbridge solutions. Some of the mixed solutions result in a three-dimensional wavy spiral solution with axial relative periodicity or an axially doubly periodic toroidally closed vortex solution. The possible connection of the former solution family to spiral turbulence, which has been observed in highly counter-rotating Taylor-Couette flow, is discussed.

  7. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...This action proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is proposing this action to enhance the safety and management of aircraft operations at Taylor Airport, Taylor,...

  8. Energy transfer in Rayleigh-Taylor instability.

    PubMed

    Cook, Andrew W; Zhou, Ye

    2002-08-01

    The spatial structure and energy budget for Rayleigh-Taylor instability are examined using results from a 512 x 512 x 2040 point direct numerical simulation. The outer-scale Reynolds number of the flow follows a rough t(3) power law and reaches a final value of about 5500. Taylor microscales and Reynolds numbers are plotted to characterize anisotropy in the flow and document progress towards the mixing transition. A mixing parameter is defined which characterizes the relative rates of entrainment and mixing in the flow. The spectrum of each term in the kinetic energy equation is plotted, at regular time intervals, as a function of the inhomogeneous direction and the two-dimensional wave number for the homogeneous directions. The energy spectrum manifests the beginning of an inertial range by the latter stages of the simulation. The production and dissipation spectra become increasingly opposite and separate in wave space as the flow evolves. The transfer spectrum depends strongly on the inhomogeneous direction, with the net transfer being from large to small scales. Energy transfer at the bubble/spike fronts is strictly positive. Extensive cancellation occurs between the pressure and advection terms. The dilatation term produces negligible energy transfer, but its overall effect is to move energy from high to low density regions.

  9. A Taylor vortex analogy in granular flows.

    PubMed

    Conway, Stephen L; Shinbrot, Troy; Glasser, Benjamin J

    2004-09-23

    Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems--from nano-sized particles to debris flows--is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.

  10. Dynamic Fracture Studies using Sleeved Taylor Specimens

    NASA Astrophysics Data System (ADS)

    Gilmore, Martin; Foster, Joseph, Jr.; Wilson, Leonard L.; Cullis, Ian

    2001-06-01

    The characterization of the inelastic response of materials to high rates of loading is a challenging engineering problem. As the load rate increases, the interpretation of the data recovered from the experiment become more difficult. At very high rates of loading, even the inertia of the test specimen must be accounted for in the interpretation of the data. The Taylor impact experiment is specifically designed to exploit the inertia of the specimen to produce very high loading rates and has been used to study the high strain (50materials for many years. Many high-rate loading problems produce failure in the material. This paper addresses the use of the Taylor impact experiment to study these failures. Continuum codes have been used to design sleeved impact specimens to study the failure of materials under high rates of loading. Ductile core materials are used as drivers to control rupture of more brittle sleeves of the material of interest. Annealed copper cores are used to drive dynamic failure a selection of steels. High rate plastic deformation data is presented for the driver and the sleeve together with the fracture data.

  11. A cosmological Slavnov-Taylor identity

    SciTech Connect

    Collins, Hael; Holman, R.; Vardanyan, Tereza E-mail: rh4a@andrew.cmu.edu

    2014-12-01

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.

  12. Taylor series expansion and modified extended Prony analysis for localization

    SciTech Connect

    Mosher, J.C.; Lewis, P.S.

    1994-12-01

    In the multiple source localization problem, many inverse routines use a rooting of a polynomial to determine the source locations. The authors present a rooting algorithm for locating an unknown number of three-dimensional, near-field, static sources from measurements at an arbitrarily spaced three-dimensional array. Since the sources are near-field and static, the spatial covariance matrix is always rank one, and spatial smoothing approaches are inappropriate due to the spatial diversity. The authors approach the solution through spherical harmonics, essentially replacing the point source function with its Taylor series expansion. They then perform a modified extended Prony analysis of the expansion coefficients to determine the number and location of the sources. The full inverse method is typically ill-conditioned, but a portion of the algorithm is suitable for synthesis analysis. They present a simulation for simplifying point charges limited to a spherical region, using an array of voltage potential measurements made outside the region. Future efforts of this work will focus on adapting the analysis to the electroencephalography and magnetoencephalography.

  13. Gender Discrimination in Jessica's Career.

    ERIC Educational Resources Information Center

    Cook, Ellen Piel

    1997-01-01

    Focuses on the sexual harassment and other gender-related difficulties faced by a Chinese-American woman. Profiles her encounters with gender discrimination and how it hindered career advancement and led to professional isolation. Relates how this case study can be used to sensitize workers to gender discrimination. (RJM)

  14. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    SciTech Connect

    Ganapol, B.; Picca, P.; Previti, A.; Mostacci, D.

    2012-07-01

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making use of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)

  15. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  16. G.I. Taylor and the Trinity Test

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  17. 15. TURNTABLE RECONSTRUCTION BAY & TAYLOR: Photocopy of January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TURNTABLE RECONSTRUCTION - BAY & TAYLOR: Photocopy of January 1941 photograph taken during reconstruction of the Bay and Taylor turntable. View to the south. The 'spider' that carries the actual turntable is in place in the pit. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  18. 16. TURNTABLE RECONSTRUCTION BAY & TAYLOR: Photocopy of January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TURNTABLE RECONSTRUCTION - BAY & TAYLOR: Photocopy of January 1941 photograph taken during reconstruction of the Bay and Taylor turntable. View to northwest taken two days after CA-12-22. Reconstruction work is nearly complete in this view. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  19. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of...

  20. DSM-5 and ADHD - an interview with Eric Taylor.

    PubMed

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  1. Rayleigh-Taylor instability in elastic solids

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Cela, J. J. López; Cortázar, O. D.; Tahir, N. A.; Hoffmann, D. H. H.

    2005-11-01

    We present an analytical model for the Rayleigh-Taylor instability that allows for an approximate but still very accurate and appealing description of the instability physics in the linear regime. The model is based on the second law of Newton and it has been developed with the aim of dealing with the instability of accelerated elastic solids. It yields the asymptotic instability growth rate but also describes the initial transient phase determined by the initial conditions. We have applied the model to solid/solid and solid/fluid interfaces with arbitrary Atwood numbers. The results are in excellent agreement with previous models that yield exact solutions but which are of more limited validity. Our model allows for including more complex physics. In particular, the present approach is expected to lead to a more general theory of the instability that would allow for describing the transition to the plastic regime.

  2. Reverse Taylor Tests on Ultrafine Grained Copper

    SciTech Connect

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-07-28

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 {mu}m for the initial sample to less than 0.5 {mu}m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  3. New Trends in Taylor Series Based Computations

    NASA Astrophysics Data System (ADS)

    Kunovský, Jiří; Kraus, Michal; Šátek, Václav

    2009-09-01

    Motto: For the derivatives of all decent functions analytic formulas can be found but with integration this is only true for very special decent functions. The aim of our paper is to describe a new modern numerical method based on the Taylor Series Method and to show how to evaluate the high accuracy and speed of the corresponding computations. It is also the aim of our paper to show how to calculate finite integrals that are the fundamental part in signal processing, especially in Fourier analysis and how to use it for symbolic operations. It is a fact that the accuracy and stability of the algorithms we have designed significantly exceeds the presently known systems. In particular, the paper wants to concentrate, using the previous results and latest development trends, on the simulation of dynamic systems and on extremely exact mathematical computations.

  4. Small Atwood number Rayleigh-Taylor experiments.

    PubMed

    Andrews, Malcolm J; Dalziel, Stuart B

    2010-04-13

    Consideration is given to small Atwood number (non-dimensional density difference) experiments to investigate mixing driven by Rayleigh-Taylor (R-T) instability. The past 20 years have seen the development of novel experiments to investigate R-T mixing and, simultaneously, the advent of high-fidelity diagnostics. Indeed, the developments of experiments and diagnostics have gone hand in hand, and as a result modern R-T experiments rival the capabilities and research scope of shear-driven mixing experiments. Thus, research into the small Atwood number limit has made significant progress over the past 20 years, and has offered important insights into natural mixing processes as well as the general R-T problem. This review of small Atwood number experiments serves as an opportunity to discuss progress, and also to provoke thoughts about future high Atwood number designs and difficulties.

  5. Anelastic Rayleigh-Taylor mixing layers

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Gauthier, S.

    2016-07-01

    Anelastic Rayleigh-Taylor mixing layers for miscible fluids are investigated with a recently built model (Schneider and Gauthier 2015 J. Eng. Math. 92 55-71). Four Chebyshev-Fourier-Fourier direct numerical simulations are analyzed. They use different values for the compressibility parameters: Atwood number (the dimensionless difference of the heavy and light fluid densities) and stratification (accounts for the vertical variation of density due to gravity). For intermediate Atwood numbers and finite stratification, compressibility effects quickly occurs. As a result only nonlinear behaviours are reached. The influence of the compressibility parameters on the growth speed of the RTI is discussed. The 0.1—Atwood number/0.4—stratification configuration reaches a turbulent regime. This turbulent mixing layer is analyzed with statistical tools such as moments, PDFs, anisotropy indicators and spectra.

  6. Classical Rayleigh Taylor experiments on Nova

    SciTech Connect

    Budil, K.S.; Remington, B.A.; Peyser, T.A.

    1995-07-01

    The evolution of the Rayleigh-Taylor (RT) instability in a compressible medium was investigated both at an accelerating embedded interface and at the ablation front in a new series of experiments on Nova. The x-ray drive generated in a hohlraum ablatively accelerated a planar target consisting of a doped plastic pusher which was in some cases backed by a higher density titanium payload. Both target types were diagnosed by face-on and side-on radiography. Experiments have been done with a variety of wavelengths and initial amplitudes. In the case where the perturbed RT-unstable embedded interface is isolated from the ablation front, short wavelength perturbations are observed to grow strongly. When the perturbation is at the ablation front, the short wavelengths are observed to be severely stabilized.

  7. Aluminum Rayleigh Taylor Strength Measurements and Calculations

    SciTech Connect

    Lindquist, M J; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Raevsky, V A

    2007-01-10

    A traditional approach to the study of material strength has been revitalized at the Russian Federal Nuclear Center (VNIIEF). Rayleigh Taylor strength experiments have long been utilized to measure the material response of metals at high pressure and strain rates. A modulated (sinusoidal or sawtooth perturbation) surface is shocklessly (quasi-isentropically) accelerated by a high explosive (HE) driver, and radiography is used to measure the perturbation amplitude as a function of time. The Aluminum T-6061 targets are designed with several sets of two-dimensional sawtooth perturbations machined on the loading surface. The HE driver was designed to reach peak pressures in the range of 200 to 300 kbar and strain rates in the range of 10{sup 4} - 10{sup 6} s{sup -1}. The standard constitutive strength models, Steinberg-Guinan (SG) [1], Steinberg-Lund (SL) [2], Preston-Tonks-Wallace (PTW) [3], Johnson-Cooke (JC) [4], and Mechanical Threshold Stress (MTS) [5], have been calibrated by traditional techniques: (Hopkinson-Bar, Taylor impact, flyer plate/shock-driven experiments). The VNIIEF experimental series accesses a strain rate regime not attainable using traditional methods. We have performed a detailed numerical study with a two-dimensional Arbitrary Lagrangian Eulerian hydrodynamics computer code containing several constitutive strength models to predict the perturbation growth. Results show that the capabilities of the computational methodology predict the amplitude growth to within 5 percent of the measured data, thus validating both the code and the strength models under the given conditions and setting the stage for credible future design work using different materials.

  8. 31 CFR 593.508 - Authorization of emergency medical services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Authorization of emergency medical services. 593.508 Section 593.508 Money and Finance: Treasury Regulations Relating to Money and Finance... TAYLOR SANCTIONS REGULATIONS Licenses, Authorizations and Statements of Licensing Policy §...

  9. 31 CFR 593.508 - Authorization of emergency medical services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Authorization of emergency medical services. 593.508 Section 593.508 Money and Finance: Treasury Regulations Relating to Money and Finance... TAYLOR SANCTIONS REGULATIONS Licenses, Authorizations and Statements of Licensing Policy §...

  10. Correction of deformities in children using the Taylor spatial frame.

    PubMed

    Eidelman, Mark; Bialik, Viktor; Katzman, Alexander

    2006-11-01

    The Taylor spatial frame is a unique external fixator. Despite its growing popularity, few reports on its use have been published. We evaluated the effectiveness of the Taylor spatial frame in the treatment of various deformities in 31 children and adolescents. All but one patient were anatomically corrected. Complications included superficial pin tract infection (45%), three fractures of the femoral regenerate, transient peroneal palsy, and injury to the genicular artery. Despite many challenging problems, our results compared favorably with the results achieved by others. We believe that the Taylor spatial frame is a very capable and accurate fixator for the precise correction of complex deformities.

  11. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  12. Omissions about the sources of contaminant emissions and depositions - A reply to comments on Taylor, M.P., Davies, P.J., Kristensen, L.J., Csavina, J., 2014. Licenced to pollute but not to poison: The ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic, lead and other contaminants resulting from mining and smelting operations. Aeolian Research, 14, 35-52

    NASA Astrophysics Data System (ADS)

    Taylor, M. P.; Kristensen, L. J.; Davies, P. J.; Csavina, J.; Mackay, A. K.; Munksgaard, N. C.; Hudson-Edwards, K. A.

    2015-06-01

    We would like to thank Dr Wilson for increasing the interest in our 2014 Aeolian Research study along with our other articles that he referred to in his letter to the journal. Before we tackle the specifics of his letter, we would like to inform the readers that our response is inclusive of several other authors whose Mount Isa research was referred to in Dr Wilson's letter.

  13. The New Taylorism: Hacking at the Philosophy of the University's End

    ERIC Educational Resources Information Center

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  14. ChuckTaylor: Principal Investigator, Game Changing Development Program

    NASA Video Gallery

    Charles (Chuck) Taylor is the Principal Investigator in the Space Technology's Game Changing Development Program for 3 major projects:Solar Electric Propulsion, Ride The Light (RTL), and Space Powe...

  15. McMurdo LTER: streamflow measurements in Taylor Valley

    USGS Publications Warehouse

    McKnight, D.; House, H.; Von Guerard, P.

    1994-01-01

    Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.

  16. Janet Taylor Spence (1923-2015).

    PubMed

    Deaux, Kay

    2016-01-01

    The long and remarkable life of Janet Taylor Spence, the sixth woman to serve as president of the American Psychological Association (APA), ended on March 16, 2015, after a short illness. Janet's 1978 book, Masculinity & Femininity, coauthored with Robert Helmreich, was a major contribution to our understanding of the complex relationships between personal attributes, self-esteem, and attitudes toward women, as well their links to both achievement motivation and parental characteristics. Janet's interest in achievement motivation was an extension of her gender work, as she attempted to learn more about the ways in which presumed differences in achievement motivation might be related to the key dimensions of instrumentality and expressiveness. Janet's election to the presidency of the APA was the culmination of a long and broad involvement in the organization. She served on the Board of Directors from 1976 to 1978, and again in 1983 to 1984 during her presidential term. Earlier she served on the Board of Scientific Affairs and edited Contemporary Psychology in the 1970s. Janet was a fellow in four divisions (3, 8, 12, and 35), and in 2004 she received the APA Gold Medal Award for Life Achievement in the Science of Psychology.

  17. Rayleigh-Taylor instability simulations with CRASH

    NASA Astrophysics Data System (ADS)

    Chou, C.-C.; Fryxell, B.; Drake, R. P.

    2012-03-01

    CRASH is a code package developed for the predictive study of radiative shocks. It is based on the BATSRUS MHD code used extensively for space-weather research. We desire to extend the applications of this code to the study of hydrodynamically unstable systems. We report here the results of Rayleigh-Taylor instability (RTI) simulations with CRASH, as a necessary step toward the study of such systems. Our goal, motivated by the previous comparison of simulations and experiment, is to be able to simulate the magnetic RTI with self-generated magnetic fields produced by the Biermann Battery effect. Here we show results for hydrodynamic RTI, comparing the effects of different solvers and numerical parameters. We find that the early-time behavior converges to the analytical result of the linear theory. We observe that the late-time morphology is sensitive to the numerical scheme and limiter beta. At low-resolution limit, the growth of RTI is highly dependent on the setup and resolution, which we attribute to the large numerical viscosity at low resolution.

  18. Dynamic Fracture Studies Using Sleeved Taylor Specimens

    NASA Astrophysics Data System (ADS)

    Gilmore, Martin R.; Foster, Joseph C., Jr; Wilson, Leo L.

    2002-07-01

    The characterization of the inelastic response of materials to high rates of loading is a challenging engineering problem. As the load rate increases, the interpretation of the data recovered from the experiment become more difficult. At very high rates of loading, even the inertia of the test specimen must be accounted for in the interpretation of the data 1. The Taylor impact experiment is specifically designed to exploit the inertia of the specimen to produce very high loading rates and has been used to study the high strain (50%), high strain rate (103-4) behavior of materials for many years 2. Many high-rate loading problems produce failure in the material. Continuum codes have been used to design sleeved impact specimens to study the failure of materials under high rates of loading. Ductile core materials are used as drivers to control rupture of more brittle sleeves of the material of interest. Annealed copper cores are used to drive dynamic failure in AF1410 steel. High rate plastic deformation data are presented for the driver and the sleeve together with the fracture data.

  19. Non-adiabatic Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Canfield, Jesse; Denissen, Nicholas; Reisner, Jon

    2016-11-01

    Onset of Rayleigh-Taylor instability (RTI) in a non-adiabatic environment is investigated with the multi-physics numerical model, FLAG. This work was inspired by laboratory experiments of non-adiabatic RTI, where a glass vessel with a layer of tetrahyrdofuran (THF) below a layer of toluene was placed inside a microwave. THF, a polar solvent, readily absorbs electromagnetic energy from microwaves. Toluene, a non-polar solvent, is nearly transparent to microwave heating. The presence of a heat source in the THF layer produced convection and a time-dependent Atwood number (At). The system, initially in stable hydrostatic equilibrium At < 0 , was set into motion by microwave induced, volumetric heating of the THF. The point when At > 0 , indicates that the system is RTI unstable. The observed dominant mode at the onset of RTI was the horizontal length scale of the vessel. This scale is contrary to classical RTI, where the modes start small and increases in scale with time. It is shown that the dominant RTI mode observed in the experiments was determined by the THF length scale prior to RTI. The dominant length scale transitions from the THF to the toluene via the updrafts and downdrafts in the convective cells. This happens when At passes from negative to positive. This work was funded by the Advanced Simulation and Computing Program.

  20. Slavnov-Taylor identities for primordial perturbations

    SciTech Connect

    Berezhiani, Lasha; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2014-02-01

    Correlation functions of adiabatic modes in cosmology are constrained by an infinite number of consistency relations, which relate N + 1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. They constrain, at each order n, the q{sup n} behavior of the soft limits. In this paper we show that all consistency relations derive from a single, master identity, which follows from the Slavnov-Taylor identity for spatial diffeomorphisms. This master identity is valid at any value of q and therefore goes beyond the soft limit. By differentiating it n times with respect to the soft momentum, we recover the consistency relations at each q order. Our approach underscores the role of spatial diffeomorphism invariance at the root of cosmological consistency relations. It also offers new insights on the necessary conditions for their validity: a physical contribution to the vertex functional must satisfy certain analyticity properties in the soft limit in order for the consistency relations to hold. For standard inflationary models, this is equivalent to requiring that mode functions have constant growing-mode solutions. For more exotic models in which modes do not ''freeze'' in the usual sense, the analyticity requirement offers an unambiguous criterion.

  1. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect

    Das, Amita; Kaw, Predhiman

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  2. Synthesis of Taylor and Bayliss patterns for linear antenna arrays

    NASA Astrophysics Data System (ADS)

    Shelton, J. P.

    1981-08-01

    The history of synthesis techniques for designing linear antenna arrays with low sidelobe patterns is reviewed briefly, and the limitations that are encountered with very low sidelobes and/or small arrays are pointed out. Taylor's continuous aperture synthesis procedure is outlined, and a technique for transforming it for application to a discrete array is described. Discrete-array design equation for Taylor and Bayliss synthesis procedures are given. A set of programs for use on a programmable calculator are presented.

  3. An Author as a Counter-Storyteller: Applying Critical Race Theory to a "Coretta Scott King Award Book"

    ERIC Educational Resources Information Center

    Brooks, Wanda

    2009-01-01

    This article analyzes the 2002 Coretta Scott King Award book by Mildred Taylor entitled "The Land". The novel and its author are situated within a tradition of historical fiction written by and about African Americans. I then offer an analysis that utilizes Critical Race Theory as an interpretive tool for examining the ways Taylor embeds meanings…

  4. The Life and Legacy of G. I. Taylor

    NASA Astrophysics Data System (ADS)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  5. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation...

  6. Does the Taylor Spatial Frame Accurately Correct Tibial Deformities?

    PubMed Central

    Segal, Kira; Ilizarov, Svetlana; Fragomen, Austin T.; Ilizarov, Gabriel

    2009-01-01

    Background Optimal leg alignment is the goal of tibial osteotomy. The Taylor Spatial Frame (TSF) and the Ilizarov method enable gradual realignment of angulation and translation in the coronal, sagittal, and axial planes, therefore, the term six-axis correction. Questions/purposes We asked whether this approach would allow precise correction of tibial deformities. Methods We retrospectively reviewed 102 patients (122 tibiae) with tibial deformities treated with percutaneous osteotomy and gradual correction with the TSF. The proximal osteotomy group was subdivided into two subgroups to distinguish those with an intentional overcorrection of the mechanical axis deviation (MAD). The minimum followup after frame removal was 10 months (average, 48 months; range, 10–98 months). Results In the proximal osteotomy group, patients with varus and valgus deformities for whom the goal of alignment was neutral or overcorrection experienced accurate correction of MAD. In the proximal tibia, the medial proximal tibial angle improved from 80° to 89° in patients with a varus deformity and from 96° to 85° in patients with a valgus deformity. In the middle osteotomy group, all patients had less than 5° coronal plane deformity and 15 of 17 patients had less that 5° sagittal plane deformity. In the distal osteotomy group, the lateral distal tibial angle improved from 77° to 86° in patients with a valgus deformity and from 101° to 90° for patients with a varus deformity. Conclusions Gradual correction of all tibial deformities with the TSF was accurate and with few complications. Level of Evidence Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19911244

  7. Taylor line swimming in microchannels and cubic lattices of obstacles

    NASA Astrophysics Data System (ADS)

    Münch, Jan L.; Alizadehrad, Davod; Babu, Sujin B.; Stark, Holger

    Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study an undulatory Taylor line swimming in a two-dimensional microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.

  8. Taylor line swimming in microchannels and cubic lattices of obstacles.

    PubMed

    Münch, Jan L; Alizadehrad, Davod; Babu, Sujin B; Stark, Holger

    2016-09-21

    Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.

  9. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    /not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author

  10. Rayleigh-Taylor instability of violently collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Lin, Hao; Storey, Brian D.; Szeri, Andrew J.

    2002-08-01

    In a classical paper Plesset has determined conditions under which a bubble changing in volume maintains a spherical shape. The stability analysis was further developed by Prosperetti to include the effects of liquid viscosity on the evolving shape modes. In the present work the theory is further modified to include the changing density of the bubble contents. The latter is found to be important in violent collapses where the densities of the gas and vapor within a bubble may approach densities of the liquid outside. This exerts a stabilizing influence on the Rayleigh-Taylor mechanism of shape instability of spherical bubbles. A comparison with experimental data shows good agreement with the new theory; the Rayleigh-Taylor instability does provide an extinction threshold for violently collapsing bubbles. It is also explained why earlier works did not produce a slope in the Rayleigh-Taylor stability curve that conforms with that of the present work.

  11. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    NASA Technical Reports Server (NTRS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  12. Photonic arbitrary waveform generator based on Taylor synthesis method.

    PubMed

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

    2016-10-17

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

  13. On using Taylor's hypothesis for three-dimensional mixing layers

    NASA Astrophysics Data System (ADS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-06-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged (``real'') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  14. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  15. PREFACE: The 15th International Couette-Taylor Worskhop

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  16. G.I. Taylor and the Trinity test

    NASA Astrophysics Data System (ADS)

    Deakin, Michael A. B.

    2011-12-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions of the story are quite inaccurate historically. The reality is more complex than the usual accounts have it. This article sets out to disentangle fact from fiction.

  17. Student understanding of Taylor series expansions in statistical mechanics

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-12-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  18. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  19. Narrow fingers in the Saffman-Taylor instability

    NASA Astrophysics Data System (ADS)

    Couder, Y.; Gerard, N.; Rabaud, M.

    1986-12-01

    Saffman-Taylor fingers with a relative width much smaller than the classical limit lambda = 0.5 are found when a small isolated bubble is located at their tip. These solutions are members of a family found by Saffman and Taylor (1958) neglecting superficial tension. Recent theories have shown that when capillary forces are taken into account an unphysical cusplike singularity would appear at the tip of all the fingers with lambda less than 0.5. Conversely, here the replacement of the tip by a small bubble makes these solutions possible. At large velocity these fingers show dendritic instability.

  20. Author Indexing.

    ERIC Educational Resources Information Center

    Diodato, Virgil P.

    1981-01-01

    Discusses the effectiveness of using author-supplied indexing to increase subject control in information retrieval, and describes a study which compared author indexing for articles published in "American Mathematical Society" journals to indexing of the same articles by an editor of "Mathematical Reviews." Nine references are…

  1. Taylorism, Tylerism, and Performance Indicators: Defending the Indefensible?

    ERIC Educational Resources Information Center

    Helsby, Gill; Saunders, Murray

    1993-01-01

    Explores the antecedents to the growing interest in the use of educational performance indicators. Discusses this issue in relation to the work of economist F. W. Taylor and evaluator Ralph Tyler. Describes a five-year project that demonstrates the promise of teacher-developed performance indicators. (CFR)

  2. Why We Will Lose: Taylorism in America's High Schools.

    ERIC Educational Resources Information Center

    Gray, Kenneth

    1993-01-01

    Taylorism (rewards based on merit) and tracking in high schools should be abolished because these practices alienate successful students from less successful ones and encourage elitism instead of egalitarianism. Curriculum integration may be achieved by creating opportunities for student interaction in various existing subject areas. Teamwork and…

  3. Multiple Representations and the Understanding of Taylor Polynomials

    ERIC Educational Resources Information Center

    Habre, Samer

    2009-01-01

    The study of Maclaurin and Taylor polynomials entails the comprehension of various new mathematical ideas. Those polynomials are initially discussed at the college level in a calculus class and then again in a course on numerical methods. This article investigates the understanding of these polynomials by students taking a numerical methods class…

  4. On implicit Taylor series methods for stiff ODEs

    SciTech Connect

    Kirlinger, G. . Inst. fuer Angewandte und Numerische Mathematik); Corliss, G.F. )

    1991-01-01

    Several versions of implicit Taylor series methods (ITSM) are presented and evaluated. Criteria for the approximate solution of ODEs via ITSM are given. Some ideas, motivations, and remarks on the inclusion of the solution of stiff ODEs are outlined. 25 refs., 3 figs.

  5. On implicit Taylor series methods for stiff ODEs

    SciTech Connect

    Kirlinger, G.; Corliss, G.F.

    1991-12-31

    Several versions of implicit Taylor series methods (ITSM) are presented and evaluated. Criteria for the approximate solution of ODEs via ITSM are given. Some ideas, motivations, and remarks on the inclusion of the solution of stiff ODEs are outlined. 25 refs., 3 figs.

  6. Using Taylor Expansions to Prepare Students for Calculus

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2011-01-01

    We propose an alternative to the standard introduction to the derivative. Instead of using limits of difference quotients, students develop Taylor expansions of polynomials. This alternative allows students to develop many of the central ideas about the derivative at an intuitive level, using only skills and concepts from precalculus, and…

  7. Rayleigh-Taylor instability experiments in a cylindrically convergent geometry

    SciTech Connect

    Goodwin, B.; Weir, S.

    1995-08-25

    Due to the sensitivity of Rayleigh-Taylor instabilities to initial conditions and due to the difficulty of forming well controlled cylindrical or spherical fluid interfaces, Rayleigh-Taylor experiments are often performed with simple, planar interfaces. Rayleigh-Taylor instability phenomena of practical interest, however, (e.g., underwater explosions, supernova core collapses, and inertial confinement fusion capsule implosions) are typically associated with cylindrical or spherical interfaces in which convergent flow effects have an important influence on the dynamics of instability growth. Recently, Meshkov et.al. have developed a novel technique for studying Rayleigh-Taylor instability growth in a cylindrically convergent geometry. Their experiments utilized low-strength gelatin rings which are imploded by a detonating gas mixture of oxygen and acetylene. Since the gelatin itself has sufficient strength to resist significant deformation by gravity, no membranes are needed to define the ring shape. This experimental technique is attractive because it offers a high degree of control over the interfacial geometry and over the material`s strength and rigidity, which can be varied by adjusting the gelatin concentration. Finally, since both the gelatin and the explosive product gases are transparent, optical diagnostics can be used.

  8. 14. INTERIOR VIEW WITH JOHNNY TAYLOR REMOVING A MOLD HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW WITH JOHNNY TAYLOR REMOVING A MOLD HALF FROM THE PATTERN ON THE MOLDING MACHINE, REVEALING THE CAVITY THAT WILL BE FILLED WITH MOLTEN IRON AFTER IT IS ASSEMBLED WITH THE OTHER MOLD HALF INSIDE GREY IRON UNIT NO. 1. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. Rayleigh Taylor instability of viscoelastic drops at high Weber numbers

    NASA Astrophysics Data System (ADS)

    Joseph, D. D.; Beavers, G. S.; Funada, T.

    2002-02-01

    Movies of the breakup of viscous and viscoelastic drops in the high-speed airstream behind a shock wave in a shock tube have been reported by Joseph, Belanger & Beavers (1999). They performed a Rayleigh Taylor stability analysis for the initial breakup of a drop of Newtonian liquid and found that the most unstable Rayleigh Taylor wave fits nearly perfectly with waves measured on enhanced images of drops from the movies, but the effects of viscosity cannot be neglected. Here we construct a Rayleigh Taylor stability analysis for an Oldroyd-B fluid using measured data for acceleration, density, viscosity and relaxation time [lambda]1. The most unstable wave is a sensitive function of the retardation time [lambda]2 which fits experiments when [lambda]2/[lambda]1 = O(10-3). The growth rates for the most unstable wave are much larger than for the comparable viscous drop, which agrees with the surprising fact that the breakup times for viscoelastic drops are shorter. We construct an approximate analysis of Rayleigh Taylor instability based on viscoelastic potential flow which gives rise to nearly the same dispersion relation as the unapproximated analysis.

  10. Frank Bursley Taylor - Forgotten Pioneer of Continental Drift.

    ERIC Educational Resources Information Center

    Black, George W., Jr.

    1979-01-01

    Frank B. Taylor was an American geologist who specialized in the glacial geology of the Great Lakes. This article discusses his work on the Continental Drift theory, which preceeded the work of Alfred Wegener by a year and a half. (MA)

  11. 13. INTERIOR VIEW WITH JOHNNY TAYLOR HAND LEVELING FRESHLY DEPOSITED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW WITH JOHNNY TAYLOR HAND LEVELING FRESHLY DEPOSITED SAND INTO A FLASK PRIOR TO COMPRESSION BY THE MOLDING MACHINE INSIDE GREY IRON UNIT NO. 1. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. Turbulent strength in ultimate Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Ezeta, Rodrigo; Huisman, Sander G.; Sun, Chao; Lohse, Detlef

    2016-11-01

    We provide the local scaling of the Taylor-Reynolds number (Reλ) as a function of driving strength (Ta), in the ultimate regime of Taylor-Couette flow for the inner cylinder rotation case. The calculation is done via local flow measurements using Particle Image Velocimetry (PIV) to reconstruct the velocity fields. We approximate the value of the local dissipation rate ɛ (r) using the scaling for the second order structure functions in the longitudinal and transversal directions within the inertial regime where Taylor's hypothesis is not invoked. We find an effective local scaling of < ɛ (r) > r / (ν3d-4) Ta 1 . 4 , which is the same as the global dissipation rate obtained from both torque measurements and Direct Numerical Simulations (DNS). Additionally, we calculate the Kolmogorov length scale and find < η (r) > r / d Ta - 0 . 35 . The turbulence intensity is also calculated and it is found to scale with the driving strength as iθ Ta - 0 . 056 . Finally, with both the local dissipation rate and the local fluctuations available we find that the Taylor-Reynolds number scales as Reλ Ta 0 . 18 . Stichting voor Fundamenteel Onderzoek der Materie (FOM).

  13. Some observations of a sheared Rayleigh-Taylor/Benard instability

    NASA Technical Reports Server (NTRS)

    Humphrey, J. A. C.; Marcus, D. L.

    1987-01-01

    An account is provided of preliminary flow visualization observations made in an unstably stratified flow with shear superimposed. The structures observed appear to be the superposition of a Rayleigh-Taylor/Benard instability and a Kelvin-Helmholtz instability. Aside from its intrinsic fundamental value, the study of these structures is of special interest to theoreticians developing nonlinear stability calculation methodologies.

  14. Slavnov-Taylor identities for noncommutative QED{sub 4}

    SciTech Connect

    Charneski, B.; Gomes, M.; Silva, A. J. da; Mariz, T.; Nascimento, J. R.

    2010-05-15

    In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED{sub 4}. The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.

  15. Evolution of a magmatic system during continental extension: The Mount Taylor volcanic field, New Mexico

    SciTech Connect

    Perry, F.V. ); Baldridge, W.S. ); DePaolo, D.J. Lawrence Berkeley Lab., Berkeley, CA ); Shafiqullah, M. )

    1990-11-10

    In this paper the authors present geologic mapping, K-Ar chronology, major and trace element data, mineral chemistry, and Nd, Sr, and O isotopic data for volcanic rocks of the Mount Taylor volcanic field (MTVF). The MTVF lies on the tectonic boundary between the Basin and Range province and the southeastern Colorado Plateau and is dominated by Mount Taylor, a composite volcano active from {approx}3 to 1.5 m.y. ago. Growth of the volcano began with eruption of rhyolite, followed by quartz latite and finally latite. Basalts erupted throughout the lifetime of the volcano. Rare mixing of evolved hy-hawaiite and rhyolite produced a few intermediate magmas, primarily in the early history of the field. Mixing may have occurred when rhyolite magmas in the lower crust ascended to upper crustal levels and were injected into the bases of mafic magma chambers. Small amounts of crustal assimilation accompanied fractional crystallization and affected all the evolved MTVF rocks. Assimilation/fractional crystallization occurred primarily in the lower crust as hy-hawaiite differentiated to mugearite or latite. Early in the history of the field, evolved lower crustal magmas ascended into the upper crust, where density filtering and a reduced tensional stress field inhibited further ascent until magmas evolved to rhyolite or quartz latite. Later in the history of the field, latite magmas ascended directly from the lower crust and erupted without further significant differentiation because of increased crustal extension.

  16. Environmental Assessment for the Installation of the Taylor Mountain Long-Range Radar System Taylor Mountain, Alaska

    DTIC Science & Technology

    2005-06-01

    diameter (Photograph 2). Drill log samples collected from Taylor Mountain indicate that a moderately weathered granodiorite extends to 10 feet below...ground surface followed by granodiorite bedrock. Regional geology maps indicate that Kechumstuk Mountain has the similar lithology. 3.1.3.3 Soils

  17. Visiting Author

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Author of Rocket Boys Homer Hickam, Jr. (left) and Marshall Space Flight Center Director Art Stephenson during a conference at Morris Auditorium. Homer Hickam worked at MSFC during the Apollo project years. As a young man, Mr. Hickam always dreamed of becoming a rocket scientist and following in the footsteps fo Wernher von Braun. Years later he would see his dream realized and had written Rocket Boys commemorating his life and the people at MSFC.

  18. Taylor bubbles in liquid filled annuli: Some new observations

    NASA Astrophysics Data System (ADS)

    Agarwal, V.; Jana, A. K.; Das, G.; Das, P. K.

    2007-10-01

    Taylor bubbles rising through a vertical concentric annulus do not wrap around the inner tube completely. The two edges of the bubble are separated by a liquid bridge which increases with an increase of the inner radius. However, the change in the shape of the Taylor bubbles in annuli with extremely small inner diameter has not yet been reported. In the present investigation, several experiments have been performed in circular and noncircular annuli to understand the influence of the inner and outer wall on the bubble shape. The bubble has been observed to assume a completely different shape in both circular and square annuli with a very thin inner rod. Nevertheless, the rise velocity for such situations agree with the prediction of the model proposed by Das et al. [Chem. Eng. Sci. 53, 977 (1998)] when the outer pipe is circular but fails for a square outer pipe.

  19. Structures in Transitional Taylor-Couette Flows Identified using POD

    NASA Astrophysics Data System (ADS)

    Balabani, Stavroula; Imomoh, Eboshogwe; Dusting, Jonathan

    2009-11-01

    The flow in the gap between concentric cylinders, or Taylor-Couette flow, has been used to study transition to turbulence for decades, and is also utilised for various biotechnological and industrial processes. Transitional flow states depend highly on vessel geometry; they are also three-dimensional and often time dependent limiting the use of experimental techniques for their characterisation. In this talk the transition to turbulence in a Taylor-Couette flow is studied by means of time resolved PIV velocity fields and Proper Orthogonal Decomposition (POD). It is found that for the particular geometry studied the transition to turbulence occurs via a quasi periodic regime characterised by a fast moving azimuthal wave (FMAW). Aspects of the FMAW structure, such as a series of co-rotating vortices that increase in strength away from the endwalls, are also revealed by spatially resolved POD.

  20. A Taylor weak-statement algorithm for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Kim, J. W.

    1987-01-01

    Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.

  1. Slavnov-Taylor Identities from the Causal Point of View

    NASA Astrophysics Data System (ADS)

    Dütsch, Michael

    We continue the investigation of quantized Yang-Mills theories coupled to matter fields in the framework of causal perturbation theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed by a simple commutator relation for the S matrix and the corresponding gauge transformations are simple transformations of the free fields only. In spite of this simplicity, gauge invariance implies the usual Slavnov-Taylor identities. The main purpose of this paper is to prove the latter statement. Since the Slavnov-Taylor identities are formulated in terms of Green functions, we investigate the agreement of two perturbative definitions of Green functions, namely Epstein and Glaser's definition with the Gell-Mann-Low series.

  2. Effect of Charge Density on the Taylor Cone in Electrospinning

    NASA Astrophysics Data System (ADS)

    Stanger, Jonathan; Tucker, Nick; Kirwan, Kerry; Staiger, Mark P.

    A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymer-solvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip of the Taylor cone forming a smaller radius of curvature resulting in the concentration of electric stresses at the tip. This leads to the electrostatic forces drawing the initial jet from a smaller effective area or "virtual orifice".

  3. Intraoperative measurement of mounting parameters for the Taylor Spatial Frame.

    PubMed

    Gantsoudes, George D; Fragomen, Austin T; Rozbruch, S Robert

    2010-04-01

    The Taylor Spatial Frame (Smith & Nephew, Memphis, TN) is a powerful tool in providing gradual correction of deformity. The Taylor Spatial Frame has the potential to allow for very accurate corrections achieved over one or more schedules through the use of the software on www.spatialframe.com. The accuracy of the frame is contingent upon the input of precise parameters. The correction occurs about a virtual hinge in space called the origin. The location of the origin is defined by its spatial relationship to the reference ring. Mounting parameters are the measurements that define the location of the origin (virtual hinge). We present a simple practical method for obtaining mounting parameters during surgery using standard equipment.

  4. Beyond linear fields: the Lie-Taylor expansion

    NASA Astrophysics Data System (ADS)

    Arter, Wayne

    2017-01-01

    The work extends the linear fields' solution of compressible nonlinear magnetohydrodynamics (MHD) to the case where the magnetic field depends on superlinear powers of position vector, usually, but not always, expressed in Cartesian components. Implications of the resulting Lie-Taylor series expansion for physical applicability of the Dolzhansky-Kirchhoff (D-K) equations are found to be positive. It is demonstrated how resistivity may be included in the D-K model. Arguments are put forward that the D-K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is suggested that the Lie-Taylor series approach may lead to valuable insights into other fluid models.

  5. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  6. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients.

  7. Numerical study of a Taylor bubble rising in stagnant liquids.

    PubMed

    Kang, Chang-Wei; Quan, Shaoping; Lou, Jing

    2010-06-01

    The dynamics of a Taylor bubble rising in stagnant liquids is numerically investigated using a front tracking coupled with finite difference method. Parametric studies on the dynamics of the rising Taylor bubble including the final shape, the Reynolds number (Re(T)), the Weber number (We(T)), the Froude number (Fr), the thin liquid film thickness (w/D), and the wake length (l(w)/D) are carried out. The effects of density ratio (η), viscosity ratio (λ), Eötvös number (Eo), and Archimedes number (Ar) are examined. The simulations demonstrate that the density ratio and the viscosity ratio under consideration have minimal effect on the dynamics of the Taylor bubble. Eötvös number and Archimedes number influence the elongation of the tail and the wake structures, where higher Eo and Ar result in longer wake. To explain the sudden extension of the tail, a Weber number (We(l)) based on local curvature and velocity is evaluated and a critical We(l) is detected around unity. The onset of flow separation at the wake occurs in between Ar=2×10(3) and Ar=1×10(4), which corresponds to Re(T) between 13.39 and 32.55. Archimedes number also drastically affects the final shape of Taylor bubble, the terminal velocity, the thickness of thin liquid film, as well as the wall shear stress. It is found that w/D=0.32 Ar(-0.1).

  8. Linear instability in Rayleigh-stable Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Deguchi, Kengo

    2017-02-01

    Rayleigh's stability criterion describes the inviscid stability of rotating fluid flows. Despite the limitations of the criterion due to the assumptions used, it has been widely viewed as a general stability barrier in various rapidly rotating flows. However, contrary to previous belief, a linear instability is identified in Rayleigh-stable Taylor-Couette flow. The instability is found in cyclonic rapid rotation regime, for almost the entire range of the radius ratio of the cylinders.

  9. Rayleigh-Taylor instability in an equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2014-09-15

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  10. Rayleigh-Taylor vortices in a pair-ion plasma

    SciTech Connect

    Adak, Ashish Khan, Manoranjan

    2015-04-15

    The Rayleigh-Taylor (RT) vortices and the analytical solution of three-mode coupling in pair-ion plasmas are investigated. It is shown that the E×B convection of polarization drift is responsible for the saturation of growing RT instability and as a result the localized dipole vortex structures are formed. The shear flow generation due to the destruction of vortex structures is discussed by the Fourier mode analysis.

  11. General theory of Taylor dispersion phenomena. Part 3. Surface transport

    SciTech Connect

    Dill, L.H.; Brenner, H.

    1982-01-01

    An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.

  12. Rayleigh-Taylor instability in dusty plasma experiment

    SciTech Connect

    Avinash, K.; Sen, A.

    2015-08-15

    The stability of a stratified dust cloud levitated in an anodic plasma is studied in the weakly and strongly coupled dust regimes. It is shown that the cloud is predominantly unstable to a Rayleigh-Taylor (RT) instability driven by a component of the ambient gravity in a direction opposite to the direction of dust density stratification in the cloud. The elasticity of the strongly coupled dust is shown to set a threshold for the RT instability, which is consistent with experimental observations.

  13. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  14. Taylor's Theorem: The Elusive "c" Is Not So Elusive

    ERIC Educational Resources Information Center

    Kreminski, Richard

    2010-01-01

    For a suitably nice, real-valued function "f" defined on an open interval containing [a,b], f(b) can be expressed as p[subscript n](b) (the nth Taylor polynomial of f centered at a) plus an error term of the (Lagrange) form f[superscript (n+1)](c)(b-a)[superscript (n+1)]/(n+1)! for some c in (a,b). This article is for those who think that not…

  15. Subcritical dynamo bifurcation in the Taylor-Green flow.

    PubMed

    Ponty, Y; Laval, J-P; Dubrulle, B; Daviaud, F; Pinton, J-F

    2007-11-30

    We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.

  16. Taylor--Couette--Poiseuille flow with a permeable inner cylinder

    NASA Astrophysics Data System (ADS)

    Tilton, Nils; Martinand, Denis; Serre, Eric; Lueptow, Richard

    2010-11-01

    We consider laminar Taylor--Couette--Poiseuille flow between an outer, fixed, impermeable cylinder and a concentric, inner, rotating, permeable cylinder with radial suction. Due to centrifugal instabilities the steady flow transitions to Taylor vortex flow. This system is used in filtration because the vortices wash contaminants away from the permeable cylinder. The coupling between the axial pressure drop driving the annular Poiseuille flow, and the transmembrane pressure driving the suction induces axial variations of the velocity field of the subcritical flow, which can evolve from suction to injection (cross flow reversal) or consume the whole axial flow (axial flow exhaustion). Moreover, the stability of this flow departs from that of Taylor--Couette flow. We propose an asymptotic solution to the subcritical flow assuming slow axial variations of the velocity and pressure fields. The transmembrane suction and pressure are coupled through Darcy's law. This solution is then used as a base flow to study the appearance of instabilities in the form of global modes. The analytical results for the subcritical and supercritical flows are then compared with dedicated 3-D spectral direct numerical simulations implementing Darcy's law on the inner cylinder.

  17. Boundary effects and the onset of Taylor vortices

    NASA Astrophysics Data System (ADS)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  18. Solving ODE Initial Value Problems With Implicit Taylor Series Methods

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.

  19. Numerical study of Taylor bubbles with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  20. Patterns of the turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Prigent, Arnaud; Talioua, Abdessamad; Mutabazi, Innocent

    2016-11-01

    We are interested in the study of the transition to turbulence in the Taylor-Couette flow, the flow between two independently rotating coaxial cylinders. Once the geometry is fixed, the flow is controlled by the inner and outer Reynolds numbers and present a large variety of flow regimes. In counter-rotation, the transition is characterized by a succession of more or less turbulent flow regimes: intermittency with turbulent spots, spiral turbulence, featureless turbulence. For larger values of the inner Reynolds number, turbulent Taylor roll re-emerge from the featureless turbulence and remain for very large values of the Reynolds numbers. Bifurcations between different turbulent rolls states are even observed in the ultimate turbulence regime. Nevertheless the transition from the featureless turbulence to the turbulent rolls still requires a detailed study and the mechanism which causes and sustains turbulent spots or turbulent spirals remains unknown. In this study we present new experimental information on the organization of the flow for the different regimes with turbulence. The experiments are conducted in a Taylor-Couette flow with η = 0 . 8 . Stereo-Particle Image Velocimetry measurements and visualizations of the different flow regimes are realized and discussed. This work was supported by the ANR TRANSFLOW - ANR-13-BS09-0025.

  1. The effect of crossflow on Taylor vortices: A model problem

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1993-01-01

    A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.

  2. High-Reynolds Number Taylor-Couette Turbulence

    NASA Astrophysics Data System (ADS)

    Grossmann, Siegfried; Lohse, Detlef; Sun, Chao

    2016-01-01

    Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. One key response of the system is the torque required to retain constant angular velocities, which can be connected to the angular velocity transport through the gap. Whereas the low-Reynolds number regime was well explored in the 1980s and 1990s of the past century, in the fully turbulent regime major research activity developed only in the past decade. In this article, we review this recent progress in our understanding of fully developed Taylor-Couette turbulence from the experimental, numerical, and theoretical points of view. We focus on the parameter dependence of the global torque and on the local flow organization, including velocity profiles and boundary layers. Next, we discuss transitions between different (turbulent) flow states. We also elaborate on the relevance of this system for astrophysical disks (quasi-Keplerian flows). The review ends with a list of challenges for future research on turbulent Taylor-Couette flow.

  3. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  4. Bright and durable field emission source derived from refractory taylor cones

    DOEpatents

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  5. Rayleigh-Taylor instability with finite current relaxation

    NASA Astrophysics Data System (ADS)

    Silveira, F. E. M.; Orlandi, H. I.

    2016-04-01

    In this work, we explore the influence of perturbative wavelengths, shorter than those usually considered, on the growth rate of the Rayleigh-Taylor modes. Therefore, we adopt an extended form of Ohm's law which includes a finite relaxation time of the current density due to inertial effects of charged species in the plasma. The restoring force density that acts upon charged species close to the mode rational surface takes into account a new term which is usually neglected with respect to the motional electromotive force. We find that the width of the resistive layer can be interpreted in terms of the "height" of free fall in a constant gravitational field, in the Alfvén time interval. We also show that the charged species must fall "down" in the constant gravitational field in order that the static state of equilibrium of the system becomes unstable to the linear perturbation. Through the principle of conservation of energy, we find a general formula which gives the growth rate γ of the Rayleigh-Taylor modes. When the new term becomes negligible with respect to the motional electromotive force, we recover the standard result of the Rayleigh-Taylor instability, which establishes that γ scales with the plasma resistivity η as γ ˜ η 1 / 3 . However, in the opposite limiting situation, we find that γ does not depend any longer on the plasma resistivity and scales now with the electron number density n e as γ ˜ ne - 1 / 2 . Further developments of our theory may contribute to improve our understanding on the excitation mechanisms of resistive plasma instabilities by transient phenomena such as shock waves.

  6. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  7. Bubble Counts for Rayleigh-Taylor Instability Using Image Analysis

    SciTech Connect

    Miller, P L; Gezahegne, A G; Cook, A W; Cabot, W H; Kamath, C

    2007-01-24

    We describe the use of image analysis to count bubbles in 3-D, large-scale, LES [1] and DNS [2] of the Rayleigh-Taylor instability. We analyze these massive datasets by first converting the 3-D data to 2-D, then counting the bubbles in the 2-D data. Our plots for the bubble count indicate there are four distinct regimes in the process of the mixing of the two fluids. We also show that our results are relatively insensitive to the choice of parameters in our analysis algorithms.

  8. 2. Photographic copy of architectural elevations for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photographic copy of architectural elevations for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Exterior Elevations, Sheet No. 18, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  9. 1. Photographic copy of architectural plan for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of architectural plan for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Floor Plan & Roof Plan, Sheet No. 16, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  10. On Taylor-Series Approximations of Residual Stress

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  11. Rayleigh-Taylor instability in quantum magnetized viscous plasma

    SciTech Connect

    Hoshoudy, G. A.

    2011-09-15

    Quantum effects on Rayleigh-Taylor instability of stratified viscous plasmas layer under the influence of vertical magnetic field are investigated. By linearly solving the viscous QMHD equations into normal mode, a forth-order ordinary differential equation is obtained to describe the velocity perturbation. Then the growth rate is derived for the case where a plasma with exponential density distribution is confined between two rigid planes. The results show that, the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration for viscous plasma, which is greater than that of inviscous plasma.

  12. Hypertension as a complication of Taylor spatial frame.

    PubMed

    Changulani, Manesh; Bradbury, Mark; Zenios, Michalis

    2009-11-01

    Circular external fixators in children are widely used for limb lengthening, deformity correction and the treatment of fractures. We report a case of successful management of hypertension in a 13-year-old treated with a Taylor spatial frame after a road traffic accident and a tibial fracture. A heightened awareness of the association of hypertension and external fixators is required to improve patient outcomes. Outcomes are improved by prompt diagnosis and treatment of hypertension, preventing hypertensive end-organ damage, choice of an appropriate first line antihypertensive treatment, and not subjecting children to invasive investigations looking for an alternative secondary cause of hypertension.

  13. Lattice QCD for Baryon Rich Matter - Beyond Taylor Expansions

    NASA Astrophysics Data System (ADS)

    Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2016-12-01

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  14. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    SciTech Connect

    Lau, Yue Ying; Gilgenbach, Ronald

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  15. Simulating the Rayleigh-Taylor instability with the Ising model

    SciTech Connect

    Ball, Justin R.; Elliott, James B.

    2011-08-26

    The Ising model, implemented with the Metropolis algorithm and Kawasaki dynamics, makes a system with its own physics, distinct from the real world. These physics are sophisticated enough to model behavior similar to the Rayleigh-Taylor instability and by better understanding these physics, we can learn how to modify the system to better re ect reality. For example, we could add a vx and a vy to each spin and modify the exchange rules to incorporate them, possibly using two body scattering laws to construct a more realistic system.

  16. Photographic copy of architectural drawings for Building 4315: Taylor & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4315: Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-50 and 210-44, Military Construction: Muroc Flight Test Base, Muroc, California, Utility Yard & Shops: Carpenter & Paint Shop, Utility Shop & Lavatory, Plan & Elevations, Sheet No. 4 of 8, May 1945. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Utility & Paint Shop, Second & E Streets, Boron, Kern County, CA

  17. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Garnier, J.; Masse, L.

    2005-06-15

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1{lambda} for long wavelengths, but higher for short instable wavelengths in the ablative regime.

  18. Pruning to Increase Taylor Dispersion in Physarum polycephalum Networks

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Alim, Karen; Andrew, Natalie; Pringle, Anne; Brenner, Michael P.

    2016-10-01

    How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology—pruning in the foraging state—causes a large increase in effective dispersion throughout the network. By comparison, changes in the hierarchy of tube radii result in smaller and more localized differences. Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.

  19. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  20. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  1. Simulating Hamiltonian Dynamics with a Truncated Taylor Series

    NASA Astrophysics Data System (ADS)

    Somma, Rolando

    2015-03-01

    One of the main motivations for quantum computers is their ability to efficiently simulate the dynamics of quantum systems. Since the mid-1990s, many algorithms have been developed to simulate Hamiltonian dynamics on a quantum computer, with applications to problems such as simulating spin models and quantum chemistry. While it is now well known that quantum computers can efficiently simulate Hamiltonian dynamics, ongoing work has improved the performance and expanded the scope of such simulations. In this talk, I will describe a very simple and efficient algorithm for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. This algorithm can simulate the time evolution of a wide variety of physical systems. The cost of this algorithm depends only logarithmically on the inverse of the desired precision, and can be shown to be optimal. Such a cost also represents an exponential improvement over known methods for Hamiltonian simulation based on, e.g., Trotter-Suzuki approximations. Roughly speaking, doubling the number of digits of accuracy of the simulation only doubles the complexity. The new algorithm and its analysis are highly simplified due to a technique for implementing linear combinations of unitary operations to directly apply the truncated Taylor series. This is joint work with Dominic Berry, Andrew Childs, Richard Cleve, and Robin Kothari.

  2. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  3. [Principles of deformity correction using the Taylor Spatial Frame].

    PubMed

    Eidelman, Mark; Chezar, Avraham

    2005-02-01

    Developed in the fifties, the Ilizarov ring external fixator was first introduced to the West in the eighties of the twentieth century. The technique has become widely accepted for the treatment of a wide variety of limb pathologies including complex fractures, deformity correction and limb lengthening. The Taylor Spatial Frame (TSF) was developed by Charles Taylor in the mid nineties. This system is basically a ring external fixator, drawing on the theoretic foundation from the theory of projected geometry and the mechanical bases from the Stewart platforms. This combination provides a stable external fixation device with an outstanding ability for manipulation of the bone fragments in any given direction, and correction of the most complex deformities. Following the application of the frame, internet-based software will provide an instant treatment plane for the correction of the deformity. This will then be carried out by the patient himself until the achievement of an anatomical reduction of the fracture, lengthening or deformity correction. This combination of a stable external fixation device and the accuracy of the computer based technology, makes the TSF the treatment of choice in the precise correction of limb deformities. This review presents an overview of the theoretical foundation and methods of using the TSF, with an emphasis on the advantages of this system and the capabilities in the correction of skeletal deformities.

  4. Rayleigh-Taylor instability of viscous fluids with phase change.

    PubMed

    Kim, Byoung Jae; Kim, Kyung Doo

    2016-04-01

    Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the film boiling, phase changes take place at the interface, and thus heat and mass transfer must be taken into consideration in the stability analysis. Moreover, since the vapor layer is not quite thick, a viscous flow must be analyzed. Existing studies assumed equal kinematic viscosities of two fluids, and/or considered thin viscous fluids. The purpose of this study is to derive the analytical dispersion relation of the Rayleigh-Taylor instability for more general conditions. The two fluids have different properties. The thickness of the vapor layer is finite, but the liquid layer is thick enough to be nearly semi-infinite in view of perturbation. Initially, the vapor is in equilibrium with the liquid at the interface, and the direction of heat transfer is from the vapor side to the liquid side. In this case, the phase change has a stabilizing effect on the growth rate of the interface. When the vapor layer is thin, there is a coupled effect of the vapor viscosity, phase change, and vapor thickness on the critical wave number. For the other limit of a thick vapor, both the liquid and vapor viscosities influence the critical wave number. Finally, the most unstable wavelength is investigated. When the vapor layer is thin, the most unstable wavelength is not affected by phase change. When the vapor layer is thick, however, it increases with the increasing rate of phase change.

  5. Pattern Dynamics in Taylor Vortex Flow with Double Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Wiener, Richard; Olsen, Thomas

    2005-11-01

    In previous investigations ootnotetextWiener et al., Phys. Rev. E 55, 5489 (1997) & Phys. Rev. Lett. 83, 2340 (1999) we have demonstrated experimentally that Taylor vortex flow in an hourglass geometry undergoes a period-doubling cascade to chaotic pattern dynamics that can be controlled by proportional feedback with small perturbations. The hourglass geometry creates a spatial ramp in the Reynolds number. This results in a region of supercritical vortex flow between regions of subcritical structureless flow that provide the pattern with soft boundaries that allow for persistent dynamics. For a range of reduced Reynolds numbers, the Taylor vortex pattern exhibits persistent dynamics consisting of drifting and stretching vortices punctuated with phase slips. Each phase slip corresponds to the generation of a new vortex pair. We are currently investigating the phase dynamics of Tayor vortex flow with a double hourglass geometry which consists of two regions of supercritical flow in which phase slips occur, separated by a narrow region of subcritical flow. Initial results indicate that at some reduced Reynolds numbers there is synchronization between the vortex dynamics in the two regions, both in the temporal occurrence of the phase slips as well as the drift directions of the vortices.

  6. Transition to turbulence in Taylor-Couette ferrofluidic flow

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572

  7. Instability vaccination: A structural design to reduce Rayleigh Taylor instability

    NASA Astrophysics Data System (ADS)

    Esmaeili, Amin

    2013-10-01

    Instability vaccination can be defined as designing a structure to stimulate the system in order to develop immunity against its instability. In this work we have tried to do this stabilization by a new technique. Previously some suppression of R-M instability was done by insertion of magnetic field, but in this work we have tried to do this suppression by proposing a configuration similar to the shape of instability, we call it instability vaccination. This design will reduce the rotations (mostly rotations of Rayleigh Taylor instability) in the fluids that cause more mixing and instabilities. In this paper, we consider the evolution of the interface between two ideal semi-infinite fluid surfaces, using two-dimensional Riemann solver, to solve the Euler equations. First, we performed evolution of a rectangular disorder between the 2 surfaces using two-dimensional Riemann problem for the equations of Euler. Next, the interface was replaced with a perturbation that was part rectangular and part semi-circular (like a mushroom). The simulation was continued till some time steps using the HLL method. We have seen that the rotations of Rayleigh Taylor (R-T) instability were decreased in the second case. Email: amin@cavelab.cs.tsukuba.ac.jp

  8. On spatial pattern of concentration distribution for Taylor dispersion process

    PubMed Central

    Wu, Zi; Fu, Xudong; Wang, Guangqian

    2016-01-01

    Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of the complete spatial concentration distribution for laminar tube flow; the obtained simple description is shown to represent the nature of Taylor dispersion. Importantly, we find that during the approach to the longitudinal normality of the transverse mean concentration at the time scale of R2/D (R is the tube radius and D is the molecular diffusivity), the solute concentration becomes uniformly distributed across a family of invariant curved transverse surfaces instead of the flat cross-sections in the traditional view. The family of curved surfaces is analytically determined, and a transformation is devised for the previously obtained analytical solution to discuss the decay of the concentration difference across the curved surfaces. The approach to a uniform concentration across the flat cross-sections to the same degree (~3% by concentration difference percentage), achieved at a time-scale of 100 R2/D, is shown to be the natural consequence of the longitudinal separation of the concentration contours on the curved surfaces. PMID:26867803

  9. Non-linear characteristics of Rayleigh-Taylor instable perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Luo, Jisheng

    2008-04-01

    The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The amplitude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes.

  10. The Inhibition of the Rayleigh-Taylor Instability by Rotation.

    PubMed

    Baldwin, Kyle A; Scase, Matthew M; Hill, Richard J A

    2015-07-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode.

  11. Experimental Study of Rayleigh-Taylor Instability Using Paramagnetic Fluids

    NASA Astrophysics Data System (ADS)

    Tsiklashvili, Vladimer; Likhachev, Oleg; Jacobs, Jeffry

    2009-11-01

    Experiments that take advantage of the properties of paramagnetic liquids are used to study Rayleigh-Taylor instability. A gravitationally unstable combination of a paramagnetic salt solution and a nonmagnetic solution is initially stabilized by a magnetic field gradient that is produced by the contoured pole-caps of a large electromagnet. Rayleigh-Taylor instability originates with the rapid removal of current from the electromagnet, which results in the heavy liquid falling into the light liquid due to gravity and, thus, mixing with it. The mixing zone is visualized by back-lit photography and is recorded with a digital video camera. For visualization purposes, a blue-green dye is added to the magnetic fluid. The mixing rate of the two liquids is determined from an averaged dye concentration across the mixing layer by means of the Beer-Lambert law. After removal of the suspending magnetic field, the initially flat interface between the two liquids develops a random surface pattern with the dominant length scale well approximated by the fastest growing wavelength in accordance with the viscous linear stability theory. Several combinations of paramagnetic and nonmagnetic solutions have been considered during the course of the research. A functional dependence of the mixing layer growth constant, α, on the properties of the liquids is a primary subject of the present study.

  12. Taylor-Fourier spectra to study fractional order systems

    NASA Astrophysics Data System (ADS)

    Barbé, Kurt; Lauwers, Lieve; Gonzales Fuentes, Lee

    2016-06-01

    In measurement science mathematical models are often used as an indirect measurement of physical properties which are mapped to measurands through the mathematical model. Dynamical systems describing a physical process with a dominant diffusion or dispersion phenomenon requires a large dimensional model due to its long memory. Ignoring a dominant difussion or dispersion component acts as a confounder which may introduce a bias in the estimated quantities of interest. For linear systems it has been observed that fractional order models outperform classical rational forms in terms of the number of parameters for the same fitting error. However it is not straightforward to deal with a fractional order system or long memory effects without prior knowledge. Since the parametric modeling of a fractional system is very involved, we put forward the question whether fractional insight can be gathered in a non-parametric way. In this paper we show that classical Fourier basis leading to the frequency response function lacks fractional insight. To circumvent this problem, we introduce a fractional Taylor-Fourier basis to obtain non-parametric insight in the fractional system. This analysis proposes a novel type of spectrum to visualize the spectral content of a fractional system: Taylor-Fourier spectrum. This spectrum is fully measurement driven which can be used as a first to explore the fractional dynamics of a measured diffusion or dispersion system.

  13. The Inhibition of the Rayleigh-Taylor Instability by Rotation

    PubMed Central

    Baldwin, Kyle A.; Scase, Matthew M.; Hill, Richard J. A.

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  14. Soluble Salt Accumulations in Taylor Valley, Antarctica: Implications for Paleolakes and Ross Sea Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Sletten, R. S.; Prentice, M. L.

    2012-12-01

    Soluble salt accumulations in Taylor Valley, Antarctica, provide a history of paleolakes and the advance of the Ross Sea Ice Sheet (RSIS). We measured soluble salts in 89 soils throughout Taylor Valley in soil-water extractions. In western Taylor Valley, soluble salt accumulations are relatively high and are comprised primarily of Na, Ca, Cl, and SO4. In eastern Taylor Valley, soluble salt accumulations are much lower and are comprised primarily of Na and HCO3. Salt compositions measured in soil-water extractions are highly influenced by the dissolution of sparingly soluble salts (e.g. calcite and gypsum) and cation exchange reactions. Furthermore, during soil-water extractions, Ca from calcite or gypsum dissolution exchanges with exchangeable Na, K, and Mg. These processes can strongly influence both the total salt content measured in soils and ionic ratios. Thus, it is important to consider the effects of these reactions when interpreting soluble salt accumulations measured in soil-water extractions. Calcite dissolution and cation exchange reactions also appear to have a widespread natural occurrence, resulting in the Na-HCO3 compositions of soils, streams, and lakes in eastern Taylor Valley. The soluble salt data supports the hypotheses that a lobe of the RSIS expanded into eastern Taylor Valley and dammed proglacial paleolakes. However, in contrast to previous studies, our findings indicate that the RSIS advanced deeper into Taylor Valley and that paleolakes were less extensive. By comparing soluble salt distributions across Taylor Valley, we conclude that a lobe of the RSIS filled all of eastern Taylor Valley and dammed paleolakes in western Taylor Valley up to 300 m elevation. Following ice retreat, smaller paleolakes formed in both western and eastern Taylor Valley up to about 120 m, with a prominent still stands at 80 m that was controlled by the elevation of a major valley threshold.

  15. Dismissal of a Sociologist: The AAUP Report on Carl C. Taylor.

    ERIC Educational Resources Information Center

    Larson, Olaf F.; Williams, Robin M., Jr.; Wimberley, Ronald C.

    1999-01-01

    Examines the dismissal in 1931 of distinguished sociologist Carl C. Taylor after 11 years as an influential faculty member and dean at the State College of Agriculture and Engineering of North Carolina. Reviews the subsequent investigation by the American Association of University Professors. Highlights Taylor's career and contributions at…

  16. 43 CFR 4170.2-1 - Penal provisions under the Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Penal provisions under the Taylor Grazing...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Penalties § 4170.2-1 Penal provisions under the Taylor Grazing Act. Under section 2...

  17. Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.

    ERIC Educational Resources Information Center

    Allen, JoBeth

    Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…

  18. Limb lengthening combined with deformity correction in children with the Taylor Spatial Frame.

    PubMed

    Iobst, Christopher

    2010-11-01

    It is difficult to replicate the regular rate and rhythm described by Ilizarov while lengthening with the Taylor Spatial Frame. The purpose of the study was to examine whether this breach of Ilizarov's principles has any deleterious effect on the ability of children to make healthy regenerate bone. A retrospective case-control study was performed comparing pediatric patients undergoing primarily lengthening with Taylor Spatial Frame rings and struts, and patients undergoing lengthening with Taylor Spatial Frame rings and Ilizarov clickers. Fifteen patients had primarily lengthening with Taylor Spatial Frame rings and struts, and six patients had lengthening with Taylor Spatial Frame rings and Ilizarov clickers. Statistically, there was no significant difference between the two groups in terms of age, latency, pre-operative bone length percentage, and average length gained. The lengthening index for the strut group (1.79 months/cm) was significantly different from the clicker group (1.33 months/cm) with P=0.012. For a pediatric patient with lower extremity long bone deformities in multiple planes, the Taylor Spatial Frame is an excellent option. However, the surgeon should anticipate a slightly longer duration of treatment with the Taylor Spatial Frame compared to Ilizarov frames and plan his/her fixation accordingly. For the straightforward lengthening of pediatric long bones without significant concomitant deformity, our results indicate that the Ilizarov method appears to be superior to the Taylor Spatial Frame struts and should still be considered the gold standard.

  19. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  20. Size invariance of the granular Rayleigh-Taylor instability.

    PubMed

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  1. The magnetic Rayleigh-Taylor instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-10-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  2. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  3. Plasma transport driven by the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Ma, X.; Delamere, P. A.; Otto, A.

    2016-06-01

    Two important differences between the giant magnetospheres (i.e., Jupiter's and Saturn's magnetospheres) and the terrestrial magnetosphere are the internal plasma sources and the fast planetary rotation. Thus, there must be a radially outward flow to transport the plasma to avoid infinite accumulation of plasma. This radial outflow also carries the magnetic flux away from the inner magnetosphere due to the frozen-in condition. As such, there also must be a radial inward flow to refill the magnetic flux in the inner magnetosphere. Due to the similarity between Rayleigh-Taylor (RT) instability and the centrifugal instability, we use a three-dimensional RT instability to demonstrate that an interchange instability can form a convection flow pattern, locally twisting the magnetic flux, consequently forming a pair of high-latitude reconnection sites. This process exchanges a part of the flux tube, thereby transporting the plasma radially outward without requiring significant latitudinal convection of magnetic flux in the ionosphere.

  4. Shercliff layers in strongly magnetic cylindrical Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Hollerbach, Rainer; Hulot, Deborah

    2016-07-01

    We numerically compute the axisymmetric Taylor-Couette flow in the presence of axially periodic magnetic fields, with Hartmann numbers up to Ha2 =107. The geometry of the field singles out special field lines on which Shercliff layers form. These are simple shear layers for insulating boundaries, versus super-rotating or counter-rotating layers for conducting boundaries. Some field configurations have previously studied spherical analogs, but fundamentally new configurations also exist, having no spherical analogs. Finally, we explore the influence of azimuthal fields Bϕ ∼r-1eˆϕ on these layers, and show that the flow is suppressed for conducting boundaries, but enhanced for insulating boundaries. xml:lang="fr"

  5. The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids

    SciTech Connect

    Chambers, K.; Forbes, L. K.

    2012-10-15

    This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.

  6. Linear analysis of incompressible Rayleigh-Taylor instability in solids

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; López Cela, J. J.; Tahir, N. A.

    2009-10-01

    The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.

  7. A novel technique for performing symmetric Taylor impact

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2015-09-01

    A novel spring tensioned wire cradle arrangement has been developed to hold the target rod lightly but firmly in place when performing rod-on-rod (symmetric Taylor) impact in a vacuum. In addition, a soft capture system has been designed and used to decelerate both rods while reducing the chance of them colliding a second time. High-speed photography was used to obtain the profile of a pure aluminium target rod as a function of time. Photon Doppler Velocimetry (PDV) was also deployed to record the velocity of the rear of the target rod as a function of time. Voiding in the interior of recovered rods was investigated non-destructively using X-ray tomography. The data provides comprehensive validation information for predictive constitutive models.

  8. Modified formula of Malus’ law for Glan Taylor polarizing prisms

    NASA Astrophysics Data System (ADS)

    Zhu, Huafeng; Song, Lianke; Chen, Jianwen; Gao, Hongyi; Li, Ruxin; Xu, Zhizhan

    2005-01-01

    A simple three-axis model has been developed, which has been successfully applied to the analysis of the light transmittance in spatial incident angle and the simulation of modified formula of Malus' law for Glan-Taylor prisms. Our results indicate that the fluctuations on the cosine squared curve are due to specific misalignments between the axis of the optical system, the optical axis of the prism and the mechanical axis (rotation axis) of prism, which results in the fact that different initial relative location of the to-be-measured-prism in the testing system corresponds to different shape of Malus' law curve. Methods to get absolutely smooth curve are proposed. This analysis is available for other kinds of Glan-type prisms.

  9. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  10. Rayleigh-Taylor stabilization by material strength at Mbar pressures

    NASA Astrophysics Data System (ADS)

    Remington, Bruce; Park, Hye-Sook; Lorenz, Thomas; Cavallo, Robert; Pollaine, Stephen; Prisbrey, Shon; Rudd, Robert; Becker, Richard; Bernier, Joel

    2009-11-01

    We present experiments on the Rayleigh-Taylor (RT) instability in the plastic flow regime of solid-state vanadium (V) foils at 1 Mbar pressures and strain rates of 1.e6-1.e8 1/s, using a laser based, ramped-pressure acceleration technique. High pressure material strength causes strong stabilization of the RT instability at short wavelengths. Comparisons with 2D simulations utilizing models of high pressure strength show that the V strength increases by factors of 3-4 at peak pressure, compared to its ambient strength. An effective lattice viscosity of 400 poise would have a similar effect. [1] Constitutive models, and theoretical implications of these experiments will be discussed. [1] H.S. Park, B.A. Remington et al., submitted for publication (July, 2009).

  11. Symmetry and stability in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Golubitsky, M.; Stewart, I.

    1986-01-01

    The flow of a fluid between concentric rotating cylinders (the Taylor problem) is studied by exploiting the symmetries of the system. The Navier-Stokes equations, linearized about Couette flow, possess two zero and four purely imaginary eigenvalues at a suitable value of the speed of rotation of the outer cylinder. There is thus a reduced bifurcation equation on a six-dimensonal space which can be shown to commute with an action of the symmetry group 0(2) x S0(2). The group structure is used to analyze this bifurcation equation in the simplest (nondegenerate) case, and to compute the stabilities of solutions. In particular, when the outer cylinder is counterrotated, transitions which seem to agree with recent experiments of Andereck, Liu, and Swinney (1984) are obtained. It is also possible to obtain the 'main sequence' in this model. This sequence is normally observed in experiments when the outer cylinder is held fixed.

  12. Recovering network topologies via Taylor expansion and compressive sensing

    SciTech Connect

    Li, Guangjun; Liu, Juan E-mail: liujuanjp@163.com; Wu, Xiaoqun E-mail: liujuanjp@163.com; Lu, Jun-an; Guo, Chi

    2015-04-15

    Gaining knowledge of the intrinsic topology of a complex dynamical network is the precondition to understand its evolutionary mechanisms and to control its dynamical and functional behaviors. In this article, a general framework is developed to recover topologies of complex networks with completely unknown node dynamics based on Taylor expansion and compressive sensing. Numerical simulations illustrate the feasibility and effectiveness of the proposed method. Moreover, this method is found to have good robustness to weak stochastic perturbations. Finally, the impact of two major factors on the topology identification performance is evaluated. This method provides a natural and direct point to reconstruct network topologies from measurable data, which is likely to have potential applicability in a wide range of fields.

  13. Numerical study of spherical Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Yang, R.-J.

    1989-01-01

    A new technique to simulate Taylor vortices in a spherical gap between a rotating inner sphere and a stationary outer one has been developed and tested. Paths leading to zero-, one-, and two-vortex flows are designed heuristically. Fictitious symmetric boundaries near the equator are imposed, and the choice of the location of the fictitious boundaries is determined by either one- or two-vortex flow being stimulated. The imposition of one or two fictitious boundaries during the initial calculation generates the state suitable for one-or two-vortex flow to exist. After removing the fictitious boundaries, the flow settles down into its own attractor. Using this method, the three steady flow modes can be simulated by using a half domain. The technique can converge to desired flows very fast, and its results show excellent agreement with experimental ones.

  14. Rayleigh-Taylor instability in accelerated solid media

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2017-01-01

    A linear study of the Rayleigh-Taylor instability based on momentum conservation and the consideration of an irrotational velocity field for incompressible perturbations is discussed. The theory allows for a very appealing physical picture and for a relatively simple description of the main features of the instability. As a result, it is suitable for the study of the very complex problem of the instability of accelerated solids with non-linear elastic-plastic constitutive properties, which cannot be studied by the usual normal modes approach. The elastic to plastic transition occurring early in the instability process determines the entire evolution and makes the instability exhibit behavior that cannot be captured by an asymptotic analysis.

  15. Taylor's law and body size in exploited marine ecosystems.

    PubMed

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  16. Vortical Effects on the Compressible Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Wieland, Scott; Livescu, Daniel; Vasilyev, Oleg V.; Reckinger, Scott J.

    2016-11-01

    High fidelity wavelet based direct numerical simulations (WDNS) of compressible, miscible, and single mode Rayleigh Taylor instability (RTI) with a stratified background density have been completed in 2 and 3 dimensions. As the instability grows, vorticity dynamics are largely responsible for the self-propagation and growth of the bubble and spike. However, in the presence of a background stratification, the vortex interactions are significantly altered. In the case of low Atwood number RTI, this leads to previously unseen regimes, namely, the exaggeration of bubble and spike asymmetries for a weakly stratified background state and the complete suppression of RTI growth in the strongly stratified scenario. To better understand these results, the vorticity transport equation budget was compared to the simplified scenarios of vortex pairs (2D) and vortex rings (3D) moving in a stratified medium.

  17. Simulations of NOVA direct-drive Rayleigh-Taylor experiments

    SciTech Connect

    Weber, S.V.

    1990-11-03

    Directly driven Rayleigh-Taylor instability growth experiments being performed on NOVA have been simulated using the computer code, LASNEX. These experiments employ beams smoothed with random phase plates (RPP), and will later include smoothing by spectral dispersion (SSD). Samples are CH foils with or without imposed sinusoidal surface perturbations. Perturbation growth is diagnosed by means of x-ray backlighting. Calculated growth rates are fairly flat across the wavelength range of 20--80 {mu}m which can be accessed experimentally, and are moderately suppressed below classical growth rates. Perturbations of large enough initial amplitude that the contrast in the x-ray image is measurable from the start of the experiment quickly grow into the nonlinear regime. Smaller initial amplitudes result in a longer interval of linear growth, but the initial perturbation will not be detectable in the data. Structure which is predicted to develop from speckles in the RPP beam pattern, with and without SSD, is also presented.

  18. DSMC Simulation of High Mach Number Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma = (U_w /√{ kbT_w / m }) in the range 0.01 < Ma < 10, and Knudsen number Kn = (1 / (√{ 2 } πd2 n_d (r _ 2 - r _ 1))) in the range 0.001 Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r_1).

  19. 75 FR 42281 - Continuation of the National Emergency With Respect To the Former Liberian Regime of Charles Taylor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... Liberian Regime of Charles Taylor On July 22, 2004, by Executive Order 13348, the President declared a... connected to the former Liberian regime of Charles Taylor, pursuant to the International Emergency Economic... former Liberian President Charles Taylor and other persons, in particular their unlawful depletion...

  20. 76 FR 43799 - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... With Respect to the Former Liberian Regime of Charles Taylor #0; #0; #0; Presidential Documents #0; #0... Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by Executive Order 13348, the... of certain persons connected to the former Liberian regime of Charles Taylor, pursuant to...

  1. 78 FR 43751 - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Liberian Regime of Charles Taylor On July 22, 2004, by Executive Order 13348, the President declared a national emergency with respect to the former Liberian regime of Charles Taylor pursuant to the... Liberian President Charles Taylor and other persons, in particular their unlawful depletion of...

  2. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature

    NASA Astrophysics Data System (ADS)

    García Casado, Gustavo; Tofaletti, Lorena; Müller, Darío; D'Onofrio, Alejandro

    2007-03-01

    The influence of temperature in the buoyancy driven Rayleigh-Taylor instability of reaction-diffusion fronts is investigated experimentally in Hele-Shaw cells. The acid autocatalysis of chlorite-tetrathionate reaction coupled to molecular diffusion yields exothermic planar reaction-diffusion fronts separating two miscible reactant and product solutions. The resulting chemical front moves downwards invading the fresh reactants, leaving the products of the reaction behind it. The density of the product solution is higher than the reactant solution; hence, the traveling front is buoyantly unstable and develops density fingers in time (Rayleigh-Taylor instability) when the products are above the reactants. The kinetic constant of a chemical reaction varies due to thermal effects. This may stabilize the exothermic descending front when temperature is increased, so that the mixing zone decreases, modifying the fingering patterns, until it almost disappears. The authors study the influence of the temperature variation on the instability pattern figure observed in the chlorite-tetrathionate reaction for long times, corresponding to the nonlinear regime.

  3. A study of thin-walled Taylor column under the influence of rotation

    NASA Astrophysics Data System (ADS)

    Lai, Kuan-Ruei; Chu, Chin-Chou; Chang, Chien-Cheng

    2016-11-01

    An extended study of thin-walled Taylor column under the influence of rotating cylinder is presented with very consistent results in numerical simulations and laboratory experiments. In the previous set-up, the Taylor column effect is produced under the influence of protruded cylinder from the top lid, and the thin-walled Taylor column is formed by draining of the fluid at the bottom. The primary interest of this study is to investigate the influence to thin-walled Taylor column when the cylinder is exerted with a relative rotation rate under very small Rossby number (Ro = U / fR) and Ekman number (Ek = ν / fR2) . The flow patterns are performed with different cylinder height ratios (h/ H) along with varying relative rotation ratio of cylinder to the background α = ω / Ω . Steady-state solutions being solved numerically in the rotating frame are shown to have good agreements with experimental flow visualizations on the resulting appearance of deformed thin-walled Taylor columns. As a result, the thin-walled Taylor column is observed to strengthen up with increasing α, and weakens with decreasing α. In addition, the weakening thin-walled Taylor column is observed to experience a break through transition near the bottom, which penetration diverged the recirculating region into two portions. Supported by the Ministry of Science and Technology, TAIWAN ROC, Contract No's 103-2221-E002-099-MY3; 105-2221-E002-097-MY3.

  4. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the

  5. A qualitative study of a nanotube model using an iterative Taylor method

    NASA Astrophysics Data System (ADS)

    Gadella, M.; Lara, L. P.; Negro, J.

    Physical properties of graphene nanotubes may strongly depend on external fields. In a recent paper V. Jakubský, S. Kuru, J. Negro, J. Phys. A: Math. Theor. 47, 115307 (2014), the authors have studied a model of carbon nanotubes under the presence of an external magnetic field, chosen for some symmetry properties. The model admits an exact solution, provided that the value of a parameter, here denoted as kz, be equal to zero. This parameter is the eigenvalue of the component of the momentum in the direction of the nanotube axis. However, it seems that this parameter cannot be discarded for physical reasons. The choice of nontrivial values for this parameter produces an equation of motion for electrons in the nanotube (a Dirac-Weyl equation), which cannot be exactly solvable. Then, we proposed some iterative approximate methods to solve this equation and obtaining its eigenvalues. Some tests have shown that an iterative Taylor method is more efficient than some others we have used. For kz≠0, we have found that, excluding the minimal energy eigenvalue, the lowest energy values obtained for kz=0 split into two different ones and, therefore, producing gaps in the energy spectrum.

  6. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  7. Magneto-stratigraphic studies in Neogene deposits of Taylor Valley and McMurdo Sound, Antarctica.

    USGS Publications Warehouse

    Elston, D.P.; Bressler, S.L.

    1981-01-01

    Magnetic polarity and susceptibility zonations obtained from drill cores have served to refine temporal correlations in glaciogenic sections cored in eastern Taylor Valley. The zonations have led to a better understanding of the glacial and structural history for an interval of time that extends from the late Miocene (about 7Ma) to perhaps near the end of the Pliocene (approx 2.4-1.8Ma). However polarity data from a core drilled in McMurdo Sound (hole MSSTS-1) were found to be less useful. In this core, normal and reverse polarity deposits of Holocene, Pleistocene, and Pliocene age are nearly 40m thick and appear to uncomformably overlie strata assigned to the middle Miocene on the basis of a reworked fauna and flora. Gaps in the stratigraphic coverage of the Miocene strata, and two intervals in which the magnetisation post-dates deposition, however, have made development of a reliable polarity zonation impossible, and no firm correlation could be made with the magnetic polarity time scale. -Authors

  8. Conversion of open tibial IIIb to IIIa fractures using intentional temporary deformation and the Taylor Spatial Frame.

    PubMed

    Sharma, H; Nunn, T

    2013-08-01

    The closure of small-to-moderate-sized soft tissue defects in open tibial fractures can be successfully achieved with acute bony shortening. In some instances, it may be possible to close soft tissue envelope defects by preserving length and intentionally creating a deformity of the limb. As the soft tissue is now able to close, this manoeuvre converts an open IIIb to IIIa fracture. This obviates the need for soft tissue reconstructive procedures such as flaps and grafts, which have the potential to cause donor-site morbidity and may fail. In this article, the authors demonstrate the technique for treating anterior medial soft tissue defects by deforming the bone at the fracture site, permitting temporary malalignment and closure of the wound. After healing of the envelope, the malalignment is gradually corrected with the use of the Taylor Spatial Frame. We present two such cases and discuss the technical indications and challenges of managing such cases.

  9. Analytical solution of the problem of the rise of a Taylor bubble

    NASA Astrophysics Data System (ADS)

    Zudin, Yuri B.

    2013-05-01

    In the classical works of Prandtl and Taylor devoted to the analysis of the problem of the rise of a Taylor bubble in a round tube, a solution of the Laplace equation is used, which contains divergent infinite series. The present paper outlines a method for the correct analysis of the mentioned problem. Using the method of superposition of "elementary flows," a solution was obtained for flow of an ideal fluid over a body of revolution in a pipe. Satisfying the free surface condition in the vicinity of the stagnation point and using the limiting transition with respect to the main parameter lead to the relation for the rise velocity of a Taylor bubble expressed in terms of the Froude number. In order to validate the method of superposition, it was applied to the problem of the rise of a plane Taylor bubble in a flat gap, which also has an exact analytical solution obtained with the help of the complex variable theory.

  10. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    SciTech Connect

    Benjamin, Robert F.

    1999-09-01

    Rayleigh-Taylor instability, the flow instability at a horizontal interface between two fluids with different densities, is demonstrated by a series of experiments that are suited for secondary and college level teaching. (c) 1999 American Institute of Physics.

  11. Application of the Priestley-Taylor Approach in a Two-Source Surface Energy Balance Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Priestley-Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface, sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been proven efficient within the frame...

  12. An Instability in Stratified Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Swinney, Harry

    2015-11-01

    In the late 1950s Russell Donnelly began conducting experiments at the University of Chicago on flow between concentric rotating cylinders, and his experiments together with complementary theory by his collaborator S. Chandrasekhar did much to rekindle interest in the flow instability discovered and studied by G.I. Taylor (1923). The present study concerns an instability in a concentric cylinder system containing a fluid with an axial density gradient. In 2005 Dubrulle et al. suggested that a `stratorotational instability' (SRI) in this system could provide insight into instability and angular momentum transport in astrophysical accretion disks. In 2007 the stratorotational instability was observed in experiments by Le Bars and Le Gal. We have conducted an experiment on the SRI in a concentric cylinder system (radius ratio η = 0 . 876) with buoyancy frequency N / 2 π = 0.25, 0.50, or 0.75 Hz. For N = 0.75 Hz we observe the SRI onset to occur for Ωouter /Ωinner > η , contrary to the prediction of Shalybkov and Rüdiger. Research conducted with Bruce Rodenborn and Ruy Ibanez.

  13. Pulsed power driven Magneto-Rayleigh-Taylor experiments.

    SciTech Connect

    Sefkow, Adam B.; Peterson, Kyle J.; Rovang, Dean Curtis; Slutz, Stephen A.; Cuneo, Michael Edward; Vesey, Roger Alan; Herrmann, Mark C.; Sinars, Daniel Brian

    2010-03-01

    Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.

  14. Rayleigh-Taylor Instability in non-premixed reacting flames.

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2015-11-01

    The Rayleigh-Taylor instability (RTI) occurs at a perturbed interface between fluids of different densities when a light fluid pushes a heavier fluid. The mixing driven by RTI affects several physical phenomena, such as Inertial Confinement Fusion, Supernovae detonation, centrifugal combustors and liquid rocket engines. The RTI in such flows is often coupled with chemical/nuclear reactions that may form complex density stratifications in the form of flames or ablative layers. We investigate such a non-premixed fuel-air interface subject to a constant acceleration and developing under the influence of chemical reactions using high-resolution, Navier-Stokes simulations. The H2 fuel is diluted with N2 to vary the density difference across the interface in thermal equilibrium (at 1000K). The intervening layer between fuel and air is subject to exothermic combustion reactions to form a flame. Following combustion, initially unstable fuel-air interfaces at an Atwood number (At) <0.5, transform into stable (fuel-flame) and unstable (flame-air) interfaces. We report on interfaces (At = 0.2 and 0.6) with single wavelength, sinusoidal perturbations and a broadband spectrum of multimode perturbations.

  15. Boundary Condition Effects on Taylor States in SSX

    NASA Astrophysics Data System (ADS)

    Han, Jeremy; Shrock, Jaron; Kaur, Manjit; Brown, Michael; Schaffner, David

    2016-10-01

    Three different boundary conditions are applied to the SSX 0.15 m diameter plasma wind tunnel and the resultant Taylor states are characterized. The glass walls of the wind tunnel act as an insulating boundary condition. For the second condition, a flux conserver is wrapped around the tunnel to trap magnetic field lines inside the SSX. For the last condition, the flux conserver is segmented to add theta pinch coils, which will accelerate the plasma. We used resistive stainless steel and copper mesh for the flux conservers, which have soak times of 3 μs and 250 μs , respectively. The goal is to increase the speed, temperature, and density of the plasma plume by adding magnetic energy into the system using the coils and compressing the plasma into small volumes by stagnation. The time of flight is measured by using a linear array of magnetic pick-up loops, which track the plasma plume's location as a function of time. The density is measured by precision quadrature He-Ne laser interferometry, and the temperature is measured by ion Doppler spectroscopy. Speed and density without the coils are 30km /s and 1015cm-3 . We will reach a speed of 100km /s and density of 1016cm-3 by adding the coil. Work supported by DOE OFES and ARPA-E ALPHA program.

  16. A guide frame for the Taylor Spatial Frame.

    PubMed

    Kanellopoulos, Anastasios D; Mavrogenis, Andreas F; Kanellopoulos, Nikolaos D; Magnissalis, Evangellos A; Papagelopoulos, Panayiotis J

    2009-08-01

    The Taylor Spatial Frame (TSF) is a versatile multiplanar external fixator that combines ease of application with computer accuracy to effectively reduce fractures and correct all aspects of deformity in reconstructive orthopaedic surgery. However, postapplication adjustments depend on adequate anteroposterior and lateral radiographic measurements to yield the most accurate output from the program. These radiographs need to be taken in an orthogonal plane to the reference ring. We describe a noninvasive technique using a specifically designed radiolucent frame that can be attached to the TSF to guide the surgeon and radiologist in obtaining lateral and anteroposterior radiographs, with the reference ring perfectly orthogonal in single exposures for each radiographic view. By using this guiding frame, reproducible and consistent x-rays oriented orthogonally to the reference ring at different points in the correction may be achieved, thus eliminating the need for repeat radiographs and radiation exposure for patients, radiologists, and surgeons. In this manner, the mounting parameters and the orientation of the bony deformity will be consistent. This should lead to enhanced accuracy of the TSF correction.

  17. Turbulent Taylor-Couette Flow at Large Reynolds Numbers*

    NASA Astrophysics Data System (ADS)

    Babkin, V. A.

    2016-09-01

    The problem of the steady-state turbulent flow of an incompressible fluid in the clearance between two coaxial infinite circular cylinders of radii R1 and R2, caused by the rotation of the inner cylinder of radius R1 under the conditions where the outer cylinder of radius R2 is immovable, i.e., the problem of a Taylor-Couette flow, was solved numerically within the framework of the model of a near-wall anisotropic turbulence with regard for the action of the centrifugal forces on the near-wall vortex structures determining the character of the flow between the cylinders. The profiles of the angular velocities of the fluid flowing along the radius of the clearance between the cylinders in the regime of completely developed turbulence were determined by numerical integration of the equation of motion of this fluid. The results of calculations of the flow between the cylinders at R1/R2 = 0.716 and Re = 105, 106, and 2·106 were compared with known solutions of the problem being considered and corresponding experimental data.

  18. Explicit analytic formulas for Newtonian Taylor-Couette primary instabilities.

    PubMed

    Dutcher, C S; Muller, S J

    2007-04-01

    In this study, existing primary stability boundary data for flow between concentric cylinders, for the broad range of radius and rotation ratios examined, were found to be self-similar in a properly chosen parameter space. The experimental results for the primary transitions to both Taylor vortex flow and spiral vortex flow collapsed onto a single curve using a combination of variables technique, for both counter-rotating and co-rotating cylinders. The curves were then empirically fit, yielding explicit analytic formulas for the critical Reynolds number for any radius ratio (eta) and rotation ratio (micro) . For counter-rotating flows, the primary critical Reynolds number is determined by a single variable: the ratio of the nodal gap fraction to a known function of the radius ratio. The existence and influence of a nodal surface is shown experimentally for micro approximately equal -1.7. For co-rotating flows, the important scaled variable was found to be the radius ratio divided by the nodal radius ratio. Comparisons of the resulting explicit stability formulas were made to existing analytic stability expressions and experimental data. Excellent quantitative agreement was found with data across the entire parameter space.

  19. Stratorotational instability in a thermally stratified Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Seelig, Torsten; Gellert, Marcus; Viazzo, Stephane; Randriamampianina, Anthony; Egbers, Christoph; Rüdiger, Günther

    2015-04-01

    Thirty years ago it was observed that for many stars the emitted energy spectrum shows an extra bump in the infrared part. This infrared excess indicates a large gaseous disk encompassing the star. Such accretion disks are regions of planet formation. Understanding the mechanisms that can result in an outward angular momentum transport is the central problem of planet formation, particularly in the theory of accretion disks. When a planet forms in a disk, angular momentum has to be carried away from the planet otherwise its rotation speed would be far too large. Only turbulence can achieve such a large angular momentum transport. Accretion disks can be turbulent even in the absence of a magnetic field. However, it is still an open question whether purely hydrodynamic instabilities are efficient enough for the momentum transport. This question can be addressed by particularly designed laboratory experiments and numerical simulations in an Taylor-Couette (TC) setup. It has been shown that classical turbulent TC flows are not efficient enough. However, adding axial stratification opens a route to a new instability. This Stratorotational Instability (SRI) has attracted attention in recent years. We show preliminary experimental and numerical results that highlight nonlinear aspects of the flow.

  20. Viscous-resistive layer in Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Silveira, F. E. M.; Orlandi, H. I.

    2017-03-01

    In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.

  1. Structures and Lagrangian statistics of the Taylor-Green dynamo

    NASA Astrophysics Data System (ADS)

    Homann, H.; Ponty, Y.; Krstulovic, G.; Grauer, R.

    2014-07-01

    The evolution of a Taylor-Green forced magnetohydrodynamic system showing dynamo activity is analyzed via direct numerical simulations. The statistical properties of the velocity and magnetic fields in Eulerian and Lagrangian coordinates are found to change between the kinematic, nonlinear and saturated regime. Fluid element (tracer) trajectories change from chaotic quasi-isotropic (kinematic phase) to mean magnetic field aligned (saturated phase). The probability density functions (PDFs) of the magnetic field change from strongly non-Gaussian in the kinematic to quasi-Gaussian PDFs in the saturated regime so that their flatness give a precise handle on the definition of the limiting points of the three regimes. Also the statistics of the kinetic and magnetic fluctuations along fluid trajectories changes. All this goes along with a dramatic increase of the correlation time of the velocity and magnetic fields experienced by tracers, significantly exceeding one turbulent large-eddy turn-over time. A remarkable consequence is an intermittent scaling regime of the Lagrangian magnetic field structure functions at unusually long time scales.

  2. Nonlinear dynamics in eccentric Taylor-Couette-Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Caulfield, C. P.

    2015-11-01

    The flow in the gap between two parallel but eccentric cylinders and driven by an axial pressure gradient and inner cylinder rotation is characterized by two geometrical parameters (radius ratio and eccentricity) and two dynamic parameters (axial and azimuthal Reynolds numbers). Such a theoretical configuration is a model for the flow between drill string and wellbore in the hydrocarbon drilling industry. The linear convective and absolute instability properties have been systematically derived in a recent study [Leclercq, Pier & Scott, J. Fluid Mech. 2013 and 2014]. Here we address the nonlinear dynamics resulting after saturation of exponentially growing small-amplitude perturbations. By using direct numerical simulations, a range of finite-amplitude states are found and characterized: nonlinear traveling waves (an eccentric counterpart of Taylor vortices, associated with constant hydrodynamic loading on the inner cylinder), modulated nonlinear waves (with time-periodic torque and flow rate) and more irregular states. In the nonlinear regime, the hydrodynamic forces are found to depart significantly from those prevailing for the base flow, even in situations of weak linear instability.

  3. Fluctuation scaling in complex systems: Taylor's law and beyond

    NASA Astrophysics Data System (ADS)

    Eisler, Zoltán; Bartos, Imre; Kertész, János

    2008-01-01

    Complex systems consist of many interacting elements which participate in some dynamical process. The activity of various elements is often different and the fluctuation in the activity of an element grows monotonically with the average activity. This relationship is often of the form 'fluctuations ≈ constant × averageα', where the exponent α is predominantly in the range [1/2, 1]. This power law has been observed in a very wide range of disciplines, ranging from population dynamics through the Internet to the stock market and it is often treated under the names Taylor's law or fluctuation scaling. This review attempts to show how general the above scaling relationship is by surveying the literature, as well as by reporting some new empirical data and model calculations. We also show some basic principles that can underlie the generality of the phenomenon. This is followed by a mean-field framework based on sums of random variables. In this context the emergence of fluctuation scaling is equivalent to some corresponding limit theorems. In certain physical systems fluctuation scaling can be related to finite size scaling.

  4. Fundamental magneto-Rayleigh-Taylor Instability Growth Experiments

    NASA Astrophysics Data System (ADS)

    Sinars, D. B.; Peterson, K. J.; Vesey, R. A.; Jennings, C.; Herrmann, M. C.; McBride, R. D.; Martin, M. R.; Slutz, S. A.

    2013-10-01

    Sandia is investigating a magnetized liner inertial fusion concept that uses cylindrical Be or Al liners to compress magnetized and preheated fusion fuel. As part of this work, we have been studying the growth of instabilities in initially solid liners driven with 20-24 MA, 100-ns current pulses on the Z pulsed power facility. The magneto-Rayleigh-Taylor instability in particular can disrupt the plasma liner during its implosion. Previous experiments studied instability growth starting either from intentionally seeded single-mode perturbations or from diamond-turned best-finish surfaces. Here we report on experiments studying (1) the growth of intentionally seeded multi-mode perturbations, and (2) the growth from polished best-finish surfaces where the tooling mark orientation is changed from being predominantly azimuthal to axial. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  5. DSMC Simulations of the Rayleigh-Taylor Instability in Gases

    NASA Astrophysics Data System (ADS)

    Gallis, Michael; Koehler, Timothy; Torczynski, John; Plimpton, Steven

    2015-11-01

    The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is applied to simulate the Rayleigh-Taylor instability (RTI) in atmospheric-pressure monatomic gases (e.g., argon and helium). The computational domain is a 1 mm × 4 mm rectangle divided into 50-nm square cells. Each cell is populated with 1000 computational molecules, and time steps of 0.1 ns are used. Simulations are performed to quantify the growth of a single-mode perturbation on the interface as a function of the Atwood number and the gravitational acceleration. The DSMC results qualitatively reproduce all observed features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models. Consistent with previous work in this field, the DSMC simulations indicate that the growth of the RTI follows a universal behavior. For cases with multiple-mode perturbations, the numbers of bubble-spike pairs that eventually appear are found to be in agreement with theoretical results for the most unstable wavelength. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. RAYLEIGH–TAYLOR UNSTABLE FLAMES—FAST OR FASTER?

    SciTech Connect

    Hicks, E. P.

    2015-04-20

    Rayleigh–Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  7. Reynolds and Atwood Numbers Effects on Homogeneous Rayleigh Taylor Instability

    NASA Astrophysics Data System (ADS)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2015-11-01

    The effects of Reynolds and Atwood numbers on turbulent mixing of a heterogeneous mixture of two incompressible, miscible fluids with different densities are investigated by using high-resolution Direct Numerical Simulations (DNS). The flow occurs in a triply periodic 3D domain, with the two fluids initially segregated in random patches, and turbulence is generated in response to buoyancy. In turn, stirring produced by turbulence breaks down the scalar structures, accelerating the molecular mixing. Statistically homogeneous variable-density (VD) mixing, with density variations due to compositional changes, is a basic mixing problem and aims to mimic the core of the mixing layer of acceleration driven Rayleigh Taylor Instability (RTI). We present results covering a large range of kinematic viscosity values for density contrasts including small (A =0.04), moderate (A =0.5), and high (A =0.75 and 0.9) Atwood numbers. Particular interest will be given to the structure of the turbulence and mixing process, including the alignment between various turbulence and scalar quantities, as well as providing fidelity data for verification and validation of mix models. Arindam Banerjee acknowledges support from NSF CAREER award # 1453056.

  8. Taylor-Couette flow instabilities in neutrally-buoyant suspensions

    NASA Astrophysics Data System (ADS)

    Majji, Madhu; Banerjee, Sanjoy; Morris, Jeffrey F.

    2016-11-01

    Experimentally-determined instabilities and flow states of a neutrally-buoyant suspension are described. The flow is studied in a concentric-cylinder device with inner-to-outer cylinder ratio of 0.877 with inner cylinder rotating and outer stationary. The cylinder length to annular gap ratio is 20, while the gap to particle size ratio is approximately 30, for spherical particles of 250 μm diameter. Using a slowly increasing or decreasing Re ramp, the flow agrees with all expectations for the pure fluid, while a slowly decreasing (quasi-static) ramp is used for the suspension flow, which is found to be unstable at lower Reynolds number Re (based on the effective viscosity) than pure fluid, and exhibits spiraling and ribbon states not found for a pure fluid with only inner cylinder rotating. Strikingly, the suspension at solid fraction ϕ >= 0 . 05 goes unstable first to a nonaxisymetric state rather than axisymmetric Taylor vortices. At 0 . 1 <= ϕ <= 0 , 2 , the flow exhibits numerous states during quais-static ramping of Re , while for ϕ = 0 . 3 , the base state Couette flow gives way to wavy spirals (WS) at Re 80 and exhibits only the WS state up to Re = 150 . Transient behavior on sudden change of Re and particle tracking will also be presented.

  9. Cylindrical effects in weakly nonlinear Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Ma, Wen-Fang; Wang, Xu-Lin

    2015-01-01

    The classical Rayleigh-Taylor instability (RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent (i.e., gravity pointing inward) and divergent (i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one. Project supported by the National Basic Research Program of China (Grant No. 10835003), the National Natural Science Foundation of China (Grant No. 11274026), the Scientific Research Foundation of Mianyang Normal University, China (Grant Nos. QD2014A009 and 2014A02), and the National High-Tech ICF Committee.

  10. Rigid spherical particles in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  11. Rayleigh-Taylor stabilization by material strength at Mbar pressures

    SciTech Connect

    Park, H; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Remington, B A; Rudd, R E; Becker, R C; Bernier, J V

    2009-05-27

    Studies of solid-state material dynamics at high pressures ({approx}1 Mbar) and ultrahigh strain rates (>10{sup 6} s{sup -1}) are performed using a unique laser based, quasi-isentropic high-pressure acceleration platform. Vanadium foils with pre-imposed sinusoidal ripples are accelerated in the solid state with this ramped high pressure drive. This causes Rayleigh-Taylor (RT) instability growth at the interface, where the rate of growth is sensitive to the solid-state material properties. The RT growth history is measured by face-on radiography using synchronized laser-driven x-ray backlighters at the Omega Laser. The experimental results are compared with 2D hydrodynamics simulations utilizing constitutive models of high pressure material strength. We find that the vanadium strength increases by a factor of 3.5-4 at peak pressure, compared to its ambient (undriven) strength. Both pressure hardening and strain rate hardening are the suggested cause for this increase in strength. An analysis treating strength as an effective lattice viscosity finds that a viscosity of {approx}400 poise is required to reproduce our RT data.

  12. Non-equilibrium Thermodynamics of Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-04-01

    Here, the fundamental problem of Rayleigh-Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier-Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (Δ T = 70 K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.

  13. Treatment of complex tibial fractures in children with the taylor spatial frame.

    PubMed

    Eidelman, Mark; Katzman, Alexander

    2008-10-01

    Most tibial shaft fractures in children can be treated with closed reduction and cast fixation, but some fractures need external or internal fixation. The Taylor spatial frame (Smith & Nephew, Memphis, Tennessee) is a relatively new external fixator that can correct 6-axis deformities with computer accuracy. This article reports our experience using the Taylor spatial frame as a rewarding treatment modality for complex tibial fractures in children and adolescents.

  14. Experimental and numerical analysis of Al6063 duralumin using Taylor impact test

    NASA Astrophysics Data System (ADS)

    Kruszka, L.; Anaszewicz, Ł.; Janiszewski, J.; Grązka, M.

    2012-08-01

    The paper presents results of experimental and numerical analysis of dynamic behaviour Al6063 duralumin. Dynamical experiments were made using Taylor impact test. Experimental results at next step of study were used in numerical analyses of dynamic yield stress of tested material and model parameters of the Johnson-Cook constitutive equation. The main aim of this analysis is to find out dynamical properties of Al6063 duralumin tested in Taylor impact test.

  15. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  16. A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Dechaumphai, Pramote

    1985-01-01

    A Taylor-Galerkin finite element solution algorithm for transient nonlinear thermal-structural analysis of large, complex structural problems subjected to rapidly applied thermal-structural loads is described. The two-step Taylor-Galerkin algorithm is an application of an algorithm recently developed for problems in compressible fluid dynamics. The element integrals that appear in the algorithm can be evaluated in closed form for two and three dimensional elements.

  17. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    USGS Publications Warehouse

    Bockheim, James G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  18. The stability of Taylor bubbles in large-diameter tubes: Linear theory

    NASA Astrophysics Data System (ADS)

    Abubakar, Habib; Matar, Omar

    2015-11-01

    Taylor bubbles are a characteristic feature of the slug flow regime in gas-liquid pipe flows. With increasing pipe diameter, previous experimental observations have shown that at sufficiently large diameter (> 0.1 m), the slug flow regime, and hence Taylor bubbles, are not observed in gas-liquid flows in vertical pipes. Numerical simulations of a Taylor bubble rising in a quiescent liquid (see companion talk at this APS/DFD conference) have also shown that the wake of Taylor bubbles rising in a riser of such sizes is turbulent and has great impact on the stability of the subsequent, trailing bubbles. In view of these observations, a linear stability analysis is carried out to establish the stability conditions for a Taylor bubble rising in a turbulent flowing liquid. The stability of an axisymmetric Taylor bubble to a small-amplitude, three dimensional, perturbation is studied and the dimensionless flow parameters of the liquid investigated include the Froude number, the inverse viscosity number, and the Eotvos numbers. Nigerian Government scholarship (for HA).

  19. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  20. High-order Taylor series expansion methods for error propagation in geographic information systems

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Leung, Yee; Ma, Jiang-Hong

    2015-04-01

    The quality of modeling results in GIS operations depends on how well we can track error propagating from inputs to outputs. Monte Carlo simulation, moment design and Taylor series expansion have been employed to study error propagation over the years. Among them, first-order Taylor series expansion is popular because error propagation can be analytically studied. Because most operations in GIS are nonlinear, first-order Taylor series expansion generally cannot meet practical needs, and higher-order approximation is thus necessary. In this paper, we employ Taylor series expansion methods of different orders to investigate error propagation when the random error vectors are normally and independently or dependently distributed. We also extend these methods to situations involving multi-dimensional output vectors. We employ these methods to examine length measurement of linear segments, perimeter of polygons and intersections of two line segments basic in GIS operations. Simulation experiments indicate that the fifth-order Taylor series expansion method is most accurate compared with the first-order and third-order method. Compared with the third-order expansion; however, it can only slightly improve the accuracy, but on the expense of substantially increasing the number of partial derivatives that need to be calculated. Striking a balance between accuracy and complexity, the third-order Taylor series expansion method appears to be a more appropriate choice for practical applications.

  1. Classical Rayleigh-Taylor Instability Experiments at Nova

    NASA Astrophysics Data System (ADS)

    Budil, Kimberly S.

    1997-11-01

    Hydrodynamic instabilities impact a wide range of physical systems, from inertial confinement fusion (ICF) capsules to supernovae. The ICF community has devoted a great deal of effort to understanding the development of instabilities at an ablation front, where the shortest wavelengths are predicted to be stabilized. We(in collaboration with B. A. Remington, S. V. Weber, T. A. Peyser, and T. S. Perry) have performed a series of experiments investigating the evolution of the Rayleigh-Taylor instability at an embedded, or classical, interface. Without the stabilizing influence of ablation, short wavelengths should grow strongly and behavior in the deep nonlinear regime of growth should be accesible. This strong growth of short wavelengths allows us to study the interaction of multiple modes superposed at the embedded interface. As the growth proceeds, the modes will begin to couple and it is predicted that an inverse cascade will occur, with progressively larger structures dominating the flow. In our initial experiments a single mode perturbation placed at the interface between a brominated plastic ablator and a titanium payload was studied. These results were compared to the growth of similar perturbations placed at an ablation front to conclusively demonstrate the effect of ablative stabilization. Subsequent experiments were devoted to the study of a superposition of 2, 10, or 20 modes to observe the effects of mode coupling and bubble competition processes. The technique was also extended to the study of two modes initially below the experimental resolution which were diagnosed by the appearance of the longer-wavelength coupled mode, demonstrating the technique of ``subresolution imaging''. Recent experiments have attempted to observe the process of bubble competition directly, by placing a pattern of alternating small and large bubbles at the interface and watching the evolution of the smaller bubble relative to its larger neighbor.

  2. Rayleigh-Taylor Instability Evolution in Ablatively Driven Cylindrical Implosions^*,**

    NASA Astrophysics Data System (ADS)

    Hsing, W. W.

    1996-11-01

    The Rayleigh-Taylor instability is an important limitation in ICF capsule designs. Significant work both theoretically and experimentally has been done to demonstrate the stabilizing effects due to material flow through the unstable region. The experimental verification has been done predominantly in planar geometry. Convergent geometry introduces effects not present in planar geometry such as shell thickening and accelerationless growth of modal amplitudes (e.g. Bell-Plesset growth). Amplitude thresholds for the nonlinear regime are reduced, since the wavelength of a mode m decreases with convergence λ ~ r/m, where r is the radius. We have investigated convergent effects using an imploding cylinder driven by x-ray ablation on the NOVA laser. By doping sections of the cylinder with high-Z materials, in conjunction with x-ray backlighting, we have measured the growth and feedthrough of the perturbations from the ablation front to the inner surface of the cylinder for various initial modes and amplitudes from early time through stagnation. Mode coupling of illumination asymmetries with material perturbations is observed, as well as phase reversal of the perturbations from near the ablation front to the inner surface of the cylinder. Imaging is performed with an x-ray pinhole camera coupled to a gated microchannel plate detector. In collaboration with C. W. Barnes, J. B. Beck, N. Hoffman (LANL), D. Galmiche, A. Richard (CEA/L-V), J. Edwards, P. Graham, B. Thomas (AWE). ^**This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  3. RAYLEIGH-TAYLOR INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS

    SciTech Connect

    Diaz, A. J.; Ballester, J. L. E-mail: roberto.soler@wis.kuleuven.be

    2012-07-20

    We study the modification of the classical criterion for the linear onset and growing rate of the Rayleigh-Taylor instability (RTI) in a partially ionized plasma in the two-fluid description. The plasma is composed of a neutral fluid and an electron-ion fluid, coupled by means of particle collisions. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The limits of collisionless, no gravity, and incompressible fluids are checked before addressing the general case. We find that both compressibility and ion-neutral collisions lower the linear growth rate, but do not affect the critical threshold of the onset of the RTI. The configuration is always unstable when a lighter plasma is below a heavier plasma regardless the value of the magnetic field strength, the ionization degree, and the ion-neutral collision frequency. However, ion-neutral collisions have a strong impact on the RTI growth rate, which can be decreased by an order of magnitude compared to the value in the collisionless case. Ion-neutral collisions are necessary to accurately describe the evolution of the RTI in partially ionized plasmas such as prominences. The timescale for the development of the instability is much longer than in the classical incompressible fully ionized case. This result may explain the existence of prominence fine structures with life times of the order of 30 minutes. The timescales derived from the classical theory are about one order of magnitude shorter and incompatible with the observed life times.

  4. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    SciTech Connect

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  5. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish

    2016-10-01

    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  6. Particle classification in Taylor vortex flow with an axial flow

    NASA Astrophysics Data System (ADS)

    Ohmura, N.; Suemasu, T.; Asamura, Y.

    2005-01-01

    Particle classification phenomenon in Taylor vortex flow with an axial flow was investigated experimentally and numerically. The flow-visualization experiment by a laser-induced fluorescence method clearly revealed that there existed two distinct mixing regions at low Reynolds numbers. The tracer near the vortex cell boundary was rapidly transported axially owing to the bypass flow effect. On the other hand, the fluid element was confined to the vortex core region without being exchanged with the outer flow region. In order to observe particle classification phenomenon, polymethyl methacrylate (PMMA) particles suspended in the same aqueous solution of glycerol as the working fluid were fed into the top of the apparatus. Particle size was initially ranging from 10 to 80 µm. The ratio of the particle density to the fluid density was 1.04-1.05, which means the density difference between particle and fluid is very small. The suspended solution was withdrawn using a hypodermic needle every a certain time period at 30 mm above the bottom of apparatus. The fluid was sampled both near the outer wall and in vortex core. The particles sampled at 42 min having the size of 20-50 µm were mainly observed in the vortex core region. On the other hand, a large population of particles having the size of about 50-80 µm could be seen in the outer region of vortex. It was found that large particles located near the outer edge of vortices were quickly transported axially owing to the bypass flow effect. Numerical simulation also revealed that the loci of particles depended on the particle size.

  7. Taylor-Couette instability in thixotropic yield stress fluids

    NASA Astrophysics Data System (ADS)

    Jenny, Mathieu; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Skali-Lami, Salahedine; Dossmann, Yvan

    2017-02-01

    We consider the flow of thixotropic yield stress fluids between two concentric cylinders. To account for the fluid thixotropy, we use Hou\\vska's model [Hou\\vska, Ph.D. thesis, Czech Technical University, Prague, 1981] with a single structural parameter driven by a kinetic equation. Because of the yield stress and the geometric inhomogeneity of the stress, only a part of the material in the gap may flow. Depending on the breakdown rate of the structural parameter, the constitutive relation can lead to a nonmonotonic flow curve. This nonmonotonic behavior is known to induce a discontinuity in the slope of the velocity profile within the flowing material, called shear banding. Thus, for fragile structures, a shear-banded flow characterized by a very sharp transition between the flowing and the static regions may be observed. For stronger structures, the discontinuity disappears and a smooth transition between the flowing and the static regions is observed. The consequences of the thixotropy on the linear stability of the azimuthal flow are studied in a large range of parameters. Although the thixotropy allows shear banding in the base flow, it does not modify fundamentally the linear stability of the Couette flow compared to a simple yield stress fluid. The apparent shear-thinning behavior depends on the thixotropic parameters of the fluid and the results about the onset of the Taylor vortices in shear-thinning fluids are retrieved. Nevertheless, the shear banding modifies the stratification of the viscosity in the flowing zone such that the critical conditions are mainly driven by the width of the flowing region.

  8. Statistical Tests of Taylor's Hypothesis: An Application to Precipitation Fields

    NASA Astrophysics Data System (ADS)

    Murthi, A.; Li, B.; Bowman, K.; North, G.; Genton, M.; Sherman, M.

    2009-05-01

    The Taylor Hypothesis (TH) as applied to rainfall is a proposition about the space-time covariance structure of the rainfall field. Specifically, it supposes that if a spatio-temporal precipitation field with a stationary covariance Cov(r, τ) in both space r and time τ, moves with a constant velocity v, then the temporal covariance at time lag τ is equal to the spatial covariance at space lag v τ, that is, Cov(0, τ) = Cov(v τ, 0). Qualitatively this means that the field evolves slowly in time relative to the advective time scale, which is often referred to as the 'frozen field' hypothesis. Of specific interest is whether there is a cut-off or decorrelation time scale for which the TH holds for a given mean flow velocity v. In this study the validity of the TH is tested for precipitation fields using high-resolution gridded NEXRAD radar reflectivity data produced by the WSI Corporation by employing two different statistical approaches. The first method is based upon rigorous hypothesis testing while the second is based on a simple correlation analysis, which neglects possible dependencies in the correlation estimates. We use radar reflectivity values from the southeastern United States with an approximate horizontal resolution of 4 km x 4 km and a temporal resolution of 15 minutes. During the 4-day period from 2 to 5 May 2002, substantial precipitation occurs in the region of interest, and the motion of the precipitation systems is approximately uniform. The results of both statistical methods suggest that the TH might hold for the shortest space and time scales resolved by the data (4 km and 15 minutes), but that it does not hold for longer periods or larger spatial scales. Also, the simple correlation analysis tends to overestimate the statistical significance through failing to account for correlations between the covariance estimates.

  9. Boundary selection of stable wavenumbers in Taylor-vortex flow.

    NASA Astrophysics Data System (ADS)

    Linek, Marcus; Ahlers, Guenter

    1996-11-01

    Non-rotating rigid ends in Taylor-vortex flow (TVF) with a rotating inner and stationary outer cylinder produce large-amplitude Ekman vortices which pin the phase of the pattern. The band of stable wavenumbers is then limited by a bulk instability, namely the Eckhaus instability. For small ɛ, this leads to a stable wavenumber band of order ɛ ^1/2 where ɛ ≡ (f - f_c)/fc with f the inner-cylinder speed and fc the value of f for the onset of TVF. When one of the ends of a vertical TVF system has a free surface, the vortex amplitude adjacent to this surface is considerably reduced and the phase pinning is weaker. Experimentally we find that this can lead to a different instability mechanism consisting of losses or gains of vortices at the free boundary. This mechanism yields a more narrow wavenumber band of order ɛ, as predicted by Cross et al.^1 Specifically we find that TVF is stable for wavenumbers k over the range λ- ɛ < (k - k_c)/kc < λ+ ɛ where kc is the value of k at onset. We find that λ - ~= - 0.55 and λ + ~= 0.70 in a system with a radius ratio η = 0.75. A detailed calculation of λ_+,- would be most interesting. Supported by NSF Grant No. DMR94-19168, and by the Deutsche Agentur für Raumfahrtangelegenheiten (DARA).l ^1 M.C. Cross, P.G. Daniels, P.C. Hohenberg, and E.D. Siggia, J. Fluid Mech.127, 155 (1983).

  10. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    SciTech Connect

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  11. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  12. Fortieth Lauriston S. Taylor Lecture: Radiation Protection and Regulatory Science.

    PubMed

    Poston, John W

    2017-02-01

    It took about 30 y after Wilhelm Konrad Roentgen's discovery of x rays and Henri Becquerel's discovery of natural radioactivity for scientists in the civilized world to formulate recommendations on exposure to ionizing radiation. We know of these efforts today because the organizations that resulted from the concerns raised in 1928 at the Second International Congress of Radiology still play a role in radiation protection. The organizations are known today as the International Commission on Radiological Protection and, in the United States, the National Council on Radiation Protection and Measurements (NCRP). Today, as we have many times in the past, we honor Dr. Lauriston Sale Taylor, the U.S. representative to the 1928 Congress, for his dedication and leadership in the early growth of NCRP. NCRP's mission is "to support radiation protection by providing independent scientific analysis, information, and recommendations that represent the consensus of leading scientists." The developments in science and technology, including radiation protection, are occurring so rapidly that NCRP is challenged to provide its advice and guidance at a faster pace than ever before. NCRP's role has also expanded as the Council considers newer uses and applications of ionizing radiation in research and medicine as well as the response to nuclear or radiological terrorism. In such a technical world, new areas have been established to deal with the nexus of science and regulation, especially in the United States. Lord Ernest Rutherford supposedly said, "That which is not measurable is not science. That which is not physics is stamp collecting." I wonder what he would say if he were alive today as now many embrace a new field called "regulatory science." This term was suggested by Professor Mitsuru Uchiyama in Japan in 1987 and was reviewed in literature published in English in 1996. Some have attributed a similar idea to Dr. Alvin Weinberg, for many years Director of the Oak Ridge

  13. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  14. Velocity and magnetic field measurements of Taylor plumes in SSX under different boundary conditions

    NASA Astrophysics Data System (ADS)

    Kaur, Manjit; Brown, M. R.; Han, J.; Shrock, J. E.; Schaffner, D. A.

    2016-10-01

    The SSX device has been modified by the addition of a 1 m long glass extension for accommodating pulsed theta pinch coils. The Taylor plumes are launched from a magnetized plasma gun and flow to an expansion volume downstream. The time of flight (TOF) measurements of these plumes are carried out using a linear array of Ḃ probes (separated by 10cm). TOF of the plasma plumes from one probe location to the next is determined by direct comparison of the magnetic field structures as well as by carrying out a cross-correlation analysis. With the glass boundary, the typical velocity of the Taylor plumes is found to be 25km /s , accompanied by a fast plasma (>= 50km /s) at the leading edge. Magnetic field embedded in the Taylor plumes is measured in the expansion chamber using a three-dimensional array of Ḃ probes and is found to be 700G . Some flux conservation of the Taylor plumes is provided by using a resistive (soak time 3 μs) and a mesh (soak time 170 μs > discharge time) liner around the glass tube for improving the downstream Taylor state velocity as well as the magnetic field. The results from these different boundary conditions will be presented. Work supported by DOE OFES and ARPA-E ALPHA programs.

  15. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.

    PubMed

    Poujade, Olivier; Peybernes, Mathieu

    2010-01-01

    For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the foliated spectra at large scales.

  16. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach

    SciTech Connect

    Poujade, Olivier; Peybernes, Mathieu

    2010-01-15

    For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the foliated spectra at large scales.

  17. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.

    SciTech Connect

    Brock, Billy C.

    2008-03-01

    Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

  18. Revisiting Taylor Dispersion: Differential enhancement of rotational and translational diffusion under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Ong, Desmond; Cheng, Xiang; Cohen, Itai

    2013-03-01

    The idea of Taylor dispersion - enhancement of translational diffusion under shear - has found applications in fields from pharmacology to chemical engineering. Here, in a combination of experiment and simulations, we study the translational and rotational diffusion of colloidal dimers under triangle-wave oscillatory shear. We find that the rotational diffusion is enhanced, in addition to the enhanced translational diffusion. This ``rotational Taylor dispersion'' depends strongly on the strain rate (Peclet number), aspect ratio, and the shear strain, in contradistinction to translational Taylor dispersion in a shear flow, which depends only weakly on strain rate and aspect ratio. This separate tunability of translations and orientations promises important applications in mixing and self-assembly of solutions of anisometric colloids. We discuss the corresponding effect on the structure and rheology of denser suspensions of rod-like particles. B. L. acknowledges supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  19. Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method

    NASA Astrophysics Data System (ADS)

    Darlington, Rebecca Mattson

    This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.

  20. Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method

    SciTech Connect

    Darlington, Rebecca Mattson

    1999-12-01

    This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.

  1. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    PubMed

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  2. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  3. Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    van der Veen, Roeland C. A.; Huisman, Sander G.; Dung, On-Yu; Tang, Ho L.; Sun, Chao; Lohse, Detlef

    2016-06-01

    We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta =1011 to 9 ×1012 by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinders. The multiple states are found to be very robust and are expected to persist beyond Ta =1013 . The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. By mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states are again observed. Here they are characterized by even richer roll structure phenomena, including an antisymmetrical roll state.

  4. A modified Taylor rule for dealing with demand shocks and uncertain potential macroeconomic output

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose; Ibarra-Valdez, Carlos; Fernandez-Anaya, Guillermo; Villarreal, Francisco

    2008-02-01

    A critical issue for central banks in modern economies is the inflation stabilization about a prescribed level. The best-known simple instrumental rule to guide monetary policy to control inflation is the Taylor rule, where the instrument (e.g., a short interest rate) responds to changes in the inflation and the output gaps. The objective of this paper is to introduce some modifications to the Taylor rule in order to improve its robustness with respect to uncertainties about potential output and unanticipated shocks. To this end, departing from feedback control theory, the Taylor rule is equipped with an adaptive control scheme to reject the adverse effects of shocks and to estimate the deviations of the potential output. It is shown that the proposed adaptation procedure is equivalent to a classical integral feedback controller whose characteristics and implementation issues are well understood in practical control engineering. Singular perturbation methods are used to establish the stability properties of the resulting control system.

  5. A Variational Approach to the Rayleigh-Taylor Instability of an Accelerating Plasma Slab.

    DTIC Science & Technology

    1981-12-01

    William Strutt . Scientific Papers. New York: Dover. 1964. 16. Reid, W. H. and Harris, D. L. "On Orthogonal Func- tions which Satisfy Four Boundary...AD-AL18 074 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO -ETC P 5 18/3 VARIATIONAL APPROACH TO THE RAYLEIGH -TAYLOR INSTABILITY OF AN--ETC(U...16, Yl4~𔃼 ’.~t~ -’ - -~ ~ r dmA ak -’I t. 4 Ar 𔃻*𔄀 1- ______Z"__7 AFI/GEP/PH/81D-11 A VARIATIONAL APPROACH TO0 TE RAYLEIGH -TAYLOR INSTABILITY OF

  6. Error estimate of Taylor's frozen-in flow hypothesis in the spectral domain

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito

    2017-03-01

    The quality of Taylor's frozen-in flow hypothesis can be measured by estimating the amount of the fluctuation energy mapped from the streamwise wavenumbers onto the Doppler-shifted frequencies in the spectral domain. For a random sweeping case with a Gaussian variation of the large-scale flow, the mapping quality is expressed by the error function which depends on the mean flow speed, the sweeping velocity, the frequency bin, and the frequency of interest. Both hydrodynamic and magnetohydrodynamic treatments are presented on the error estimate of Taylor's hypothesis with examples from the solar wind measurements.

  7. Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate

    NASA Astrophysics Data System (ADS)

    Wu, Qian

    2015-09-01

    Using the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the ionospheric Rayleigh-Taylor instability growth rate is calculated. The seasonal and longitudinal variations of the growth rate from the TIEGCM appear to match that of the spread F observed by various satellite missions. The growth rate is strongly dependent on the angle between the sunset terminator and the geomagnetic field line near the magnetic equator. The TIEGCM simulations with nonmigrating tides show the zonal wave number 4 structure in the Rayleigh-Taylor instability due to the inclusion of the nonmigrating diurnal eastward zonal wave number 3 and semidiurnal eastward zonal wave number 2 tides.

  8. Corrections to the theory and the optimal line in the swimming diagram of Taylor (1952).

    PubMed

    Humphrey, Joseph A C; Chen, Jun; Iwasaki, Tetsuya; Friesen, W Otto

    2010-08-06

    The analysis of undulatory swimming gaits requires knowledge of the fluid forces acting on the animal body during swimming. In his classical 1952 paper, Taylor analysed this problem using a 'resistive-force' theory. The theory was used to characterize the undulatory gaits that result in the smallest energy dissipation to the fluid for a given swim velocity. The optimal gaits thus found were compared with data recorded from movies of a snake and a leech swimming. This report identifies and corrects a mathematical error in Taylor's paper, showing that his theory applies even better to animals of circular cross section.

  9. On the importance of recrystallization to reproduce the Taylor impact specimen shape of a pure nickel

    NASA Astrophysics Data System (ADS)

    Couque, Hervé

    2015-09-01

    Taylor tests are a mean to investigate the dynamic plastic and failure behaviour of metals under compression. By taking in account the strengthening occurring at high strain rates, the Taylor final diameter of a pure nickel impacted at 453 m/s have been numerically reproduced by 13%. Through post-mortem observations of the specimen impacted at 453 m/s, a recrystallization process has been found to occur resulting in a softening of the pure nickel. Subsequent numerical simulations taking in account this softening have been found to reduce the difference between experimental and numerical diameter by 10%.

  10. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  11. Spinal anesthesia using Taylor's approach helps avoid general anesthesia in short stature asthmatic patient

    PubMed Central

    Patil, Amarjeet Dnyandeo; Bapat, Manasi; Patil, Sunita A.; Gogna, Roshan Lal

    2015-01-01

    The case history of a 35-year-old female patient with short stature is presented. She was posted for rectopexy in view of rectal prolapse. She was a known case of bronchial asthma. She had crowding of intervertebral spaces, which made administration of spinal anesthesia via the normal route very difficult. Taylor's approach for administration of the same was tried and proved successful, thus saving the patient from receiving general anesthesia in the presence of bronchial asthma, for a perineal surgery. The possible cause for the difficulty in administration of spinal anesthesia and the Taylor's approach are discussed, and reports of similar cases reviewed. PMID:26543472

  12. Changing Course: Thurgood Marshall College Fund President Johnny Taylor Seeks New Partnerships and Avenues of Support for Public HBCUs

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2011-01-01

    When veteran educator Dr. N. Joyce Payne handed the reins of the organization she founded, the Thurgood Marshall College Fund, to entertainment lawyer and board member Johnny Taylor, Taylor began pursuing a remake of the prestigious group that has turned it on its head in just a matter of months. Today, with just more than a year of leading the…

  13. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the former Liberian regime of Charles Taylor, pursuant to the International Emergency Economic... extraordinary threat to the foreign policy of the United States constituted by the actions and policies of..., and economic institutions and resources. The actions and policies of Charles Taylor and others...

  14. Authority in Engineering Education

    ERIC Educational Resources Information Center

    Stephan, Karl D.

    2012-01-01

    Authority as a philosophical concept is defined both in general and as it applies to engineering education. Authority is shown to be a good and necessary part of social structures, in contrast to some cultural trends that regard it as an unnecessary and outmoded evil. Technical, educational, and organizational authority in their normal functions…

  15. And Speaking of Authority...

    ERIC Educational Resources Information Center

    Williams, Connie

    2010-01-01

    Over breakfast at the American Library Association (ALA) Annual Conference, this author was asked, "What is authority? What does one know about the ways in which he/she determines credibility? Whom do you trust?" In this article, the author focuses on these questions in terms of administrators who have control over libraries. She provides a…

  16. Author! Author! Seymour Simon: Science Writer Extraordinaire

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2005-01-01

    This column presents a brief biography of author Seymour Simon, whose topics for children's photo essays include icebergs, gorillas, thunderstorms, optical illusions, snakes, air, water, planets, airplanes, volcanoes, cars, the brain, bridges, bugs, crocodiles, skyscrapers, sharks, and paper airplanes. Though he is best known in the style and an…

  17. Author! Author! Making Kids Laugh: Jon Scieszka

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2004-01-01

    This article presents a brief biography of author Jon Scieszka, best known for his first published title, "The True Story of the Three Little Pigs!" which has become a modern classic. The publication of this creative and inventive title led to the numerous fractured fairy tales published since its release in 1989. His books have received numerous…

  18. Exploring the Works of Mildred Taylor: An Approach to Teaching the Logan Family Novels.

    ERIC Educational Resources Information Center

    Martin, Michelle H.

    1998-01-01

    States the Logan family novels afford readers an opportunity to familiarize themselves with many facets of the life of one Black family in the segregated South of 1900-1940. Finds the power of the texts lies in their complex interrogative nature--wherein Taylor problematizes the reader's subject position by offering complex characterizations and…

  19. Tests, Tasks, and Taylorism: A Model-T Approach to the Management of Education.

    ERIC Educational Resources Information Center

    Hartley, David

    1990-01-01

    Criticizes the Scottish Education Department for its 1987 consultation paper "Curriculum and Assessment in Scotland: A Policy for the 90s" seeking to revive the managerial style of entrepreneurial capitalism, namely Taylorism. The new policy is under attack for countermanding teachers' newly acquired decision-making powers. Includes 34…

  20. The Robert Taylor Boys and Girls Club of Chicago. Practitioner Perspectives: Bulletin from the Field.

    ERIC Educational Resources Information Center

    Coleman, Patrick J.; Lahey, Elizabeth; Orlando, Kristine

    The Robert Taylor Boys and Girls Club of Chicago is located in this country's largest public housing development, serving over 1,500 predominantly African American members. It offers a brightly-colored building in a dilapidated, deprived area. It provides a clean, warm, safe haven for children to play, build strong bodies, get help with homework,…

  1. 43 CFR 2091.7-2 - Segregative effect and opening: Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect and opening: Taylor Grazing Act. 2091.7-2 Section 2091.7-2 Public Lands: Interior Regulations Relating to Public Lands... Grazing Act. Lands classified under section 7 of the Act of June 28, 1934, as amended (43 U.S.C....

  2. Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma

    SciTech Connect

    Castillo, J.L. ); Huerta, M.A. )

    1993-11-01

    We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length [ital l], acceleration [ital a], and thermal speed [ital v][sub [ital T

  3. Validity of the Taylor Hypothesis for Linear Kinetic Waves in the Weakly Collisional Solar Wind

    NASA Astrophysics Data System (ADS)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-01

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  4. Correction of tibial deformity in Paget's disease using the Taylor spatial frame.

    PubMed

    Tsaridis, E; Sarikloglou, S; Papasoulis, E; Lykoudis, S; Koutroumpas, I; Avtzakis, V

    2008-02-01

    A 64-year-old man presented with a severe deformity of the tibia caused by Paget's disease and osteoarthritis of the ipsilateral knee. Total knee replacement required preliminary correction of the tibial deformity. This was successfully achieved by tibial osteotomy followed by distraction osteogenesis using the Taylor spatial frame. The subsequent knee replacement was successful, with no recurrence of deformity.

  5. Treatment of complex foot deformities in children with the taylor spatial frame.

    PubMed

    Eidelman, Mark; Katzman, Alexander

    2008-10-01

    The Taylor spatial frame is a relatively new external fixator able to correct 6-axis deformities with computer accuracy using a virtual hinge. The Taylor spatial frame has gained tremendous popularity, but its use for the correction of foot deformities is still limited. Various ring configurations and a new foot program have recently become available and allow correction of the most difficult foot deformities. This article reports the results of 13 patients (15 frames) with various foot deformities treated at our institution with 3 different Taylor spatial frame configurations (standard rings construction, miter frame, and butt frame). Treatment goals were achieved in 11 patients, while mild residual deformities persisted in 2 patients. Most complications during treatment consisted of pin tract infections. One patient had premature consolidation, which was treated with additional midtarsal osteotomy; 1 had metatarsophalangeal joint subluxation, which was fixed with tendon lengthening and pining of the joint; and 1 had talar subluxation, which was reduced with residual program correction. Based on our experience, we believe the Taylor spatial frame is a very powerful and accurate surgical modality with a relatively short learning curve for the correction for most difficult foot deformities.

  6. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    SciTech Connect

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-10

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  7. Taylor Spatial Frame application with the aid of a fine wire half frame.

    PubMed

    Whitehouse, Michael R; Livingstone, James A

    2008-04-01

    The Taylor Spatial Frame has become an important part of the trauma and reconstruction surgeon's armamentarium. We describe a technique to assist in the application of this device that does not hinder the use of the image intensifier or rely on an assistant to hold a constant position and aids provisional fracture reduction.

  8. Transition to Taylor vortex flow between combinations of circular and conical cylinders

    NASA Astrophysics Data System (ADS)

    Lalaoua, Adel

    2017-01-01

    The stability and flow transitions in the annular gap between two coaxial rotating bodies, termed Taylor-Couette flow, presents a great importance in the field of fluid dynamics. In this paper, the fluid motion in an annulus between cylinder-cone combinations is investigated numerically using CFD simulations for a three dimensional viscous and incompressible flow. The transitional phenomena occurring in this flow are discussed under the effect of opening angles of the outer cylinder. The main goal it is to show how operates the change in the structure of the movement when changing the geometry of the flow through angular deviation, i.e., from coaxial rotating cylinders to an inner cylinder rotating in a conical container. Particular attention is given to the transitional regime and the onset of Taylor vortices when the outer cylinder is replaced with a cone. The numerical calculations are carried out over a range of apex angle α from 0 (classical case) up to 12°. The critical Taylor number, Tac1, characterizing the occurrence of Taylor vortices in the flow, decreases drastically: the first instability mode of transition changes from Tac1 = 41.6, corresponding to the classical case to Tac1 = 20.3 when the apex angle reaches 12°. The velocity distribution and the wavelengths are also presented. It is established that the number of vortices occurring in the gap between rotating cylinder in a cone is inversely proportional to the apex angles.

  9. Taylor Approximations to Logistic IRT Models and Their Use in Adaptive Testing.

    ERIC Educational Resources Information Center

    Veerkamp, Wim J. J.

    2000-01-01

    Showed how Taylor approximation can be used to generate a linear approximation to a logistic item characteristic curve and a linear ability estimator. Demonstrated how, for a specific simulation, this could result in the special case of a Robbins-Monro item selection procedure for adaptive testing. (SLD)

  10. The Taylor spectrum and transversality for a Heisenberg algebra of operators

    SciTech Connect

    Dosi, Anar A

    2010-05-11

    A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.

  11. Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion

    ERIC Educational Resources Information Center

    Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…

  12. Developing Poor and Minority Children as Leaders with the Barbara Taylor School Educational Model.

    ERIC Educational Resources Information Center

    Strickland, Gloria; Holzman, Lois

    1989-01-01

    Describes the Barbara Taylor Educational Model, developed and implemented in Harlem (New York) and in day care and Head Start programs of the Somerset Community Action Program (New Jersey). Presents case studies illustrating how the model enables students to overcome barriers to their development posed by racism, sexism, and classism. (MW)

  13. Subscales to the Taylor Manifest Anxiety Scale in Three Chronically Ill Populations.

    ERIC Educational Resources Information Center

    Moore, Peter N.; And Others

    1984-01-01

    Examines factors of anxiety in the Taylor Manifest Anxiety Scale in 150 asthma, tuberculosis, and chronic pain patients. Key cluster analysis revealed five clusters: restlessness, embarrassment, sensitivity, physiological anxiety, and self-confidence. Embarrassment is fairly dependent on the other factors. (JAC)

  14. Analyzing Traditional Medical Practitioners' Information-Seeking Behaviour Using Taylor's Information-Use Environment Model

    ERIC Educational Resources Information Center

    Olatokun, Wole Michael; Ajagbe, Enitan

    2010-01-01

    This survey-based study examined the information-seeking behaviour of traditional medical practitioners using Taylor's information use model. Respondents comprised all 160 traditional medical practitioners that treat sickle cell anaemia. Data were collected using an interviewer-administered, structured questionnaire. Frequency and percentage…

  15. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Koombhongse, S.; Reneker, D. H.

    2001-11-01

    Sessile and pendant droplets of polymer solutions acquire stable shapes when they are electrically charged by applying an electrical potential difference between the droplet and a flat plate, if the potential is not too large. These stable shapes result only from equilibrium of the electric forces and surface tension in the cases of inviscid, Newtonian, and viscoelastic liquids. In liquids with a nonrelaxing elastic force, that force also affects the shapes. It is widely assumed that when the critical potential φ0* has been reached and any further increase will destroy the equilibrium, the liquid body acquires a conical shape referred to as the Taylor cone, having a half angle of 49.3°. In the present work we show that the Taylor cone corresponds essentially to a specific self-similar solution, whereas there exist nonself-similar solutions which do not tend toward a Taylor cone. Thus, the Taylor cone does not represent a unique critical shape: there exists another shape, which is not self-similar. The experiments of the present work demonstrate that the observed half angles are much closer to the new shape. In this article a theory of stable shapes of droplets affected by an electric field is proposed and compared with data acquired in our experimental work on electrospinning of nanofibers from polymer solutions and melts.

  16. A New NPGS Special Collection: Norman L. Taylor University of Kentucky Clover Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. Norman L. Taylor was a world renowned Professor and clover breeder in the Department of Plant and Soil Sciences at the University of Kentucky for 48 years. Following retirement in 2001, he continued working on clovers up until his death in 2010. Dr. Taylor’s entire career was devoted to enhancin...

  17. 77 FR 61937 - Endangered and Threatened Wildlife and Plants; Listing Taylor's Checkerspot Butterfly and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... inhabit glacial outwash prairies in the south Puget Sound region; shallow-soil balds (a bald is a small... Vancouver Island, northern Olympic Peninsula, the Puget Sound, and the Willamette Valley. The historical... abundant distribution of Taylor's checkerspot butterfly was known from the south Puget Sound...

  18. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  19. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  20. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  1. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  2. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  3. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  4. Differences between Experts' and Students' Conceptual Images of the Mathematical Structure of Taylor Series Convergence

    ERIC Educational Resources Information Center

    Martin, Jason

    2013-01-01

    Taylor series convergence is a complicated mathematical structure which incorporates multiple concepts. Therefore, it can be very difficult for students to initially comprehend. How might students make sense of this structure? How might experts make sense of this structure? To answer these questions, an exploratory study was conducted using…

  5. An optimized formulation for Deprit-type Lie transformations of Taylor maps for symplectic systems

    SciTech Connect

    Shi, Jicong; Yan, Yiton T.

    1993-06-01

    An optimized iterative formulation is presented for directly transforming a Taylor map of a symplectic system into a Deprit-type Lie transformation, which is a composition of a linear transfer matrix and a single Lie transformation, to an arbitrary order.

  6. CFD-informed unified closure relation for the rise velocity of Taylor bubbles in pipes

    NASA Astrophysics Data System (ADS)

    Lizarraga-Garcia, Enrique; Buongiorno, Jacopo; Al-Safran, Eissa; Lakehal, Djamel

    2015-11-01

    Two-phase slug flow commonly occurs in gas and oil systems. Current predictive methods are based on the mechanistic models, which require the use of closure relations to complement the conservation equations to predict integral flow parameters such as liquid holdup (or void fraction) and pressure gradient. Taylor bubble velocity in slug flow is one of these closure relations which has been determined to significantly affect the calculation of these parameters. In this work, Computational Fluid Dynamics (CFD) with Level-Set as the Interface Tracking Method (ITM) are employed to simulate the motion of Taylor bubbles in slug flow, for which the commercial code TransAT is used. A large numerical database with stagnant and flowing liquid for various Reynolds numbers is being generated from which a unified Taylor bubble velocity correlation in stagnant liquids for an ample range of fluid properties and pipe geometries is proposed (Mo ∈ [ 1 .10-6 , 5 .103 ] , Eo ∈ [ 10 , 700 ]). Furthermore, it is found that the velocity of Taylor bubbles in inclined pipes is greatly affected by the presence of a lubricating thin film between the bubble and the pipe wall. An analytical and experimentally validated criterion, which predicts the film existence, draiage and breakup, is presented.

  7. Stabilization of Rayleigh-Taylor instability in the presence of viscosity and compressibility: A critical analysis

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Roychoudhury, R.; Khan, M.

    2016-02-01

    The stabilization of the Rayleigh-Taylor instability growth rate due to the combined effect of viscosity and compressibility has been studied. A detailed explanation of the observed results has been made from theoretical point of view. The numerical results have been compared qualitatively with those of Plesset and Whipple [Phys. Fluids 17, 1 (1974)] and Bernstein and Book [Phys. Fluids 26, 453 (1983)].

  8. The role of the modified taylor impact test in dynamic material research

    NASA Astrophysics Data System (ADS)

    Bagusat, Frank; Rohr, Ingmar

    2015-09-01

    Dynamic material research with strain rates of more than 1000 1/s is experimentally very often done with a Split-Hopkinson Bar, Taylor impact tests or planar plate impact test investigations. At the Ernst-Mach-Institut (EMI), a variant of an inverted classical Taylor impact test is used by application of velocity interferometers of the VISAR type ("Modified Taylor Impact Test", MTT). The conduction of the experiments is similar to that of planar plate impact tests. The data reduction and derivation of dynamic material data can also be restricted to an analysis of the VISAR signal. Due to these properties, nearly each highly dynamic material characterization in our institute done by planar plate investigations is usually accompanied by MTT experiments. The extended possibilities and usefulness of a combined usage of these two highly dynamic characterization methods are explained. Recently, further developed MTT experiments with very small specimen sizes are presented. For the first time, Taylor impact and planar impact specimen can be used for which the load directions even in case of thin plate test material are identical and not perpendicular to each other. Consequences for testing construction elements are discussed.

  9. A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.

    1986-01-01

    A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.

  10. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  11. OMEGA experiments to characterize the Rayleigh-Taylor instability with planar foils

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    1996-11-01

    Understanding and control of the Rayleigh-Taylor instability are of critical importance to the eventual sucess of direct-drive inertial-confinement-fusion (ICF). During a capsule implosion the ablation surface is unstable during the acceleration phase, and the fuel-pusher interface is unstable during the deceleration phase. We have continued experiments (begun on the Nova laser facility) to determine both the growth rate and sources of initial perturbations on the 60-beam OMEGA laser facility. These experiments were done with laser irradiation at 351 nm and intensities of (1 ) to ( 3 × 10^14) W/cm^2. The laser system uniformity was improved with smoothing by spectral dispersion (SSD) and distributed phase plates (DPP). We characterized the drive beams with x-ray microscopy and optical equivalent-target-plane (ETP) measurements. Experimental results along with theoretical modeling will be presented for growth rates during the "linear growth phase" (amplitude of perturbation less than 0.1 times the wavelength) at the ablation interface, initial perturbations from smooth and non-SSD irradiation with one to six laser beams, and mitigation of initial imprinting using foam layers.(M. Desselberger, M. W. Jones, J. Edwards, M. Dunne, and O. Willi, Phys. Rev. Lett., 74), 2961, (1995)) The temporal shape of the laser illumination for these experiments is both Gaussian with a 1-ns FWHM and non-Gaussian (a 1-ns rise to a 2-ns constant intensity). Data were collected with both time-dependent and time-integrated x-ray and optical diagnostics in both emission and shadow radiography. footnote In collaboration with R. Betti, T, Boehly, D. Bradley, S. G. Glendinning, D. Kalantar, D.D. Meyerhofer, D. Ofer, V. Smalyuk, C. Verdon, R, Watt, and O. Willi This work was supported by the U. S. Department of Energy Office of Inertial Confinement Fusion under cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development

  12. Taylor's power law and fluctuation scaling explained by a central-limit-like convergence

    NASA Astrophysics Data System (ADS)

    Kendal, Wayne S.; Jørgensen, Bent

    2011-06-01

    A power function relationship observed between the variance and the mean of many types of biological and physical systems has generated much debate as to its origins. This Taylor's law (or fluctuation scaling) has been recently hypothesized to result from the second law of thermodynamics and the behavior of the density of states. This hypothesis is predicated on physical quantities like free energy and an external field; the correspondence of these quantities with biological systems, though, remains unproven. Questions can be posed as to the applicability of this hypothesis to the diversity of observed phenomena as well as the range of spatial and temporal scales observed with Taylor's law. We note that the cumulant generating functions derived from this thermodynamic model correspond to those derived over a quarter century earlier for a class of probabilistic models known as the Tweedie exponential dispersion models. These latter models are characterized by variance-to-mean power functions; their phenomenological basis rests with a central-limit-theorem-like property that causes many statistical systems to converge mathematically toward a Tweedie form. We review evaluations of the Tweedie Poisson-gamma model for Taylor's law and provide three further cases to test: the clustering of single nucleotide polymorphisms (SNPs) within the horse chromosome 1, the clustering of genes within human chromosome 8, and the Mertens function. This latter case is a number theoretic function for which a thermodynamic model cannot explain Taylor's law, but where Tweedie convergence remains applicable. The Tweedie models are applicable to diverse biological, physical, and mathematical phenomena that express power variance functions over a wide range of measurement scales; they provide a probabilistic description for Taylor's law that allows mechanistic insight into complex systems without the assumption of a thermodynamic mechanism.

  13. A Bathtub Vortex under the Influence of a Taylor Column in a Rotating Tank

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Lin; Chen, Yin-Chung; Li, Zi-Ya; Chu, Chin-Chou; Chang, Chien C.

    2012-11-01

    Numerical simulations and laboratory experiments were conducted to investigate a bathtub vortex under the influence of a Taylor column in a rotating tank. A central drain hole is placed at the bottom of the tank and a top-down cylinder is suspended from the rigid lid. We examine the effects of the Rossby number, Ro and the Ekman number, Ek. Steady-state solutions are shown to have good agreements with flow visualizations and PTV measurements. It is found that at Ro 10-2, a bottom Ekman pumping forms a classic one-celled structure for the case of no suspended cylinder h / H =0, while for various h / H ≠ 0, the strong interaction of the bathtub vortex and Taylor column results in a two-celled structure with an inner Ekman pumping and an outer Taylor column induced upwelling. In h / H ≠ 0, the Taylor wall separates the vortex into an inner and an outer region, but allows the outer fluid to flow into the inner region through a top and a bottom gap which can be classified into two and three flow paths, respectively. Moreover, the individual flow rate of each path and the weaker influence of the Taylor column at Ro 1 and 102 are also discussed. Finally, we observe that the vorticity strength of the vortex exhibits the relationship with a dimensionless group √{ fQ / gH2 (1 - h / H) }. NSC 98-2221-E-002-094-MY3; NSC 99-2111-M-002-005-MY2.

  14. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    SciTech Connect

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  15. Three dimensional hydrodynamic calculations with adaptive mesh refinement of the evolution of Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry: Multi-mode perturbations

    SciTech Connect

    Klein, R.I. |; Bell, J.; Pember, R.; Kelleher, T.

    1993-04-01

    The authors present results for high resolution hydrodynamic calculations of the growth and development of instabilities in shock driven imploding spherical geometries in both 2D and 3D. They solve the Eulerian equations of hydrodynamics with a high order Godunov approach using local adaptive mesh refinement to study the temporal and spatial development of the turbulent mixing layer resulting from both Richtmyer Meshkov and Rayleigh Taylor instabilities. The use of a high resolution Eulerian discretization with adaptive mesh refinement permits them to study the detailed three-dimensional growth of multi-mode perturbations far into the non-linear regime for converging geometries. They discuss convergence properties of the simulations by calculating global properties of the flow. They discuss the time evolution of the turbulent mixing layer and compare its development to a simple theory for a turbulent mix model in spherical geometry based on Plesset`s equation. Their 3D calculations show that the constant found in the planar incompressible experiments of Read and Young`s may not be universal for converging compressible flow. They show the 3D time trace of transitional onset to a mixing state using the temporal evolution of volume rendered imaging. Their preliminary results suggest that the turbulent mixing layer loses memory of its initial perturbations for classical Richtmyer Meshkov and Rayleigh Taylor instabilities in spherically imploding shells. They discuss the time evolution of mixed volume fraction and the role of vorticity in converging 3D flows in enhancing the growth of a turbulent mixing layer.

  16. Authoring tool evaluation

    SciTech Connect

    Wilson, A.L.; Klenk, K.S.; Coday, A.C.; McGee, J.P.; Rivenburgh, R.R.; Gonzales, D.M.; Mniszewski, S.M.

    1994-09-15

    This paper discusses and evaluates a number of authoring tools currently on the market. The tools evaluated are Visix Galaxy, NeuronData Open Interface Elements, Sybase Gain Momentum, XVT Power++, Aimtech IconAuthor, Liant C++/Views, and Inmark Technology zApp. Also discussed is the LIST project and how this evaluation is being used to fit an authoring tool to the project.

  17. Publishers: Save Authors' Time.

    PubMed

    Moustafa, Khaled

    2017-02-02

    Scientific journals ask authors to put their manuscripts, at the submission stage, sometimes in a complex style and a specific pagination format that are time consuming while it is unclear yet that the submitted manuscripts will be accepted. In the case of rejections, authors need to submit to another journal most likely with a different style and formatting that require additional work and time. To save authors' time, publishers should allow authors to submit their manuscripts in any format and to comply with the style required by the targeted journal only in revised versions, but not at the submission step when the manuscripts are not yet approved for publication.

  18. Numerical investigation of the Taylor-Couette and Batchelor flows with heat transfer: physics and numerical modelling

    NASA Astrophysics Data System (ADS)

    Kiełczewski, K.; Tuliszka-Sznitko, E.; Bontoux, P.

    2014-08-01

    In the paper the authors present the results obtained during a numerical investigation (Direct Numerical Simulation/Spectral Vanishing Viscosity method - DNS/SVV) of a flow with heat transfer in rotating cavities (i.e. the flow between two concentric disks and two concentric cylinders). These model flows are useful from numerical and experimental point of view among others because of the simplicity of their geometry. Simultaneously, the flows in rotating cavities appear in numerous industrial installations and machines in the field of mechanics and chemistry, e.g., in ventilation installations, desalination tanks and waste water tanks, in cooling system, in gas turbines and axial compressors. In the paper attention is focused on the laminar-turbulent region in the configuration of the large aspect ratio i.e. Taylor-Couette flow (a Batchelor flow case of small aspect ratio Γ = 0.04 is also presented for comparison). The main purpose of computations is to investigate the influence of different parameters (the aspect ratio, the end-wall boundary conditions and temperature gradient) on the flow structure and flow characteristics. For the non-isothermal flow cases the Nusselt number distributions along cylinders are presented and are correlated with the flow structures. The λ2 method has been used for visualization.

  19. Use of the Taylor spatial frame in compression arthrodesis of the ankle: a study of 10 cases.

    PubMed

    Thiryayi, Wasiq A; Naqui, Zafar; Khan, Sohail A

    2010-01-01

    Ankle fusion is a well established way of managing a variety of recalcitrant ankle pathologies including severe osteoarthritis and infected malunion of ankle fractures. Compression arthrodesis has been a widely accepted surgical means of achieving ankle fusion. The authors describe compression arthrodesis of the tibiotalar joint in 10 cases using the Taylor-Spatial Frame (TSF). From 2003 to 2005, 10 patients (9 male and 1 female) aged between 48 and 71 years (median age 61 years) underwent application of the TSF to achieve compression arthrodesis of 10 ankle joints. The TSF is an external fixator system supported by a computer program. After input of the radiological deformities referenced to one of the rings, the computer provides the detailed strut adjustments necessary to bring about gradual correction. The underlying pathology was severe posttraumatic arthritis (2 cases), malunion (1 case), nonunion of pilon fracture (1 case), and infected ankle (1 case). Five cases presented with previous failed surgical arthrodesis. Clinical, subjective, objective, and radiological analyses were performed regularly and at the end of an average follow-up of 16.7 months (range 12-26 months). Solid fusion in anatomical alignment with return to a fully functional status was obtained in 10 out of 10 ankles. The TSF has shown encouraging results as a simple, effective and versatile means of achieving compression arthrodesis of the ankle joint.

  20. The measurement of wisdom: a commentary on Taylor, Bates, and Webster's comparison of the SAWS and 3D-WS.

    PubMed

    Ardelt, Monika

    2011-03-01

    In a commentary on Taylor, Bates, and Webster's article (2011, Experimental Aging Research, 37, pp. 129-140), the author (a) clarifies the development and assessment of the Three-Dimensional Wisdom Scale (3D-WS); (b) describes the difference between the essential components of wisdom and its predictors, correlates, and consequences; and (c) conducts additional bivariate correlation analyses between the components of the 3D-WS and Webster's Self-Administered Wisdom Scale (SAWS) and all the forgiveness and psychological well-being subscales. Results show that the cognitive, reflective, and affective dimensions of the 3D-WS were significantly and positively correlated with all the forgiveness and psychological well-being subscales. By contrast, only the emotional regulation and humor components of the SAWS were consistently positively associated with those subscales. It appears that the 3D-WS measures the essential cognitive, reflective, and affective components of wisdom, whereas the SAWS contains a reflective wisdom component, a wisdom predictor, a consequence of wisdom, and two necessary but not sufficient wisdom components.

  1. Evaluating Digital Authoring Tools

    ERIC Educational Resources Information Center

    Wilde, Russ

    2004-01-01

    As the quality of authoring software increases, online course developers become less reliant on proprietary learning management systems, and develop skills in the design of original, in-house materials and the delivery platforms for them. This report examines the capabilities of digital authoring software tools for the development of learning…

  2. Dealing with the authorities.

    PubMed

    Nemes, J

    1991-10-14

    Tax-exempt bond financings, inherently complex transactions, can become even more complicated, cumbersome and costly as hospitals come to terms with restrictive policies imposed by some state financing authorities. Executives also find they sometimes get caught in authorities' political machinations that may have little to do with the business of the municipal bond markets.

  3. Authoring and Hypermedia.

    ERIC Educational Resources Information Center

    Lieberth, Ann K.; Martin, Doug R.

    1995-01-01

    Because of the diversity of clients served by speech-language pathologists and audiologists, available commercial software may not meet all needs. Authoring programs allow the clinician to design software that can be customized for individual clients. This article describes an authoring program called HyperCard and its use in preparing hypermedia…

  4. The Voice of Authority

    ERIC Educational Resources Information Center

    Wetterlund, Kris

    2012-01-01

    In the last part of 2011, conversations swirled around the Internet and print about the assault on museum authority. The Marcus Institute for Digital Education in the Arts (MIDEA) summarized some of the discussion in their blog entry "The Participatory Museum and a New Authority." Other sites joined in the discussion, for example, the Museum Geek…

  5. Freedom, Coercion, Authority.

    ERIC Educational Resources Information Center

    Bellah, Robert N.

    1999-01-01

    Despite much talk about balancing freedom and responsibility in higher education, a more appropriate pairing is of freedom with authority. The concept of responsibility has become problematic, and educators have lost the ability to speak with authority. Although we have come to identify freedom with the free market, it is the bottom line which has…

  6. Boerhaave: Author and Editor *

    PubMed Central

    Lindeboom, G. A.

    1974-01-01

    The many facets of Herman Boerhaave's life are presented. He was a renowned teacher, physician, author, and editor. Discussed here are his activities as cataloger of the Vossius Collection, author of books on chemistry, botany, and medicine, and as editor of works by Vesalius and early Greek medical writers. Printing and bookselling in Leiden during Boerhaave's era are described. Images PMID:4596962

  7. Charter Authorizers Face Challenges

    ERIC Educational Resources Information Center

    Gustafson, Joey

    2013-01-01

    Since the first charter school opened 20 years ago in Minnesota, charters have been a focus of school reform advocates and the subject of substantial research. Yet the regulators of the charter industry (called "authorizers" or "sponsors") remain a mystery to many. In fact, many authorizers work in isolation, developing their…

  8. Healing Arts Therapies and Person-Centred Dementia Care Healing Arts Therapies and Person-Centred Dementia Care Anthea Innes and Hatfield Karen (editors) Jessica Kingsley 137pp £13.95 1 84310 038X 184310038X.

    PubMed

    2002-06-01

    Reading this digestible good practice guide, one is struck by the sheer enthusiasm of the contributors both on paper and in the descriptions of their 'therapies'. The authors are absolutely committed to their own specialties, and desire that we are as persuaded as they by the psychotherapeutic impact of the healing arts in dementia care. This evangelism becomes a little wearing after a while and the case studies that flesh out the meaning of what is observed feel a little too neat. The book suffers a little for its American influences and expectations. One feels that all environments are assumed to have daily access to music/drama/art therapists.

  9. Frequency Analysis of Chaotic Flow in Transition to Turbulence in Taylor-Couette System with Small Aspect Ratio

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuya; Oishi, Yoshihiko; Kawai, Hideki; Kikura, Hiroshige; Stepanus Situmorang, Riky; Ambarita, Himsar

    2017-01-01

    Taylor-Couette flow with small aspect ratio has characteristics such as the different vortex structure, because of a boundary layer of the upper and lower wall and the acceleration of the inner cylinder. In this study, the mechanism of Taylor-Couette system with the small aspect ratio is measured and analyzed by using an ultrasound measurement and a numerical simulation. The process of transition to turbulent flow is observed by using a spectra analysis in a radial and an axial direction. The experimental and numerical results confirmed the characteristics of the broadband component in Taylor-Couette system.

  10. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  11. Balancing between sensitization and repression: the role of opium in the life and art of Edgar Allan Poe and Samuel Taylor Coleridge.

    PubMed

    Iszáj, Fruzsina; Demetrovics, Zsolt

    2011-01-01

    The creative process contains both conscious and unconscious work. Therefore, artists have to face their unconscious processes and work with emotional material that is difficult to keep under control in the course of artistic creation. Bringing these contents of consciousness to the surface needs special sensitivity and special control functions while working with them. Considering these mechanisms, psychoactive substance can serve a double function in the case of artists. On the one hand, chemical substances may enhance the artists' sensitivity. On the other hand, they can help moderate the hypersensitivity and repress extreme emotions and burdensome contents of consciousness. The authors posit how the use of opiates could have influenced the life and creative work of Edgar Allan Poe and Samuel Taylor Coleridge.

  12. Simulation of Rayleigh-Taylor instability growth rate of laser accelerated plant target. Final report

    SciTech Connect

    Bel`kov, S.A.; Bondarenko, S.V.; Vinokurov, O.A.; Kochemasov, G.G.; Mkhitarian, L.S.

    1996-09-01

    This report presents the research results for the time point when the Rayleigh-Taylor instability converts to the nonlinear stage as well as the computational results for the interaction of two modes of Rayleigh-Taylor instability when initial perturbations are concentrated at the ablation front (problem (a)) and on the rear side (problem (b)) of the plane target. As was shown in the report for the first phase, for a target of 3 {mu}m thick the existence time of the nonlinear stage is extremely low and does not allow to track the evolution pattern. In it was shown that the plane target with {Delta}{sub 0}=5 {mu}m is more preferable for this goal. Therefore all the computations presented here relate to the target with the indicated thickness. The laser pulse parameters are remained unchanged J{sub L}=10{sup 15} W/cm{sup 2}, {lambda}=0.35 {mu}m.

  13. Comparing Mantle Xenoliths from Mount Taylor and Rio Puerco Necks, New Mexico: Evidence for Metasomatism

    NASA Astrophysics Data System (ADS)

    Thomas, A. E.; Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.

    2012-12-01

    The Mount Taylor Volcanic Field (MTVF) is located along the Jemez Lineament at the south eastern margin of the Colorado Plateau in north western New Mexico. To learn about its underlying lithospheric mantle, we conducted a survey of xenoliths from basaltic vents peripheral to the Mount Taylor edifice and the Rio Puerco Volcanic Necks. A total of 89 thin sections (32 from Mount Taylor and 57 from Rio Puerco) were examined. The population of thin sections from Mount Taylor and Rio Puerco listed respectively is: 18 and 20 lherzolites; 8 and 24 pyroxenites; 4 and 3 wehrlites; 1 and 6 dunites; and 1 and 4 harzburgites. Pyroxenite grain size ranged from 1 to 9 mm and lherzolite grains were typically 0.5 to 2 mm. Spinels ranged in colour from dark green, brown to black and they were generally <1 mm and interstitially concentrated. Spinel concentrations between the two suites were comparable, with an average of 2.6% for Mount Taylor and 2.0% for Rio Puerco. The largest concentration of spinels was in a pyroxenite at 12.5% from Mount Taylor. Up to 5% primary calcite is present in the Rio Puerco suite; in contrast calcite has not been identified in the Mount Taylor suite. Calcite grains were <0.5 mm in size and located at grain boundaries and as inclusions in clinopyroxene and orthopyroxene. Equilibrium textures include triple junction grain boundaries between olivines and clinopyroxenes in some lherzolites. Disequilibrium textures include rounded, optically continuous olivine and orthopyroxene in clinopyroxene, complex intergrowths between clinopyroxene and orthopyroxene, and sheared olivine. Electron microprobe analyses were performed on 9 representative thin sections with 5 pyroxenites, 4 lherzolites and 1 wehrlite; samples included green, brown, red and black spinels. Pyroxenes for the two suites decrease in Cr2O3 and increase in Al2O3 with decreasing Mg numbers, increase in CaO with decreasing MgO and increase in Na2O with increasing Al2O3. The presence of optically

  14. Taylor-Couette Flow with Hourglass Geometry of Varying Lengths Simulated by Reaction-Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2008-11-01

    Previously, we have observed chaotic formation of Taylor-Vortex pairs in Modified Taylor- Couette Flow with Hourglass Geometry. In the experiment, the chaotic formation in a shorter system has been restricted to a narrow band about the waist of the hourglass. Such behavior has been modeled by The Reaction-Diffusion equation, which has been previously studied, by Riecke and Paap. Their calculation suggested that quadrupling length of the system would lead to spatial chaos in the vortex formation. We present a careful recreation of this result and consider an intermediate length. We demonstrate that doubling the length should be sufficient to observe spatially chaotic behavior. Richard J. Wiener et al, Phys. Rev. E 55, 5489 (1997). H. Riecke and H.-G. Paap, Europhys. Lett. 14, 1235 (1991).

  15. Elastorotational instability in Taylor-Couette flow with Keplerian ratio as analog of the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Bai, Yang; Crumeyrolle, Olivier

    2015-11-01

    The analogy between viscoelastic instability in the Taylor-Couette flow and the magnetorotational instability (MRI) has been found by Ogilvie & Potter. It relies on the similarity between the governing equations of viscoelastic flows of constant viscosity (Oldroyd-B model equations)and those of Magnetohydrodynamics (MHD). We have performed linear stability analysis of the Taylor-Couette flow with a polymer solution obeying the Oldroyd-B model. A diagram of critical states shows the existence of stationary and helicoidal modes depending on the elasticity of the polymer solution. A generalized Rayleigh criterion determines the potentially unstable zone to pure elasticity-driven perturbations. Experimental results yield four type of modes : one pure elasticity mode and three elastorotational modes that are the MRI-analog modes. Anti-Keplerian case has also been investigated. There is a good agreement between experimental and theoretical results. Work supported by the CPER and ANR-LABEX EMC3.

  16. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Riccardo Bonazza, Mark Anderson, Jason Oakley

    2006-11-03

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  17. Ductile Damage Prediction in Taylor Impact Cylinder Test Using CDM Approach

    NASA Astrophysics Data System (ADS)

    Ruggiero, A.; Bonora, N.

    2004-07-01

    Taylor cylinder impact test has been initially proposed as a potential testing technique to measure dynamic effect on material yield strength. Today, this technique represents an interesting benchmark case for constitutive and damage model performance verification. In this study, an extensive numerical investigation, using both finite element code and Lagrangian hydro-code, has been performed on standard Taylor impact cylinder configuration and Rod-on-Rod (ROR) test in OFHC and OFE copper. Here, material strength has been modeled using Johnson and Cook formulation which accounts both strain rate and temperature material sensibility. Ductile damage has been modeled using an advanced continuum damage mechanics model, as proposed by Bonora, which accounts for stress triaxiality effects on ductility, stress history at material point and where only a limited number of parameters is required. For both the test configuration investigated, both final calculated post test shape and damage pattern have been compared with experimental data available in literature.

  18. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  19. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-02-15

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  20. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Yan, R.; Betti, R.; Sanz, J.; Aluie, H.; Liu, B.; Frank, A.

    2016-02-02

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  1. Oropharyngeal dysphagia assessment and treatment efficacy: setting the record straight (response to Campbell-Taylor).

    PubMed

    Coyle, James L; Davis, Lori A; Easterling, Caryn; Graner, Darlene E; Langmore, Susan; Leder, Steven B; Lefton-Greif, Maureen A; Leslie, Paula; Logemann, Jeri A; Mackay, Linda; Martin-Harris, Bonnie; Murray, Joseph T; Sonies, Barbara; Steele, Catriona M

    2009-01-01

    In September 2008, an article was published in the Journal of the American Medical Directors Association criticizing current dysphagia assessment and management practices performed by speech-language pathologists in Long-Term Care (LTC) settings. In the same issue, an editorial invited dialogue on the points raised by Campbell-Taylor. We are responding to this call for dialogue. We find Campbell-Taylor's interpretation of the literature to be incomplete and one-sided, leading to misleading and pessimistic conclusions. We offer a complementary perspective to balance this discussion on the 4 specific questions raised: (1) Is the use of videofluoroscopy warranted for evaluating dysphagia in the LTC population? (2) How effective are thickened liquids and other interventions for preventing aspiration and do they contribute to reduction of morbidity? (3) Can aspiration be prevented and is its prevention important? and (4) Is there sufficient evidence to justify dysphagia intervention by speech language pathologists?

  2. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  3. On the Taylor test: A continuum analysis of plastic wave propagation

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Maudlin, P. J.; Jones, S. E.

    1996-05-01

    The determination of the mechanical properties of materials is the foundation of many engineering design problems. Numerous test methods have evolved as standards for the determination of these properties. Design problems which require inelastic behavior of the material are unique because the test methods must provide a detailed knowledge of the evolution of the yield behavior. High rate problems represent a special class of inelastic engineering design problems and the interpretation of test methods used to determine material's behavior for these problems are an important research topic. The Taylor Anvil or Taylor Impact test is a test commonly employed to determine the mechanical properties of materials for this important class of engineering design problems. A continuum approach based on jump discontinuities at the plastic wave front is developed which can be used as the basis for advanced engineering models of the experiment and analysis of the numerical method used to incorporate various constitutive relationships into continuum codes.

  4. Inverse Saffman-Taylor instability in Hele-Shaw experiments using micro-particles

    NASA Astrophysics Data System (ADS)

    Zoueshtiagh, Farzam; Bihi, Ilyesse; Butler, Jason; Faille, Christine; Baudoin, Michaël

    2016-11-01

    Saffman-Taylor instability can occur when a low viscosity fluid displaces one of higher viscosity. It results from the decrease of the flow resistance as the fluid of lower viscosity replaces the more viscous one. This Saffman-Taylor instability is revisited experimentally for the inverse case of a viscous fluid displacing air when partially wetting particles are lying on the walls. Though the inverse case is otherwise stable, the presence of the particles results in a fingering instability at low capillary number. This capillary-driven instability is driven by the integration of particles into the interface which results from the minimization of the interfacial energy. We acknowledge the support from the Marie Curie International Research Staff Exchange Scheme Fellowship ("Patterns and Surfaces" No. 269207) within the 7th European Community Framework Programme.

  5. Aeromagnetic Survey of Taylor Mountains Area in Southwest Alaska, A Website for the Distribution of Data

    USGS Publications Warehouse

    ,

    2006-01-01

    USGS Data Series Report for the release of aeromagnetic data collected in the Taylor Mountains Area of Southwest Alaska and associated contractor reports. Summary: An airborne high-resolution magnetic and coincidental horizontal magnetic gradiometer survey was completed over the Taylor Mountains area in southwest Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by April 7, 2004, and data acquisition was initiated on April 17, 2004. The final data acquisition and final test/calibrations flight was completed on May 31, 2004. Data acquired during the survey totaled 8,971.15 line-miles.

  6. Lensing simulations by Taylor expansion — not so inefficient after all

    SciTech Connect

    Næss, Sigurd K.; Louis, Thibaut E-mail: Thibaut.Louis@astro.ox.ac.uk

    2013-09-01

    Cosmic Microwave Background lensing simulation by Taylor expansion has long been considered impractical due to slow convergence, but a recent flat-sky implementation shows that a simple trick eliminates this problem, making Taylor lensing a fast and simple lensing algorithm for the flat sky. Here we generalize the method to the full sky, and study its convergence and performance relative to a commonly used numerical code, Lenspix, with extensive benchmarks of both. Compared to the flat sky case, the method takes a speed hit due to the slow speed of spherical harmonic transforms compared to fast Fourier transforms, resulting in speeds of 1/3 to 2/3 of Lenspix for similar accuracy.

  7. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Bonazza, Riccardo; Anderson, Mark; Smith, Leslie

    2005-02-09

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  8. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.

  9. The numerical simulation of Taylor-Couette flow with radial temperature gradient

    NASA Astrophysics Data System (ADS)

    Tuliszka-Sznitko, E.; Kiełczewski, K.

    2016-10-01

    The Taylor-Couette flow with radial temperature gradient is a canonical problem for the study of heat transfer in engineering issues. However, gaining insight into the transitional Taylor-Couette flow with temperature gradient still requires detailed experimental and numerical investigations. In the present paper we have performed computations for the cavity of aspect ratio Γ= 3.76 and radii ratios η= 0.82 and 0.375 with the heated rotating bottom disk and stationary outer cylinder. We analyse the influence of the end-wall boundary conditions and the thermal conditions on the flow structure, and on the distributions of the Nusselt number and torque along the inner and outer cylinders. The averaged values along the inner cylinder of the Nusselt number and torque obtained for different Re are analysed in the light of the results published in [2, 16, 17].

  10. James Taylor (1859-1946): favourite disciple of Hughlings Jackson and William Gowers.

    PubMed

    Eadie, M J

    2013-01-01

    In neurological circles today the name James Taylor (1859-1946) is probably remembered mainly for his role in editing the Selected Writings of John Hughlings Jackson, the most readily available source of Jackson's contributions to neurological knowledge. Taylors' own neurological achievements are largely or entirely forgotten, but in his day he was an influential figure whose career linked the great figures of the golden era of late nineteenth century British neurology to the neurology of the first half of the twentieth century. Not only was he a junior professional colleague and close friend of both John Hughlings Jackson and William Gowers, he also produced a substantial corpus of neurological writings in his own right, including a textbook of child neurology and the first English language account of subacute combined degeneration of the spinal cord.

  11. Elimination of Gravity Influence on Flame Propagation Via Enhancement of the Saffman-Taylor Instability

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2003-01-01

    In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.

  12. Asymptotically Function Flattening Transformations via Taylor Polynomial and Affine Superoperator over Function Operators

    NASA Astrophysics Data System (ADS)

    Demiralp, Metin

    2011-09-01

    This work aims at the flattening of the functions. We first focus on the flattening of univariate functions, then what we obtain for the univariate functions are extended to the multivariate functions by following the tricky way used for the extension of univariate Taylor expansions to the multivariate functions. The flattening is basically accomplished by using univariate and multivariate Taylor expansions although some other expansions can also be used. Certain binary superoperators transforming the target function and independent variable(s) operators to another function operator of same type but with more asymptotic flatness are employed as auxiliary agents. The analyticity is assumed for both the operand function of the transformation and its image. The utilization of this method in combination with the numerical integration and high dimensional model representation (HDMR) will facilitate the numerical quality increase.

  13. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the former Liberian regime of Charles Taylor, pursuant to the International Emergency Economic... undermined Liberia's transition to democracy and the orderly development of its political, administrative, and economic institutions and resources. The President further noted that the Comprehensive...

  14. Nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas

    SciTech Connect

    Keskinen, M. J.; Schmitt, A.

    2007-01-15

    A model for the nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas has been developed for a wide range of Froude numbers and scale sizes. It is found that the spectrum can be characterized by an inverse power law with spectral index of approximately 2 in the limit of small-wavenumber spectrum cutoffs and small-scale density gradient scale lengths. Comparison of the model spectrum with recent experimental observations is made with good agreement.

  15. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    SciTech Connect

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2009-09-14

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is marginally damped but will become destabilized by the magnetorotational instability with a modest increase in rotation rate.

  16. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  17. A new approach to Rayleigh Taylor instability: Application to accelerated elastic solids

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; López Cela, J. J.; Serna Moreno, M. C.; Cortázar, O. D.; Tahir, N. A.; Hoffmann, D. H. H.

    2007-07-01

    A new approach to Rayleigh-Taylor instability based on the Newton second law is presented. The model is applied to the instability analysis of elastic solid/viscous fluid interfaces. The effect of the thickness of the elastic medium is studied by considering a thin elastic plate. The importance of the initial transient phase that takes place before reaching the asymptotic regime is also shown.

  18. Congenital bowing of the tibia due to infantile lipofibromatosis corrected with a Taylor Spatial Frame.

    PubMed

    Joseph, George; Zenios, Michalis

    2014-12-01

    Congenital lipofibromatosis is a rare slow growing benign fibrofatty neoplasm presenting in childhood. The case of a boy presenting soon after birth with diffuse lower extremity enlargement associated with a significant tibial deformity is presented. Magnetic resonance imaging and soft tissue biopsy confirmed the diagnosis of lipofibromatosis. The child started having problems with his gait after the age of two. The tibial bowing was corrected gradually using a Taylor Spatial Frame resulting in a good clinical outcome.

  19. [Operative treatment of pediatric open fractures of the lower limb using the Taylor spatial frame fixator].

    PubMed

    Gessmann, J; Baecker, H; Graf, M; Ozokyay, L; Muhr, G; Seybold, D

    2010-05-01

    The operative management of open fractures of the lower limb requires a consistent treatment to avoid soft tissue complications. Acute angular shortening of the fracture enabling primary soft tissue closure is still an uncommon operative technique because of difficulties in correcting the secondary deformity. The case of a pediatric open fracture of the lower limb (Gustilo type IIIa) is described, which was treated with acute angular shortening followed by gradual correction using the Taylor spatial frame (TSF).

  20. Comment on round-off errors and on one-turn Taylor maps

    SciTech Connect

    Yan, Y.; Sen, T.; Chao, A.; Bourianoff, G. ); Dragt, A.J. ); Forest, E. )

    1990-12-01

    Round-off errors in long-term tracking for the Superconducting Super Collider (SSC) with 64-bit precision (single precision in Cray or normal double precision) are found to be insignificant. One-turn Taylor maps are useful for studying the beam dynamics of the alternating gradient synchrotrons and can potentially be used for fast long-term tracking up to 100 million turns for the SSC. 14 refs., 2 figs.

  1. Investigation of a whole blood fluidized bed Taylor-Couette flow device for enzymatic heparin neutralization.

    PubMed

    Ameer, G A; Harmon, W; Sasisekharan, R; Langer, R

    1999-03-05

    The use of clinical bioreactors will increase as more therapeutic proteins are being cloned, expressed, and produced at a reduced cost. The proposed use of an immobilized heparinase I reactor to make heparin anticoagulation a safer therapy is an example of how the specificity and high activity of an enzyme could be incorporated into a system to ultimately benefit a patient. However, the development of a safe and efficient bioreactor is important for the use of immobilized heparinase I and other therapeutic proteins designed for use in medical extracorporeal procedures. This study examined the possibility of using Taylor-Couette flow and "flow-induced" recirculation of the agarose beads as a way to fluidize agarose-bound heparinase in whole blood. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. A reactor based on Taylor-Couette flow was designed and modified with a tangential recirculation line. The reactor was tested for efficacy and safety in vitro in human blood. Visualization studies in water and 42% glycerol were used to determine the minimum rotation rate for efficient fluidization. The strategic placement of the recirculation line allowed recirculation of the agarose without the use of an external pump. The device removed 90% of the heparin activity within 2 min from 450 cc of human blood at a blood flow rate of 100 mL/min. Furthermore, the device maintained inlet and outlet clotting times of 269 +/- 10 and 235 +/- 6 s, respectively, demonstrating the potential for regional heparinization. Blood damage was a function of gel volume fraction and rotation rate of the inner cylinder. Hemolysis of the red cells is an important issue when Taylor vortices are combined with macroscopic solid particles such as agarose beads. A modified Taylor-Couette flow device was developed to treat whole blood and operational criteria were established to minimize hemolysis.

  2. Measuring Taylor Slough Boundary and Internal Flows, Everglades National Park, Florida

    DTIC Science & Technology

    2001-01-01

    stricken wetlands, and saltwater intrusion in coastal areas. Taylor Slough (fig. 1), historically a major contributor of freshwater to Florida Bay, lies...populations of wading bird and animal species, and reduced habitat. Anthropogenic encroachment has placed the Cape Sable seaside sparrow, American crocodile ...cypress heads; saltwater influence is apparent by the transition to sawgrass and mangroves on the southern part of the slough. Precipitation

  3. Pattern selection and tip perturbations in the Saffman-Taylor problem

    NASA Technical Reports Server (NTRS)

    Hong, D. C.; Langer, J. S.

    1987-01-01

    An analytic approach to the Saffman-Taylor problem of predicting the width of a viscous finger in a Hele-Shaw cell is presented. The first purpose is to provide a systematic description of the way in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for pattern selection. It is then shown how recent experimental observations by Couder et al. (1986) may be interpreted in terms suggested by this mechanism.

  4. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  5. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  6. Influence of energetics on the stability of viscoelastic Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Al-Mubaiyedh, U. A.; Sureshkumar, R.; Khomami, B.

    1999-11-01

    Previously reported isothermal linear stability analyses of viscoelastic Taylor-Couette flow have predicted transitions to nonaxisymmetric and time-dependent secondary flows for elasticity numbers E≡De/Re>0.01. In contrast, recent experiments by Baumert and Muller using constant viscosity Boger fluids have shown that the primary flow transition leads to axisymmetric and stationary Taylor-type toroidal vortices. Moreover, experimentally observed onset Deborah number is an order of magnitude lower than that predicted by isothermal linear stability analyses. In this work, we explore the influence of energetics on the stability characteristics of the viscoelastic Taylor-Couette flow. Our analysis is based on a thermodynamically consistent reformulation of the Oldroyd-B constitutive model that takes into account the influence of thermal history on polymeric stress, and an energy equation that takes into account viscous dissipation effects. Our calculations reveal that for experimentally realizable values of Peclet and Brinkman numbers, the most dangerous eigenvalue is real, corresponding to a stationary and axisymmetric mode of instability. Moreover, the critical Deborah number associated with this eigenvalue is an order of magnitude lower than those associated with the nonisothermal extensions of the most dangerous eigenvalues of the isothermal flow. Eigenfunction analysis shows stratification of perturbation hoop stress across the gap width drives a radial secondary flow. The convection of base state temperature gradients by this radial velocity perturbation leads to this new mode of instability. The influence of geometric and kinematic parameters on this instability is also investigated.

  7. OPTIMIZATION-BASED CONSTITUTIVE PARAMETER IDENTIFICATION FROM SPARSE TAYLOR CYLINDER DATA

    SciTech Connect

    J.M. Lacy

    2010-10-01

    The classic Taylor impact test imparts temporally and spatially varying fields of strain, strain rate, and temperature through the specimen. It is possible to exploit this complexity to directly identify constitutive model parameters from the deformed shape of the specimen. Where prior investigators have employed various mathematical fitting methods to identify or improve strength model parameters from Taylor cylinder profiles, we extend the method to employ a multi-objective genetic optimization algorithm to minimize the cylinder profile errors simultaneously on three cylinders impacted at different velocities. No experimental data other than the three Taylor cylinders is employed in developing the constitutive model parameter set, and generic starting coefficients are employed. To validate the accuracy of the resulting coefficients, both split Hopkinson pressure bar and axisymmetric expanding ring tests were conducted and compared to the resultant Johnson-Cook strength model. The derived strength model agreed well with experimental data available to date. Further work is necessary to evaluate the range of rates and temperatures over which parameters derived by this method may be applied.

  8. Staged treatment of a chronic patellar sleeve fracture using the Taylor spatial frame.

    PubMed

    Potini, Vishnu C; Reilly, Mark C; Gehrmann, Robin M

    2015-12-01

    Patellar sleeve fractures are easily missed injuries since plain radiographs may not show a bony fragment at the time of injury. Failure to diagnose these injuries can result in patellar instability, extensor lag, and anterior knee pain. We report a novel treatment using a Taylor spatial frame as part of a staged reconstruction to regain length of the extensor mechanism and maintain knee motion prior to performing primary repair of the avulsed patellar sleeve fragment. In our case, an 11-year-old male presented to our institution six months after sustaining a patellar sleeve fracture. Radiographic examination with the knee in extension revealed a 23-mm gap between the inferior patellar pole fragment and the remaining patella. The patient was ultimately taken to the operating room twelve months after the initial injury for placement of a Taylor spatial frame to regain length of the extensor mechanism. The patient began immediate knee range-of-motion exercises, and performed daily soft tissue lengthening of two millimeters. After four weeks of treatment the patient underwent removal of the fixator and primary repair of the patella. At final follow up six years after patellar reconstruction, the patient had an active knee range-of-motion from five degrees of hyperextension to 140° of flexion. Where current literature reports suboptimal results even when treatment is delayed for two months, in our case the patient was able to obtain a high level of function after treatment with a two-stage reconstruction using a Taylor spatial frame.

  9. Taylor vortex effect on flocculation of hairy crystals of calcium lactate in anti-solvent crystallization

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2013-06-01

    A Taylor vortex flow was applied to inhibit the crystal flocculation of calcium lactate in anti-solvent crystallization. When using a conventional MSMPR crystallizer, hairy crystals of calcium lactate were formed and flocculated in the crystallizer. The whole suspension in the crystallizer then gelated and the solution trapped in the flocculated crystals was hardly removable from the gelated suspension. Thus, no purification of calcium lactate was achievable when using anti-solvent crystallization in the MSMPR crystallizer, regardless of a batch or continuous operating mode. In contrast, when using a Couette-Taylor (CT) crystallizer, short needle crystals (about 40 μm) were produced and their flocculation/entanglement was completely prevented. Due to the effective mixing of the Taylor vortex, a high supersaturation was induced in the inlet region of the CT crystallizer, thereby nucleating a high number of needle crystals. This then restricted any one-dimensional overgrowth of crystals, preventing the formation of hairy crystals. According to this mechanism, the mean crystal size was reduced when increasing the rotation speed of the CT crystallizer, the feed concentration, and flow rate. Moreover, the recovery ratio of calcium lactate crystals in the CT crystallizer was always greater than 83% and depended most significantly on the feed flow rate.

  10. Characterisation of a quasi-periodic mixing mechanism in stratified turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2016-11-01

    We conduct experiments to examine a quasi-periodic mixing event that occurs in stratified Taylor-Couette flow, i.e. axially-stratified flow in the annular region between two concentric cylinders which can rotate at different angular velocities. It has been previously observed that, in two-layer density stratified Taylor-Couette flow, there is an intermittent periodic mixing event which is continuously advected around the annulus. We track this mixing event within the annular gap of the Taylor-Couette apparatus by continuously measuring density perturbations at the sharp interface separating the two layers as a function of radial location. It has been seen that when Ri =g'Ro/(RiΩi) 2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power of the mixing event in the frequency spectrum of the density data drops significantly. This process seems to be consistent at all radial locations throughout the annulus. This phenomenon is further investigated using velocity information obtained from particle image velocimetry (PIV). EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  11. On Ohmic heating in the Earth's core II: Poloidal magnetic fields obeying Taylor's constraint

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; Livermore, Philip W.; Ierley, Glenn

    2011-08-01

    The extremely small Ekman and magnetic Rossby numbers in the Earth's core make the magnetostrophic limit an attractive approximation to the core's dynamics. This limit leads to the need for the internal magnetic field to satisfy Taylor's constraint, associated with the vanishing of the azimuthal component of Lorentz torques averaged over every cylinder coaxial with the rotation axis. A special class of three dimensional poloidal interior magnetic fields is chosen that satisfies Taylor's constraint identically on every cylinder in a spherical shell exterior to an inner core. This class of fields, which we call small-circle conservative, demonstrates existence of interior fields satisfying Taylor's constraint, regardless of the morphology of the field on the core surface. These poloidal fields are used to examine the Ohmic dissipation present in the Earth's core. To address the question of dissipation, we demand that the 3-D core fields agree with recent observations of the core field structure on the core-mantle boundary. We use these poloidal fields to show that the true lower bound on core dissipation must necessarily lie below a value that we calculate. For 2004 we find that this lower bound must lie below 10 10 W, and when nutation constraints are also considered the bound must lie below 2 × 10 10 W. These numbers are small compared to suggested values of the order of a few TeraWatts. A more restrictive bound may be forthcoming when the time-dependency of the field is considered, using a variational data assimilation technique.

  12. Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Javadpoor, M.; Farahat, S.

    2016-12-01

    Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.

  13. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  14. Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica.

    PubMed

    Michaud, Alexander B; Šabacká, Marie; Priscu, John C

    2012-11-01

    Life in the Taylor Valley, Antarctica, is dominated by microorganisms, with cyanobacteria being key primary producers in the region. Despite their abundance and ecological importance, the factors controlling biogeography, diversity, dispersal of cyanobacteria in Taylor Valley and other polar environments are poorly understood. Owing to persistent high winds, we hypothesize that the cyanobacterial diversity across this polar landscape is influenced by aeolian processes. Using molecular and pigment analysis, we describe the cyanobacterial diversity present in several prominent habitats across the Taylor Valley. Our data show that the diversity of cyanobacteria increases from the upper portion of the valley towards the McMurdo Sound. This trend is likely due to the net transport of organisms in a down-valley direction, consistent with the prevailing orientation of high-energy, episodic föhn winds. Genomic analysis of cyanobacteria present in aeolian material also suggests that wind mixes the cyanobacterial phylotypes among the landscape units. Our 16S rRNA gene sequence data revealed that (1) many of the cyanobacterial phylotypes present in our study site are common in polar or alpine environments, (2) many operational taxonomic units (OTUs) (22) were endemic to Antarctica and (3) four OTUs were potentially endemic to the McMurdo Dry Valleys.

  15. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    SciTech Connect

    Adams, Colin Stuart

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  16. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Riccardo Bonazza; Mark Anderson; Leslie Smith

    2004-01-14

    Some of the major difficulties encountered in the effort to achieve nuclear fusion by means of inertial confinement arise from the unstable behavior of the interface between the shell material and the nuclear fuel which develops upon implosion of the shell by direct or indirect laser drive. The fluid flows that develop (termed the Rayleigh-Taylor (RT) and the Richtmyer-Meshkov (RM) instabilities) cause the gassified shell material to mix with the nuclear fuel, causing a reduction in energy yield or no ignition altogether. The present research program addresses the Rayleigh-Taylor and the Richtmyer-Meshkov instabilities with extensive laboratory and computational experiments. In the past year, three new activities have been initiated: a new shock tube experiment, involving the impulsive acceleration of a test gas-filled soap bubble, diagnosed with planar Mie scattering or planar induced fluorescence; a Rayleigh-Taylor experiment based on the use of a magnetorheological (MR) fluid to fix the initial shape of the interface between the MR fluid and water; and a series of computer calculations using the Raptor code (made available by Lawrence Livermore National Laboratory) to design and simulate the shock tube experiments.

  17. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    SciTech Connect

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-12

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

  18. Taylor-Aris dispersion in time-dependent laminar channel flows

    NASA Astrophysics Data System (ADS)

    Vedel, Søren; Bruus, Henrik

    2010-11-01

    The effective axial diffusion of solute concentrations advected in channel flows is known as Taylor-Aris dispersion [1,2]. Due to the no-slip condition, particles near the walls are displaced less than those close to the channel center axis, leading to concentration gradient perpendicular to the axis and an enhanced axial diffusivity. In many applications the velocity field is unsteady, but concentration dispersion in such time-dependent flows is largely unexplored, except for transient dispersion of an initial concentration profile in a steady flow [3], and dispersion in a velocity field with one harmonically oscillating component superimposed on a steady component [4]. We present a mathematical theory for Taylor-Aris dispersion in a straight channel with an arbitrary time- dependent flow, based on Fourier expansion of the velocity field, valid for all times and all values of the P'eclet number. The theory is applied to different time-dependent flows in channels of different cross sections, and we discuss the new phenomena arising by adding an increasing number of higher harmonics. [1] Taylor, Proc. Roy. Soc. Lond. A 219, 186 (1953)[2] Aris, Proc. Roy. Soc. Lond. A 235, 67 (1956)[3] Barton, J. Fluid Mech. 126, 205 (1983)[4] Mukherjee and Mazumder, Acta Mech. 74, 107 (1988)

  19. Geometric scaling of purely elastic instability in viscoelastic Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Schaefer, Christof; Morozov, Alexander; Wagner, Christian

    2013-11-01

    The behavior of viscoelastic Taylor-Couette flow, the flow of, e.g., a polymeric fluid between two concentric, rotating cylinders, has been extensively investigated for many years in experiments as well as in theory. In the most simple case of an outer beaker at rest and a rotating inner cylinder with radii R2 and R1 , respectively, even at negligible Taylor number Ta = 2Re2 (R2 -R1) /R1 , the circular Couette (base) flow gets linearly unstable at a critical Weissenberg number Wic = λγ˙ , the product of the characteristic polymer relaxation time λ and the (critical) shear rate γ˙c . This non-inertial transition to complex flow patterns is purely elastic by nature and the dimensionless criterion by P. Pakdel and G.H. McKinley (JNNFM 67 (1996)) gives a simple, critical condition for its onset. It pictures the competition between viscous shear and elastic normal stresses as well as the influence of polymer relaxation length and curvature of the streamlines. We present a comparative study of the explicit curvature scaling of the onset of elastic instability in the Taylor-Couette flow, including experimental data as well as linear stability analyses and theoretical examinations.

  20. Creating Digital Authors

    ERIC Educational Resources Information Center

    Zoch, Melody; Langston-DeMott, Brooke; Adams-Budde, Melissa

    2014-01-01

    Elementary students find themselves engaged and learning at a digital writing camp. The authors find that such elementary students usually have limited access to technology at home and school, and posit that teachers should do all they can to give them more access to and experience in digital composing. Students were motivated and learned to use…

  1. Author and Agitator.

    ERIC Educational Resources Information Center

    Mark, Jan

    1978-01-01

    Many schools now bring professional writers in to work with or talk to children, often with impressive results. But what do the writers themselves make of these visits? Here a children's books author pens a wry portrait of a typical classroom encounter. (Editor/RK)

  2. Authors on Film.

    ERIC Educational Resources Information Center

    Geduld, Harry M., Ed.

    Different authors' attitudes toward film are revealed through five different sections of this book: (1) articles, essays, and reviews pertaining to the silent cinema and the transition to sound; (2) general statements on the film medium or filmmakers and their messages; (3) essays dealing with the problems, involvements, and reflections of the…

  3. Author Identification Systems

    ERIC Educational Resources Information Center

    Wagner, A. Ben

    2009-01-01

    Many efforts are currently underway to disambiguate author names and assign unique identification numbers so that publications by a given scholar can be reliably grouped together. This paper reviews a number of operational and in-development services. Some systems like ResearcherId.Com depend on self-registration and self-identification of a…

  4. CAL Authoring Aids.

    ERIC Educational Resources Information Center

    McGinnis, N. P.

    In their eight years of involvement in Computer Assisted Learning, the Division of Education Research Services has assisted many authors in developing their courseware. Whether the courseware has been a short half hour module or a large course involving over a hundred hours of student time, there have been many common problems. A major objective…

  5. FFTF Authorization Agreement

    SciTech Connect

    DAUTEL, W.A.

    2000-09-25

    The purpose of the Authorization Agreement is to serve as a mechanism whereby the U.S. Department of Energy, Richland Operations Office (RL) and Fluor Hanford (FH) jointly clarify and agree to key conditions for conducting work safely and efficiently in the Fast Flux Test Facility (FFTF). Work must be accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public, and complying with applicable contractual and regulatory requirements. It is the intent of this Agreement to address those items of significant importance in establishing and supporting the FFTF Authorization Envelope, but this Agreement in no way alters the terms and conditions of the Project Hanford Management Contract (PHMC), Contract Number DE-AC06-96RL13200.

  6. The Author's Report

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-01-01

    The referee's report is a standard rite of passage for an author of articles in The Physics Teacher. Will the referee (and the editor) agree with the basic premise and the details of your carefully thought-out article? I have faced this moment of truth many times; the majority of them were during the editorship of Cliff Swartz. These reminiscences are as much about the journal as Cliff, for, to many of us, the two seemed inseparable.

  7. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow.

    PubMed

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R

    2016-10-01

    The "Rayleigh line" μ=η^{2}, where μ=Ω_{o}/Ω_{i} and η=r_{i}/r_{o} are respectively the rotation and radius ratios between inner (subscript i) and outer (subscript o) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η^{2}<μ<1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ<η^{2} has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ=η^{2} seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  8. Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation

    NASA Astrophysics Data System (ADS)

    Oualli, Hamid; Mekadem, Mahmoud; Lebbi, Mohamed; Bouabdallah, Ahcene

    2015-07-01

    The hydrodynamic stability of a viscous fluid flow evolving in an annular space between a rotating inner cylinder with a periodically variable radius and an outer fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating vortices each wavelength along the whole filled system length. The numerical simulations are implemented on the commercial Fluent software package, a finite-volume CFD code. It is aimed to make investigation of the early flow transition with assessment of the flow response to radial pulsatile motion superimposed to the inner cylinder cross-section as an extension of a previous developed work in Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)] where a comparative controlling strategy is applied to the outer cylinder. The same basic system is considered with similar calculating parameters and procedure. In Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)], it is concluded that for the actuated outer cylinder and relatively to the non-controlled case, the critical Taylor number, Tac1, characterizing the first instability onset illustrated by the piled Taylor vortices along the gap, increases substantially to reach a growing rate of 70% when the deforming amplitude is ɛ = 15%. Interestingly, when this controlling strategy is applied to the inner cylinder cross-section with a slight modification of the actuating law, this tendency completely inverts and the critical Taylor number decreases sharply from Tac1 = 41.33 to Tac1 = 17.66 for ɛ = 5%, corresponding to a reduction rate of 57%. Fundamentally, this result is interesting and can be interpreted by prematurely triggering instabilities resulting in rapid development of flow turbulence. Practically, important applicative aspects can be met in several industry areas where substantial intensification of transport phenomena (mass, momentum and heat) is

  9. Nonstationary stochastic analysis in well capture zone design using first-order Taylor's series approximation

    NASA Astrophysics Data System (ADS)

    Bakr, Mahmoud I.; Butler, Adrian P.

    2005-01-01

    Nonstationarity of flow fields due to pumping wells and its impact on advective transport is of particular interest in well capture zone design and wellhead protection. However, techniques based on Monte Carlo methods to characterize the associated capture zone uncertainty are time consuming and cumbersome. This paper introduces an alternative approach. The mean and covariance of system state variables (i.e., head, pore water velocity, and particle trajectory) are approximated using a first-order Taylor's series with sensitivity coefficients estimated from the adjoint operator for a system of discrete equations. The approach allows nonstationarity due to several sources (e.g., transmissivity, pumping, boundary conditions) to be treated. By employing numerical solution methods, it is able to handle irregular geometry, varying boundary conditions, complicated sink/source terms, and different covariance functions, all of which are important factors for real-world applications. A comparison of results for the Taylor's series approximation with those from Monte Carlo analysis showed, in general, good agreement for most of the tested particles. Particle trajectory variance calculated using Taylor's series approximation is then used to predict well capture zone probabilities under the assumption of normality of the mass transport's state variables. Verification of this assumption showed that not all particle trajectories (depending on their starting location) are normally or log-normally distributed. However, the risk of using the first-order method to delineate the confidence interval of a well capture zone is minimal since it marginally overestimates the 2.5% probability contour. Furthermore, this should be balanced against its greater computation efficiency over the Monte Carlo approach.

  10. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  11. The cosmological Slavnov-Taylor identity from BRST symmetry in single-field inflation

    SciTech Connect

    Binosi, D.; Quadri, A. E-mail: andrea.quadri@mi.infn.it

    2016-03-01

    The cosmological Slavnov-Taylor (ST) identity of the Einstein-Hilbert action coupled to a single inflaton field is obtained from the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated with diffeomorphism invariance in the Arnowitt-Deser-Misner (ADM) formalism. The consistency conditions between the correlators of the scalar and tensor modes in the squeezed limit are then derived from the ST identity, together with the softly broken conformal symmetry. Maldacena's original relations connecting the 2- and 3-point correlators at horizon crossing are recovered, as well as the next-to-leading corrections, controlled by the special conformal transformations.

  12. Simple model of the Rayleigh-Taylor instability, collapse, and structural elements.

    PubMed

    Goncharov, V P; Pavlov, V I

    2013-08-01

    The mechanisms and structural elements of the Rayleigh-Taylor instability whose evolution results in the occurrence of the collapse have been studied in the scope of the rotating shallow water model with horizontal density gradient. Analysis of the instability mechanism shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing fragment with the bottom contracts into a spinning segment. The other implies isotropic contracting of the area into a point. The rigorous integral criteria and power laws of collapses are found.

  13. Strong stabilization of the Rayleigh-Taylor instability by material strength at Mbar pressures

    SciTech Connect

    Park, H S; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Rudd, R E; Becker, R C; Bernier, J V; Remington, B A

    2009-11-19

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the sample in the solid-state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the RT instability.

  14. Photographic copy of architectural drawings for Building 4332 (T82): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4332 (T-82): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-48 and 210-49, Military Construction: Muroc Flight Test Base, Muroc, California, Warehouses and Additional Housing for Officers: Warehouse "A" Plans & Elevations, Sheet No. 4 of 16, May 1945. Reproduced from the holdings of the National Archives; Pacific Southwest Region - Edwards Air Force Base, North Base, Warehouse A, North Base Road at E Street, Boron, Kern County, CA

  15. Photographic copy of architectural plan for Administration Building (T50): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural plan for Administration Building (T-50): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Administration Building Type OB-H-T, Plans and - Details, Sheet No. 38 of 38, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Administration Building T-50, D Street, Boron, Kern County, CA

  16. Identification of complex flows in Taylor-Couette counter-rotating cavities.

    PubMed

    Czarny, O; Serre, E; Bontoux, P; Lueptow, R M

    2001-10-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available.

  17. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    DOE PAGES

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~1014cm–3) and deceleration (~109 m/s2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  18. Catastrophic strut collapse with the Taylor Spatial Frame: preventing a disaster.

    PubMed

    Birkholtz, F; Ferreira, N

    2016-01-01

    Circular external fixators, and in particular hexapod circular external fixators, are increasingly being used in orthopaedic traumatology and limb reconstruction. Their ability to provide three dimensional stability throughout the treatment period make these external fixators indispensable in the management of complex reconstructive work. This study has identified a unique mode of failure with the use of Taylor Spatial Frame Fast-Fx struts and termed this complication catastrophic strut collapse. In this article a lab model is used to demonstrate the consequences of catastrophic strut collapse and warn users of the importance of using the ID bands and locking nuts to prevent inadvertent fragment displacement.

  19. The management of tibial fracture non-union using the Taylor Spatial Frame.

    PubMed

    Khunda, A; Al-Maiyah, M; Eardley, W G P; Montgomery, R

    2016-12-01

    We reviewed 40 complex tibial non-unions treated with Taylor Spatial Frames. 39 healed successfully. Using the ASAMI scoring, we obtained 33 excellent, 5 good, 1 fair and 1 poor bone results. The functional results were excellent in 29 patients, good in 8, fair in two and poor in one. Mean patient satisfaction score was 95%. All but one patient would have the same treatment again. 28 of the 36 patients in work when injured, returned to work at the time of their final review. Four patients had an adverse event requiring significant intervention. Average treatment cost was approximately £26,000/patient.

  20. Onset of secondary flow in the modulated Taylor-Couette system

    SciTech Connect

    Wu, X.; Swift, J.B. )

    1989-12-15

    The critical Reynolds number for the linear instability of primary flow is calculated for a Taylor-Couette system in which the rotation rate of either cylinder is modulated sinusoidally in time. The method used is based on that of Hall (J. Fluid Mech. 67, 29 (1975)) and is restricted to small amplitudes of modulation but allows for a finite gap. For the case of outer-cylinder modulation, we find that the critical Reynolds number is larger than that for the unmodulated system, while, if the inner cylinder is modulated, it is smaller.

  1. Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth Simulator.

    PubMed

    Takahashi, Futoshi; Matsushima, Masaki; Honkura, Yoshimori

    2005-07-15

    High-resolution, low-viscosity geodynamo simulations have been carried out on the Earth Simulator, one of the fastest supercomputers, in a dynamic regime similar to that of Earth's core, that is, in a quasi-Taylor state. Our dynamo models exhibit features of the geodynamo not only in spatial and temporal characteristics but also in dynamics. Polarity reversals occurred when magnetic flux patches at high latitudes moved poleward and disappeared; patches with reversed field at low and mid-latitudes then moved poleward.

  2. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    SciTech Connect

    Liu, Wanhai; Chen, Yulian; Yu, Changping E-mail: lixl@imech.ac.cn; Li, Xinliang E-mail: lixl@imech.ac.cn

    2015-11-15

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster they grow.

  3. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  4. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  5. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two

  6. Communication strategies in cosmetic surgery websites: an application of Taylor's six-segment message strategy wheel.

    PubMed

    Ahn, Ho-Young Anthony; Wu, Lei; Taylor, Ronald E

    2013-01-01

    Using Taylor's six-segment message strategy wheel as a theoretical framework, this study examines the communication approach (transmission or ritual) and message strategy (ego, social, sensory, routine, acute need, or ration) of cosmetic surgery websites. A content analysis revealed a fairly even division between transmission and ritual approaches. Ration strategy was the exclusive strategy in the websites adopting a transmission approach. No routine or acute need strategies were observed. Websites incorporating the ritual approach used ego, social, and sensory strategies. Human female models and natural objects were incorporated to deliver emotional persuasion. Implications for cosmetic surgery web marketers are discussed.

  7. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  8. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.

    PubMed

    Srinivasan, Bhuvana; Dimonte, Guy; Tang, Xian-Zhu

    2012-04-20

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ∇n(e)×∇T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength.

  9. Flow visualization of Taylor-mode breakup of a viscous liquid jet

    NASA Astrophysics Data System (ADS)

    Tsai, Shirley C.; Luu, Patrick; Tam, Patrick; Roski, Gerald; Tsai, Chen S.

    1999-06-01

    We recently reported a new spray technique called ultrasound-modulated two-fluid (UMTF) atomization and the pertinent "resonant liquid capillary wave (RLCW) theory" based on linear models of Taylor-mode breakup of capillary waves. In this article, flow visualizations of liquid jets near the nozzle tip are presented to verify the central assumption of the RLCW theory that the resonant liquid capillary wave in UMTF atomization is initiated by the ultrasound at the nozzle tip. Specifically, a bright band beneath the nozzle tip was seen in ultrasonic and UMTF atomization separately, but not in two-fluid atomization. The bright band can be attributed to scattering of laser light sheet by the capillary waves generated by the ultrasound on the intact liquid jet. As the capillary wave travels downstream in the direction of airflow, it is amplified by the air blowing around it and eventually collapsed into drops. Therefore, the jet breakup time can be determined by dividing the measured band length with the capillary wave velocity. The breakup times thus determined for water and glycerol/water jets are twice the values predicted by the modified Taylor's model with a sheltering parameter, and are one order of magnitude shorter than those in conventional two-fluid atomization. Furthermore, the images of the spray in the proximity of the nozzle tip obtained by 30 ns laser pulses are consistent with the drop sizes obtained 2.3-6 cm downstream from the nozzle tip by 13 s time average of continuous laser light. Also reported in this article is the good agreement between the measured viscosity effects on the drop-size and size distribution in UMTF atomization and those on the relative amplitude growth rates of capillary waves at different wavelengths predicted by Taylor's model as a result of its inclusion of higher order terms other than the first in viscosity. These new findings have led to the conclusion that UMTF atomization occurs via Taylor-mode breakup of capillary waves

  10. Transition from time-dependent to stationary flow patterns in the Taylor-Dean system

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Andereck, C. David

    1991-11-01

    The flow between two horizontal coaxial cylinders with a partially filled gap, the Taylor-Dean system, is investigated for the case in which the outer cylinder rotates while the inner cylinder remains at rest. The initial instability is to a mixed state of both traveling inclined rolls and laminar base flow. At a larger rotation rate, the entire flow becomes time dependent. At a still larger rotation rate, the flow undergoes a subcritical transition to a stationary roll pattern, a process previously observed only in binary fluid mixtures.

  11. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  12. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai

    2016-12-01

    The two-dimensional Rayleigh-Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin-Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.

  13. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh-Taylor instability

    SciTech Connect

    Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.

    2016-09-02

    A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.

  14. Solid-state Rayleigh-Taylor experiments in vanadium at Mbar pressures at the Omega laser

    SciTech Connect

    Remington, B A; Park, H S; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Rudd, R E; Becker, R C; Bernier, J V

    2009-06-24

    We present experiments on the Rayleigh-Taylor (RT) instability in the plastic flow regime of solid-state vanadium (V) foils at {approx}1 Mbar pressures and strain rates of 10{sup 6}-10{sup 8} s{sup -1}, using a laser based, ramped-pressure acceleration technique. High pressure material strength causes strong stabilization of the RT instability at short wavelengths. Comparisons with 2D simulations utilizing models of high pressure strength show that the V strength increases by a factor of 3.5 at peak pressure, compared to its ambient strength. An effective lattice viscosity of {approx}400 poise would have a similar effect.

  15. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates.

    PubMed

    George, E; Glimm, J; Li, X-L; Marchese, A; Xu, Z-L

    2002-03-05

    We present a Rayleigh-Taylor mixing rate simulation with an acceleration rate falling within the range of experiments. The simulation uses front tracking to prevent interfacial mass diffusion. We present evidence to support the assertion that the lower acceleration rate found in untracked simulations is caused, at least to a large extent, by a reduced buoyancy force due to numerical interfacial mass diffusion. Quantitative evidence includes results from a time-dependent Atwood number analysis of the diffusive simulation, which yields a renormalized mixing rate coefficient for the diffusive simulation in agreement with experiment.

  16. Experimental Study of Micro-Scale Taylor Vortices Within a Co-Axial Mixed-Flow Blood Pump.

    PubMed

    Shu, Fangjun; Tian, Ruijun; Vandenberghe, Stijn; Antaki, James F

    2015-12-29

    Taylor vortices in a miniature mixed-flow rotodynamic blood pump were investigated using micro-scale particle image velocimetry (μ-PIV) and a tracer particle visualization technique. The pump featured a cylindrical rotor (14.9 mm diameter) within a cylindrical bore, having a radial clearance of 500 μm and operated at rotational speeds varying from 1000 to 12 000 rpm. Corresponding Taylor numbers were 700-101 800, respectively. The critical Taylor number was observed to be highly dependent on the ratio of axial to circumferential velocity, increasing from 1200 to 18 000 corresponding to Rossby numbers from 0 to 0.175. This demonstrated a dramatic stabilizing effect of the axial flow. The size of Taylor vortices was also found to be inversely related to Rossby number. It is concluded that Taylor vortices can enhance the mixing in the annular gap and decrease the dwell time of blood cells in the high-shear-rate region, which has the potential to decrease hemolysis and platelet activation within the blood pump.

  17. Counterfactual quantum certificate authorization

    NASA Astrophysics Data System (ADS)

    Shenoy H., Akshata; Srikanth, R.; Srinivas, T.

    2014-05-01

    We present a multipartite protocol in a counterfactual paradigm. In counterfactual quantum cryptography, secure information is transmitted between two spatially separated parties even when there is no physical travel of particles transferring the information between them. We propose here a tripartite counterfactual quantum protocol for the task of certificate authorization. Here a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. The protocol is counterfactual with respect to either Bob or Charlie. We prove its security against a general incoherent attack, where Eve attacks single particles.

  18. [Schistosomiasis epidemiology (author's transl)].

    PubMed

    Picq, J J; Roux, J

    1980-01-01

    Schistosomiasis are, with three hundred million of infested people, the second world endemy, after malaria. For each of the four species, the distribution areas, the life cycle and the main epidemiological features are recalled in the first chapter. In the five following chapters, the authors consider the human or animal reservoirs of virus, the importance of these diseases towards public health, the gasteropod molluscs acting as intermediate hosts, and the problems of immunity in man. The concepts of "schistosomian infection" and "schistosomian disease" are exposed as well as the differences affecting the various strains of schistosomes and snails intermediate hosts. The authors emphasize the value of quantitative parasitological techniques and sero-immunological methods for epidemiological surveys. They underline the difficulties met in the evaluation of the effect of these diseases upon public health. The main causes inducing the duration of the endemy and those responsible for its extension are studied. The value of mathematic patterns is briefly discussed. Quantitative data compiled through epidemiological surveys should improve the use of the various means presently available for controling schistosomiasis.

  19. Becoming Co-Authors: Toward Sharing Authority in Religious Education

    ERIC Educational Resources Information Center

    Kim, Hyun-Sook

    2009-01-01

    This article offers an alternative model, the model of shared authority, to the traditional, authoritarian model for authority and obedience for Religious Education. This model moves away from the authoritarian model of a teacher as the authority and the students as obedient listeners in the direction of a shared authority model in which teachers…

  20. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  1. Modelling Rayleigh Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Pan, T. W.; Joseph, D. D.; Glowinski, R.

    2001-05-01

    In this paper we study the sedimentation of several thousand circular particles in two dimensions using the method of distributed Lagrange multipliers for solid liquid flow. The simulation gives rise to fingering which resembles Rayleigh Taylor instabilities. The waves have a well-defined wavelength and growth rate which can be modelled as a conventional Rayleigh Taylor instability of heavy fluid above light. The heavy fluid is modelled as a composite solid liquid fluid with an effective composite density and viscosity. Surface tension cannot enter this problem and the characteristic shortwave instability is regularized by the viscosity of the solid liquid dispersion. The dynamics of the Rayleigh Taylor instability are studied using viscous potential flow, generalizing work of Joseph, Belanger & Beavers (1999) to a rectangular domain bounded by solid walls; an exact solution is obtained.

  2. On power series expansions of the S-resolvent operator and the Taylor formula

    NASA Astrophysics Data System (ADS)

    Colombo, Fabrizio; Gantner, Jonathan

    2016-12-01

    The S-functional calculus is based on the theory of slice hyperholomorphic functions and it defines functions of n-tuples of not necessarily commuting operators or of quaternionic operators. This calculus relays on the notion of S-spectrum and of S-resolvent operator. Since most of the properties that hold for the Riesz-Dunford functional calculus extend to the S-functional calculus, it can be considered its non commutative version. In this paper we show that the Taylor formula of the Riesz-Dunford functional calculus can be generalized to the S-functional calculus. The proof is not a trivial extension of the classical case because there are several obstructions due to the non commutativity of the setting in which we work that have to be overcome. To prove the Taylor formula we need to introduce a new series expansion of the S-resolvent operators associated to the sum of two n-tuples of operators. This result is a crucial step in the proof of our main results, but it is also of independent interest because it gives a new series expansion for the S-resolvent operators. This paper is addressed to researchers working in operator theory and in hypercomplex analysis.

  3. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Morad, M. R.; Rajabi, A.; Razavi, M.; Sereshkeh, S. R. Pejman

    2016-12-01

    A stable capillary liquid jet formed by an electric field is an important physical phenomenon for formation of controllable small droplets, power generation and chemical reactions, printing and patterning, and chemical-biological investigations. In electrohydrodynamics, the well-known Taylor cone-jet has a stability margin within a certain range of the liquid flow rate (Q) and the applied voltage (V). Here, we introduce a simple mechanism to greatly extend the Taylor cone-jet stability margin and produce a very high throughput. For an ethanol cone-jet emitting from a simple nozzle, the stability margin is obtained within 1 kV for low flow rates, decaying with flow rate up to 2 ml/h. By installing a hemispherical cap above the nozzle, we demonstrate that the stability margin could increase to 5 kV for low flow rates, decaying to zero for a maximum flow rate of 65 ml/h. The governing borders of stability margins are discussed and obtained for three other liquids: methanol, 1-propanol and 1-butanol. For a gravity-directed nozzle, the produced cone-jet is more stable against perturbations and the axis of the spray remains in the same direction through the whole stability margin, unlike the cone-jet of conventional simple nozzles.

  4. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  5. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    PubMed

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  6. Ablation Front Rayleigh-Taylor Growth Experiments in Spherically Convergent Geometry

    SciTech Connect

    Glendinning, S.G.; Cherfils, C.; Colvin, J.; Divol, L.; Galmiche, D.; Haan, S.; Marinak, M.M.; Remington, B.A.; Richard, A.L.; Wallace, R.

    1999-11-03

    Experiments were performed on the Nova laser, using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh-Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulations of 4 {micro}m, growth factors of about 6 in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2. With initial modulations of 1 {micro}m, growth factors of about 100-150 in optical depth were seen. The Rayleigh-Taylor (RT) instability at the ablation front in an inertial confinement fusion capsule has been the subject of considerable investigation. Much of this research has been concentrated on planar experiments, in which RT growth is inferred from radiography. The evolution is somewhat different in a converging geometry; the spatial wavelength decreases (affecting the onset of nonlinear saturation), and the shell thickens and compresses rather than decompressing as in a planar geometry. In a cylindrically convergent geometry, the latter effect is proportional to the radius, while in spherically convergent geometry, the latter effect is proportional to the radius squared. Experiments were performed on the Nova and Omega lasers in cylindrical geometry (using both direct and indirect drive) and have been performed in spherical geometry using direct drive.

  7. Analytical modeling of magnetic Rayleigh-Taylor instabilities in compressible fluids

    NASA Astrophysics Data System (ADS)

    Liberatore, Stéphane; Bouquet, Serge

    2008-11-01

    The magnetic Rayleigh-Taylor instability (MRTI) is investigated in the case of compressible plasmas. The goal of this work is highlighting the influence of both the magnetic field and the compressibility of the material on the growth rate of the Rayleigh-Taylor instability, compared to the classical growth rate derived for incompressible fluids. Our analytical linear models are derived in the framework of the ideal magnetohydrodynamics theory. Three general dispersion relations are obtained: (1) Two for stratified fluids, including compressible (denoted CS∥ when the wave vector k is parallel to the equilibrium magnetic field B0 and CS⊥ when k ⊥B0) and incompressible (denoted IS∥ and IS⊥) and (2) one for incompressible uniform density fluids, including finite mass (denoted Ifm) and infinite (denoted IU). For k ⊥B0, Ifm, IU, and IS⊥ are unmagnetized cases. Comparisons of those various configurations are performed and several differences are pointed out. The main results are as follows: Stratification weakens the MRTI while compressibility has a destabilizing effect. The magnetic field enhances these phenomena. The CS∥ and IU configurations have an identical cutoff wave number. The upper fluid (also called heavy fluid) is more sensitive to compressibility than the light one when k ∥B0. Finally, the CS∥ case is more sensitive than the CS⊥ one to physical variations.

  8. Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection.

    PubMed

    Lavoisier, Alexandra; Schlaeppi, Jean-Marc

    2015-01-01

    Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical market. They are used in a broad range of disease fields, such as autoimmune diseases, cancer, inflammation and infectious diseases. The growth of the segment has necessitated development of new analytical platforms for faster and better antibody selection and characterization. Early quality control and risk assessment of biophysical parameters help prevent failure in later stages of antibody development, and thus can reduce costs and save time. Critical parameters such as aggregation, conformational stability, colloidal stability and hydrophilicity, are measured during the early phase of antibody generation and guide the selection process of the best lead candidates in terms of technical developability. We report on the use of a novel instrument (ActiPix/Viscosizer) for measuring both the hydrodynamic radius and the absolute viscosity of antibodies based on Taylor dispersion analysis and UV area imaging. The looped microcapillary-based method combines low sample consumption, fast throughput and high precision compared to other conventional methods. From a random panel of 130 antibodies in the early selection process, we identified some with large hydrodynamic radius outside the normal distribution and others with non-Gaussian Taylor dispersion profiles. The antibodies with such abnormal properties were confirmed later in the selection process to show poor developability profiles. Moreover, combining these results with those of the viscosity measurements at high antibody concentrations allows screening, with limited amounts of materials, candidates with potential issues in pre-formulation development.

  9. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-03-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  10. Spatially Ramped Turbulence in Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Ashbaker, Eric; Wiener, Richard J.; Olsen, Thomas; Bodenschatz, Eberhard

    2003-11-01

    Taylor vortex flow in an hourglass geometry undergoes a period-doubling cascade to chaotic pattern dynamics, as the rotation rate is increased(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. The pattern of laminar flow in Taylor Vortex is unstable to the formation phase slips, generating new vortex pairs. For higher rotation rates, the pattern freezes. At even greater rotation rates the flow becomes demonstrably turbulent, and remarkably, the pattern again becomes unstable to phase slips. Our measurements document and quantify the spatial variation of this turbulence. Light was scattered off Kalliroscope tracer in the fluid. The time-varying intensity was Fourier transformed and the turbulence was quantified by the Spectral Mode Number, Spectral Number Distribution, and Degrees of Freedom measures. The strength of the turbulence is ramped in a manner consistent with the ramped Reynolds number along the hourglass. This is in keeping with our suggestion that the ramped turbulence gives rise to the persistent dynamics of the phase slips in the presence of turbulence.

  11. On the Taylor test, Part 3: A continuum mechanics code analysis of steady plastic wave propagation

    SciTech Connect

    Maudlin, P.J.; Foster, J.C. Jr.; Jones, S.E.

    1994-11-01

    Simple conservation relationships (``Jump`` conditions) in conjunction with postulated material constitutive behavior are applied to steady plastic strain waves propagating in problems of uniaxial stress and Taylor Cylinder Impact. These problems are simulated with a two-dimensional Lagrangian continuum mechanics code for numerically validating the Jump relationships as an accurate analytical representation of plastic wave propagation. The constitutive behavior used in this effort assumes isotropy and models the thermodynamic response with a Mie-Grunisen Equation-of-State and the mechanical response with the rate-dependent Johnson-Cook and MTS flow stress models. The Jump relationships successfully replicate the results produced by continuum code simulations of plastic wave propagation and provide a methodology for constructing mechanical constitutive models from experimental plastic wave speed information. Comparisons are also presented between experimental speeds from Taylor Cylinder Impact tests with Jump relationships and continuum code predictions, indicating that the above mentioned flow stress models may not accurately capture plastic wave propagation speeds in annealed and hardened copper.

  12. Experiments on the rarefaction wave driven Rayleigh-Taylor instability initiated with a random initial perturbation

    NASA Astrophysics Data System (ADS)

    Morgan, Robert; Jacobs, Jeffrey

    2014-11-01

    Experiments are presented in which a diffuse interface between two gases is accelerated to become Rayleigh-Taylor unstable. The initially flat interface is generated by the opposing flow of two test gases at matched volumetric flow rates exiting through small holes in the test section. A random, three-dimensional interface perturbation is forced using a loudspeaker. The interface is then accelerated by an expansion wave which is generated by the rupturing of a diaphragm separating the heavy gas from a vacuum tank evacuated to ~0.01 atm. The expansion wave generates a large (of order 1000 g), non-constant acceleration acting on the interface causing the Rayleigh-Taylor instability to develop. Planar Mie scattering is employed to visualize the flow using a planar laser sheet generated at the top of the apparatus, which illuminates smoke particles seeded in the heavy gas. The scattered light is then recorded using a CMOS camera operating at 12 kHz. The mixing layer width is obtained from an ensemble of experiments and the turbulent growth parameter α is extracted and compared with previous experiments and simulations.

  13. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    PubMed Central

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606

  14. Magnetic reconnection in three-dimensional magnetohydrodynamic Taylor-Green flows

    NASA Astrophysics Data System (ADS)

    Hao, Jinhua; Yang, Yue

    2016-10-01

    We develop the magnetic-surface field (MSF), a Lagrangian-based structure identification method, to study the evolution of magnetic surfaces in magnetohydrodynamics (MHD). Every isosurface of the MSF defines a magnetic surface consisting of magnetic lines. This method is rooted in the Alfven theorem, which is the analogue of the Helmholtz vorticity theorem to illustrate the ``frozen-in'' nature of magnetic fields. A two-time approach and a numerical dissipative regularization are introduced for evolving MSF in the conducting fluids with a finite conductivity. From the construction and evolution of MSFs in three-dimensional MHD Taylor-Green (TG-MHD) flows, the topological changes of magnetic surfaces and the reconnection of magnetic lines are characterized. By comparing the structural evolutions in a TG-MHD flow and in a Taylor-Green hydrodynamic (TG-HD) flow, we elucidate the effects of the Lorenz force on the evolution of magnetic surfaces and vortex surfaces. Moreover, we find that the significant changes in energy spectra and dissipation rates in the transition are related to the appearance of some characteristic magnetic and vortex surfaces. This work is supported by the NSFC (No. 11522215) and the Thousand Young Talent Program of China.

  15. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes.

  16. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    SciTech Connect

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.; Brannon, Rebecca

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  17. Experimental characterization of the Taylor-Couette flow submitted to a radial temperature gradient

    NASA Astrophysics Data System (ADS)

    Prigent, Arnaud; Guillerm, Rapha"El; Mutabazi, Innocent; Yang, Kyung-Soo

    2009-11-01

    We have developed a non-intrusive velocity and temperature fields measurement technique using thermochromic liquid crystals which allows to fully characterize the flow produced in a narrow gap and large aspect ratio Couette-Taylor system submitted to a radial temperature gradient. The aspect ratio and radius ratio of the system are respectively equal to 112 and 0.8. The control parameters are the Grashof number Gr, related to the radial temperature gradient, and the Taylor number Ta, related to the rotation of the inner cylinder. Here, Gr is fixed and Ta is gradually increased. For small values of Ta, the base flow is composed of the circular Couette flow and a vertical flow induced by the radial temperature gradient. Above a critical value of Ta, the destabilization of the base flow gives rise to a spiral pattern. While for small Gr values it corresponds to traveling inclined vortices, for large Gr values it corresponds to a modulated wave-like pattern filling the whole length of the system and rotating at the mean angular velocity of the flow. When Ta is further increased, this wave-like pattern is progressively replaced by a counter-rotating vortices pattern. Numerical simulations of the corresponding Boussinesq-Oberbeck equations provide results in good agreement with experiments.

  18. Numerical simulations of bubbly Taylor-Couette turbulence in co- and counter rotating regime

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef

    2015-11-01

    Two-phase Taylor-Couette (flow between two co-axial independently rotating cylinders) is simulated using a two-way coupled Euler-Lagrange approach in which the bubbles are treated as point particles with effective forces such as drag, lift, added mass and buoyancy acting on them. The momentum equations for the fluid and the bubbles are solved in the frame of reference of the outer cylinder. While it is already known that when the outer cylinder is stationary, within a certain Taylor number range (Ta ~106 -108) the bubbles disrupt the plume ejection regions and the coherent vortical structures leading to drag reduction, their effect and arrangement in the gap-width when both cylinders are rotating is still unknown. In this study we focus on studying the effect of bubbles on the angular velocity transport for various rotation rates of the cylinders. We find that the net percentage drag reduction persists even with a rotating outer cylinder, but is there a optimum for various rotation rates ? How does the spatial distribution of bubbles vary with in the co- and counter rotating regime ? These are some questions we attempt to answer in this work.

  19. Correction of post-traumatic lower limb deformities using the Taylor spatial frame.

    PubMed

    Ganger, Rudolf; Radler, Christof; Speigner, Bernhard; Grill, Franz

    2010-06-01

    Twenty-five post-traumatic leg length discrepancies combined with axial deviation in 22 patients were treated with the Taylor spatial frame. We retrospectively analysed the accuracy of correction, the complication rate and the clinical outcome including the duration of treatment. The cases were divided into three sub-groups according to the level of the osteotomy. The mean age at operation was 22.7 years; the mean follow-up was 21.1 months. The patients presented uniplanar and multiplanar deformities in combination with leg length discrepancy. Twenty-one of 25 cases showed a frontal plane malalignment preoperatively. Only three of those 21 cases continued to show minimal malalignment postoperatively. The preoperative mechanical axis deviation present in 15 of 17 lower extremities was fully corrected in 13 extremities. The 25 lengthening and correction procedures were associated with a total of 61 difficulties, including 44 problems, seven obstacles and ten complications. In conclusion, the Taylor spatial frame allows accurate results in correction of complex post-traumatic deformities with minimal morbidity.

  20. Taylor Glacier basal ice, Antarctica; a biogeochemical hot-spot in a glacial environment

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Christner, B.; Samyn, D.; Lorrain, R.

    2005-12-01

    Increasing evidence points to a significant role for microbes in mediating the dissolution and oxidation of minerals in sediments beneath ice masses (i.e., subglacial weathering). Subglacial microbial ecosystems are local hotspots of microbial activity relative to the glacial ice overlying them due to the presence of liquid water and finely comminuted rock debris, providing nutrients and chemical energy sources. Eight different ice units from a 4 m basal ice sequence (ice temperature, -17°C) at the Taylor Glacier, McMurdo Dry Valleys, Antarctica, were identified and sampled for microbiological and geochemical analysis. The vertical profile of cell and gas concentration in basal ice from Taylor Glacier indicates that the debris-rich ice layers have higher CO2 and cell concentrations relative to the glacier ice, but are depleted in O2 relative to atmospheric values. Acetate mineralization experiments were undertaken on a subset of glacial and basal ice samples with varying debris content, CO2 concentration, and cell biomass to assess heterotrophic activity at 2°C. Our results show that 14C-acetate was respired to CO2 in all the melted debris-rich ice samples analyzed, but little activity was observed in glacial ice samples of meteoric origin. Together, these data suggest that microorganisms entrapped within the debris-rich basal ice may be metabolically active in situ.

  1. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    NASA Astrophysics Data System (ADS)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  2. Large-eddy simulation of the Rayleigh-Taylor instability on a massively parallel computer

    SciTech Connect

    Amala, P.A.K.

    1995-03-01

    A computational model for the solution of the three-dimensional Navier-Stokes equations is developed. This model includes a turbulence model: a modified Smagorinsky eddy-viscosity with a stochastic backscatter extension. The resultant equations are solved using finite difference techniques: the second-order explicit Lax-Wendroff schemes. This computational model is implemented on a massively parallel computer. Programming models on massively parallel computers are next studied. It is desired to determine the best programming model for the developed computational model. To this end, three different codes are tested on a current massively parallel computer: the CM-5 at Los Alamos. Each code uses a different programming model: one is a data parallel code; the other two are message passing codes. Timing studies are done to determine which method is the fastest. The data parallel approach turns out to be the fastest method on the CM-5 by at least an order of magnitude. The resultant code is then used to study a current problem of interest to the computational fluid dynamics community. This is the Rayleigh-Taylor instability. The Lax-Wendroff methods handle shocks and sharp interfaces poorly. To this end, the Rayleigh-Taylor linear analysis is modified to include a smoothed interface. The linear growth rate problem is then investigated. Finally, the problem of the randomly perturbed interface is examined. Stochastic backscatter breaks the symmetry of the stationary unstable interface and generates a mixing layer growing at the experimentally observed rate. 115 refs., 51 figs., 19 tabs.

  3. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics.

    PubMed

    Morad, M R; Rajabi, A; Razavi, M; Sereshkeh, S R Pejman

    2016-12-05

    A stable capillary liquid jet formed by an electric field is an important physical phenomenon for formation of controllable small droplets, power generation and chemical reactions, printing and patterning, and chemical-biological investigations. In electrohydrodynamics, the well-known Taylor cone-jet has a stability margin within a certain range of the liquid flow rate (Q) and the applied voltage (V). Here, we introduce a simple mechanism to greatly extend the Taylor cone-jet stability margin and produce a very high throughput. For an ethanol cone-jet emitting from a simple nozzle, the stability margin is obtained within 1 kV for low flow rates, decaying with flow rate up to 2 ml/h. By installing a hemispherical cap above the nozzle, we demonstrate that the stability margin could increase to 5 kV for low flow rates, decaying to zero for a maximum flow rate of 65 ml/h. The governing borders of stability margins are discussed and obtained for three other liquids: methanol, 1-propanol and 1-butanol. For a gravity-directed nozzle, the produced cone-jet is more stable against perturbations and the axis of the spray remains in the same direction through the whole stability margin, unlike the cone-jet of conventional simple nozzles.

  4. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica.

    PubMed

    Mikucki, Jill A; Priscu, John C

    2007-06-01

    Blood Falls is the surface manifestation of brine released from below the Taylor Glacier, McMurdo Dry Valleys, Antarctica. Geochemical analyses of Blood Falls show that this brine is of a marine origin. The discovery that 74% of clones and isolates from Blood Falls share high 16S rRNA gene sequence homology with phylotypes from marine systems supports this contention. The bacterial 16S rRNA gene clone library was dominated by a phylotype that had 99% sequence identity with Thiomicrospira arctica (46% of the library), a psychrophilic marine autotrophic sulfur oxidizer. The remainder of the library contained phylotypes related to the classes Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria and the division Bacteroidetes and included clones whose closest cultured relatives metabolize iron and sulfur compounds. These findings are consistent with the high iron and sulfate concentrations detected in Blood Falls, which are likely due to the interactions of the subglacial brine with the underlying iron-rich bedrock. Our results, together with previous reports, suggest that the brine below the Taylor Glacier hosts a viable ecosystem with microorganisms capable of growth, supported by chemical energy present in reduced iron and sulfur compounds. The metabolic and phylogenetic structure of this subglacial microbial assemblage appears to be controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem.

  5. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Šabacká, Marie; Priscu, John C.; Basagic, Hassan J.; Fountain, Andrew G.; Wall, Diana H.; Virginia, Ross A.; Greenwood, Mark C.

    2012-06-01

    We studied patterns and mechanisms controlling wind-driven flux of soils and associated organic matter in Taylor Valley, Antarctica over a 10-year period using passive aeolian traps and dynamic mass erosion particle counters. Deployment of the particle counters near meteorological stations allowed us to compare the magnitude of soil flux with data on prevailing wind. Particulate organic C, N and P measurements on transported sediment allowed us to examine connectivity of wind dispersed organic matter among landscape units. Most sediment entrainment occurred within 20 cm of the soil surface during "saltation bursts" that occupied < 3% of the total time within a year. These bursts corresponded to periods of strong föhn winds where wind velocities were ≥ 20 m s- 1. Sediment movement was highest in the up-valley reaches of Taylor Valley and transport was down-valley towards McMurdo Sound. The general paucity of biological organic matter production throughout the McMurdo Dry Valleys, in concert with low fluvial transport, makes aeolian distribution or organic C, N and P an important factor in the distribution of organic matter throughout this polar desert ecosystem and increases connectivity among the ecosystem components.

  6. Self-similar decay of high Reynolds number Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-10-01

    We study the decay of high-Reynolds-number Taylor-Couette turbulence, i.e., the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder (Re i=2 ×106 , the outer cylinder is at rest) is stopped within 12 s, thus fully removing the energy input to the system. Using a combination of laser Doppler anemometry and particle image velocimetry measurements, six decay decades of the kinetic energy could be captured. First, in the absence of cylinder rotation, the flow-velocity during the decay does not develop any height dependence in contrast to the well-known Taylor vortex state. Second, the radial profile of the azimuthal velocity is found to be self-similar. Nonetheless, the decay of this wall-bounded inhomogeneous turbulent flow does not follow a strict power law as for decaying turbulent homogeneous isotropic flows, but it is faster, due to the strong viscous drag applied by the bounding walls. We theoretically describe the decay in a quantitative way by taking the effects of additional friction at the walls into account.

  7. Correction of post-traumatic lower limb deformities using the Taylor spatial frame

    PubMed Central

    Radler, Christof; Speigner, Bernhard; Grill, Franz

    2009-01-01

    Twenty-five post-traumatic leg length discrepancies combined with axial deviation in 22 patients were treated with the Taylor spatial frame. We retrospectively analysed the accuracy of correction, the complication rate and the clinical outcome including the duration of treatment. The cases were divided into three sub-groups according to the level of the osteotomy. The mean age at operation was 22.7 years; the mean follow-up was 21.1 months. The patients presented uniplanar and multiplanar deformities in combination with leg length discrepancy. Twenty-one of 25 cases showed a frontal plane malalignment preoperatively. Only three of those 21 cases continued to show minimal malalignment postoperatively. The preoperative mechanical axis deviation present in 15 of 17 lower extremities was fully corrected in 13 extremities. The 25 lengthening and correction procedures were associated with a total of 61 difficulties, including 44 problems, seven obstacles and ten complications. In conclusion, the Taylor spatial frame allows accurate results in correction of complex post-traumatic deformities with minimal morbidity. PMID:19629482

  8. Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection

    PubMed Central

    Lavoisier, Alexandra; Schlaeppi, Jean-Marc

    2015-01-01

    Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical market. They are used in a broad range of disease fields, such as autoimmune diseases, cancer, inflammation and infectious diseases. The growth of the segment has necessitated development of new analytical platforms for faster and better antibody selection and characterization. Early quality control and risk assessment of biophysical parameters help prevent failure in later stages of antibody development, and thus can reduce costs and save time. Critical parameters such as aggregation, conformational stability, colloidal stability and hydrophilicity, are measured during the early phase of antibody generation and guide the selection process of the best lead candidates in terms of technical developability. We report on the use of a novel instrument (ActiPix/Viscosizer) for measuring both the hydrodynamic radius and the absolute viscosity of antibodies based on Taylor dispersion analysis and UV area imaging. The looped microcapillary-based method combines low sample consumption, fast throughput and high precision compared to other conventional methods. From a random panel of 130 antibodies in the early selection process, we identified some with large hydrodynamic radius outside the normal distribution and others with non-Gaussian Taylor dispersion profiles. The antibodies with such abnormal properties were confirmed later in the selection process to show poor developability profiles. Moreover, combining these results with those of the viscosity measurements at high antibody concentrations allows screening, with limited amounts of materials, candidates with potential issues in pre-formulation development. PMID:25514497

  9. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  10. Reynolds number effects on Rayleigh-Taylor Instability with Implications for Type Ia Supernovae

    SciTech Connect

    Cabot, W H; Cook, A W

    2006-03-22

    Spontaneous mixing of materials at unstably stratified interfaces occurs in a wide variety of atmospheric, oceanic, geophysical and astrophysical flows. The Rayleigh-Taylor instability, in particular, plays key roles in the death of stars, planet formation and the quest for controlled thermonuclear fusion. Despite its ubiquity, fundamental questions regarding Rayleigh-Taylor instability persist. Among such questions are: Does the flow forget its initial conditions? Is the flow self-similar? What is the value of the scaling constant? How does mixing influence the growth rate? Here we show results from a 3072{sup 3} grid-point Direct Numerical Simulation in an attempt to answer these and other questions. The data indicate that the scaling constant cannot be found by fitting a curve to the width of the mixing region (as is common practice) but can only be accurately obtained by recourse to the similarity equation for the growth rate. The data further establish that the ratio of kinetic energy to released potential energy is not constant, as has heretofore been assumed. The simulated flow reaches a Reynolds number of 32,000, far exceeding that of all previous simulations. The latter stages of the simulation reveal a weak Reynolds number dependence, which may have profound consequences for modeling Type Ia supernovae as well as other high Reynolds number flows.

  11. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics

    PubMed Central

    Morad, M. R.; Rajabi, A.; Razavi, M.; Sereshkeh, S. R. Pejman

    2016-01-01

    A stable capillary liquid jet formed by an electric field is an important physical phenomenon for formation of controllable small droplets, power generation and chemical reactions, printing and patterning, and chemical-biological investigations. In electrohydrodynamics, the well-known Taylor cone-jet has a stability margin within a certain range of the liquid flow rate (Q) and the applied voltage (V). Here, we introduce a simple mechanism to greatly extend the Taylor cone-jet stability margin and produce a very high throughput. For an ethanol cone-jet emitting from a simple nozzle, the stability margin is obtained within 1 kV for low flow rates, decaying with flow rate up to 2 ml/h. By installing a hemispherical cap above the nozzle, we demonstrate that the stability margin could increase to 5 kV for low flow rates, decaying to zero for a maximum flow rate of 65 ml/h. The governing borders of stability margins are discussed and obtained for three other liquids: methanol, 1-propanol and 1-butanol. For a gravity-directed nozzle, the produced cone-jet is more stable against perturbations and the axis of the spray remains in the same direction through the whole stability margin, unlike the cone-jet of conventional simple nozzles. PMID:27917956

  12. Combined Rayleigh-Taylor and Kelvin-Helmholtz instabilities on cylindrical interfaces

    NASA Astrophysics Data System (ADS)

    M, Vadivukkarasan; Panchagnula, Mahesh V.

    2014-11-01

    Hydrodynamic instabilities that occur on a fluid interface are of interest to a wide range of applications. We study the combined effect of Rayleigh-Taylor (R-T) and Kelvin-Helmholtz (K-H) mechanisms of instability simultaneously attempting to destabilize a cylindrical interface. Linear stability analysis is used to study the process by which relative velocity (characterized by a Weber number) and acceleration (characterized by a Bond number) induced effects distort the interface. We investigate the effect of three dimensional disturbances and study the effect of varying Bo and We. From the dispersion relation obtained in this study, we are able to recover the R-T and K-H mechanism dispersion relations as special cases. From this study, we observe the occurrence of two-dimensional Taylor and flute modes as well as three-dimensional helical modes. A regime chart is presented in the (Bo,We) space to demonstrate the energy budget in the acceleration and shear induced instability mechanisms. In addition, we show that the length scale associated with the distorted interface is minimum in the helical mode. Finally, we show that an optimal Weber number exists above which it is not beneficial to increase relative velocity based kinetic energy.

  13. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  14. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    SciTech Connect

    Wang, L. F. Ye, W. H. Liu, Jie; He, X. T.; Guo, H. Y.; Wu, J. F. Zhang, W. Y.

    2014-12-15

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) “linearly stable” and (lower) “linearly unstable” interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the “linearly unstable” interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  15. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Guo, H. Y.; Wu, J. F.; Ye, W. H.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2014-12-01

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) "linearly stable" and (lower) "linearly unstable" interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the "linearly unstable" interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  16. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge.

    PubMed

    Hou, Shang-Yan; Chu, Hong-Yu

    2015-07-01

    This work is inspired by the expansion of the plasma bubble in a narrow gap reported by Chu and Lee [Phys. Rev. Lett. 107, 225001 (2011)]. We report the unstable phenomena of the plasma-liquid interface with different curvature in a Hele-Shaw cell. Dielectric barrier discharge is produced in the cell at atmospheric pressure which is partially filled with silicone oil. We show that the Saffman-Taylor-like instability is observed on the bubble-type, channel-type, and drop-type interfaces. The Schlieren observation of the plasma-drop interaction reveals that there is a vapor layer around the drop and the particle image velocimetry shows the liquid flow inside the drop. We propose that the thermal Marangoni effect induced by the plasma heating is responsible for the unstable phenomena of the plasma-liquid interaction. The fluctuation of the interface is shown consistently with the Saffman-Taylor instability modified by the temperature-dependent velocity and surface tension.

  17. Identifying coherent structures and vortex clusters in Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Ostilla-Monico, Rodolfo; Lohse, Detlef; Verzicco, Roberto

    2016-04-01

    The nature of the underlying structures in Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders is investigated by two methods. First, the quadrant analysis technique for identifying structures with intense radial-azimuthal stresses (also referred to as ‘Q’s) of Lozano-Durán et al., (J. Fluid Mech. 694, 100-130) is used to identify the main structures responsible for the transport of angular velocity. Second, the vortex clusters are identified based on the analysis by del Álamo et al., (J. Fluid. Mech., 561, 329-358). In order to test these criteria, two different radius ratios η = ri/ro are considered, where ri and ro are the radii of inner and outer cylinder, respectively: (i) η = 0.5 and (ii) η = 0.909, which correspond to high and low curvature geometries, respectively and have different underlying structures. The Taylor rolls, i.e. the large-scale coherent structures, are effectively captured as ‘Q’s for the low curvature setup and it is observed that curvature plays a dominant role in influencing the size and volumes of these ‘Q’s. On the other hand, the vortex clusters are smaller in size when compared to the ‘Q’ structures. These vortex clusters are found to be taller in the case of η = 0.909, while the distribution of the lengths of these clusters is almost homogenous for both radius ratios.

  18. Ammonite zonation in condensed zone, middle Ozan formation (Taylor group, upper Cretaceous) in Northeast Texas

    SciTech Connect

    Echols, J.

    1984-04-01

    Recognition of condensed zones is important because they may be marker horizons that are useful in exploration. Such a zone is demonstrated by the occurrence of ammonites belonging to 12 species and 9 genera from the middle Ozan Formation (lower Taylor Marl) in northeast Texas. The 1-foot (0.3-m) thick bed of bioturbated glauconitic biomicrite contains many specimens of disarticulated vertebrates, molluscs, remanie' fossils (blackened phosphatic internal molds), and hiatus concretions. Four of 6 midcontinent ammonite range zones proposed by Cobban and others appear to be represented in the fauna, in ascending order, by Baculites aquilaensis Reeside, Delawarella delawarensis (Morton) (= zones of two unnamed species of Baculites), Baculites obtusus Meek, and Trachyscaphites spiniger porchi Adkins (=zones of Baculites mclearni and B. asperiformis). Young may be correct in assuming that the occurrence of Delawarella delawarensis and Baculites aquilaensis in the Ozan Formation may mean that rocks of the upper Austin Group and parts of the lower Taylor Group are the same age. If correlation with the midcontinent zonation is correct, then the sediments that formed the condensed zone slowly accumulated from 81 to 79 m.y. (mid early Campanian to early late Campanian). Several species of the fauna are preserved as both normal and remanie' fossils, indicating that members of these species lived in the area for an extended period of time, perhaps as a relict fauna. The fauna includes a mixture of cosmopolitan and endemic species (indicating open shelf environment) with several types of heteromorphs (indicating moderate water depths).

  19. Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya

    2016-11-01

    The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.

  20. Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-12-01

    We investigate the evolution and stability of a decaying magnetohydrodynamic Taylor-Green flow, using pseudospectral simulations with resolutions up to 20483. The chosen flow has been shown to result in a steep total energy spectrum with power law behavior k-2. We study the symmetry breaking of this flow by exciting perturbations of different amplitudes. It is shown that for any finite amplitude perturbation there is a high enough Reynolds number for which the perturbation will grow enough at the peak of dissipation rate resulting in a nonlinear feedback into the flow and subsequently break the Taylor-Green symmetries. In particular, we show that symmetry breaking at large scales occurs if the amplitude of the perturbation is σcrit˜Re-1 and at small scales occurs if σcrit˜Re-3/2. This symmetry breaking modifies the scaling laws of the energy spectra at the peak of dissipation rate away from the k-2 scaling and towards the classical k-5/3 and k-3/2 power laws.

  1. Three-Dimensional Single-Mode Nonlinear Ablative Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Yan, R.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2015-11-01

    The nonlinear evolution of the ablative Rayleigh-Taylor (ART) instability is studied in three dimensions for conditions relevant to inertial confinement fusion targets. The simulations are performed using our newly developed code ART3D and an astrophysical code AstroBEAR. The laser ablation can suppress the growth of the short-wavelength modes in the linear phase but may enhance their growth in the nonlinear phase because of the vortex-acceleration mechanism. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the bubble velocity grows faster than predicted in the classical 3-D theory. When compared to 2-D results, 3-D short-wavelength bubbles grow faster and do not reach saturation. The unbounded 3-D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes into the ablated plasma filling the bubble volume. A density plateau is observed inside a nonlinear ART bubble and the plateau density is higher for shorter-wavelength modes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Jessica Ann Ellis Gold Star Fathers Act of 2010

    THOMAS, 111th Congress

    Sen. Wyden, Ron [D-OR

    2010-07-26

    12/17/2010 By Senator Lieberman from Committee on Homeland Security and Governmental Affairs filed written report. Report No. 111-374. (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  3. Modified Taylor-Couette Flow in Multiply-Waisted Hourglass Geometries Simulations based upon Reaction-Diffusion Models

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Hou, Yu; Kowalski, Adam; Wiener, Richard

    2006-05-01

    The Reaction-Diffusion model predicted a period doubling cascade to chaos in a situation analagous Taylor- Couette flow with hourglass geometry. This cascade to chaos was discovered in the actual fluid flow experiments. We model Taylor-Couette flow in a cylindrical geometry with multiple waists of super-critical flow connected by regions of barely super-critical flow by corresponding Reaction-Diffusion models. We compare our results to the findings of an ongoing experimental program. H. Riecke and H.-G. Paap, Europhys. Lett. 14, 1235 (1991). Richard J. Wiener et al, Phys. Rev. E 55, 5489 (1997).

  4. Stability of force-free Taylor states in a new version of magnetic flux-averaged magnetohydrodynamics

    SciTech Connect

    Pfirsch, D.; Sudan, R.N.

    1996-01-01

    It is observed that the recently developed magnetic flux-averaged magnetohydrodynamics (AMHD) [Phys. Plasmas {bold 1}, 2488 (1994)] is incompatible with Taylor{close_quote}s theorem, which states that the lowest-energy state of force-free equilibria based on the conservation of the helicity integral is absolutely stable for vanishingly small resistivity. By a modification of the Lagrangian from which AMHD is derived, a modified version of AMHD that is compatible with Taylor{close_quote}s theorem is obtained. It also provides an energy principle for examining the linear instability of resistive equilibria, which has a great advantage over resistive MHD. {copyright} {ital 1996 American Institute of Physics.}

  5. [The Taylor spatial frame fixator. Soft-tissue distraction for post-traumatic varus deformities of the hindfoot].

    PubMed

    Gessmann, J; Seybold, D; Baecker, H; Muhr, G; Graf, M

    2009-02-01

    Despite adequate primary treatment many ankle fractures result in post-traumatic deformities and arthrosis. Revision mostly requires a multidirectional correction whereas internal fixation procedures are often not applicable due to soft tissue damage and the extent of deformity. The Taylor spatial frame enables simultaneous correction of multidirectional deformities through a virtual hinge using the same ideas of distraction osteogenesis as the Ilizarov fixator. The presented case demonstrates minimally invasive correction of a complex deformity of the ankle with the Taylor spatial frame fixator. Orthogonal alignment was achieved and a stabilizing tibiotalar arthrodesis was performed achieving a good functional and pain-free result.

  6. A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Moser, R. D.; Moin, P.; Leonard, A.

    1983-01-01

    A new spectral method for solving the incompressible Navier-Stokes equations in a plane channel and between concentric cylinders is presented. The method uses spectral expansions which inherently satisfy the boundary conditions and the continuity equation and yield banded matrices which are efficiently solved at each time step. In addition, the number of dependent variables is reduced, resulting in a reduction in computer memory requirements. Several test problems have been computed for the channel flow and for flow between concentric cylinders, including Taylor-Couette flow with axisymmetric Taylor vortices and wavy vortices. In all cases, agreement with available experimental and theoretical results is very good.

  7. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    SciTech Connect

    Villani, Mattia

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  8. Defense Support to Civil Authorities

    DTIC Science & Technology

    2008-05-22

    Response Authority and Other Military Assistance to Civil Authority ( MACA ) [on-line pamphlet], The Army Lawyer (Charlottesville, VA: Judge Advocate...City Bombing: Immediate Response Authority and Other Military Assistance to Civil Authority ( MACA ). The Army Lawyer. [Charlottesville, VA]: Judge

  9. Authors in Schools: Some Perspectives.

    ERIC Educational Resources Information Center

    Clark, Margaret

    An author's school visits can be, to a degree, part of an author's workplace depending on how many visits an author undertakes during a year. From the perspective of an author, the visits need to be fulfilling in terms of feeling valued and respected. From the school's point of view, it would appear that the visit is deemed a success if the author…

  10. Two source energy balance model to calculate E, T, and ET: Comparison of Priestly-Taylor and Penman-Monteith formulations and two time scaling methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two source energy balance (TSEB) model calculates the energy balance of the soil–canopy–atmosphere continuum, where turbulent fluxes are based on the Priestley–Taylor equation. The TSEB was revised recently using the Penman–Monteith equation to replace the Priestley–Taylor formulation, thus bett...

  11. The late-time dynamics of the single-mode Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Woodward, P.; Fryer, C.; Rockefeller, G.; Muthuraman, K.; Lin, P.-H.; Jayaraj, J.

    2012-07-01

    We report on numerical simulations of the detailed evolution of the single mode Rayleigh-Taylor [Lord Rayleigh, Scientific Papers II (Cambridge University Press, Cambridge, 1900), p. 200; G. I. Taylor, "The instability of liquid surfaces when accelerated in a direction perpendicular to their plane," Proc. R. Soc. London, Ser. A 201, 192 (1950), 10.1098/rspa.1950.0052; S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)] instability to late times and high aspect ratios. In contrast to established potential flow models that predict a terminal velocity and a constant Froude number at low Atwood numbers, we observe a complex sequence of events that can be summarized in four stages: I. Exponential growth of imposed perturbations, II. Saturation to terminal velocity, III. Reacceleration to a higher Froude number, and IV. Chaotic mixing. The observed reacceleration away from the Froude number predicted by potential flow theory is attributed to the appearance of secondary Kelvin-Helmholtz structures, and described with a modification to the potential flow model proposed by Betti and Sanz [R. Betti and J. Sanz, "Bubble acceleration in the ablative Rayleigh-Taylor instability," Phys. Rev. Lett. 97, 205002 (2006), 10.1103/PhysRevLett.97.205002]. The secondary KH instability is in turn sensitive to several parameters, and can be suppressed at large Atwood numbers, as well as viscosity (physical or numerical), with the bubble/spike velocity in each case reverting to the potential flow value. Our simulations delineate the change in dynamics of the primary and secondary instabilities due to changes in these flow parameters. When the flow is allowed to evolve to late times, further instability is observed, resulting in chaotic mixing which is quantified here. The increased atomic mixing due to small-scale structures results in a dramatic drop in the late-time Froude number. Spike behavior resembles bubbles at low A, while for large A

  12. The Hydrology and Biogeochemistry of Cryoconite Holes in Taylor Valley, Antarctica: Evolution Over an Ablation Season

    NASA Astrophysics Data System (ADS)

    Bagshaw, E. A.; Tranter, M.; Fountain, A. G.; Basagic, H.; Welch, K. A.; Lyons, W. B.

    2006-12-01

    Cryoconite holes are small, cylindrical depressions present on the surface of glacier ablation zones throughout the world. Solar heating of low albedo organic and inorganic debris blown onto the ice surface forms a cryoconite hole, often water-filled and occasionally ice lidded, containing rock dust and organic matter. They are hydrologically connected by supraglacial and englacial flowpaths. Cryoconite holes in the McMurdo Dry Valleys, East Antarctica, are unique in their potential to remain ice-lidded and isolated from the surrounding drainage system for several years. In the polar desert of the Dry Valleys, availability of liquid water is a first order control on biological activity. Cryoconite holes are significant as a water and potential nutrient source to downstream ecosystems in this nutrient-poor environment. Here, we document the biogeochemical and hydrological evolution of cryoconite holes, predominantly on Canada Glacier, in Taylor Valley over an ablation season. Previous studies of Dry Valley cryoconite holes have been based on a limited number of samples taken at different times during the ablation season. This study attempts a comprehensive survey of the biogeochemical evolution of a larger suite of holes throughout an entire ablation season, from pre-thaw through to late season freeze. 160 cryoconite holes were sampled on 3 polar alpine glaciers in Taylor Valley during the 2005/6 ablation season. Samples were collected in both frozen and partially melted phases, and analysed for major ions, nutrients and dissolved organic carbon content. Samples of glacier ice and supraglacial runoff were also collected. Chemical trends in the composition of cryoconite holes, glacier ice and supraglacial runoff are used to make the following assertions about the hydrology and biogeochemical properties of cryoconite holes. The degree of hydrologic isolation is a key control on the chemical properties of the cryoconite hole, and on its potential as a solute source

  13. Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Hurtado, AndréS. F.; Poveda, GermáN.

    2009-05-01

    The space-time linear and global dependence of tropical rainfall in an intra-Andean valley of Colombia is estimated using 15 min of resolution data, recorded by 18 raingauges, through correlation (ρ) and mutual information (MI) analysis of the entire record (1998-2006) and at seasonal and interannual (ENSO) timescales. Spatial dependence analyses are developed for increasing (1) time aggregation intervals T = 15 min to T = 24 hours, and (2) time lags τ = 15 min to τ = 120 min. Results for (1) indicate that both spatial MI and ρ decay as I(λ, T) = A(T)λ-α(T), but also that A(T) = aTμ and α(T) = bT-ω. Maps of MI and ρ for increasing values of T are discussed in terms of geographical and few known meteorological features. Regarding (2), exponential functions fit better the spatial decay rates of both MI and ρ, such that I(λ, τ) = F(τ)exp[-ϕ(τ)λ], with F(τ) = exp[-dτ], and ϕ(τ) = j-kτ. Maps of MI and ρ for increasing values of τ suggest that MI may be better suited than ρ to capture highly localized singularities of tropical mountain rainfall. Estimated power laws are highly dependent on both the seasonal cycle and ENSO phases, consistently with temporal dynamics of rainfall at both timescales. We tested the validity of Taylor hypothesis ρ(0, τ) = ρ(Uτ, 0) and found it rejected in 11 of 18 raingauges, which prompted us to introduce a global Taylor hypothesis using the space-time MIs as I(0, τ) = I(Uτ, 0). Results indicate that power laws characterize the decay of both the temporal I(0, τ) and the space-transformed I(λ, 0) with respect to τ. A rigorous statistical test indicates that the global Taylor hypothesis is valid in 14 of 18 raingauges within the 20-180 min time range.

  14. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event

    NASA Astrophysics Data System (ADS)

    Lyons, W. Berry; Welch, Kathleen A.; Carey, Anne E.; Doran, Peter T.; Wall, Diana H.; Virginia, Ross A.; Fountain, Andrew G.; Csathó, Bea M.; Tremper, Catherine M.

    The 2001/02 austral summer was the warmest summer on record in Taylor Valley, Antarctica, (˜78° S) since continuous records of temperature began in 1985. The highest stream-flows ever recorded in the Onyx River, Wright Valley, were also recorded that year (the record goes back to the 1969/70 austral summer). In early January 2002, a groundwater seep was observed flowing in the southwest portion of Taylor Valley. This flow has been named 'Wormherder Creek' (WHC) and represents an unusual event, probably occurring on a decadal time-scale. The physical characteristics of this feature suggest that it may have flowed at other times in the past. Other groundwater seeps, emanating from the north-facing slope of Taylor Valley, were also observed. Little work has been done previously on these very ephemeral seeps, and the source of water is unknown. These features, resembling recently described features on Mars, represent the melting of subsurface ice. The Martian features have been interpreted as groundwater seeps. In this paper we compare the chemistry of the WHC groundwater seep to that of the surrounding streams that flow every austral summer. The total dissolved solids content of WHC was ˜6 times greater than that of some nearby streams. The Na : Cl and SO4 : Cl ratios of the seep waters are higher than those of the streams, but the Mg : Cl and HCO3 : Cl ratios are lower, indicating different sources of solutes to the seeps compared to the streams. The enrichment of Na and SO4 relative to Cl may suggest significant dissolution of mirabilite within the previously unwetted soil. The proposed occurrence of abundant mirabilite in higher-elevation soils of the dry valley region agrees with geochemical models developed, but not tested, in the late 1970s. The geochemical data demonstrate that these seeps could be important in 'rinsing' the soils by dissolving and redistributing the long-term accumulation of salts, and perhaps improving habitat suitability for soil biota

  15. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  16. Scientific and Artistic Authority

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.

    2012-12-01

    The differences and similarities between science and art are commonly discussed in various disciplines, e.g. collective versus individual, truth versus imagination, fact versus fiction, and more. Both art and science involve communication. Both artists and scientists have responsibilities of integrity in the arena of intellectual property. However, an artist has a primary responsibility to his/her personal artistic vision and craft. A scientist has a very clearly defined responsibility to scientific method as a collective practice, i.e. generally accepted scientific knowledge, norms of data collection and analysis as well as norms of communication. In presenting a work of art to an audience, it is accepted that different people will interpret the art through different lens. In science communication, we hope that the audience's understanding is in line with scientific interpretation. When science and art meet, how do we come to an understanding of what the intended message should be and how it should or must be received. Accuracy in fact is important in science, as is accuracy of the message whether it is a process, model, image or story. How do we mediate this tension in collaborative projects? How do we celebrate the artistic nature of an artwork based on science when there is tension between the artistic merit and the scientific content? Authority of the artist, scientist, and organization must be satisfied.

  17. Gender, job authority, and depression.

    PubMed

    Pudrovska, Tetyana; Karraker, Amelia

    2014-12-01

    Using the 1957-2004 data from the Wisconsin Longitudinal Study, we explore the effect of job authority in 1993 (at age 54) on the change in depressive symptoms between 1993 and 2004 (age 65) among white men and women. Within-gender comparisons indicate that women with job authority (defined as control over others' work) exhibit more depressive symptoms than women without job authority, whereas men in authority positions are overall less depressed than men without job authority. Between-gender comparisons reveal that although women have higher depression than men, women's disadvantage in depression is significantly greater among individuals with job authority than without job authority. We argue that macro- and meso-processes of gender stratification create a workplace in which exercising job authority exposes women to interpersonal stressors that undermine health benefits of job authority. Our study highlights how the cultural meanings of masculinities and femininities attenuate or amplify health-promoting resources of socioeconomic advantage.

  18. A Mind-Body Problem? A Reply to Lisa Taylor's Article "Canadian Culture," Cultural Difference and ESL Pedagogy.

    ERIC Educational Resources Information Center

    Courchene, Robert

    1997-01-01

    Comments on the distinction that Lisa Taylor, in a previous article, makes between "cultural diversity" and "cultural difference." The article notes that when new Canadians arrive in Canada, their point of reference is their own culture. The journey for new Canadians toward cultural integration into Canadian society is a…

  19. Looking for the Women in Baron and Taylor's (1969) "Educational Administration and the Social Sciences"

    ERIC Educational Resources Information Center

    Fuller, Kay

    2014-01-01

    A search for women in Baron and Taylor's (1969) "Educational administration and the social sciences" [London: The Athlone Press] using feminist poststructural discourse analysis (FPDA) has revealed a changing discourse about gendered educational administration over the course of 50 years. Whilst few women are featured in the text…

  20. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.