Sample records for autocorrelation

  1. Bayesian Estimates of Autocorrelations in Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J.

    2012-01-01

    Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…

  2. Extracting the time scales of conformational dynamics from single-molecule single-photon fluorescence statistics.

    PubMed

    Shang, Jianyuan; Geva, Eitan

    2007-04-26

    The quenching rate of a fluorophore attached to a macromolecule can be rather sensitive to its conformational state. The decay of the corresponding fluorescence lifetime autocorrelation function can therefore provide unique information on the time scales of conformational dynamics. The conventional way of measuring the fluorescence lifetime autocorrelation function involves evaluating it from the distribution of delay times between photoexcitation and photon emission. However, the time resolution of this procedure is limited by the time window required for collecting enough photons in order to establish this distribution with sufficient signal-to-noise ratio. Yang and Xie have recently proposed an approach for improving the time resolution, which is based on the argument that the autocorrelation function of the delay time between photoexcitation and photon emission is proportional to the autocorrelation function of the square of the fluorescence lifetime [Yang, H.; Xie, X. S. J. Chem. Phys. 2002, 117, 10965]. In this paper, we show that the delay-time autocorrelation function is equal to the autocorrelation function of the square of the fluorescence lifetime divided by the autocorrelation function of the fluorescence lifetime. We examine the conditions under which the delay-time autocorrelation function is approximately proportional to the autocorrelation function of the square of the fluorescence lifetime. We also investigate the correlation between the decay of the delay-time autocorrelation function and the time scales of conformational dynamics. The results are demonstrated via applications to a two-state model and an off-lattice model of a polypeptide.

  3. Autocorrelation of the susceptible-infected-susceptible process on networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Van Mieghem, Piet

    2018-06-01

    In this paper, we focus on the autocorrelation of the susceptible-infected-susceptible (SIS) process on networks. The N -intertwined mean-field approximation (NIMFA) is applied to calculate the autocorrelation properties of the exact SIS process. We derive the autocorrelation of the infection state of each node and the fraction of infected nodes both in the steady and transient states as functions of the infection probabilities of nodes. Moreover, we show that the autocorrelation can be used to estimate the infection and curing rates of the SIS process. The theoretical results are compared with the simulation of the exact SIS process. Our work fully utilizes the potential of the mean-field method and shows that NIMFA can indeed capture the autocorrelation properties of the exact SIS process.

  4. Inference for local autocorrelations in locally stationary models.

    PubMed

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  5. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined from a closed system is shown to improve through the application of additional autocorrelation lags in an overdetermined system. This improvement is greater in the narrowband spectrum region where the information is spread over more lags of the autocorrelation function. The number of lags needed in the overdetermined system is a function of the spectral width, the number of terms in the series expansion, the number of samples used in estimating the autocorrelation function, and the signal-to-noise ratio. The overdetermined system provides a robustness to the chosen variance estimator by expanding the region of spectral widths and signal-to-noise ratios over which the estimator can perform as compared to the closed system.

  6. Characteristic measurement for femtosecond laser pulses using a GaAs PIN photodiode as a two-photon photovoltaic receiver

    NASA Astrophysics Data System (ADS)

    Chen, Junbao; Xia, Wei; Wang, Ming

    2017-06-01

    Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.

  7. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  8. Impact of Autocorrelation on Functional Connectivity

    PubMed Central

    Arbabshirani, Mohammad R.; Damaraju, Eswar; Phlypo, Ronald; Plis, Sergey; Allen, Elena; Ma, Sai; Mathalon, Daniel; Preda, Adrian; Vaidya, Jatin G.; Adali, Tülay; Calhoun, Vince D.

    2014-01-01

    Although the impact of serial correlation (autocorrelation) in residuals of general linear models for fMRI time-series has been studied extensively, the effect of autocorrelation on functional connectivity studies has been largely neglected until recently. Some recent studies based on results from economics have questioned the conventional estimation of functional connectivity and argue that not correcting for autocorrelation in fMRI time-series results in “spurious” correlation coefficients. In this paper, first we assess the effect of autocorrelation on Pearson correlation coefficient through theoretical approximation and simulation. Then we present this effect on real fMRI data. To our knowledge this is the first work comprehensively investigating the effect of autocorrelation on functional connectivity estimates. Our results show that although FC values are altered, even following correction for autocorrelation, results of hypothesis testing on FC values remain very similar to those before correction. In real data we show this is true for main effects and also for group difference testing between healthy controls and schizophrenia patients. We further discuss model order selection in the context of autoregressive processes, effects of frequency filtering and propose a preprocessing pipeline for connectivity studies. PMID:25072392

  9. ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY

    EPA Science Inventory

    Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...

  10. Time-Frequency Based Instantaneous Frequency Estimation of Sparse Signals from an Incomplete Set of Samples

    DTIC Science & Technology

    2014-06-17

    100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with

  11. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  12. Intrinsic autocorrelation time of picoseconds for thermal noise in water.

    PubMed

    Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping

    2014-10-02

    Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.

  13. Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Zawawi, N. I.; Gan, Z. F.; Nor, M. E.

    2018-04-01

    Existing of autocorrelation will bring a significant effect on the performance and accuracy of process control if the problem does not handle carefully. When dealing with autocorrelated process, Box-Jenkins method will be preferred because of the popularity. However, the computation of Box-Jenkins method is too complicated and challenging which cause of time-consuming. Therefore, an alternative method which known as Geometric Brownian Motion (GBM) is introduced to monitor the autocorrelated process. One real case of furnace temperature data is conducted to compare the performance of Box-Jenkins and GBM methods in monitoring autocorrelation process. Both methods give the same results in terms of model accuracy and monitoring process control. Yet, GBM is superior compared to Box-Jenkins method due to its simplicity and practically with shorter computational time.

  14. Imaging the Lower Crust and Moho Beneath Long Beach, CA Using Autocorrelations

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.

    2017-12-01

    Three-dimensional images of the lower crust and Moho in a 10x10 km region beneath Long Beach, CA are constructed from autocorrelations of ambient noise. The results show the Moho at a depth of 15 km at the coast and dipping at 45 degrees inland to a depth of 25 km. The shape of the Moho interface is irregular in both the coast perpendicular and parallel directions. The lower crust appears as a zone of enhanced reflectivity with numerous small-scale structures. The autocorrelations are constructed from virtual source gathers that were computed from the dense Long Beach array that were used in the Lin et al (2013) study. All near zero-offset traces within a 200 m disk are stacked to produce a single autocorrelation at that point. The stack typically is over 50-60 traces. To convert the auto correlation to reflectivity as in Claerbout (1968), the noise source autocorrelation, which is estimated as the average of all autocorrelations is subtracted from each trace. The subsurface image is then constructed with a 0.1-2 Hz filter and AGC scaling. The main features of the image are confirmed with broadband receiver functions from the LASSIE survey (Ma et al, 2016). The use of stacked autocorrelations extends ambient noise into the lower crust.

  15. MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts

    ERIC Educational Resources Information Center

    Jovanovic Dolecek, G.

    2012-01-01

    An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…

  16. Spatial autocorrelation in growth of undisturbed natural pine stands across Georgia

    Treesearch

    Raymond L. Czaplewski; Robin M. Reich; William A. Bechtold

    1994-01-01

    Moran's I statistic measures the spatial autocorrelation in a random variable measured at discrete locations in space. Permutation procedures test the null hypothesis that the observed Moran's I value is no greater than that expected by chance. The spatial autocorrelation of gross basal area increment is analyzed for undisturbed, naturally regenerated stands...

  17. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  18. Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    2013-01-01

    We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less

  19. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  20. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

    Treesearch

    Patrick C. Tobin

    2004-01-01

    The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...

  1. Spectra of empirical autocorrelation matrices: A random-matrix-theory-inspired perspective

    NASA Astrophysics Data System (ADS)

    Jamali, Tayeb; Jafari, G. R.

    2015-07-01

    We construct an autocorrelation matrix of a time series and analyze it based on the random-matrix theory (RMT) approach. The autocorrelation matrix is capable of extracting information which is not easily accessible by the direct analysis of the autocorrelation function. In order to provide a precise conclusion based on the information extracted from the autocorrelation matrix, the results must be first evaluated. In other words they need to be compared with some sort of criterion to provide a basis for the most suitable and applicable conclusions. In the context of the present study, the criterion is selected to be the well-known fractional Gaussian noise (fGn). We illustrate the applicability of our method in the context of stock markets. For the former, despite the non-Gaussianity in returns of the stock markets, a remarkable agreement with the fGn is achieved.

  2. Sources of variation in Landsat autocorrelation

    NASA Technical Reports Server (NTRS)

    Craig, R. G.; Labovitz, M. L.

    1980-01-01

    Analysis of sixty-four scan lines representing diverse conditions across satellites, channels, scanners, locations and cloud cover confirms that Landsat data are autocorrelated and consistently follow an Arima (1,0,1) pattern. The AR parameter varies significantly with location and the MA coefficient with cloud cover. Maximum likelihood classification functions are considerably in error unless this autocorrelation is compensated for in sampling.

  3. Parallel auto-correlative statistics with VTK.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  4. False alarms: How early warning signals falsely predict abrupt sea ice loss

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; Eisenman, Ian

    2016-04-01

    Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.

  5. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  6. Optimal periodic binary codes of lengths 28 to 64

    NASA Technical Reports Server (NTRS)

    Tyler, S.; Keston, R.

    1980-01-01

    Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.

  7. The use of spatio-temporal correlation to forecast critical transitions

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.

  8. Inferential Precision in Single-Case Time-Series Data Streams: How Well Does the EM Procedure Perform When Missing Observations Occur in Autocorrelated Data?

    PubMed Central

    Smith, Justin D.; Borckardt, Jeffrey J.; Nash, Michael R.

    2013-01-01

    The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977).This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed. PMID:22697454

  9. Effects of autocorrelation upon LANDSAT classification accuracy. [Richmond, Virginia and Denver, Colorado

    NASA Technical Reports Server (NTRS)

    Craig, R. G. (Principal Investigator)

    1983-01-01

    Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.

  10. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  11. Calling depths of baleen whales from single sensor data: development of an autocorrelation method using multipath localization.

    PubMed

    Valtierra, Robert D; Glynn Holt, R; Cholewiak, Danielle; Van Parijs, Sofie M

    2013-09-01

    Multipath localization techniques have not previously been applied to baleen whale vocalizations due to difficulties in application to tonal vocalizations. Here it is shown that an autocorrelation method coupled with the direct reflected time difference of arrival localization technique can successfully resolve location information. A derivation was made to model the autocorrelation of a direct signal and its overlapping reflections to illustrate that an autocorrelation may be used to extract reflection information from longer duration signals containing a frequency sweep, such as some calls produced by baleen whales. An analysis was performed to characterize the difference in behavior of the autocorrelation when applied to call types with varying parameters (sweep rate, call duration). The method's feasibility was tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The method was then used to estimate the depth and range of a single North Atlantic right whale (Eubalaena glacialis) and humpback whale (Megaptera novaeangliae) from two separate experiments.

  12. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  13. Early Warning Signals for Abrupt Change Raise False Alarm During Sea Ice Loss

    NASA Astrophysics Data System (ADS)

    Wagner, T. J. W.; Eisenman, I.

    2015-12-01

    Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here, we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase with diminishing sea ice cover in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance in the model when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.

  14. Break point on the auto-correlation function of Elsässer variable z- in the super-Alfvénic solar wind fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    It has been a longstanding debate on what the nature of Elsässer variables z- observed in the Alfvénic solar wind is. It is widely believed that z- represents inward propagating Alfvén waves and undergoes non-linear interaction with z+ to produce energy cascade. However, z- variations sometimes show nature of convective structures. Here we present a new data analysis on z- autocorrelation functions to get some definite information on its nature. We find that there is usually a break point on the z- auto-correlation function when the fluctuations show nearly pure Alfvénicity. The break point observed by Helios-2 spacecraft near 0.3 AU is at the first time lag ( 81 s), where the autocorrelation coefficient has the value less than that at zero-time lag by a factor of more than 0.4. The autocorrelation function breaks also appear in the WIND observations near 1 AU. The z- autocorrelation function is separated by the break into two parts: fast decreasing part and slowly decreasing part, which cannot be described in a whole by an exponential formula. The breaks in the z- autocorrelation function may represent that the z- time series are composed of high-frequency white noise and low-frequency apparent structures, which correspond to the flat and steep parts of the function, respectively. This explanation is supported by a simple test with a superposition of an artificial random data series and a smoothed random data series. Since in many cases z- autocorrelation functions do not decrease very quickly at large time lag and cannot be considered as the Lanczos type, no reliable value for correlation-time can be derived. Our results showed that in these cases with high Alfvénicity, z- should not be considered as inward-propagating wave. The power-law spectrum of z+ should be made by fluid turbulence cascade process presented by Kolmogorov.

  15. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  16. The Azimuth Structure of Nuclear Collisions — I

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Kettler, David T.

    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.

  17. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  18. Monitoring autocorrelated process: A geometric Brownian motion process approach

    NASA Astrophysics Data System (ADS)

    Li, Lee Siaw; Djauhari, Maman A.

    2013-09-01

    Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.

  19. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  20. Inferential precision in single-case time-series data streams: how well does the em procedure perform when missing observations occur in autocorrelated data?

    PubMed

    Smith, Justin D; Borckardt, Jeffrey J; Nash, Michael R

    2012-09-01

    The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977). This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed. Copyright © 2011. Published by Elsevier Ltd.

  1. New approaches for calculating Moran's index of spatial autocorrelation.

    PubMed

    Chen, Yanguang

    2013-01-01

    Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran's index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran's index. Moran's scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran's index and Geary's coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran's index and Geary's coefficient will be clarified and defined. One of theoretical findings is that Moran's index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation.

  2. Asymmetric multiscale multifractal analysis of wind speed signals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonei; Zeng, Ming; Meng, Qinghao

    We develop a new method called asymmetric multiscale multifractal analysis (A-MMA) to explore the multifractality and asymmetric autocorrelations of the signals with a variable scale range. Three numerical experiments are provided to demonstrate the effectiveness of our approach. Then, the proposed method is applied to investigate multifractality and asymmetric autocorrelations of difference sequences between wind speed fluctuations with uptrends or downtrends. The results show that these sequences appear to be far more complex and contain abundant fractal dynamics information. Through analyzing the Hurst surfaces of nine difference sequences, we found that all series exhibit multifractal properties and multiscale structures. Meanwhile, the asymmetric autocorrelations are observed in all variable scale ranges and the asymmetry results are of good consistency within a certain spatial range. The sources of multifractality and asymmetry in nine difference series are further discussed using the corresponding shuffled series and surrogate series. We conclude that the multifractality of these series is due to both long-range autocorrelation and broad probability density function, but the major source of multifractality is long-range autocorrelation, and the source of asymmetry is affected by the spatial distance.

  3. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than adequate for the majority of sedimentological applications, especially considering that the autocorrelation technique is estimated to be at least 100 times faster than traditional methods.

  4. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  5. Decorrelation scales for Arctic Ocean hydrography - Part I: Amerasian Basin

    NASA Astrophysics Data System (ADS)

    Sumata, Hiroshi; Kauker, Frank; Karcher, Michael; Rabe, Benjamin; Timmermans, Mary-Louise; Behrendt, Axel; Gerdes, Rüdiger; Schauer, Ursula; Shimada, Koji; Cho, Kyoung-Ho; Kikuchi, Takashi

    2018-03-01

    Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150-200 km in space and 100-300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.

  6. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications.

    PubMed

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E; Vishwanath, Karthik

    2015-08-12

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.

  7. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications

    PubMed Central

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E.; Vishwanath, Karthik

    2015-01-01

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications. PMID:26274961

  8. New Approaches for Calculating Moran’s Index of Spatial Autocorrelation

    PubMed Central

    Chen, Yanguang

    2013-01-01

    Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran’s index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran’s index. Moran’s scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran’s index and Geary’s coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran’s index and Geary’s coefficient will be clarified and defined. One of theoretical findings is that Moran’s index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation. PMID:23874592

  9. Analysis of data from NASA B-57B gust gradient program

    NASA Technical Reports Server (NTRS)

    Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.

    1985-01-01

    Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.

  10. Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data

    PubMed Central

    Deblauwe, Vincent; Kennel, Pol; Couteron, Pierre

    2012-01-01

    Background Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson's r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data. Methodology/Principal Findings The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods. Conclusions/Significance The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material. PMID:23144961

  11. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  12. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, G.; Knapmeyer-Endrun, B.

    2018-02-01

    We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.

  13. Autocorrelation of location estimates and the analysis of radiotracking data

    USGS Publications Warehouse

    Otis, D.L.; White, Gary C.

    1999-01-01

    The wildlife literature has been contradictory about the importance of autocorrelation in radiotracking data used for home range estimation and hypothesis tests of habitat selection. By definition, the concept of a home range involves autocorrelated movements, but estimates or hypothesis tests based on sampling designs that predefine a time frame of interest, and that generate representative samples of an animal's movement during this time frame, should not be affected by length of the sampling interval and autocorrelation. Intensive sampling of the individual's home range and habitat use during the time frame of the study leads to improved estimates for the individual, but use of location estimates as the sample unit to compare across animals is pseudoreplication. We therefore recommend against use of habitat selection analysis techniques that use locations instead of individuals as the sample unit. We offer a general outline for sampling designs for radiotracking studies.

  14. Assessing the significance of global and local correlations under spatial autocorrelation: a nonparametric approach.

    PubMed

    Viladomat, Júlia; Mazumder, Rahul; McInturff, Alex; McCauley, Douglas J; Hastie, Trevor

    2014-06-01

    We propose a method to test the correlation of two random fields when they are both spatially autocorrelated. In this scenario, the assumption of independence for the pair of observations in the standard test does not hold, and as a result we reject in many cases where there is no effect (the precision of the null distribution is overestimated). Our method recovers the null distribution taking into account the autocorrelation. It uses Monte-Carlo methods, and focuses on permuting, and then smoothing and scaling one of the variables to destroy the correlation with the other, while maintaining at the same time the initial autocorrelation. With this simulation model, any test based on the independence of two (or more) random fields can be constructed. This research was motivated by a project in biodiversity and conservation in the Biology Department at Stanford University. © 2014, The International Biometric Society.

  15. General simulation algorithm for autocorrelated binary processes.

    PubMed

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  16. Method and apparatus for in-situ characterization of energy storage and energy conversion devices

    DOEpatents

    Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT

    2010-03-09

    Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.

  17. Data Analysis Methods for Synthetic Polymer Mass Spectrometry: Autocorrelation

    PubMed Central

    Wallace, William E.; Guttman, Charles M.

    2002-01-01

    Autocorrelation is shown to be useful in describing the periodic patterns found in high- resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time-of-flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function. PMID:27446716

  18. Lévy flights, autocorrelation, and slow convergence

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2004-06-01

    Previously we have put forward that the sluggish convergence of truncated Lévy flights to a Gaussian (Phys. Rev. Lett. 73 (1994) 2946) together with the scaling power laws in their probability of return to the origin (Nature 376 (1995) 46) can be explained by autocorrelation in data (Physica A 323 (2003) 601; Phys. Lett. A 315 (2003) 51). A purpose of this paper is to improve and enlarge the scope of such a result. The role of the autocorrelations in the convergence process as well as the problem of establishing the distance of a given distribution to the Gaussian are analyzed in greater detail. We show that whereas power laws in the second moment can still be explained by linear correlation of pairs, sluggish convergence can now emerge from nonlinear autocorrelations. Our approach is exemplified with data from the British pound-US dollar exchange rate.

  19. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less

  20. DS/LPI autocorrelation detection in noise plus random-tone interference. [Direct Sequence Low-Probabilty of Intercept

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Polydoros, A.

    1988-01-01

    The authors present and analyze a frequency-noncoherent two-lag autocorrelation statistic for the wideband detection of random BPSK signals in noise-plus-random-multitone interference. It is shown that this detector is quite robust to the presence or absence of interference and its specific parameter values, contrary to the case of an energy detector. The rule assumes knowledge of the data rate and the active scenario under H0. It is concluded that the real-time autocorrelation domain and its samples (lags) are a viable approach for detecting random signals in dense environments.

  1. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  2. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  3. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  4. Effect of the spatial autocorrelation of empty sites on the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Li; Hou, Dongshuang

    2016-02-01

    An evolutionary game model is constructed to investigate the spatial autocorrelation of empty sites on the evolution of cooperation. Each individual is assumed to imitate the strategy of the one who scores the highest in its neighborhood including itself. Simulation results illustrate that the evolutionary dynamics based on the Prisoner's Dilemma game (PD) depends severely on the initial conditions, while the Snowdrift game (SD) is hardly affected by that. A high degree of autocorrelation of empty sites is beneficial for the evolution of cooperation in the PD, whereas it shows diversification effects depending on the parameter of temptation to defect in the SD. Moreover, for the repeated game with three strategies, 'always defect' (ALLD), 'tit-for-tat' (TFT), and 'always cooperate' (ALLC), simulations reveal that an amazing evolutionary diversity appears for varying of parameters of the temptation to defect and the probability of playing in the next round of the game. The spatial autocorrelation of empty sites can have profound effects on evolutionary dynamics (equilibrium and oscillation) and spatial distribution.

  5. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  6. Performance of signal-to-noise ratio estimation for scanning electron microscope using autocorrelation Levinson-Durbin recursion model.

    PubMed

    Sim, K S; Lim, M S; Yeap, Z X

    2016-07-01

    A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  7. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  8. Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics.

    PubMed

    Hoover, Brian G; Gamiz, Victor L

    2006-02-01

    The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.

  9. Determination of modulation transfer function of a printer by measuring the autocorrelation of the transmission function of a printed Ronchi grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madanipour, Khosro; Tavassoly, Mohammad T

    2009-02-01

    We show theoretically and verify experimentally that the modulation transfer function (MTF) of a printing system can be determined by measuring the autocorrelation of a printed Ronchi grating. In practice, two similar Ronchi gratings are printed on two transparencies and the transparencies are superimposed with parallel grating lines. Then, the gratings are uniformly illuminated and the transmitted light from a large section is measured versus the displacement of one grating with respect to the other in a grating pitch interval. This measurement provides the required autocorrelation function for determination of the MTF.

  10. Hydrodynamics of confined colloidal fluids in two dimensions

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2009-05-01

    We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.

  11. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  12. Autocorrelations of stellar light and mass at z˜ 0 and ˜1: from SDSS to DEEP2

    NASA Astrophysics Data System (ADS)

    Li, Cheng; White, Simon D. M.; Chen, Yanmei; Coil, Alison L.; Davis, Marc; De Lucia, Gabriella; Guo, Qi; Jing, Y. P.; Kauffmann, Guinevere; Willmer, Christopher N. A.; Zhang, Wei

    2012-01-01

    We present measurements of projected autocorrelation functions wp(rp) for the stellar mass of galaxies and for their light in the U, B and V bands, using data from the third data release of the DEEP2 Galaxy Redshift Survey and the final data release of the Sloan Digital Sky Survey (SDSS). We investigate the clustering bias of stellar mass and light by comparing these to projected autocorrelations of dark matter estimated from the Millennium Simulations (MS) at z= 1 and 0.07, the median redshifts of our galaxy samples. All of the autocorrelation and bias functions show systematic trends with spatial scale and waveband which are impressively similar at the two redshifts. This shows that the well-established environmental dependence of stellar populations in the local Universe is already in place at z= 1. The recent MS-based galaxy formation simulation of Guo et al. reproduces the scale-dependent clustering of luminosity to an accuracy better than 30 per cent in all bands and at both redshifts, but substantially overpredicts mass autocorrelations at separations below about 2 Mpc. Further comparison of the shapes of our stellar mass bias functions with those predicted by the model suggests that both the SDSS and DEEP2 data prefer a fluctuation amplitude of σ8˜ 0.8 rather than the σ8= 0.9 assumed by the MS.

  13. The Generalized Multilevel Facets Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Hung, Lai-Fa; Wang, Wen-Chung

    2012-01-01

    In the human sciences, ability tests or psychological inventories are often repeatedly conducted to measure growth. Standard item response models do not take into account possible autocorrelation in longitudinal data. In this study, the authors propose an item response model to account for autocorrelation. The proposed three-level model consists…

  14. Exploring Online Learning Data Using Fractal Dimensions. Research Report. ETS RR-17-15

    ERIC Educational Resources Information Center

    Guo, Hongwen

    2017-01-01

    Data collected from online learning and tutoring systems for individual students showed strong autocorrelation or dependence because of content connection, knowledge-based dependency, or persistence of learning behavior. When the response data show little dependence or negative autocorrelations for individual students, it is suspected that…

  15. VizieR Online Data Catalog: Molecular clumps in W51 giant molecular cloud (Parsons+, 2012)

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Thompson, M. A.; Clark, J. S.; Chrysostomou, A.

    2013-04-01

    The W51 GMC was mapped using the Heterodyne Array Receiver Programme (HARP) receiver with the back-end digital autocorrelator spectrometer Auto-Correlation Spectral Imaging System (ACSIS) on the James Clerk Maxwell Telescope (JCMT). Data were taken in 2008 May. (2 data files).

  16. Spatial Autocorrelation And Autoregressive Models In Ecology

    Treesearch

    Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb

    2003-01-01

    Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...

  17. Investment Dynamics with Natural Expectations.

    PubMed

    Fuster, Andreas; Hebert, Benjamin; Laibson, David

    2010-01-01

    We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility.

  18. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  19. Noise-tolerant instantaneous heart rate and R-peak detection using short-term autocorrelation for wearable healthcare systems.

    PubMed

    Fujii, Takahide; Nakano, Masanao; Yamashita, Ken; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2013-01-01

    This paper describes a robust method of Instantaneous Heart Rate (IHR) and R-peak detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the R-wave interval. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable bio-signal monitoring systems, noise increases the incidence of misdetection and false detection of R-peaks. To prevent incorrect detection, we introduce a short-term autocorrelation (STAC) technique and a small-window autocorrelation (SWAC) technique, which leverages the similarity of QRS complex waveforms. Simulation results show that the proposed method improves the noise tolerance of R-peak detection.

  20. Investment Dynamics with Natural Expectations*

    PubMed Central

    Fuster, Andreas; Hebert, Benjamin; Laibson, David

    2012-01-01

    We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility. PMID:23243469

  1. 15 pixels digital autocorrelation spectrometer system

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Kim, Hyo-Ryung; Kim, Kwang-Dong; Chung, Mun-Hee; Timoc, C.

    2006-06-01

    In this paper describes the system configuration and the some performance test results of the 15 pixels digital autocorrelation spectrometer to be used at the Taeduk Radio Astronomy Observatory (TRAO) of Korea. This autocorrelation spectrometer instrument enclosed in a 3-slot VXI module and controlled via a USB port by a backend PC. This spectrometer system consists of the 4 band-pass filters unit, the digitizer, the 512 lags correlator, the clock distribution unit, and USB controller. And here we describe the frequency accuracy and the root-mean-square noise characteristic of this spectrometer. After some calibration procedure, this spectrometer can be use as the back-end system at TRAO for the 3x5 focal plane array receivers.

  2. A general statistical test for correlations in a finite-length time series.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-06-07

    The statistical properties of the autocorrelation function from a time series composed of independently and identically distributed stochastic variables has been studied. Analytical expressions for the autocorrelation function's variance have been derived. It has been found that two common ways of calculating the autocorrelation, moving-average and Fourier transform, exhibit different uncertainty characteristics. For periodic time series, the Fourier transform method is preferred because it gives smaller uncertainties that are uniform through all time lags. Based on these analytical results, a statistically robust method has been proposed to test the existence of correlations in a time series. The statistical test is verified by computer simulations and an application to single-molecule fluorescence spectroscopy is discussed.

  3. Single-channel autocorrelation functions: the effects of time interval omission.

    PubMed Central

    Ball, F G; Sansom, M S

    1988-01-01

    We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is identical to that which would be obtained if time interval omission was absent. We also show, again under quite general conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism of the locust muscle glutamate receptor-channel. PMID:2455553

  4. Elephants in space and time

    Treesearch

    Samuel A. Cushman; Michael Chase; Curtice Griffin

    2005-01-01

    Autocorrelation in animal movements can be both a serious nuisance to analysis and a source of valuable information about the scale and patterns of animal behavior, depending on the question and the techniques employed. In this paper we present an approach to analyzing the patterns of autocorrelation in animal movements that provides a detailed picture of seasonal...

  5. Estimating the Autocorrelated Error Model with Trended Data: Further Results,

    DTIC Science & Technology

    1979-11-01

    Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information

  6. Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.

    ERIC Educational Resources Information Center

    Mandell, Marvin B.; Bretschneider, Stuart I.

    1984-01-01

    The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)

  7. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Treesearch

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  8. An improved triple collocation algorithm for decomposing autocorrelated and white soil moisture retrieval errors

    USDA-ARS?s Scientific Manuscript database

    If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...

  9. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  10. Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data

    NASA Astrophysics Data System (ADS)

    Herdiani, Erna Tri; Fandrilla, Geysa; Sunusi, Nurtiti

    2018-03-01

    In general, observations of the statistical process control are assumed to be mutually independence. However, this assumption is often violated in practice. Consequently, statistical process controls were developed for interrelated processes, including Shewhart, Cumulative Sum (CUSUM), and exponentially weighted moving average (EWMA) control charts in the data that were autocorrelation. One researcher stated that this chart is not suitable if the same control limits are used in the case of independent variables. For this reason, it is necessary to apply the time series model in building the control chart. A classical control chart for independent variables is usually applied to residual processes. This procedure is permitted provided that residuals are independent. In 1978, Shewhart modification for the autoregressive process was introduced by using the distance between the sample mean and the target value compared to the standard deviation of the autocorrelation process. In this paper we will examine the mean of EWMA for autocorrelation process derived from Montgomery and Patel. Performance to be investigated was investigated by examining Average Run Length (ARL) based on the Markov Chain Method.

  11. Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs.

    PubMed

    Du, Han; Wang, Lijuan

    2018-04-23

    Intraindividual variability can be measured by the intraindividual standard deviation ([Formula: see text]), intraindividual variance ([Formula: see text]), estimated hth-order autocorrelation coefficient ([Formula: see text]), and mean square successive difference ([Formula: see text]). Unresolved issues exist in the research on reliabilities of intraindividual variability indicators: (1) previous research only studied conditions with 0 autocorrelations in the longitudinal responses; (2) the reliabilities of [Formula: see text] and [Formula: see text] have not been studied. The current study investigates reliabilities of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and the intraindividual mean, with autocorrelated longitudinal data. Reliability estimates of the indicators were obtained through Monte Carlo simulations. The impact of influential factors on reliabilities of the intraindividual variability indicators is summarized, and the reliabilities are compared across the indicators. Generally, all the studied indicators of intraindividual variability were more reliable with a more reliable measurement scale and more assessments. The reliabilities of [Formula: see text] were generally lower than those of [Formula: see text] and [Formula: see text], the reliabilities of [Formula: see text] were usually between those of [Formula: see text] and [Formula: see text] unless the scale reliability was large and/or the interindividual standard deviation in autocorrelation coefficients was large, and the reliabilities of the intraindividual mean were generally the highest. An R function is provided for planning longitudinal studies to ensure sufficient reliabilities of the intraindividual indicators are achieved.

  12. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    PubMed

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  13. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.

    2009-01-01

    A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.

  14. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    PubMed

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions. © 2014 John Wiley & Sons Ltd.

  15. The Latent Curve ARMA (P, Q) Panel Model: Longitudinal Data Analysis in Educational Research and Evaluation

    ERIC Educational Resources Information Center

    Sivo, Stephen; Fan, Xitao

    2008-01-01

    Autocorrelated residuals in longitudinal data are widely reported as common to longitudinal data. Yet few, if any, researchers modeling growth processes evaluate a priori whether their data have this feature. Sivo, Fan, and Witta (2005) found that not modeling autocorrelated residuals present in longitudinal data severely biases latent curve…

  16. The Use of Time Series Analysis and t Tests with Serially Correlated Data Tests.

    ERIC Educational Resources Information Center

    Nicolich, Mark J.; Weinstein, Carol S.

    1981-01-01

    Results of three methods of analysis applied to simulated autocorrelated data sets with an intervention point (varying in autocorrelation degree, variance of error term, and magnitude of intervention effect) are compared and presented. The three methods are: t tests; maximum likelihood Box-Jenkins (ARIMA); and Bayesian Box Jenkins. (Author/AEF)

  17. DETAILED DATA ANALYSIS OF ECHO I, ECHO II AND MOON REFLECTED SIGNALS. VOLUME 2. AUTOCORRELATION FUNCTIONS OF ECHO II REFLECTED SIGNALS,

    DTIC Science & Technology

    techniques is presented. Two methods for linearizing the data are given. An expression for the specular-to-spattered power ratio is derived, and the inverse ... transform of the autocorrelation function is discussed. The surface roughness of the reflector, the discrete fading rates, and fading frequencies

  18. Lag-One Autocorrelation in Short Series: Estimation and Hypotheses Testing

    ERIC Educational Resources Information Center

    Solanas, Antonio; Manolov, Rumen; Sierra, Vicenta

    2010-01-01

    In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is…

  19. Autocorrelation as a source of truncated Lévy flights in foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2003-05-01

    We suggest that the ultraslow speed of convergence associated with truncated Lévy flights (Phys. Rev. Lett. 73 (1994) 2946) may well be explained by autocorrelations in data. We show how a particular type of autocorrelation generates power laws consistent with a truncated Lévy flight. Stock exchanges have been suggested to be modeled by a truncated Lévy flight (Nature 376 (1995) 46; Physica A 297 (2001) 509; Econom. Bull. 7 (2002) 1). Here foreign exchange rate data are taken instead. Scaling power laws in the “probability of return to the origin” are shown to emerge for most currencies. A novel approach to measure how distant a process is from a Gaussian regime is presented.

  20. Usage Autocorrelation Function in the Capacity of Indicator Shape of the Signal in Acoustic Emission Testing of Intricate Castings

    NASA Astrophysics Data System (ADS)

    Popkov, Artem

    2016-01-01

    The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.

  1. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  2. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  3. The Effect of Alcohol on Emotional Inertia: A Test of Alcohol Myopia

    PubMed Central

    Fairbairn, Catharine E.; Sayette, Michael A.

    2017-01-01

    Alcohol Myopia (AM) has emerged as one of the most widely-researched theories of alcohol’s effects on emotional experience. Given this theory’s popularity it is notable that a central tenet of AM has not been tested—namely, that alcohol creates a myopic focus on the present moment, limiting the extent to which the present is permeated by emotions derived from prior experience. We aimed to test the impact of alcohol on moment-to-moment fluctuations in affect, applying advances in emotion assessment and statistical analysis to test this aspect of AM without drawing the attention of participants to their own emotional experiences. We measured emotional fluctuations using autocorrelation, a statistic borrowed from time-series analysis measuring the correlation between successive observations in time. High emotion autocorrelation is termed “emotional inertia” and linked to negative mood outcomes. Seven-hundred-twenty social drinkers consumed alcohol, placebo, or control beverages in groups of three over a 36-min group formation task. We indexed affect using the Duchenne smile, recorded continuously during the interaction (34.9 million video frames) according to Paul Ekman’s Facial Action Coding System. Autocorrelation of Duchenne smiling emerged as the most consistent predictor of self-reported mood and social bonding when compared with Duchenne smiling mean, standard deviation, and linear trend. Alcohol reduced affective autocorrelation, and autocorrelation mediated the link between alcohol and self-reported mood and social outcomes. Findings suggest that alcohol enhances our ability to freely enjoy the present moment untethered by past experience and highlight the importance of emotion dynamics in research examining affective correlates of psychopathology. PMID:24016015

  4. The method of trend analysis of parameters time series of gas-turbine engine state

    NASA Astrophysics Data System (ADS)

    Hvozdeva, I.; Myrhorod, V.; Derenh, Y.

    2017-10-01

    This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.

  5. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process.

    PubMed

    Wilson, Lorna R M; Hopcraft, Keith I

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  6. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process

    NASA Astrophysics Data System (ADS)

    Wilson, Lorna R. M.; Hopcraft, Keith I.

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  7. [Temporal and spatial characteristics of ecological risk in Shunyi, Beijing, China based on landscape structure.

    PubMed

    Qing, Feng Ting; Peng, Yu

    2016-05-01

    Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.

  8. A Possible Application of Coherent Light Scattering on Biological Fluids

    NASA Astrophysics Data System (ADS)

    Chicea, Dan; Chicea, Liana Maria

    2007-04-01

    Human urine from both healthy patients and patients with different diseases was used as scattering medium in a coherent light scattering experiment. The time variation of the light intensity in the far field speckle image was acquired using a data acquisition system on a PC and a time series resulted for each sample. The autocorrelation function for each sample was calculated and the autocorrelation time was determined. The same samples were analyzed in a medical laboratory using the standard procedure. We found so far that the autocorrelation time is differently modified by the presence of pus, albumin, urobilin and sediments. The results suggest a fast procedure that can be used as laboratory test to detect the presence not of each individual component in suspensions but of big conglomerates as albumin, cylinders, oxalate crystals.

  9. Employing the Hilbert-Huang Transform to analyze observed natural complex signals: Calm wind meandering cases

    NASA Astrophysics Data System (ADS)

    Martins, Luis Gustavo Nogueira; Stefanello, Michel Baptistella; Degrazia, Gervásio Annes; Acevedo, Otávio Costa; Puhales, Franciano Scremin; Demarco, Giuliano; Mortarini, Luca; Anfossi, Domenico; Roberti, Débora Regina; Costa, Felipe Denardin; Maldaner, Silvana

    2016-11-01

    In this study we analyze natural complex signals employing the Hilbert-Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert-Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.

  10. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  11. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    PubMed

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  12. An Expert System for the Evaluation of Cost Models

    DTIC Science & Technology

    1990-09-01

    contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John

  13. The Spatial Distribution of Adult Obesity Prevalence in Denver County, Colorado: An Empirical Bayes Approach to Adjust EHR-Derived Small Area Estimates.

    PubMed

    Tabano, David C; Bol, Kirk; Newcomer, Sophia R; Barrow, Jennifer C; Daley, Matthew F

    2017-12-06

    Measuring obesity prevalence across geographic areas should account for environmental and socioeconomic factors that contribute to spatial autocorrelation, the dependency of values in estimates across neighboring areas, to mitigate the bias in measures and risk of type I errors in hypothesis testing. Dependency among observations across geographic areas violates statistical independence assumptions and may result in biased estimates. Empirical Bayes (EB) estimators reduce the variability of estimates with spatial autocorrelation, which limits the overall mean square-error and controls for sample bias. Using the Colorado Body Mass Index (BMI) Monitoring System, we modeled the spatial autocorrelation of adult (≥ 18 years old) obesity (BMI ≥ 30 kg m 2 ) measurements using patient-level electronic health record data from encounters between January 1, 2009, and December 31, 2011. Obesity prevalence was estimated among census tracts with >=10 observations in Denver County census tracts during the study period. We calculated the Moran's I statistic to test for spatial autocorrelation across census tracts, and mapped crude and EB obesity prevalence across geographic areas. In Denver County, there were 143 census tracts with 10 or more observations, representing a total of 97,710 adults with a valid BMI. The crude obesity prevalence for adults in Denver County was 29.8 percent (95% CI 28.4-31.1%) and ranged from 12.8 to 45.2 percent across individual census tracts. EB obesity prevalence was 30.2 percent (95% CI 28.9-31.5%) and ranged from 15.3 to 44.3 percent across census tracts. Statistical tests using the Moran's I statistic suggest adult obesity prevalence in Denver County was distributed in a non-random pattern. Clusters of EB obesity estimates were highly significant (alpha=0.05) in neighboring census tracts. Concentrations of obesity estimates were primarily in the west and north in Denver County. Statistical tests reveal adult obesity prevalence exhibit spatial autocorrelation in Denver County at the census tract level. EB estimates for obesity prevalence can be used to control for spatial autocorrelation between neighboring census tracts and may produce less biased estimates of obesity prevalence.

  14. Moho depth across the Trans-European Suture Zone from ambient vibration autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, Gesa; Knapmeyer-Endrun, Brigitte

    2017-04-01

    In 2018 the InSight mission to Mars will deploy a seismic station on the planet. This seismic station will consist of a three-component very broadband seismic sensor and a collocated three-component short period seismometer. Single station methods are therefore needed to extract information from the data and learn more about the interior structure of Mars. One potential method is the extraction of reflected phases from autocorrelations. Here autocorrelations are derived from ambient seismic noise to make the most of the data expected, as seismicity on Mars is likely less abundant than on Earth. These autocorrelations are calculated using a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking as the main processing steps in addition to smoothing the spectrum of the data with a short term-long term average algorithm. Afterward the obtained results are filtered and analyzed in the frequency range of 1-2 Hz. The developed processing scheme is applied to data from permanent seismic stations located in different geological provinces across Europe, i.e. the Upper Rhine Graben, Central European Platform, Bohemian Massif, Northern German and Polish Basin, and the East European Craton, with varying Moho depths between 25-50 km. These crustal thicknesses are comparable to various estimates for Mars, therefore providing a good reference and indication of resolvability for Moho depths that might be encountered at the landing site. Changes in reflectivity can be observed in the calculated autocorrelations. The lag times of these changes are converted into depths with the help of available velocity information (EPcrust and local models for Poland and the Czech Republic, respectively) and the results are compared to existing information on Moho depths, which show good agreement. The results are temporarily stable, but show a clear correlation with the existence of cultural noise. Based on the closely located broadband and short period stations of the GERESS-array, it is shown that the processing scheme is also applicable to short period stations. Subsequently it is applied to the mainly short period and temporary stations of the PASSEQ network along the seismic profile POLONAISE P4, running from Eastern Germany to Lithuania crossing the Trans-European Suture Zone.

  15. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction.

    PubMed

    Stojanova, Daniela; Ceci, Michelangelo; Malerba, Donato; Dzeroski, Saso

    2013-09-26

    Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Our newly developed method for HMC takes into account network information in the learning phase: When used for gene function prediction in the context of PPI networks, the explicit consideration of network autocorrelation increases the predictive performance of the learned models. Overall, we found that this holds for different gene features/ descriptions, functional annotation schemes, and PPI networks: Best results are achieved when the PPI network is dense and contains a large proportion of function-relevant interactions.

  16. Source localization of narrow band signals in multipath environments, with application to marine mammals

    NASA Astrophysics Data System (ADS)

    Valtierra, Robert Daniel

    Passive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Arrival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods enabled calling depth and range estimations of a vocalizing NARW and humpback whale in two separate cases. The DRTD-autocorrelation method was then combined with TDOA to create a three dimensional track of a NARW in the Stellwagen Bank National Marine Sanctuary. Results from these experiments illustrated the potential of the combined methods to successfully resolve baleen calling depths in three dimensions.

  17. On a method to detect long-latency excitations and inhibitions of single hand muscle motoneurons in man.

    PubMed

    Awiszus, F; Feistner, H; Schäfer, S S

    1991-01-01

    The peri-stimulus-time histogram (PSTH) analysis of stimulus-related neuronal spike train data is usually regarded as a method to detect stimulus-induced excitations or inhibitions. However, for a fairly regularly discharging neuron such as the human alpha-motoneuron, long-latency modulations of a PSTH are difficult to interpret as PSTH modulations can also occur as a consequence of a modulated neuronal autocorrelation. The experiments reported here were made (i) to investigate the extent to which a PSTH of a human hand-muscle motoneuron may be contaminated by features of the autocorrelation and (ii) to develop methods that display the motoneuronal excitations and inhibitions without such contamination. Responses of 29 single motor units to electrical ulnar nerve stimulation below motor threshold were investigated in the first dorsal interosseous muscle of three healthy volunteers using an experimental protocol capable of demonstrating the presence of autocorrelative modulations in the neuronal response. It was found for all units that the PSTH as well as the cumulative sum (CUSUM) derived from these responses were severely affected by the presence of autocorrelative features. On the other hand, calculating the CUSUM in a slightly modified form yielded--for all units investigated--a neuronal output feature sensitive only to motoneuronal excitations and inhibitions induced by the afferent volley. The price that has to be paid to arrive at such a modified CUSUM (mCUSUM) was a high computational effort prohibiting the on-line availability of this output feature during the experiment. It was found, however, that an interspike interval superposition plot (IISP)--easily obtainable during the experiment--is also free of autocorrelative features.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications.

    PubMed

    Wang, Shaobin; Luo, Kunli

    2018-01-01

    The relation between life expectancy and energy utilization is of particular concern. Different viewpoints concerned the health impacts of heating policy in China. However, it is still obscure that what kind of heating energy or what pattern of heating methods is the most related with the difference of life expectancies in China. The aim of this paper is to comprehensively investigate the spatial relations between life expectancy at birth (LEB) and different heating energy utilization in China by using spatial autocorrelation models including global spatial autocorrelation, local spatial autocorrelation and hot spot analysis. The results showed that: (1) Most of heating energy exhibit a distinct north-south difference, such as central heating supply, stalks and domestic coal. Whereas spatial distribution of domestic natural gas and electricity exhibited west-east differences. (2) Consumption of central heating, stalks and domestic coal show obvious spatial dependence. Whereas firewood, natural gas and electricity did not show significant spatial autocorrelation. It exhibited an extinct south-north difference of heat supply, stalks and domestic coal which were identified to show significant positive spatial autocorrelation. (3) Central heating, residential boilers and natural gas did not show any significant correlations with LEB. While, the utilization of domestic coal and biomass showed significant negative correlations with LEB, and household electricity shows positive correlations. The utilization of domestic coal in China showed a negative effect on LEB, rather than central heating. To improve the solid fuel stoves and control consumption of domestic coal consumption and other low quality solid fuel is imperative to improve the public health level in China in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, R. Jason

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less

  20. Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935 1999) as demonstrated by autoregressive modelling

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Smart, P. L.

    2005-08-01

    Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.

  1. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    PubMed

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  2. The relationship between affective state and the rhythmicity of activity in bipolar disorder.

    PubMed

    Gonzalez, Robert; Tamminga, Carol A; Tohen, Mauricio; Suppes, Trisha

    2014-04-01

    The aim of this study was to test the relationships between mood state and rhythm disturbances as measured via actigraphy in bipolar disorder by assessing the correlations between manic and depressive symptoms as measured via Young Mania Rating Scale (YMRS) and 30-item Inventory for Depressive Symptomatology, Clinician-Rated (IDS-C-30) scores and the actigraphic measurements of rhythm, the 24-hour autocorrelation coefficient and circadian quotient. The research was conducted at the University of Texas Southwestern Medical Center at Dallas from February 2, 2009, to March 30, 2010. 42 patients with a DSM-IV-TR diagnosis of bipolar I disorder were included in the study. YMRS and the IDS-C-30 were used to determine symptom severity. Subjects wore the actigraph continuously for 7 days. The 24-hour autocorrelation coefficient was used as an indicator of overall rhythmicity. The circadian quotient was used to characterize the strength of a circadian rhythm. A greater severity of manic symptoms correlated with a lower degree of rhythmicity and less robust rhythms of locomotor activity as indicated by lower 24-hour autocorrelation (r = -0.3406, P = .03) and circadian quotient (r = -0.5485, P = .0002) variables, respectively. No relationship was noted between the degree of depression and 24-hour autocorrelation scores (r = -0.1190, P = .45) or circadian quotient (r = 0.0083, P = .96). Correlation was noted between the 24-hour autocorrelation and circadian quotient scores (r = 0.6347, P < .0001). These results support the notion that circadian rhythm disturbances are associated with bipolar disorder and that these disturbances may be associated with clinical signatures of the disorder. Further assessment of rhythm disturbances in bipolar disorder is warranted. © Copyright 2014 Physicians Postgraduate Press, Inc.

  3. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.

    2008-02-01

    Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.

  4. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  5. Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench.

    PubMed

    Sire, Clément

    2004-09-24

    We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.

  6. A recursive linear predictive vocoder

    NASA Astrophysics Data System (ADS)

    Janssen, W. A.

    1983-12-01

    A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.

  7. Long-range correlations in time series generated by time-fractional diffusion: A numerical study

    NASA Astrophysics Data System (ADS)

    Barbieri, Davide; Vivoli, Alessandro

    2005-09-01

    Time series models showing power law tails in autocorrelation functions are common in econometrics. A special non-Markovian model for such kind of time series is provided by the random walk introduced by Gorenflo et al. as a discretization of time fractional diffusion. The time series so obtained are analyzed here from a numerical point of view in terms of autocorrelations and covariance matrices.

  8. Generalizability Assessment of Autocorrelated Direct Observation Data: The Applicability of the Tiao-Tan Method and Alternative.

    ERIC Educational Resources Information Center

    Suen, Hoi K.; And Others

    The applicability is explored of the Bayesian random-effect analysis of variance (ANOVA) model developed by G. C. Tiao and W. Y. Tan (1966) and a method suggested by H. K. Suen and P. S. Lee (1987) for the generalizability analysis of autocorrelated data. According to Tiao and Tan, if time series data could be described as a first-order…

  9. Geostatistical Prediction of Microbial Water Quality Throughout a Stream Network Using Meteorology, Land Cover, and Spatiotemporal Autocorrelation.

    PubMed

    Holcomb, David A; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-25

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modeled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  10. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  11. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  12. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  13. Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns.

    PubMed

    Reynolds, Andy M

    2010-12-06

    For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.

  14. Partial correlation properties of pseudonoise /PN/ codes in noncoherent synchronization/detection schemes

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1976-01-01

    This concise paper considers the effect on the autocorrelation function of a pseudonoise (PN) code when the acquisition scheme only integrates coherently over part of the code and then noncoherently combines these results. The peak-to-null ratio of the effective PN autocorrelation function is shown to degrade to the square root of n, where n is the number of PN symbols over which coherent integration takes place.

  15. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  16. An investigation of turbulent transport in the extreme lower atmosphere

    NASA Technical Reports Server (NTRS)

    Koper, C. A., Jr.; Sadeh, W. Z.

    1975-01-01

    A model in which the Lagrangian autocorrelation is expressed by a domain integral over a set of usual Eulerian autocorrelations acquired concurrently at all points within a turbulence box is proposed along with a method for ascertaining the statistical stationarity of turbulent velocity by creating an equivalent ensemble to investigate the flow in the extreme lower atmosphere. Simultaneous measurements of turbulent velocity on a turbulence line along the wake axis were carried out utilizing a longitudinal array of five hot-wire anemometers remotely operated. The stationarity test revealed that the turbulent velocity is approximated as a realization of a weakly self-stationary random process. Based on the Lagrangian autocorrelation it is found that: (1) large diffusion time predominated; (2) ratios of Lagrangian to Eulerian time and spatial scales were smaller than unity; and, (3) short and long diffusion time scales and diffusion spatial scales were constrained within their Eulerian counterparts.

  17. Detection limit used for early warning in public health surveillance.

    PubMed

    Kobari, Tsuyoshi; Iwaki, Kazuo; Nagashima, Tomomi; Ishii, Fumiyoshi; Hayashi, Yuzuru; Yajima, Takehiko

    2009-06-01

    A theory of detection limit, developed in analytical chemistry, is applied to public health surveillance to detect an outbreak of national emergencies such as natural disaster and bioterrorism. In this investigation, the influenza epidemic around the Tokyo area from 2003 to 2006 is taken as a model of normal and large-scale epidemics. The detection limit of the normal epidemic is used as a threshold with a specified level of significance to identify a sign of the abnormal epidemic among the daily variation in anti-influenza drug sales at community pharmacies. While auto-correlation of data is often an obstacle to an unbiased estimator of standard deviation involved in the detection limit, the analytical theory (FUMI) can successfully treat the auto-correlation of the drug sales in the same way as the auto-correlation appearing as 1/f noise in many analytical instruments.

  18. The influence of autocorrelation in signature extraction: An example from a geobotanical investigation of Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J. (Principal Investigator)

    1981-01-01

    The presence of positive serial correlation (autocorrelation) in remotely sensed data results in an underestimate of the variance-covariance matrix when calculated using contiguous pixels. This underestimate produces an inflation in F statistics. For a set of Thematic Mapper Simulator data (TMS), used to test the ability to discriminate a known geobotanical anomaly from its background, the inflation in F statistics related to serial correlation is between 7 and 70 times. This means that significance tests of means of the spectral bands initially appear to suggest that the anomalous site is very different in spectral reflectance and emittance from its background sites. However, this difference often disappears and is always dramatically reduced when compared to frequency distributions of test statistics produced by the comparison of simulated training sets possessing equal means, but which are composed of autocorrelated observations.

  19. Autocorrelation and cross-correlation in time series of homicide and attempted homicide

    NASA Astrophysics Data System (ADS)

    Machado Filho, A.; da Silva, M. F.; Zebende, G. F.

    2014-04-01

    We propose in this paper to establish the relationship between homicides and attempted homicides by a non-stationary time-series analysis. This analysis will be carried out by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and DCCA cross-correlation coefficient, ρ(n). Through this analysis we can identify a positive cross-correlation between homicides and attempted homicides. At the same time, looked at from the point of view of autocorrelation (DFA), this analysis can be more informative depending on time scale. For short scale (days), we cannot identify auto-correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time scales (n>90 days) DFA presents a persistent behavior. Finally, the application of this new type of statistical analysis proved to be efficient and, in this sense, this paper can contribute to a more accurate descriptive statistics of crime.

  20. Evaluation of terrain complexity by autocorrelation. [geomorphology and geobotany

    NASA Technical Reports Server (NTRS)

    Craig, R. G.

    1982-01-01

    The topographic complexity of various sections of the Ozark, Appalachian, and Interior Low Plateaus, as well as of the New England, Piedmont, Blue Ridge, Ouachita, and Valley and Ridge Provinces of the Eastern United States were characterized. The variability of autocorrelation within a small area (7 1/2-ft quadrangle) to the variability at widely separated and diverse areas within the same physiographic region was compared to measure the degree of uniformity of the processes which can be expected to be encountered within a given physiographic province. The variability of autocorrelation across the eight geomorphic regions was compared and contrasted. The total study area was partitioned into subareas homogeneous in terrain complexity. The relation between the complexity measured, the geomorphic process mix implied, and the way in which geobotanical information is modified into a more or less recognizable entity is demonstrated. Sampling strategy is described.

  1. Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space.

    PubMed

    Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J

    2010-05-01

    Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.

  2. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function.

    PubMed

    Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats

    2005-05-13

    BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.

  3. Integrated autocorrelator based on superconducting nanowires.

    PubMed

    Sahin, Döndü; Gaggero, Alessandro; Hoang, Thang Ba; Frucci, Giulia; Mattioli, Francesco; Leoni, Roberto; Beetz, Johannes; Lermer, Matthias; Kamp, Martin; Höfling, Sven; Fiore, Andrea

    2013-05-06

    We demonstrate an integrated autocorrelator based on two superconducting single-photon detectors patterned on top of a GaAs ridge waveguide. This device enables the on-chip measurement of the second-order intensity correlation function g(2)(τ). A polarization-independent device quantum efficiency in the 1% range is reported, with a timing jitter of 88 ps at 1300 nm. g(2)(τ) measurements of continuous-wave and pulsed laser excitations are demonstrated with no measurable crosstalk within our measurement accuracy.

  4. User's guide to Monte Carlo methods for evaluating path integrals

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

  5. Testing algorithms for critical slowing down

    NASA Astrophysics Data System (ADS)

    Cossu, Guido; Boyle, Peter; Christ, Norman; Jung, Chulwoo; Jüttner, Andreas; Sanfilippo, Francesco

    2018-03-01

    We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  6. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  7. Spatial autocorrelation of radiation measured by the Earth Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    1994-01-01

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.

  8. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  9. An asymptotic theory for cross-correlation between auto-correlated sequences and its application on neuroimaging data.

    PubMed

    Zhou, Yunyi; Tao, Chenyang; Lu, Wenlian; Feng, Jianfeng

    2018-04-20

    Functional connectivity is among the most important tools to study brain. The correlation coefficient, between time series of different brain areas, is the most popular method to quantify functional connectivity. Correlation coefficient in practical use assumes the data to be temporally independent. However, the time series data of brain can manifest significant temporal auto-correlation. A widely applicable method is proposed for correcting temporal auto-correlation. We considered two types of time series models: (1) auto-regressive-moving-average model, (2) nonlinear dynamical system model with noisy fluctuations, and derived their respective asymptotic distributions of correlation coefficient. These two types of models are most commonly used in neuroscience studies. We show the respective asymptotic distributions share a unified expression. We have verified the validity of our method, and shown our method exhibited sufficient statistical power for detecting true correlation on numerical experiments. Employing our method on real dataset yields more robust functional network and higher classification accuracy than conventional methods. Our method robustly controls the type I error while maintaining sufficient statistical power for detecting true correlation in numerical experiments, where existing methods measuring association (linear and nonlinear) fail. In this work, we proposed a widely applicable approach for correcting the effect of temporal auto-correlation on functional connectivity. Empirical results favor the use of our method in functional network analysis. Copyright © 2018. Published by Elsevier B.V.

  10. Two Point Autocorrelation Analysis of Auger Highest Energy Events Backtracked in Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Petrov, Yevgeniy

    2009-10-01

    Searches for sources of the highest-energy cosmic rays traditionally have included looking for clusters of event arrival directions on the sky. The smallest cluster is a pair of events falling within some angular window. In contrast to the standard two point (2-pt) autocorrelation analysis, this work takes into account influence of the galactic magnetic field (GMF). The highest energy events, those above 50EeV, collected by the surface detector of the Pierre Auger Observatory between January 1, 2004 and May 31, 2009 are used in the analysis. Having assumed protons as primaries, events are backtracked through BSS/S, BSS/A, ASS/S and ASS/A versions of Harari-Mollerach-Roulet (HMR) model of the GMF. For each version of the model, a 2-pt autocorrelation analysis is applied to the backtracked events and to 105 isotropic Monte Carlo realizations weighted by the Auger exposure. Scans in energy, separation angular window and different model parameters reveal clustering at different angular scales. Small angle clustering at 2-3 deg is particularly interesting and it is compared between different field scenarios. The strength of the autocorrelation signal at those angular scales differs between BSS and ASS versions of the HMR model. The BSS versions of the model tend to defocus protons as they arrive to Earth whereas for the ASS, in contrary, it is more likely to focus them.

  11. Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.

    PubMed

    Monserud, R A; Marshall, J D

    2001-09-01

    Univariate time-series analyses were conducted on stable carbon isotope ratios obtained from tree-ring cellulose. We looked for the presence and structure of autocorrelation. Significant autocorrelation violates the statistical independence assumption and biases hypothesis tests. Its presence would indicate the existence of lagged physiological effects that persist for longer than the current year. We analyzed data from 28 trees (60-85 years old; mean = 73 years) of western white pine (Pinus monticola Dougl.), ponderosa pine (Pinus ponderosa Laws.), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) growing in northern Idaho. Material was obtained by the stem analysis method from rings laid down in the upper portion of the crown throughout each tree's life. The sampling protocol minimized variation caused by changing light regimes within each tree. Autoregressive moving average (ARMA) models were used to describe the autocorrelation structure over time. Three time series were analyzed for each tree: the stable carbon isotope ratio (delta(13)C); discrimination (delta); and the difference between ambient and internal CO(2) concentrations (c(a) - c(i)). The effect of converting from ring cellulose to whole-leaf tissue did not affect the analysis because it was almost completely removed by the detrending that precedes time-series analysis. A simple linear or quadratic model adequately described the time trend. The residuals from the trend had a constant mean and variance, thus ensuring stationarity, a requirement for autocorrelation analysis. The trend over time for c(a) - c(i) was particularly strong (R(2) = 0.29-0.84). Autoregressive moving average analyses of the residuals from these trends indicated that two-thirds of the individual tree series contained significant autocorrelation, whereas the remaining third were random (white noise) over time. We were unable to distinguish between individuals with and without significant autocorrelation beforehand. Significant ARMA models were all of low order, with either first- or second-order (i.e., lagged 1 or 2 years, respectively) models performing well. A simple autoregressive (AR(1)), model was the most common. The most useful generalization was that the same ARMA model holds for each of the three series (delta(13)C, delta, c(a) - c(i)) for an individual tree, if the time trend has been properly removed for each series. The mean series for the two pine species were described by first-order ARMA models (1-year lags), whereas the Douglas-fir mean series were described by second-order models (2-year lags) with negligible first-order effects. Apparently, the process of constructing a mean time series for a species preserves an underlying signal related to delta(13)C while canceling some of the random individual tree variation. Furthermore, the best model for the overall mean series (e.g., for a species) cannot be inferred from a consensus of the individual tree model forms, nor can its parameters be estimated reliably from the mean of the individual tree parameters. Because two-thirds of the individual tree time series contained significant autocorrelation, the normal assumption of a random structure over time is unwarranted, even after accounting for the time trend. The residuals of an appropriate ARMA model satisfy the independence assumption, and can be used to make hypothesis tests.

  12. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-01-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  13. A Predictive Risk Model for A(H7N9) Human Infections Based on Spatial-Temporal Autocorrelation and Risk Factors: China, 2013–2014

    PubMed Central

    Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian

    2015-01-01

    This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446

  14. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-06-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  15. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  16. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  17. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  18. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  19. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    PubMed

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  20. Method to manage integration error in the Green-Kubo method.

    PubMed

    Oliveira, Laura de Sousa; Greaney, P Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  1. Use of autocorrelation scanning in DNA copy number analysis.

    PubMed

    Zhang, Liangcai; Zhang, Li

    2013-11-01

    Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.

  2. Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland.

    PubMed

    Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A

    The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus , Betula , and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus , Betula , and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.

  3. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    PubMed

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-07

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).

  4. Building a three-dimensional model of CYP2C9 inhibition using the Autocorrelator: an autonomous model generator.

    PubMed

    Lardy, Matthew A; Lebrun, Laurie; Bullard, Drew; Kissinger, Charles; Gobbi, Alberto

    2012-05-25

    In modern day drug discovery campaigns, computational chemists have to be concerned not only about improving the potency of molecules but also reducing any off-target ADMET activity. There are a plethora of antitargets that computational chemists may have to consider. Fortunately many antitargets have crystal structures deposited in the PDB. These structures are immediately useful to our Autocorrelator: an automated model generator that optimizes variables for building computational models. This paper describes the use of the Autocorrelator to construct high quality docking models for cytochrome P450 2C9 (CYP2C9) from two publicly available crystal structures. Both models result in strong correlation coefficients (R² > 0.66) between the predicted and experimental determined log(IC₅₀) values. Results from the two models overlap well with each other, converging on the same scoring function, deprotonated charge state, and predicted the binding orientation for our collection of molecules.

  5. Method to manage integration error in the Green-Kubo method

    NASA Astrophysics Data System (ADS)

    Oliveira, Laura de Sousa; Greaney, P. Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  6. Environmental variability uncovers disruptive effects of species' interactions on population dynamics

    PubMed Central

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-01-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  7. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  8. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  9. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage

    USGS Publications Warehouse

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  10. Map LineUps: Effects of spatial structure on graphical inference.

    PubMed

    Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

  11. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage.

    PubMed

    Mattsson, Brady J; Zipkin, Elise F; Gardner, Beth; Blank, Peter J; Sauer, John R; Royle, J Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  12. Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage

    PubMed Central

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition. PMID:23393564

  13. Study of trabecular bone microstructure using spatial autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Wald, Michael J.; Vasilic, Branimir; Saha, Punam K.; Wehrli, Felix W.

    2005-04-01

    The spatial autocorrelation analysis method represents a powerful, new approach to quantitative characterization of structurally quasi-periodic anisotropic materials such as trabecular bone (TB). The method is applicable to grayscale images and thus does not require any preprocessing, such as segmentation which is difficult to achieve in the limited resolution regime of in vivo imaging. The 3D autocorrelation function (ACF) can be efficiently calculated using the Fourier transform. The resulting trabecular thickness and spacing measurements are robust to the presence of noise and produce values within the expected range as determined by other methods from μCT and μMRI datasets. TB features found from the ACF are shown to correlate well with those determined by the Fuzzy Distance transform (FDT) in the transverse plane, i.e. the plane orthogonal to bone"s major axis. The method is further shown to be applicable to in-vivo μMRI data. Using the ACF, we examine data acquired in a previous study aimed at evaluating the structural implications of male hypogonadism characterized by testosterone deficiency and reduced bone mass. Specifically, we consider the hypothesis that eugonadal and hypogonadal men differ in the anisotropy of their trabecular networks. The analysis indicates a significant difference in trabecular bone thickness and longitudinal spacing between the control group and the testosterone deficient group. We conclude that spatial autocorrelation analysis is able to characterize the 3D structure and anisotropy of trabecular bone and provides new insight into the structural changes associated with osteoporotic trabecular bone loss.

  14. Autocorrelated residuals in inverse modelling of soil hydrological processes: a reason for concern or something that can safely be ignored?

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Durner, Wolfgang

    2013-04-01

    Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.

  15. Long-term correlations and cross-correlations in IBovespa and constituent companies

    NASA Astrophysics Data System (ADS)

    de Lima, Neílson F.; Fernandes, Leonardo H. S.; Jale, Jader S.; de Mattos Neto, Paulo S. G.; Stošić, Tatijana; Stošić, Borko; Ferreira, Tiago A. E.

    2018-02-01

    We study auto-correlations and cross-correlations of IBovespa index and its constituent companies. We use Detrended Fluctuation Analysis (DFA) to quantify auto-correlations and Detrended Cross-Correlation Analysis (DCCA) to quantify cross-correlations in absolute returns of daily closing prices of IBovespa and the individual companies. We find persistent long-term correlations and cross-correlations which are weaker than those found for USA market. Our results indicate that market indices of developing markets exhibit weaker coupling with its constituents than for mature developed markets.

  16. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  17. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R

    2014-04-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.

  18. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.

  19. The geography of recreational open space: influence of neighborhood racial composition and neighborhood poverty.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; White, Kellee; Williams, David R

    2013-08-01

    The geography of recreational open space might be inequitable in terms of minority neighborhood racial/ethnic composition and neighborhood poverty, perhaps due in part to residential segregation. This study evaluated the association between minority neighborhood racial/ethnic composition, neighborhood poverty, and recreational open space in Boston, Massachusetts (US). Across Boston census tracts, we computed percent non-Hispanic Black, percent Hispanic, and percent families in poverty as well as recreational open space density. We evaluated spatial autocorrelation in study variables and in the ordinary least squares (OLS) regression residuals via the Global Moran's I. We then computed Spearman correlations between the census tract socio-demographic characteristics and recreational open space density, including correlations adjusted for spatial autocorrelation. After this, we computed OLS regressions or spatial regressions as appropriate. Significant positive spatial autocorrelation was found for neighborhood socio-demographic characteristics (all p value = 0.001). We found marginally significant positive spatial autocorrelation in recreational open space (Global Moran's I = 0.082; p value = 0.053). However, we found no spatial autocorrelation in the OLS regression residuals, which indicated that spatial models were not appropriate. There was a negative correlation between census tract percent non-Hispanic Black and recreational open space density (r S = -0.22; conventional p value = 0.005; spatially adjusted p value = 0.019) as well as a negative correlation between predominantly non-Hispanic Black census tracts (>60 % non-Hispanic Black in a census tract) and recreational open space density (r S = -0.23; conventional p value = 0.003; spatially adjusted p value = 0.007). In bivariate and multivariate OLS models, percent non-Hispanic Black in a census tract and predominantly Black census tracts were associated with decreased density of recreational open space (p value < 0.001). Consistent with several previous studies in other geographic locales, we found that Black neighborhoods in Boston were less likely to have recreational open spaces, indicating the need for policy interventions promoting equitable access. Such interventions may contribute to reductions and disparities in obesity.

  20. Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models.

    PubMed

    Dean, Roger T; Dunsmuir, William T M

    2016-06-01

    Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed.

  1. Statistical regularities of Carbon emission trading market: Evidence from European Union allowances

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Xiao, Rui; Shi, Haibo; Li, Guihong; Zhou, Xiaofeng

    2015-05-01

    As an emerging financial market, the trading value of carbon emission trading market has definitely increased. In recent years, the carbon emission allowances have already become a way of investment. They are bought and sold not only by carbon emitters but also by investors. In this paper, we analyzed the price fluctuations of the European Union allowances (EUA) futures in European Climate Exchange (ECX) market from 2007 to 2011. The symmetric and power-law probability density function of return time series was displayed. We found that there are only short-range correlations in price changes (return), while long-range correlations in the absolute of price changes (volatility). Further, detrended fluctuation analysis (DFA) approach was applied with focus on long-range autocorrelations and Hurst exponent. We observed long-range power-law autocorrelations in the volatility that quantify risk, and found that they decay much more slowly than the autocorrelation of return time series. Our analysis also showed that the significant cross correlations exist between return time series of EUA and many other returns. These cross correlations exist in a wide range of fields, including stock markets, energy concerned commodities futures, and financial futures. The significant cross-correlations between energy concerned futures and EUA indicate the physical relationship between carbon emission and energy production process. Additionally, the cross-correlations between financial futures and EUA indicate that the speculation behavior may become an important factor that can affect the price of EUA. Finally we modeled the long-range volatility time series of EUA with a particular version of the GARCH process, and the result also suggests long-range volatility autocorrelations.

  2. Effect of site level environmental variables, spatial autocorrelation and sampling intensity on arthropod communities in an ancient temperate lowland woodland area.

    PubMed

    Horak, Jakub

    2013-01-01

    The interaction of arthropods with the environment and the management of their populations is a focus of the ecological agenda. Spatial autocorrelation and under-sampling may generate bias and, when they are ignored, it is hard to determine if results can in any way be trusted. Arthropod communities were studied during two seasons and using two methods: window and panel traps, in an area of ancient temperate lowland woodland of Zebracka (Czech Republic). The composition of arthropod communities was studied focusing on four site level variables (canopy openness, diameter in the breast height and height of tree, and water distance) and finally analysed using two approaches: with and without effects of spatial autocorrelation. I found that the proportion of variance explained by space cannot be ignored (≈20% in both years). Potential bias in analyses of the response of arthropods to site level variables without including spatial co-variables is well illustrated by redundancy analyses. Inclusion of space led to more accurate results, as water distance and tree diameter were significant, showing approximately the same ratio of explained variance and direction in both seasons. Results without spatial co-variables were much more disordered and were difficult to explain. This study showed that neglecting the effects of spatial autocorrelation could lead to wrong conclusions in site level studies and, furthermore, that inclusion of space may lead to more accurate and unambiguous outcomes. Rarefactions showed that lower sampling intensity, when appropriately designed, can produce sufficient results without exploitation of the environment.

  3. Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity

    PubMed Central

    Englehardt, James D.

    2015-01-01

    Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study. PMID:26061263

  4. Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses

    PubMed Central

    Wittemyer, George; Polansky, Leo; Douglas-Hamilton, Iain; Getz, Wayne M.

    2008-01-01

    The internal state of an individual—as it relates to thirst, hunger, fear, or reproductive drive—can be inferred by referencing points on its movement path to external environmental and sociological variables. Using time-series approaches to characterize autocorrelative properties of step-length movements collated every 3 h for seven free-ranging African elephants, we examined the influence of social rank, predation risk, and seasonal variation in resource abundance on periodic properties of movement. The frequency domain methods of Fourier and wavelet analyses provide compact summaries of temporal autocorrelation and show both strong diurnal and seasonal based periodicities in the step-length time series. This autocorrelation is weaker during the wet season, indicating random movements are more common when ecological conditions are good. Periodograms of socially dominant individuals are consistent across seasons, whereas subordinate individuals show distinct differences diverging from that of dominants during the dry season. We link temporally localized statistical properties of movement to landscape features and find that diurnal movement correlation is more common within protected wildlife areas, and multiday movement correlations found among lower ranked individuals are typically outside of protected areas where predation risks are greatest. A frequency-related spatial analysis of movement-step lengths reveal that rest cycles related to the spatial distribution of critical resources (i.e., forage and water) are responsible for creating the observed patterns. Our approach generates unique information regarding the spatial-temporal interplay between environmental and individual characteristics, providing an original approach for understanding the movement ecology of individual animals and the spatial organization of animal populations. PMID:19060207

  5. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  6. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  7. Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Cummins, P. R.; Lumley, D. E.

    2016-12-01

    Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.

  8. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  9. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  10. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-05-01

    MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.

  11. Spatial Analysis of China Province-level Perinatal Mortality

    PubMed Central

    XIANG, Kun; SONG, Deyong

    2016-01-01

    Background: Using spatial analysis tools to determine the spatial patterns of China province-level perinatal mortality and using spatial econometric model to examine the impacts of health care resources and different socio-economic factors on perinatal mortality. Methods: The Global Moran’s I index is used to examine whether the spatial autocorrelation exists in selected regions and Moran’s I scatter plot to examine the spatial clustering among regions. Spatial econometric models are used to investigate the spatial relationships between perinatal mortality and contributing factors. Results: The overall Moran’s I index indicates that perinatal mortality displays positive spatial autocorrelation. Moran’s I scatter plot analysis implies that there is a significant clustering of mortality in both high-rate regions and low-rate regions. The spatial econometric models analyses confirm the existence of a direct link between perinatal mortality and health care resources, socio-economic factors. Conclusions: Since a positive spatial autocorrelation has been detected in China province-level perinatal mortality, the upgrading of regional economic development and medical service level will affect the mortality not only in region itself but also its adjacent regions. PMID:27398334

  12. Geomagnetic storm under laboratory conditions: randomized experiment

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  13. Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering

    PubMed Central

    Li, Jie; Fang, Xiangming

    2010-01-01

    Automated geocoding of patient addresses is an important data assimilation component of many spatial epidemiologic studies. Inevitably, the geocoding process results in positional errors. Positional errors incurred by automated geocoding tend to reduce the power of tests for disease clustering and otherwise affect spatial analytic methods. However, there are reasons to believe that the errors may often be positively spatially correlated and that this may mitigate their deleterious effects on spatial analyses. In this article, we demonstrate explicitly that the positional errors associated with automated geocoding of a dataset of more than 6000 addresses in Carroll County, Iowa are spatially autocorrelated. Furthermore, through two simulation studies of disease processes, including one in which the disease process is overlain upon the Carroll County addresses, we show that spatial autocorrelation among geocoding errors maintains the power of two tests for disease clustering at a level higher than that which would occur if the errors were independent. Implications of these results for cluster detection, privacy protection, and measurement-error modeling of geographic health data are discussed. PMID:20087879

  14. Geomagnetic storm under laboratory conditions: randomized experiment.

    PubMed

    Gurfinkel, Yu I; Vasin, A L; Pishchalnikov, R Yu; Sarimov, R M; Sasonko, M L; Matveeva, T A

    2018-04-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  15. Comparison of Kasai Autocorrelation and Maximum Likelihood Estimators for Doppler Optical Coherence Tomography

    PubMed Central

    Chan, Aaron C.; Srinivasan, Vivek J.

    2013-01-01

    In optical coherence tomography (OCT) and ultrasound, unbiased Doppler frequency estimators with low variance are desirable for blood velocity estimation. Hardware improvements in OCT mean that ever higher acquisition rates are possible, which should also, in principle, improve estimation performance. Paradoxically, however, the widely used Kasai autocorrelation estimator’s performance worsens with increasing acquisition rate. We propose that parametric estimators based on accurate models of noise statistics can offer better performance. We derive a maximum likelihood estimator (MLE) based on a simple additive white Gaussian noise model, and show that it can outperform the Kasai autocorrelation estimator. In addition, we also derive the Cramer Rao lower bound (CRLB), and show that the variance of the MLE approaches the CRLB for moderate data lengths and noise levels. We note that the MLE performance improves with longer acquisition time, and remains constant or improves with higher acquisition rates. These qualities may make it a preferred technique as OCT imaging speed continues to improve. Finally, our work motivates the development of more general parametric estimators based on statistical models of decorrelation noise. PMID:23446044

  16. A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation

    NASA Astrophysics Data System (ADS)

    Suryowati, K.; Bekti, R. D.; Faradila, A.

    2018-04-01

    Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list

  17. Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines

    NASA Astrophysics Data System (ADS)

    Ha, Jong M.; Youn, Byeng D.; Oh, Hyunseok; Han, Bongtae; Jung, Yoongho; Park, Jungho

    2016-03-01

    We propose autocorrelation-based time synchronous averaging (ATSA) to cope with the challenges associated with the current practice of time synchronous averaging (TSA) for planet gears in planetary gearboxes of wind turbine (WT). An autocorrelation function that represents physical interactions between the ring, sun, and planet gears in the gearbox is utilized to define the optimal shape and range of the window function for TSA using actual kinetic responses. The proposed ATSA offers two distinctive features: (1) data-efficient TSA processing and (2) prevention of signal distortion during the TSA process. It is thus expected that an order analysis with the ATSA signals significantly improves the efficiency and accuracy in fault diagnostics of planet gears in planetary gearboxes. Two case studies are presented to demonstrate the effectiveness of the proposed method: an analytical signal from a simulation and a signal measured from a 2 kW WT testbed. It can be concluded from the results that the proposed method outperforms conventional TSA methods in condition monitoring of the planetary gearbox when the amount of available stationary data is limited.

  18. Spatial design and strength of spatial signal: Effects on covariance estimation

    USGS Publications Warehouse

    Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.

    2007-01-01

    In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

  19. An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.

    PubMed

    Huitema, Bradley E; McKean, Joseph W

    2007-08-01

    A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).

  20. Monte Carlo errors with less errors

    NASA Astrophysics Data System (ADS)

    Wolff, Ulli; Alpha Collaboration

    2004-01-01

    We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.

  1. Forecasting coconut production in the Philippines with ARIMA model

    NASA Astrophysics Data System (ADS)

    Lim, Cristina Teresa

    2015-02-01

    The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.

  2. Detection of Subtle Hydromechanical Medium Changes Caused By a Small-Magnitude Earthquake Swarm in NE Brazil

    NASA Astrophysics Data System (ADS)

    D'Hour, V.; Schimmel, M.; Do Nascimento, A. F.; Ferreira, J. M.; Lima Neto, H. C.

    2016-04-01

    Ambient noise correlation analyses are largely used in seismology to map heterogeneities and to monitor the temporal evolution of seismic velocity changes associated mostly with stress field variations and/or fluid movements. Here we analyse a small earthquake swarm related to a main mR 3.7 intraplate earthquake in North-East of Brazil to study the corresponding post-seismic effects on the medium. So far, post-seismic effects have been observed mainly for large magnitude events. In our study, we show that we were able to detect localized structural changes even for a small earthquake swarm in an intraplate setting. Different correlation strategies are presented and their performances are also shown. We compare the classical auto-correlation with and without pre-processing, including 1-bit normalization and spectral whitening, and the phase auto-correlation. The worst results were obtained for the pre-processed data due to the loss of waveform details. The best results were achieved with the phase cross-correlation which is amplitude unbiased and sensitive to small amplitude changes as long as there exist waveform coherence superior to other unrelated signals and noise. The analysis of 6 months of data using phase auto-correlation and cross-correlation resulted in the observation of a progressive medium change after the major recorded event. The progressive medium change is likely related to the swarm activity through opening new path ways for pore fluid diffusion. We further observed for the auto-correlations a lag time frequency-dependent change which likely indicates that the medium change is localized in depth. As expected, the main change is observed along the fault.

  3. A geostatistical state-space model of animal densities for stream networks.

    PubMed

    Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H

    2018-06-21

    Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Time-series network analysis of civil aviation in Japan (1985-2005)

    NASA Astrophysics Data System (ADS)

    Michishita, Ryo; Xu, Bing; Yamada, Ikuho

    2008-10-01

    Due to the airline deregulation in 1985, a series of new airport developments in the 1990s and 2000s, and the reorganization of airline companies in the 2000s, Japan's air passenger transportation has been dramatically altered in the last two decades in many ways. In this paper, the authors examine how the network and flow structures of domestic air passenger transportation in Japan have geographically changed since 1985. For this purpose, passenger flow data in 1985, 1995, and 2005 were extracted from the Air Transportation Statistical Survey conducted by the Ministry of Land, Infrastructure and Transport, Japan. First, national and regional hub airports are identified via dominant flow and hub function analysis. Then the roles of the hub airports and individual connections over the network are examined with respect to their spatial and network autocorrelations. Spatial and network autocorrelations were evaluated both globally and locally using Moran's I and LISA statistics. The passenger flow data were first examined as a whole and then divided into 3 airline-based categories. Dominant flow and hub function enabled us to detect the hub airports. Structural processes of the hub-and-spoke network were confirmed in each airline through spatial autocorrelation analysis. Network autocorrelation analysis showed that all airlines ingeniously optimized their networks by connecting their routes with large numbers of passengers to other routes with large numbers of passengers, and routes with small numbers of passengers to other routes with small numbers of passengers. The effects of political events and the changes in the strategies of each airline on the whole networks were strongly reflected in the results of this study.

  5. Spatial variation in mandibular bone elastic modulus and its effect on structural bending stiffness: A test case using the Taï Forest monkeys.

    PubMed

    Le, Kim N; Marsik, Matthew; Daegling, David J; Duque, Ana; McGraw, William Scott

    2017-03-01

    We investigated how heterogeneity in material stiffness affects structural stiffness in the cercopithecid mandibular cortical bone. We assessed (1) whether this effect changes the interpretation of interspecific structural stiffness variation across four primate species, (2) whether the heterogeneity is random, and (3) whether heterogeneity mitigates bending stress in the jaw associated with food processing. The sample consisted of Taï Forest, Cote d'Ivoire, monkeys: Cercocebus atys, Piliocolobus badius, Colobus polykomos, and Cercopithecus diana. Vickers indentation hardness samples estimated elastic moduli throughout the cortical bone area of each coronal section of postcanine corpus. For each section, we calculated maximum area moment of inertia, I max (structural mechanical property), under three models of material heterogeneity, as well as spatial autocorrelation statistics (Moran's I, I MORAN ). When the model considered material stiffness variation and spatial patterning, I max decreased and individual ranks based on structural stiffness changed. Rank changes were not significant across models. All specimens showed positive (nonrandom) spatial autocorrelation. Differences in I MORAN were not significant among species, and there were no discernable patterns of autocorrelation within species. Across species, significant local I MORAN was often attributed to proximity of low moduli in the alveolar process and high moduli in the basal process. While our sample did not demonstrate species differences in the degree of spatial autocorrelation of elastic moduli, there may be mechanical effects of heterogeneity (relative strength and rigidity) that do distinguish at the species or subfamilial level (i.e., colobines vs. cercopithecines). The potential connections of heterogeneity to diet and/or taxonomy remain to be discovered. © 2016 Wiley Periodicals, Inc.

  6. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    PubMed

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  7. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    PubMed Central

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  8. Possible Noise Nature of Elsässer Variable z- in Highly Alfvénic Solar Wind Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.; Yao, S.; Zhang, L.

    2018-01-01

    It has been a long-standing debate on the nature of Elsässer variable z- observed in the solar wind fluctuations. It is widely believed that z- represents inward propagating Alfvén waves and interacts nonlinearly with z+ (outward propagating Alfvén waves) to generate energy cascade. However, z- variations sometimes show a feature of convective structures. Here we present a new data analysis on autocorrelation functions of z- in order to get some definite information on its nature. We find that there is usually a large drop on the z- autocorrelation function when the solar wind fluctuations are highly Alfvénic. The large drop observed by Helios 2 spacecraft near 0.3 AU appears at the first nonzero time lag τ = 81 s, where the value of the autocorrelation coefficient drops to 25%-65% of that at τ = 0 s. Beyond the first nonzero time lag, the autocorrelation coefficient decreases gradually to zero. The drop of z- correlation function also appears in the Wind observations near 1 AU. These features of the z- correlation function may suggest that z- fluctuations consist of two components: high-frequency white noise and low-frequency pseudo structures, which correspond to flat and steep parts of z- power spectrum, respectively. This explanation is confirmed by doing a simple test on an artificial time series, which is obtained from the superposition of a random data series on its smoothed sequence. Our results suggest that in highly Alfvénic fluctuations, z- may not contribute importantly to the interactions with z+ to produce energy cascade.

  9. Preliminary Field Demonstration of Passive Radio Sounding Using the Sun as a Signal for Echo Detection

    NASA Astrophysics Data System (ADS)

    Peters, S. T.; Schroeder, D. M.; Romero-Wolf, A.; Haynes, M.

    2017-12-01

    The Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been identified as potential candidates for the implementation of passive sounding as additional observing modes for the ESA and NASA missions to Ganymede and Europa. Recent work has shown the theoretical potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. We are further developing and adapting this geophysical approach for use in terrestrial glaciology. Here, we present results from preliminary field testing of a prototype passive radio sounder from cliffs along the California coast. This includes both using a Lloyd's mirror to measure the Sun's direct path and its reflection off the ocean's surface and exploiting autocorrelation to detect the delay time of the echo. This is the first in-situ demonstration of the autocorrelation-based passive-sounding approach using an astronomical white noise signal. We also discuss preliminary field tests on rougher terrestrial and subglacial surfaces, including at Store Glacier in Greenland. Additionally, we present modeling and experimental results that demonstrate the feasibility of applying presumming approaches to the autocorrelations to achieve coherent gain from an inherently random signal. We note that while recording with wider bandwidths and greater delays places fundamental limits on the Lloyd's mirror approach, our new autocorrelation method has no such limitation. Furthermore, we show how achieving wide bandwidths via spectral-stitching methods allows us to obtain a finer range resolution than given by the receiver's instantaneous bandwidth. Finally, we discuss the potential for this technique to eliminate the need for active transmitters in certain types of ice sounding experiments, thereby reducing the complexity, power consumption, and cost of systems and observations.

  10. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  11. Polarization-correlation study of biotissue multifractal structure

    NASA Astrophysics Data System (ADS)

    Olar, O. I.; Ushenko, A. G.

    2003-09-01

    This paper presents the results of polarization-correlation study of multifractal collagen structure of physiologically normal and pathologically changed tissues of women"s reproductive sphere and skin. The technique of polarization selection of coherent images of biotissues with further determination of their autocorrelation functions and spectral densities is suggested. The correlation-optical criteria of early diagnostics of appearance of pathological changes in the cases of myometry (forming the germ of fibromyoma) and skin (psoriasis) are determined. This study is directed to investigate the possibilities of recognition of pathological changes of biotissue morphological structure by determining the polarization-dependent autocorrelation functions (ACF) and corresponding spectral densities of tissue coherent images.

  12. Polarization-correlation investigation of biotissue multifractal structure and diagnostics of its pathological change

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Pishak, Vasyl P.; Ushenko, Alexander G.; Burkovets, Dimitry N.; Pishak, Olga V.

    2001-05-01

    The paper presents the results of polarization-correlation investigation of multifractal collagen structure of physiologically normal and pathologically changed tissues of women's reproductive sphere and of skin. The technique of polarization selection of coherent biotissues' images followed by determination of their autocorrelation functions and spectral densities is suggested. The correlation- optical criteria of early diagnostics of pathological changes' appearance of myometry (forming of the germ of fibromyoma) and of skin (psoriasis) are determined. The present paper examines the possibilities of diagnostics of pathological changes of biotissues' morphological structure by means of determining the polarizationally filtered autocorrelation functions (ACF) and corresponding spectral densities of their coherent images.

  13. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    NASA Astrophysics Data System (ADS)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  14. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.; Ferguson, S.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.; Pope, T.; Reeves, R.; Rehse, R.; Shine, R.; Simon, G.; Harvey, J.; Leibacher, J.; Livingston, W.; November, L.; Zirker, J.

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  15. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2. [Solar Optical Universal Polarimeter

    NASA Technical Reports Server (NTRS)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.

    1988-01-01

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  16. A generalization of random matrix theory and its application to statistical physics.

    PubMed

    Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H

    2017-02-01

    To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.

  17. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  18. Dynamical analyses of the time series for three foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Kim, Sehyun; Kim, Soo Yong; Jung, Jae-Won; Kim, Kyungsik

    2012-05-01

    In this study, we investigate the multifractal properties of three foreign exchange rates (USD-KRW, USD-JPY, and EUR-USD) that are quoted with different economic scales. We estimate and analyze both the generalized Hurst exponent and the autocorrelation function in three foreign exchange rates. The USD-KRW is shown to have the strongest of the Hurst exponents when compared with the other two foreign exchange rates. In particular, the autocorrelation function of the USD-KRW has the largest memory behavior among three foreign exchange rates. It also exhibits a long-memory property in the first quarter, more than those in the other quarters.

  19. Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia.

    PubMed

    Moriguchi, Sachiko; Tominaga, Atsushi; Irwin, Kelly J; Freake, Michael J; Suzuki, Kazutaka; Goka, Koichi

    2015-04-08

    Batrachochytrium dendrobatidis (Bd) is the pathogen responsible for chytridiomycosis, a disease that is associated with a worldwide amphibian population decline. In this study, we predicted the potential distribution of Bd in East and Southeast Asia based on limited occurrence data. Our goal was to design an effective survey area where efforts to detect the pathogen can be focused. We generated ecological niche models using the maximum-entropy approach, with alleviation of multicollinearity and spatial autocorrelation. We applied eigenvector-based spatial filters as independent variables, in addition to environmental variables, to resolve spatial autocorrelation, and compared the model's accuracy and the degree of spatial autocorrelation with those of a model estimated using only environmental variables. We were able to identify areas of high suitability for Bd with accuracy. Among the environmental variables, factors related to temperature and precipitation were more effective in predicting the potential distribution of Bd than factors related to land use and cover type. Our study successfully predicted the potential distribution of Bd in East and Southeast Asia. This information should now be used to prioritize survey areas and generate a surveillance program to detect the pathogen.

  20. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Wypij, D.; Dockery D.

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two datamore » sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.« less

  1. A new estimator method for GARCH models

    NASA Astrophysics Data System (ADS)

    Onody, R. N.; Favaro, G. M.; Cazaroto, E. R.

    2007-06-01

    The GARCH (p, q) model is a very interesting stochastic process with widespread applications and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters and a much discussed question is how to estimate them when a series of some financial asset is given. Besides the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis and the autocorrelation time to determine them. We propose here to use the standardized 6th moment. The set of parameters obtained in this way produces a very good probability density function and a much better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE 100. The probability of return to the origin is investigated at different time horizons for both Gaussian and Laplacian GARCH models. In spite of the fact that these models show almost identical performances with respect to the final probability density function and to the time autocorrelation function, their scaling properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.

  2. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  3. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  4. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  5. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, Arturo

    2017-03-01

    We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.

  6. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  7. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  8. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  9. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods

    PubMed Central

    Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.

    2017-01-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668

  10. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.

  11. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process.

    PubMed

    Moran, John L; Solomon, Patricia J

    2013-05-24

    Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Monthly mean raw mortality (at hospital discharge) time series, 1995-2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) "in-control" status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.

  12. Reflection Response of the Parnaíba Basin (NE Brazil) from Seismic Ambient Noise Autocorrelation Functions

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Schimmel, Martin; Cedraz, Victória

    2017-04-01

    Reflected-wave interferometry relies on the recording of transient seismic signals from random wavefields located beneath recording stations. Under vertical incidence, the recordings contain the full transmission response, which includes the direct wave as well as multiple reverberations from seismic discontinuities located between the wavefields and the receiver. It has been shown that, under those assumptions, the reflection response of the medium can be recovered from the autocorrelation function (ACF) of the transmission response at a given receiver, as if the wavefields had originated themselves at the free surface. This passive approach to seismic reflection profiling has the obvious advantage of being low-cost and non-invasive when compared to its active-source counterpart, and it has been successfully utilized in other sedimentary basins worldwide. In this paper we evaluate the ability of the autocorrelation of ambient seismic noise recorded in the Parnaíba basin - a large Paleozoic basin in NE Brazil - to recover the reflection response of the basin. The dataset was acquired by the Universidade Federal do Rio Grande do Norte during 2015 and 2016 under the Parnaíba Basin Analysis Project (PBAP), a multi-disciplinary and multi-institutional effort funded by BP Energy do Brasil aimed at improving our current understanding of the architecture of this cratonic basin. The dataset consists of about 1 year of continuous ground motion data from 10 short-period, 3-component stations located in the central portion of the basin. The stations were co-located with an existing (active-source) seismic reflection profile that was shot in 2012, making a linear array of about 100 km in aperture and about 10 km inter-station spacing. To develop the autocorrelation at a given station we considered the vertical component of ground motion only, which should result in the P-wave response. The vertical recordings were first split into 10 min-long windows, demeaned, de-trended, re-sampled, and band-pass filtered between 8 and 16 Hz before autocorrelation, and then stacked with phase-weighting to enhance coherency of the retrieved signal. The ACFs show coherent signal is recovered at lag times between 0.5 and 2 s, which we interpret as P- and S-wave energy reflected on top of an intra-sedimentary discontinuity. Our results are consistent, to first-order, with a previously developed active-source reflection response of the basin.

  13. Fractal analysis of multiscale spatial autocorrelation among point data

    USGS Publications Warehouse

    De Cola, L.

    1991-01-01

    The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author

  14. Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers

    NASA Astrophysics Data System (ADS)

    Austin, Kieran S.; Marenz, Martin; Janke, Wolfhard

    2018-03-01

    In this study four update methods are compared in their performance in a Monte Carlo simulation of polymers in continuum space. The efficiencies of the update methods and combinations thereof are compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore, an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is given. This shall serve as a guide for future studies that rely on efficient computer simulations.

  15. Multiple scaling behaviour and nonlinear traits in music scores

    PubMed Central

    Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus

    2017-01-01

    We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece. PMID:29308256

  16. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  17. Errors in radial velocity variance from Doppler wind lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  18. Skewness, long-time memory, and non-stationarity: Application to leverage effect in financial time series

    NASA Astrophysics Data System (ADS)

    Roman, H. E.; Porto, M.; Dose, C.

    2008-10-01

    We analyze daily log-returns data for a set of 1200 stocks, taken from US stock markets, over a period of 2481 trading days (January 1996-November 2005). We estimate the degree of non-stationarity in daily market volatility employing a polynomial fit, used as a detrending function. We find that the autocorrelation function of absolute detrended log-returns departs strongly from the corresponding original data autocorrelation function, while the observed leverage effect depends only weakly on trends. Such effect is shown to occur when both skewness and long-time memory are simultaneously present. A fractional derivative random walk model is discussed yielding a quantitative agreement with the empirical results.

  19. Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee

    2015-10-28

    We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of thismore » highly unexpected effect are also discussed.« less

  20. Pathogenic changes of dispersion and contrast of coherent images of biotissues

    NASA Astrophysics Data System (ADS)

    Pishak, Olga V.

    2002-02-01

    The paper presents the results of polarization-correlation investigation of multifractal collagen structure of physiologically normal and pathologically changed tissues of women's reproductive sphere and of skin. The technique of polarization selection of coherent biotissues' images with the following determination of their autocorrelation functions and spectral densities is suggested. The correlation-optical criteria of early diagnostics of pathological changes' appearance of myometry (forming of the germ of fibromyoma) and of skin(psoriasis) are determined. The suggested paper is directed to investigation of the possibilities of pathological changes of biotissues' morphological structure by means of determining the polarizationally filtered autocorrelation functions (ACF) and corresponding spectral densities of their coherent images.

  1. Multiple scaling behaviour and nonlinear traits in music scores

    NASA Astrophysics Data System (ADS)

    González-Espinoza, Alfredo; Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus

    2017-12-01

    We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece.

  2. Fluctuation analysis of proficient and dysgraphic handwriting in children

    NASA Astrophysics Data System (ADS)

    Rosenblum, S.; Roman, H. E.

    2009-03-01

    We analyze handwriting records from several school children with the aim of characterizing the fluctuating behavior of the writing speed. It will be concluded that remarkable differences exist between proficient and dysgraphic handwritings which were unknown so far. It is shown that in the case of proficient handwriting, the variations in handwriting speed are strongly autocorrelated within times corresponding to the completion of a single character or letter, while become uncorrelated at longer times. In the case of dysgraphia, such correlations persist on longer time scales and the autocorrelation function seems to display algebraic time decay, indicating the presence of strong anomalies in the handwriting process. Applications of the results in educational/clinical programs are envisaged.

  3. The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen

    PubMed Central

    Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.

    2002-01-01

    We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656

  4. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    PubMed

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.

  5. Errors in radial velocity variance from Doppler wind lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...

    2016-08-29

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  6. LETTER TO THE EDITOR: Exhaustive search for low-autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Mertens, S.

    1996-09-01

    Binary sequences with low autocorrelations are important in communication engineering and in statistical mechanics as ground states of the Bernasconi model. Computer searches are the main tool in the construction of such sequences. Owing to the exponential size 0305-4470/29/18/005/img1 of the configuration space, exhaustive searches are limited to short sequences. We discuss an exhaustive search algorithm with run-time characteristic 0305-4470/29/18/005/img2 and apply it to compile a table of exact ground states of the Bernasconi model up to N = 48. The data suggest F > 9 for the optimal merit factor in the limit 0305-4470/29/18/005/img3.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles lessmore » than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.« less

  8. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  9. Correction of Spatial Bias in Oligonucleotide Array Data

    PubMed Central

    Lemieux, Sébastien

    2013-01-01

    Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias. PMID:23573083

  10. Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.

    2016-05-01

    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .

  11. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  12. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  13. Damage detection and isolation via autocorrelation: a step toward passive sensing

    NASA Astrophysics Data System (ADS)

    Chang, Y. S.; Yuan, F. G.

    2018-03-01

    Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.

  14. Chemometric modeling of 5-Phenylthiophenecarboxylic acid derivatives as anti-rheumatic agents.

    PubMed

    Adhikari, Nilanjan; Jana, Dhritiman; Halder, Amit K; Mondal, Chanchal; Maiti, Milan K; Jha, Tarun

    2012-09-01

    Arthritis involves joint inflammation, synovial proliferation and damage of cartilage. Interleukin-1 undergoes acute and chronic inflammatory mechanisms of arthritis. Non-steroidal anti-inflammatory drugs can produce symptomatic relief but cannot act through mechanisms of arthritis. Diseases modifying anti-rheumatoid drugs reduce the symptoms of arthritis like decrease in pain and disability score, reduction of swollen joints, articular index and serum concentration of acute phage proteins. Recently, some literature references are obtained on molecular modeling of antirheumatic agents. We have tried chemometric modeling through 2D-QSAR studies on a dataset of fifty-one compounds out of which forty-four 5-Phenylthiophenecarboxylic acid derivatives have IL-1 inhibitory activity and forty-six 5-Phenylthiophenecarboxylic acid derivatives have %AIA suppressive activity. The work was done to find out the structural requirements of these anti-rheumatic agents. 2D QSAR models were generated by 2D and 3D descriptors by using multiple linear regression and partial least square method where IL-1 antagonism was considered as the biological activity parameter. Statistically significant models were developed on the training set developed by k-means cluster analysis. Sterimol parameters, electronic interaction at atom number 9, 2D autocorrelation descriptors, information content descriptor, average connectivity index chi-3, radial distribution function, Balaban 3D index and 3D-MoRSE descriptors were found to play crucial roles to modulate IL-1 inhibitory activity. 2D autocorrelation descriptors like Broto-Moreau autocorrelation of topological structure-lag 3 weighted by atomic van der Waals volumes, Geary autocorrelation-lag 7 associated with weighted atomic Sanderson electronegativities and 3D-MoRSE descriptors like 3D-MoRSE-signal 22 related to atomic van der Waals volumes, 3D-MoRSE-signal 28 related to atomic van der Waals volumes and 3D-MoRSE-signal 9 which was unweighted, were found to play important roles to model %AIA suppressive activity.

  15. Old document image segmentation using the autocorrelation function and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Gomez-Krämer, Petra; Héroux, Pierre; Mullot, Rémy

    2013-01-01

    Recent progress in the digitization of heterogeneous collections of ancient documents has rekindled new challenges in information retrieval in digital libraries and document layout analysis. Therefore, in order to control the quality of historical document image digitization and to meet the need of a characterization of their content using intermediate level metadata (between image and document structure), we propose a fast automatic layout segmentation of old document images based on five descriptors. Those descriptors, based on the autocorrelation function, are obtained by multiresolution analysis and used afterwards in a specific clustering method. The method proposed in this article has the advantage that it is performed without any hypothesis on the document structure, either about the document model (physical structure), or the typographical parameters (logical structure). It is also parameter-free since it automatically adapts to the image content. In this paper, firstly, we detail our proposal to characterize the content of old documents by extracting the autocorrelation features in the different areas of a page and at several resolutions. Then, we show that is possible to automatically find the homogeneous regions defined by similar indices of autocorrelation without knowledge about the number of clusters using adapted hierarchical ascendant classification and consensus clustering approaches. To assess our method, we apply our algorithm on 316 old document images, which encompass six centuries (1200-1900) of French history, in order to demonstrate the performance of our proposal in terms of segmentation and characterization of heterogeneous corpus content. Moreover, we define a new evaluation metric, the homogeneity measure, which aims at evaluating the segmentation and characterization accuracy of our methodology. We find a 85% of mean homogeneity accuracy. Those results help to represent a document by a hierarchy of layout structure and content, and to define one or more signatures for each page, on the basis of a hierarchical representation of homogeneous blocks and their topology.

  16. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  17. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  18. Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis

    PubMed Central

    2012-01-01

    Background Symmetry and regularity of gait are essential outcomes of gait retraining programs, especially in lower-limb amputees. This study aims presenting an algorithm to automatically compute symmetry and regularity indices, and assessing the minimum number of strides for appropriate evaluation of gait symmetry and regularity through autocorrelation of acceleration signals. Methods Ten transfemoral amputees (AMP) and ten control subjects (CTRL) were studied. Subjects wore an accelerometer and were asked to walk for 70 m at their natural speed (twice). Reference values of step and stride regularity indices (Ad1 and Ad2) were obtained by autocorrelation analysis of the vertical and antero-posterior acceleration signals, excluding initial and final strides. The Ad1 and Ad2 coefficients were then computed at different stages by analyzing increasing portions of the signals (considering both the signals cleaned by initial and final strides, and the whole signals). At each stage, the difference between Ad1 and Ad2 values and the corresponding reference values were compared with the minimum detectable difference, MDD, of the index. If that difference was less than MDD, it was assumed that the portion of signal used in the analysis was of sufficient length to allow reliable estimation of the autocorrelation coefficient. Results All Ad1 and Ad2 indices were lower in AMP than in CTRL (P < 0.0001). Excluding initial and final strides from the analysis, the minimum number of strides needed for reliable computation of step symmetry and stride regularity was about 2.2 and 3.5, respectively. Analyzing the whole signals, the minimum number of strides increased to about 15 and 20, respectively. Conclusions Without the need to identify and eliminate the phases of gait initiation and termination, twenty strides can provide a reasonable amount of information to reliably estimate gait regularity in transfemoral amputees. PMID:22316184

  19. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process

    PubMed Central

    2013-01-01

    Background Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Methods Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. Results The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. Conclusions The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues. PMID:23705957

  20. Time-scale effects on the gain-loss asymmetry in stock indices

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  1. Velocity autocorrelation function in supercooled liquids: Long-time tails and anomalous shear-wave propagation.

    PubMed

    Peng, H L; Schober, H R; Voigtmann, Th

    2016-12-01

    Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.

  2. Molecular dynamics test of the Brownian description of Na(+) motion in water

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.

    1985-01-01

    The present paper provides the results of molecular dynamics calculations on a Na(+) ion in aqueous solution. Attention is given to the sodium-oxygen and sodium-hydrogen radial distribution functions, the velocity autocorrelation function for the Na(+) ion, the autocorrelation function of the force on the stationary ion, and the accuracy of Brownian motion assumptions which are basic to hydrodynamic models of ion dyanmics in solution. It is pointed out that the presented calculations provide accurate data for testing theories of ion dynamics in solution. The conducted tests show that it is feasible to calculate Brownian friction constants for ions in aqueous solutions. It is found that for Na(+) under the considered conditions the Brownian mobility is in error by only 60 percent.

  3. A liver cirrhosis classification on B-mode ultrasound images by the use of higher order local autocorrelation features

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-02-01

    In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.

  4. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  5. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble.

    PubMed

    Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L

    2011-07-18

    We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.

  6. Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation.

    PubMed

    Hsu, Chen-Shao; Chiang, Hsin-Chien; Chuang, Hsiu-Po; Huang, Chen-Bin; Yang, Shang-Da

    2011-07-15

    We retrieve the spectral phase of 400 fs pulses at 1560 nm with 5.2 aJ coupled pulse energy (40 photons) by the modified interferometric field autocorrelation method, using a pulse shaper and a 5 cm long periodically poled lithium niobate waveguide. The carrier-envelope phase control of the shaper can reduce the fringe density of the interferometric trace and permits longer lock-in time constants, achieving a sensitivity of 2.7×10(-9) mW(2) (40 times better than the previous record for self-referenced nonlinear pulse measurement). The high stability of the pulse shaper allows for accurate and reproducible measurements of complicated spectral phases. © 2011 Optical Society of America

  7. Climate reddening increases the chance of critical transitions

    NASA Astrophysics Data System (ADS)

    van der Bolt, Bregje; van Nes, Egbert H.; Bathiany, Sebastian; Vollebregt, Marlies E.; Scheffer, Marten

    2018-06-01

    Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.

  8. The integration of laser communication and ranging

    NASA Astrophysics Data System (ADS)

    Xu, Mengmeng; Sun, Jianfeng; Zhou, Yu; Zhang, Bo; Zhang, Guo; Li, Guangyuan; He, Hongyu; Lao, Chenzhe

    2017-08-01

    The method to realize the integration of laser communication and ranging is proposed in this paper. In the transmitter of two places, the ranging codes with uniqueness, good autocorrelation and cross-correlation properties are embed in the communication data and the encoded with the communication data to realize serial communication. And then the encoded data are modulated and send to each other, which can realize high speed two one-way laser communication. At the receiver, we can get the received ranging code after the demodulation, decoding and clock recovery. The received ranging codes and the local ranging codes do the autocorrelation to get a roughly range, while the phase difference between the local clock and the recovery clock to achieve the precision of the distance.

  9. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of amore » GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.« less

  10. Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin.

    PubMed Central

    Peck, K; Stryer, L; Glazer, A N; Mathies, R A

    1989-01-01

    A theory for single-molecule fluorescence detection is developed and then used to analyze data from subpicomolar solutions of B-phycoerythrin (PE). The distribution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The autocorrelation function reveals single-molecule events and provides a criterion for optimizing experimental parameters. The transit time of fluorescent molecules through the 120-fl imaged volume was 800 microseconds. The optimal laser power (32 mW at 514.5 nm) gave an incident intensity of 1.8 x 10(23) photons.cm-2.s-1, corresponding to a mean time of 1.1 ns between absorptions. The mean incremental count rate was 1.5 per 100 microseconds for PE monomers and 3.0 for PE dimers above a background count rate of 1.0. The distribution of counts and the autocorrelation function for 200 fM monomer and 100 fM dimer demonstrate that single-molecule detection was achieved. At this concentration, the mean occupancy was 0.014 monomer molecules in the probed volume. A hard-wired version of this detection system was used to measure the concentration of PE down to 1 fM. This single-molecule counter is 3 orders of magnitude more sensitive than conventional fluorescence detection systems. PMID:2726766

  11. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  12. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  13. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  14. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  15. Analysis of intermediate period correlations of coda from deep earthquakes

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Campillo, Michel; de Hoop, Maarten

    2017-11-01

    We aim at assessing quantitatively the nature of the signals that appear in coda wave correlations at periods >20 s. These signals contain transient constituents with arrival times corresponding to deep seismic phases. These (body-wave) constituents can be used for imaging. To evaluate this approach, we calculate the autocorrelations of the vertical component seismograms for the Mw 8.4 sea of Okhotsk earthquake at 400 stations in the Eastern US, using data from 1 h before to 50 h after the earthquake. By using array analysis and modes identification, we discover the dominant role played by high quality factor normal modes in the emergence of strong coherent phases as ScS-like, and P'P'df-like. We then make use of geometrical quantization to derive the constituent rays associated with particular modes, and gain insights about the ballistic reverberation of the rays that contributes to the emergence of body waves. Our study indicates that the signals measured in the spatially averaged autocorrelations have a physical significance, but a direct interpretation of ScS-like and P'P'df-like is not trivial. Indeed, even a single simple measurement of long period late coda in a limited period band could provide valuable information on the deep structure by using the temporal information of its autocorrelation, a procedure that could be also useful for planetary exploration.

  16. Scaling analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Bu, Luping; Shang, Pengjian

    2014-06-01

    In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.

  17. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006

    PubMed Central

    2009-01-01

    Background Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns. Methods In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender. Results Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships. Conclusions Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services. PMID:20003460

  19. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

    PubMed

    Cheng, Yezeng; Larin, Kirill V

    2006-12-20

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  20. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Yezeng; Larin, Kirill V.

    2006-12-01

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  1. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  2. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  3. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  4. Time correlation functions of simple liquids: A new insight on the underlying dynamical processes

    NASA Astrophysics Data System (ADS)

    Garberoglio, Giovanni; Vallauri, Renzo; Bafile, Ubaldo

    2018-05-01

    Extensive molecular dynamics simulations of liquid sodium have been carried out to evaluate correlation functions of several dynamical quantities. We report the results of a novel analysis of the longitudinal and transverse correlation functions obtained by evaluating directly their self- and distinct contributions at different wavevectors k. It is easily recognized that the self-contribution remains close to its k → 0 limit, which turns out to be exactly the autocorrelation function of the single particle velocity. The wavevector dependence of the longitudinal and transverse spectra and their self- and distinct parts is also presented. By making use of the decomposition of the velocity autocorrelation spectrum in terms of longitudinal and transverse parts, our analysis is able to recognize the effect of different dynamical processes in different frequency ranges.

  5. Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China

    PubMed Central

    2011-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347

  6. CADDIS Volume 4. Data Analysis: Basic Principles & Issues

    EPA Pesticide Factsheets

    Use of inferential statistics in causal analysis, introduction to data independence and autocorrelation, methods to identifying and control for confounding variables, references for the Basic Principles section of Data Analysis.

  7. Preliminary results for model identification in characterizing 2-D topographic road profiles

    NASA Astrophysics Data System (ADS)

    Kern, Joshua V.; Ferris, John B.

    2006-05-01

    Load data representing severe customer usage is needed throughout a chassis development program; the majority of these chassis loads originate with the excitation from the road. These chassis loads are increasingly derived from vehicle simulations. Simulating a vehicle traversing long roads is simply impractical, however, and a greatly reduced set of characteristic roads must be found. In order to characterize a road, certain modeling assumptions must be made. Several models have been proposed making various assumptions about the properties that road profiles possess. The literature in this field is reviewed before focusing on two modeling assumptions of particular interest: the stationarity of the signal (homogeneity of the road) and the corresponding interval over which previous data points are correlated to the current data point. In this work, 2-D topographic road profiles are considered to be signals that are realizations of a stochastic process. The objective of this work is to investigate the stationarity assumption and the interval of influence for several carefully controlled sections of highway pavement in the United States. Two statistical techniques are used in analyzing these data: the autocorrelation and the partial autocorrelation. It is shown that the road profile signals in their original form are not stationary and have an extremely long interval of influence on the order of 25m. By differencing the data, however, it is often possible to generate stationary residuals and a very short interval of influence on the order of 250mm. By examining the autocorrelation and the partial autocorrelation, various versions of ARIMA models appear to be appropriate for further modeling. Implications to modeling the signals as Markov Chains are also discussed. In this way, roads can be characterized by the model architecture and the particular parameterization of the model. Any synthetic road realized from a particular model represents all profiles in this set. Realizations of any length can be generated, allowing efficient simulation and timely information about the chassis loads that can be used for design decisions. This work provides insights for future development in the modeling and characterization of 2-D topographic road profiles.

  8. Quantifying temporal change in biodiversity: challenges and opportunities

    PubMed Central

    Dornelas, Maria; Magurran, Anne E.; Buckland, Stephen T.; Chao, Anne; Chazdon, Robin L.; Colwell, Robert K.; Curtis, Tom; Gaston, Kevin J.; Gotelli, Nicholas J.; Kosnik, Matthew A.; McGill, Brian; McCune, Jenny L.; Morlon, Hélène; Mumby, Peter J.; Øvreås, Lise; Studeny, Angelika; Vellend, Mark

    2013-01-01

    Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions. PMID:23097514

  9. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  10. Identification of Piecewise Linear Uniform Motion Blur

    NASA Astrophysics Data System (ADS)

    Patanukhom, Karn; Nishihara, Akinori

    A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.

  11. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less

  12. A spatial analysis of social and economic determinants of tuberculosis in Brazil.

    PubMed

    Harling, Guy; Castro, Marcia C

    2014-01-01

    We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.

  13. Human Cortical θ during Free Exploration Encodes Space and Predicts Subsequent Memory

    PubMed Central

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric

    2013-01-01

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  14. Assessing spatial inequalities in accessing community pharmacies: a mixed geographically weighted approach.

    PubMed

    Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella

    2016-11-16

    Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.

  15. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  16. A statistical physics view of pitch fluctuations in the classical music from Bach to Chopin: evidence for scaling.

    PubMed

    Liu, Lu; Wei, Jianrong; Zhang, Huishu; Xin, Jianhong; Huang, Jiping

    2013-01-01

    Because classical music has greatly affected our life and culture in its long history, it has attracted extensive attention from researchers to understand laws behind it. Based on statistical physics, here we use a different method to investigate classical music, namely, by analyzing cumulative distribution functions (CDFs) and autocorrelation functions of pitch fluctuations in compositions. We analyze 1,876 compositions of five representative classical music composers across 164 years from Bach, to Mozart, to Beethoven, to Mendelsohn, and to Chopin. We report that the biggest pitch fluctuations of a composer gradually increase as time evolves from Bach time to Mendelsohn/Chopin time. In particular, for the compositions of a composer, the positive and negative tails of a CDF of pitch fluctuations are distributed not only in power laws (with the scale-free property), but also in symmetry (namely, the probability of a treble following a bass and that of a bass following a treble are basically the same for each composer). The power-law exponent decreases as time elapses. Further, we also calculate the autocorrelation function of the pitch fluctuation. The autocorrelation function shows a power-law distribution for each composer. Especially, the power-law exponents vary with the composers, indicating their different levels of long-range correlation of notes. This work not only suggests a way to understand and develop music from a viewpoint of statistical physics, but also enriches the realm of traditional statistical physics by analyzing music.

  17. Sub-femtosecond quantum dynamics of the strong-field ionization of water to the X ̃(2)B1 and Ã(2)A1 states of the cation.

    PubMed

    Jayachander Rao, B; Varandas, A J C

    2015-03-07

    Motivated by recent efforts to achieve sub-femtosecond structural resolution in various molecular systems, we have performed a femtosecond quantum dynamics study of the water cation in the X ̃(2)B1 and Ã(2)A1 electronic states. Autocorrelation functions for H2O(+) and D2O(+) are calculated for such electronic states by solving numerically the time-dependent Schrödinger equation. From the ratio of the squared autocorrelation functions of D2O(+) and H2O(+), the high-order harmonic generation signals are calculated. Substantial vibrational dynamics is found in the Ã(2)A1 state as compared to the one in X ̃(2)B1, which supports recent experimental findings of Farrell et al., Phys. Rev. Lett., 2011, 107, 083001. Maxima in the above ratio are also predicted at ∼1.1 fs and ∼1.6 fs for the X ̃(2)B1 and Ã(2)A1 states, respectively. The expectation values of the positions of the atoms in H2O(+) as a function of time reveal a strong excitation of the bending mode in the Ã(2)A1 state, which explains the observed vibrational dynamics. The peaks in the ratios of the squared autocorrelation functions are also explained in terms of the evolving geometries of the water cation.

  18. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    PubMed

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

  19. Time series analysis of particle tracking data for molecular motion on the cell membrane.

    PubMed

    Ying, Wenxia; Huerta, Gabriel; Steinberg, Stanly; Zúñiga, Martha

    2009-11-01

    Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that restrict lateral diffusion, supporting the notion that plasma membrane organization is highly structured. Our demonstration that membrane protein motion is autocorrelated and is characterized by an excess of both short and long jumps reinforces the concept that the membrane environment is heterogeneous and dynamic. Autocorrelation analysis and modeling of the jump distributions are powerful new techniques for the analysis of SPT data and the development of more refined models of membrane organization. The time series analysis also provides several methods of estimating the diffusion constant in addition to the constant provided by the mean squared displacement. The mean squared displacement for most of the biological data shows a power law behavior rather the linear behavior of Brownian motion. In this case, we introduce the notion of an instantaneous diffusion constant. All of the diffusion constants show a strong consistency for most of the biological data.

  20. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator.

    PubMed

    Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A

    2012-04-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics

  1. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  2. Fetal source extraction from magnetocardiographic recordings by dependent component analysis

    NASA Astrophysics Data System (ADS)

    de Araujo, Draulio B.; Kardec Barros, Allan; Estombelo-Montesco, Carlos; Zhao, Hui; Roque da Silva Filho, A. C.; Baffa, Oswaldo; Wakai, Ronald; Ohnishi, Noboru

    2005-10-01

    Fetal magnetocardiography (fMCG) has been extensively reported in the literature as a non-invasive, prenatal technique that can be used to monitor various functions of the fetal heart. However, fMCG signals often have low signal-to-noise ratio (SNR) and are contaminated by strong interference from the mother's magnetocardiogram signal. A promising, efficient tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). Herein we propose an algorithm based on a variation of ICA, where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We model the system using autoregression, and identify the signal component of interest from the poles of the autocorrelation function. We show that the method is effective in removing the maternal signal, and is computationally efficient. We also compare our results to more established ICA methods, such as FastICA.

  3. Correlation range in a supercooled liquid via Green-Kubo expression for viscosity, local atomic stresses, and MD simulations

    NASA Astrophysics Data System (ADS)

    Levashov, Valentin A.; Egami, Takeshi; Morris, James R.

    2009-03-01

    We present a new approach to the issue of correlation range in supercooled liquids based on Green-Kubo expression for viscosity. The integrand of this expression is the average stress-stress autocorrelation function. This correlation function could be rewritten in terms of correlations among local atomic stresses at different times and distances. The features of the autocorrelation function decay with time depend on temperature and correlation range. Through this approach we can study the development of spatial correlation with time, thus directly addressing the question of dynamic heterogeneity. We performed MD simulations on a single component system of particles interacting through short range pair potential. Our results indicate that even above the crossover temperature correlations extend well beyond the nearest neighbors. Surprisingly we found that the system size effects exist even on relatively large systems. We also address the role of diffusion in decay of stress-stress correlation function.

  4. Diffusion in shear flow

    NASA Astrophysics Data System (ADS)

    Dufty, J. W.

    1984-09-01

    Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.

  5. Long-range correlation and market segmentation in bond market

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxing; Yan, Yan; Chen, Xiaosong

    2017-09-01

    This paper investigates the long-range auto-correlations and cross-correlations in bond market. Based on Detrended Moving Average (DMA) method, empirical results present a clear evidence of long-range persistence that exists in one year scale. The degree of long-range correlation related to maturities has an upward tendency with a peak in short term. These findings confirm the expectations of fractal market hypothesis (FMH). Furthermore, we have developed a method based on a complex network to study the long-range cross-correlation structure and applied it to our data, and found a clear pattern of market segmentation in the long run. We also detected the nature of long-range correlation in the sub-period 2007-2012 and 2011-2016. The result from our research shows that long-range auto-correlations are decreasing in the recent years while long-range cross-correlations are strengthening.

  6. Experimental evaluation of fluctuating density and radiated noise from a high temperature jet

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.

  7. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  8. Statistical spatial properties of speckle patterns generated by multiple laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-08-15

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less

  9. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    PubMed

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  10. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  11. Intensity autocorrelation measurements of frequency combs in the terahertz range

    NASA Astrophysics Data System (ADS)

    Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme

    2017-09-01

    We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.

  12. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  13. [Incentive for Regional Risk Selection in the German Risk Structure Compensation Scheme].

    PubMed

    Wende, Danny

    2017-10-01

    The introduction of the new law GKV-FQWG strengthens the competition between statutory health insurance. If incentives for risk selection exist, they may force a battle for cheap customers. This study aims to document and discuss incentives for regional risk selection in the German risk structure compensation scheme. Identify regional autocorrelation with Moran's l on financial parameters of the risk structure compensation schema. Incentives for regional risk selection do indeed exist. The risk structure compensation schema reduces 91% of the effect and helps to reduce risk selection. Nevertheless, a connection between regional situation and competition could be shown (correlation: 69.5%). Only the integration of regional control variables into the risk compensation eliminates regional autocorrelation. The actual risk structure compensation is leading to regional inequalities and as a consequence to risk selection and distortion in competition. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padding, J. T.; Briels, W. J.

    2014-12-28

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution.more » We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics.« less

  15. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle.

    PubMed

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-02-26

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.

  16. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  17. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storelli, A., E-mail: alexandre.storelli@lpp.polytechnique.fr; Vermare, L.; Hennequin, P.

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation timemore » are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.« less

  18. Geary autocorrelation and DCCA coefficient: Application to predict apoptosis protein subcellular localization via PSSM

    NASA Astrophysics Data System (ADS)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2017-02-01

    Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.

  19. Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

    2014-04-14

    To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less

  20. Statistical models and time series forecasting of sulfur dioxide: a case study Tehran.

    PubMed

    Hassanzadeh, S; Hosseinibalam, F; Alizadeh, R

    2009-08-01

    This study performed a time-series analysis, frequency distribution and prediction of SO(2) levels for five stations (Pardisan, Vila, Azadi, Gholhak and Bahman) in Tehran for the period of 2000-2005. Most sites show a quite similar characteristic with highest pollution in autumn-winter time and least pollution in spring-summer. The frequency distributions show higher peaks at two residential sites. The potential for SO(2) problems is high because of high emissions and the close geographical proximity of the major industrial and urban centers. The ACF and PACF are nonzero for several lags, indicating a mixed (ARMA) model, then at Bahman station an ARMA model was used for forecasting SO(2). The partial autocorrelations become close to 0 after about 5 lags while the autocorrelations remain strong through all the lags shown. The results proved that ARMA (2,2) model can provides reliable, satisfactory predictions for time series.

  1. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  2. A new phase correction method in NMR imaging based on autocorrelation and histogram analysis.

    PubMed

    Ahn, C B; Cho, Z H

    1987-01-01

    A new statistical approach to phase correction in NMR imaging is proposed. The proposed scheme consists of first-and zero-order phase corrections each by the inverse multiplication of estimated phase error. The first-order error is estimated by the phase of autocorrelation calculated from the complex valued phase distorted image while the zero-order correction factor is extracted from the histogram of phase distribution of the first-order corrected image. Since all the correction procedures are performed on the spatial domain after completion of data acquisition, no prior adjustments or additional measurements are required. The algorithm can be applicable to most of the phase-involved NMR imaging techniques including inversion recovery imaging, quadrature modulated imaging, spectroscopic imaging, and flow imaging, etc. Some experimental results with inversion recovery imaging as well as quadrature spectroscopic imaging are shown to demonstrate the usefulness of the algorithm.

  3. Violations of Assumptions in School-Based Single-Case Data: Implications for the Selection and Interpretation of Effect Sizes.

    PubMed

    Solomon, Benjamin George

    2014-07-01

    A wide variety of effect sizes (ESs) has been used in the single-case design literature. Several researchers have "stress tested" these ESs by subjecting them to various degrees of problem data (e.g., autocorrelation, slope), resulting in the conditions by which different ESs can be considered valid. However, on the back end, few researchers have considered how prevalent and severe these problems are in extant data and as a result, how concerned applied researchers should be. The current study extracted and aggregated indicators of violations of normality and independence across four domains of educational study. Significant violations were found in total and across fields, including low levels of autocorrelation and moderate levels of absolute trend. These violations affect the selection and interpretation of ESs at the individual study level and for meta-analysis. Implications and recommendations are discussed. © The Author(s) 2013.

  4. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  5. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-04-15

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  6. Arctic sea ice trends, variability and implications for seasonal ice forecasting

    PubMed Central

    Serreze, Mark C.; Stroeve, Julienne

    2015-01-01

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315

  7. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  8. A Comparison of Local Variance, Fractal Dimension, and Moran's I as Aids to Multispectral Image Classification

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.

    2004-01-01

    The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.

  9. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo.

    PubMed

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J

    2017-02-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.

  10. Ring polymer dynamics in curved spaces

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Curotto, E.

    2012-07-01

    We formulate an extension of the ring polymer dynamics approach to curved spaces using stereographic projection coordinates. We test the theory by simulating the particle in a ring, {T}^1, mapped by a stereographic projection using three potentials. Two of these are quadratic, and one is a nonconfining sinusoidal model. We propose a new class of algorithms for the integration of the ring polymer Hamilton equations in curved spaces. These are designed to improve the energy conservation of symplectic integrators based on the split operator approach. For manifolds, the position-position autocorrelation function can be formulated in numerous ways. We find that the position-position autocorrelation function computed from configurations in the Euclidean space {R}^2 that contains {T}^1 as a submanifold has the best statistical properties. The agreement with exact results obtained with vector space methods is excellent for all three potentials, for all values of time in the interval simulated, and for a relatively broad range of temperatures.

  11. How cosmic microwave background correlations at large angles relate to mass autocorrelations in space

    NASA Technical Reports Server (NTRS)

    Blumenthal, George R.; Johnston, Kathryn V.

    1994-01-01

    The Sachs-Wolfe effect is known to produce large angular scale fluctuations in the cosmic microwave background radiation (CMBR) due to gravitational potential fluctuations. We show how the angular correlation function of the CMBR can be expressed explicitly in terms of the mass autocorrelation function xi(r) in the universe. We derive analytic expressions for the angular correlation function and its multipole moments in terms of integrals over xi(r) or its second moment, J(sub 3)(r), which does not need to satisfy the sort of integral constraint that xi(r) must. We derive similar expressions for bulk flow velocity in terms of xi and J(sub 3). One interesting result that emerges directly from this analysis is that, for all angles theta, there is a substantial contribution to the correlation function from a wide range of distance r and that radial shape of this contribution does not vary greatly with angle.

  12. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  13. Rainfall statistics, stationarity, and climate change.

    PubMed

    Sun, Fubao; Roderick, Michael L; Farquhar, Graham D

    2018-03-06

    There is a growing research interest in the detection of changes in hydrologic and climatic time series. Stationarity can be assessed using the autocorrelation function, but this is not yet common practice in hydrology and climate. Here, we use a global land-based gridded annual precipitation (hereafter P ) database (1940-2009) and find that the lag 1 autocorrelation coefficient is statistically significant at around 14% of the global land surface, implying nonstationary behavior (90% confidence). In contrast, around 76% of the global land surface shows little or no change, implying stationary behavior. We use these results to assess change in the observed P over the most recent decade of the database. We find that the changes for most (84%) grid boxes are within the plausible bounds of no significant change at the 90% CI. The results emphasize the importance of adequately accounting for natural variability when assessing change. Copyright © 2018 the Author(s). Published by PNAS.

  14. Rainfall statistics, stationarity, and climate change

    NASA Astrophysics Data System (ADS)

    Sun, Fubao; Roderick, Michael L.; Farquhar, Graham D.

    2018-03-01

    There is a growing research interest in the detection of changes in hydrologic and climatic time series. Stationarity can be assessed using the autocorrelation function, but this is not yet common practice in hydrology and climate. Here, we use a global land-based gridded annual precipitation (hereafter P) database (1940–2009) and find that the lag 1 autocorrelation coefficient is statistically significant at around 14% of the global land surface, implying nonstationary behavior (90% confidence). In contrast, around 76% of the global land surface shows little or no change, implying stationary behavior. We use these results to assess change in the observed P over the most recent decade of the database. We find that the changes for most (84%) grid boxes are within the plausible bounds of no significant change at the 90% CI. The results emphasize the importance of adequately accounting for natural variability when assessing change.

  15. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  16. Separating temperature from other factors in phenological measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  17. Social inequalities in residential exposure to road traffic noise: an environmental justice analysis based on the RECORD Cohort Study.

    PubMed

    Havard, Sabrina; Reich, Brian J; Bean, Kathy; Chaix, Basile

    2011-05-01

    To explore social inequalities in residential exposure to road traffic noise in an urban area. Environmental injustice in road traffic noise exposure was investigated in Paris, France, using the RECORD Cohort Study (n = 2130) and modelled noise data. Associations were assessed by estimating noise exposure within the local area around participants' residence, considering various socioeconomic variables defined at both individual and neighbourhood level, and comparing different regression models attempting or not to control for spatial autocorrelation in noise levels. After individual-level adjustment, participants' noise exposure increased with neighbourhood educational level and dwelling value but also with proportion of non-French citizens, suggesting seemingly contradictory findings. However, when country of citizenship was defined according to its human development level, noise exposure in fact increased and decreased with the proportions of citizens from advantaged and disadvantaged countries, respectively. These findings were consistent with those reported for the other socioeconomic characteristics, suggesting higher road traffic noise exposure in advantaged neighbourhoods. Substantial collinearity between neighbourhood explanatory variables and spatial random effects caused identifiability problems that prevented successful control for spatial autocorrelation. Contrary to previous literature, this study shows that people living in advantaged neighbourhoods were more exposed to road traffic noise in their residential environment than their deprived counterparts. This case study demonstrates the need to systematically perform sensitivity analyses with multiple socioeconomic characteristics to avoid incorrect inferences about an environmental injustice situation and the complexity of effectively controlling for spatial autocorrelation when fixed and random components of the model are correlated.

  18. Signal-to-noise ratio enhancement on SEM images using a cubic spline interpolation with Savitzky-Golay filters and weighted least squares error.

    PubMed

    Kiani, M A; Sim, K S; Nia, M E; Tso, C P

    2015-05-01

    A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  20. [Spatial Distribution Characteristics of Different Species Mercury in Water Body of Changshou Lake in Three Gorges Reservoir Region].

    PubMed

    Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong

    2015-08-01

    An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.

  1. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  2. Carbonaceous aerosol at two rural locations in New York State: Characterization and behavior

    NASA Astrophysics Data System (ADS)

    Sunder Raman, Ramya; Hopke, Philip K.; Holsen, Thomas M.

    2008-06-01

    Fine particle samples were collected to determine the chemical constituents in PM2.5 at two rural background sites (Potsdam and Stockton, N. Y.) in the northeastern United States from November 2002 to August 2005. Samples were collected every third day for 24 h with a speciation network sampler. The measured carbonaceous species included thermal-optical organic carbon (OC), elemental carbon (EC), pyrolytic carbon (OP), black carbon (BC), and water-soluble, short-chain (WSSC) organic acids. Concentration time series, autocorrelations, and seasonal variations of the carbonaceous species were examined. During this multiyear period, the contributions of the total carbon (OC + EC) to the measured fine particle mass were 31.2% and 31.1% at Potsdam and Stockton, respectively. The average sum of the WSSC acids carbon accounted for approximately 2.5% of the organic carbon at Potsdam and 3.0% at Stockton. At Potsdam, the seasonal differences in the autocorrelation function (ACF) and partial autocorrelation function (PACF) values for carbonaceous species suggest that secondary formation may be an important contributor to the observed concentrations of species likely to be secondary in origin, particularly during the photochemically active time of the year (May to October). This study also investigated the relationships between carbonaceous species to better understand the behavior of carbonaceous aerosol and to assess the contribution of secondary organic carbon (SOC) to the total organic carbon mass (the EC tracer method was used to estimate SOC). At Potsdam the average SOC contribution to total OC varied between 66% and 72%, while at Stockton it varied between 58% and 64%.

  3. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics.

    PubMed

    Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao

    2017-12-01

    Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.

  4. Characterizing the functional MRI response using Tikhonov regularization.

    PubMed

    Vakorin, Vasily A; Borowsky, Ron; Sarty, Gordon E

    2007-09-20

    The problem of evaluating an averaged functional magnetic resonance imaging (fMRI) response for repeated block design experiments was considered within a semiparametric regression model with autocorrelated residuals. We applied functional data analysis (FDA) techniques that use a least-squares fitting of B-spline expansions with Tikhonov regularization. To deal with the noise autocorrelation, we proposed a regularization parameter selection method based on the idea of combining temporal smoothing with residual whitening. A criterion based on a generalized chi(2)-test of the residuals for white noise was compared with a generalized cross-validation scheme. We evaluated and compared the performance of the two criteria, based on their effect on the quality of the fMRI response. We found that the regularization parameter can be tuned to improve the noise autocorrelation structure, but the whitening criterion provides too much smoothing when compared with the cross-validation criterion. The ultimate goal of the proposed smoothing techniques is to facilitate the extraction of temporal features in the hemodynamic response for further analysis. In particular, these FDA methods allow us to compute derivatives and integrals of the fMRI signal so that fMRI data may be correlated with behavioral and physiological models. For example, positive and negative hemodynamic responses may be easily and robustly identified on the basis of the first derivative at an early time point in the response. Ultimately, these methods allow us to verify previously reported correlations between the hemodynamic response and the behavioral measures of accuracy and reaction time, showing the potential to recover new information from fMRI data. 2007 John Wiley & Sons, Ltd

  5. Measurement and data processing approach for detecting anisotropic spatial statistics of the turbulence-induced index of refraction fluctuations in the upper atmosphere.

    PubMed

    Havens, Timothy C; Roggemann, Michael C; Schulz, Timothy J; Brown, Wade W; Beyer, Jeff T; Otten, L John

    2002-05-20

    We discuss a method of data reduction and analysis that has been developed for a novel experiment to detect anisotropic turbulence in the tropopause and to measure the spatial statistics of these flows. The experimental concept is to make measurements of temperature at 15 points on a hexagonal grid for altitudes from 12,000 to 18,000 m while suspended from a balloon performing a controlled descent. From the temperature data, we estimate the index of refraction and study the spatial statistics of the turbulence-induced index of refraction fluctuations. We present and evaluate the performance of a processing approach to estimate the parameters of an anisotropic model for the spatial power spectrum of the turbulence-induced index of refraction fluctuations. A Gaussian correlation model and a least-squares optimization routine are used to estimate the parameters of the model from the measurements. In addition, we implemented a quick-look algorithm to have a computationally nonintensive way of viewing the autocorrelation function of the index fluctuations. The autocorrelation of the index of refraction fluctuations is binned and interpolated onto a uniform grid from the sparse points that exist in our experiment. This allows the autocorrelation to be viewed with a three-dimensional plot to determine whether anisotropy exists in a specific data slab. Simulation results presented here show that, in the presence of the anticipated levels of measurement noise, the least-squares estimation technique allows turbulence parameters to be estimated with low rms error.

  6. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?

    PubMed Central

    Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.

    2017-01-01

    BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612

  7. Small area-level variation in the incidence of psychotic disorders in an urban area in France: an ecological study.

    PubMed

    Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck

    2016-07-01

    We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.

  8. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  9. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  10. Quantifying time-of-flight-resolved optical field dynamics in turbid media with interferometric near-infrared spectroscopy (iNIRS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.

    2017-03-01

    Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.

  11. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    NASA Astrophysics Data System (ADS)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  12. Critical Fluctuations in Cortical Models Near Instability

    PubMed Central

    Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464

  13. Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft

    NASA Astrophysics Data System (ADS)

    Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.

    2018-04-01

    It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.

  14. Analysis of stochastic characteristics of the Benue River flow process

    NASA Astrophysics Data System (ADS)

    Otache, Martins Y.; Bakir, Mohammad; Li, Zhijia

    2008-05-01

    Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity. The streamflow process is investigated for trend, non-stationarity and seasonality for a time period of 26 years. Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges. Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months, especially the months of August, January, and February. For the stationarity test, daily and monthly flow series appear to be stationary whereas at 1%, 5%, and 10% significant levels, the stationarity alternative hypothesis is rejected for the annual flow series. Though monthly flow appears to be stationary going by this test, because of high seasonality, it could be said to exhibit periodic stationarity based on the seasonality analysis. The following conclusions are drawn: (1) There is seasonality in both the mean and variance with unimodal distribution. (2) Days with high mean also have high variance. (3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period, and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season. Precisely, they are significantly different for most of the months. (4) The autocorrelation functions estimated “over time” are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only, while autocorrelation functions for i = 1, 2, ..., 365 estimated “over realisations” have their coefficients significantly different from other coefficients.

  15. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    DOE Data Explorer

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  16. SPATIALLY AUTOCORRELATED DEMOGRAPHY AND INTERPOND MIGRATION IN THE CALIFORNIA TIGER SALAMANDER (AMBYSTOME CALIFORNIENSE)

    EPA Science Inventory

    We investigated the metapopulation structure of the California tiger salamander (Ambystoma californiense) using a combination of indirect and direct methods to evaluate two key requirements of modern metapopulation models: 1) that patches support somewhat independent populations ...

  17. On the auto and cross correlation of PN sequences

    NASA Technical Reports Server (NTRS)

    Morakis, J. C.

    1969-01-01

    The autocorrelation and crosscorrelation properties of pseudorandom (PN) sequences are analyzed by using some important properties of PN sequences. These properties make this discussion understandable without the need of linear algebraic approach. The analysis is followed by some experimental results.

  18. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  19. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: Self-assembly of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us...

  20. SPATIAL SCALE OF AUTOCORRELATION IN WISCONSIN FROG AND TOAD SURVEY DATA

    EPA Science Inventory

    The degree to which local population dynamics are correlated with nearby sites has important implications for metapopulation dynamics and landscape management. Spatially extensive monitoring data can be used to evaluate large-scale population dynamic processes. Our goals in this ...

  1. Statistical characteristics of MST radar echoes and its interpretation

    NASA Technical Reports Server (NTRS)

    Woodman, Ronald F.

    1989-01-01

    Two concepts of fundamental importance are reviewed: the autocorrelation function and the frequency power spectrum. In addition, some turbulence concepts, the relationship between radar signals and atmospheric medium statistics, partial reflection, and the characteristics of noise and clutter interference are discussed.

  2. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  3. Only marginal alignment of disc galaxies

    NASA Astrophysics Data System (ADS)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  4. Why GPS makes distances bigger than they are

    PubMed Central

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-01-01

    ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610

  5. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  6. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  7. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    PubMed

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.

  8. Temporal pattern and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo

    2015-04-01

    In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.

  9. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    NASA Astrophysics Data System (ADS)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  10. From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope.

    PubMed

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-10-09

    It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn't need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.

  11. An autocorrelation method to detect low frequency earthquakes within tremor

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  12. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    USGS Publications Warehouse

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  13. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  14. Switchgrass and Miscanthus Biomass and Theoretical Ethanol Production from Reclaimed Mine Lands in West Virginia

    NASA Astrophysics Data System (ADS)

    Scagline, Steffany M.

    Near infrared stimulation or Low Level Laser Therapy (LLLT) is an innovative technique shown to effect the microvasculature hemodynamics. The aim of this study is to use Diffused Correlation Spectroscopy (DCS) to evaluate the physiological effects of LLLT on blood perfusion. This study is divided into two parts: the fist part is the development of DCS system and the second part is investigating the effects of LLLT on biological tissue. DCS is an emerging non-invasive technique to probe deep tissue hemodynamics. DCS uses time-averaged intensity autocorrelation function for the fluctuations caused due to the moving scatterers (RBCs) in biological tissue. We present a software based autocorrelator system to complete the acquisition and processing parts. We conducted validation studies on an intralipid phantom and human forearm. Both the studies proved smooth decay curves which help in getting a better curve fitting and as a result more accurate blood flow index (BFI). We show that the software based autocorrelation system can be an alternative to the conventional hardware based correlators in DCS systems with benefits such as flexibility in raw photon count data processing and low cost. The objective of the second part of this study is evaluating how a single session of LLLT alters the hemodynamics in the microvasculature. We performed an experiment where the subjects forearm was stimulated with LLLT and the corresponding changes were recorded using DCS system. The results obtained shows significant hemodynamic changes in response to LLLT with a 95%confidence interval. The results in this study indicate that LLLT could lead to the development of non-invasive technique to help in rehabilitation and performance-enhancing of healthy humans.

  15. Dynamical Resilience Indicators in Time Series of Self-Rated Health Correspond to Frailty Levels in Older Adults.

    PubMed

    Gijzel, Sanne M W; van de Leemput, Ingrid A; Scheffer, Marten; Roppolo, Mattia; Olde Rikkert, Marcel G M; Melis, René J F

    2017-07-01

    We currently still lack valid methods to dynamically measure resilience for stressors before the appearance of adverse health outcomes that hamper well-being. Quantifying an older adult's resilience in an early stage would aid complex decision-making in health care. Translating complex dynamical systems theory to humans, we hypothesized that three dynamical indicators of resilience (variance, temporal autocorrelation, and cross-correlation) in time series of self-rated physical, mental, and social health were associated with frailty levels in older adults. We monitored self-rated physical, mental, and social health during 100 days using daily visual analogue scale questions in 22 institutionalized older adults (mean age 84.0, SD: 5.9 years). Frailty was determined by the Survey of Health, Ageing and Retirement in Europe (SHARE) frailty index. The resilience indicators (variance, temporal autocorrelation, and cross-correlation) were calculated using multilevel models. The self-rated health time series of frail elderly exhibited significantly elevated variance in the physical, mental, and social domain, as well as significantly stronger cross-correlations between all three domains, as compared to the nonfrail group (all P < 0.001). Temporal autocorrelation was not significantly associated with frailty. We found supporting evidence for two out of three hypothesized resilience indicators to be related to frailty levels in older adults. By mirroring the dynamical resilience indicators to a frailty index, we delivered a first empirical base to validate and quantify the construct of systemic resilience in older adults in a dynamic way. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Species density of waterbirds in offshore habitats in western Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Waite, Thomas A.

    2003-01-01

    Offshore censuses of birds are lacking for inland seas, such as the Laurentian Great Lakes, but may provide valuable information for managing species that are in conflict with human interests. Birds were counted along 31 established transects in four habitats in western Lake Erie: offshore of waterbird refuges, offshore of beaches with human development, on reefs and shoals, and in open water. A total of 161 10-min counts were conducted between 24 April and 1 September 2000. The mean number of aquatic bird species/kmA? (species density) was greater offshore of refuges than on open water. For all habitats combined, species density increased over time. This was mainly due to the arrival of Bonaparte's Gulls (Larus philadelphia) and Great Black-backed Gulls (L. marinus), two fall and winter residents that do not breed in the study area, and increased use of open water and reefs and shoals by Herring Gulls (L argentatus) and Ring-billed Gulls (L delawarensis) after the nesting season. Species density was not strongly spatially autocorrelated, either for all species or for only those species that were floating on the water when recorded. Neither Double-crested Cormorants (Phalacrocorax auritus) nor Herring Gulls exhibited spatial autocorrelation. In contrast, Bonaparte's and Ring-billed gulls exhibited positive spatial autocorrelations. Unlike marine studies, species density was only weakly associated with water depth. This result was due mainly to Double-crested Cormorants, the only diving bird species that lived year-round in the area, which preferred reefs and shoals (depth 3-6 m) over open water (10 m). The results suggest that offshore habitat influences species density in this area during the breeding and immediate post-breeding seasons.

  17. Model Identification of Integrated ARMA Processes

    ERIC Educational Resources Information Center

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  18. Spatial Dependency and Contextual Effects on Academic Achievement

    ERIC Educational Resources Information Center

    Matlock, Ki; Song, Joon Jin; Goering, Christian Z.

    2014-01-01

    This study investigated the influences of district-related variables on a district's academic performance. Arkansas augmented benchmark examination scores were used to measure a district's scholastic achievement. Spatial analysis fit each district's performance to its geographical location; spatial autocorrelation measured the amount of influence…

  19. The Superstatistical Nature and Interoccurrence Time of Atmospheric Mercury Concentration Fluctuations

    EPA Science Inventory

    The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed thresh...

  20. Diffraction and geometrical optical transfer functions: calculation time comparison

    NASA Astrophysics Data System (ADS)

    Díaz, José Antonio; Mahajan, Virendra N.

    2017-08-01

    In a recent paper, we compared the diffraction and geometrical optical transfer functions (OTFs) of an optical imaging system, and showed that the GOTF approximates the DOTF within 10% when a primary aberration is about two waves or larger [Appl. Opt., 55, 3241-3250 (2016)]. In this paper, we determine and compare the times to calculate the DOTF by autocorrelation or digital autocorrelation of the pupil function, and by a Fourier transform (FT) of the point-spread function (PSF); and the GOTF by a FT of the geometrical PSF and its approximation, the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the ray aberrations in the image plane for the GOTF. The numerical results for primary aberrations and a typical imaging system show that the direct integrations are slow, but the calculation of the DOTF by a FT of the PSF is generally faster than the GOTF calculation by a FT of the spot diagram.

  1. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  2. Bounds of memory strength for power-law series.

    PubMed

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α. By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α, which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1<α≤3, as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α>3, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  3. Comparing phase-sensitive and phase-insensitive echolocation target images using a monaural audible sonar.

    PubMed

    Kuc, Roman

    2018-04-01

    This paper describes phase-sensitive and phase-insensitive processing of monaural echolocation waveforms to generate target maps. Composite waveforms containing both the emission and echoes are processed to estimate the target impulse response using an audible sonar. Phase-sensitive processing yields the composite signal envelope, while phase-insensitive processing that starts with the composite waveform power spectrum yields the envelope of the autocorrelation function. Analysis and experimental verification show that multiple echoes form an autocorrelation function that produces near-range phantom-reflector artifacts. These artifacts interfere with true target echoes when the first true echo occurs at a time that is less than the total duration of the target echoes. Initial comparison of phase-sensitive and phase-insensitive maps indicates that both display important target features, indicating that phase is not vital. A closer comparison illustrates the improved resolution of phase-sensitive processing, the near-range phantom-reflectors produced by phase-insensitive processing, and echo interference and multiple reflection artifacts that were independent of the processing.

  4. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    PubMed

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

  5. Blind equalization with criterion with memory nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjie; Nikias, Chrysostomos L.; Proakis, John G.

    1992-06-01

    Blind equalization methods usually combat the linear distortion caused by a nonideal channel via a transversal filter, without resorting to the a priori known training sequences. We introduce a new criterion with memory nonlinearity (CRIMNO) for the blind equalization problem. The basic idea of this criterion is to augment the Godard [or constant modulus algorithm (CMA)] cost function with additional terms that penalize the autocorrelations of the equalizer outputs. Several variations of the CRIMNO algorithms are derived, with the variations dependent on (1) whether the empirical averages or the single point estimates are used to approximate the expectations, (2) whether the recent or the delayed equalizer coefficients are used, and (3) whether the weights applied to the autocorrelation terms are fixed or are allowed to adapt. Simulation experiments show that the CRIMNO algorithm, and especially its adaptive weight version, exhibits faster convergence speed than the Godard (or CMA) algorithm. Extensions of the CRIMNO criterion to accommodate the case of correlated inputs to the channel are also presented.

  6. Bounds of memory strength for power-law series

    NASA Astrophysics Data System (ADS)

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α . By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α , which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1 <α ≤3 , as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α >3 , the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  7. Entropy, instrument scan and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Harris, R. L., Jr.; Ephrath, A. R.

    1982-01-01

    Correlation and information theory which analyze the relationships between mental loading and visual scanpath of aircraft pilots are described. The relationship between skill, performance, mental workload, and visual scanning behavior are investigated. The experimental method required pilots to maintain a general aviation flight simulator on a straight and level, constant sensitivity, Instrument Landing System (ILS) course with a low level of turbulence. An additional periodic verbal task whose difficulty increased with frequency was used to increment the subject's mental workload. The subject's looppoint on the instrument panel during each ten minute run was computed via a TV oculometer and stored. Several pilots ranging in skill from novices to test pilots took part in the experiment. Analysis of the periodicity of the subject's instrument scan was accomplished by means of correlation techniques. For skilled pilots, the autocorrelation of instrument/dwell times sequences showed the same periodicity as the verbal task. The ability to multiplex simultaneous tasks increases with skill. Thus autocorrelation provides a way of evaluating the operator's skill level.

  8. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  9. Mesoscopic fluctuations and intermittency in aging dynamics

    NASA Astrophysics Data System (ADS)

    Sibani, P.

    2006-01-01

    Mesoscopic aging systems are characterized by large intermittent noise fluctuations. In a record dynamics scenario (Sibani P. and Dall J., Europhys. Lett., 64 (2003) 8) these events, quakes, are treated as a Poisson process with average αln (1 + t/tw), where t is the observation time, tw is the age and α is a parameter. Assuming for simplicity that quakes constitute the only source of de-correlation, we present a model for the probability density function (PDF) of the configuration autocorrelation function. Beside α, the model has the average quake size 1/q as a parameter. The model autocorrelation PDF has a Gumbel-like shape, which approaches a Gaussian for large t/tw and becomes sharply peaked in the thermodynamic limit. Its average and variance, which are given analytically, depend on t/tw as a power law and a power law with a logarithmic correction, respectively. Most predictions are in good agreement with data from the literature and with the simulations of the Edwards-Anderson spin-glass carried out as a test.

  10. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  11. On the origin of the soft X-ray background. [in cosmological observations

    NASA Technical Reports Server (NTRS)

    Wang, Q. D.; Mccray, Richard

    1993-01-01

    The angular autocorrelation function and spectrum of the soft X-ray background is studied below a discrete source detection limit, using two deep images from the Rosat X-ray satellite. The average spectral shape of pointlike sources, which account for 40 to 60 percent of the background intensity, is determined by using the autocorrelation function. The background spectrum, in the 0.5-0.9 keV band (M band), is decomposed into a pointlike source component characterized by a power law and a diffuse component represented by a two-temperature plasma. These pointlike sources cannot contribute more than 60 percent of the X-ray background intensity in the M band without exceeding the total observed flux in the R7 band. Spectral analysis has shown that the local soft diffuse component, although dominating the background intensity at energies not greater than 0.3 keV, contributes only a small fraction of the M band background intensity. The diffuse component may represent an important constituent of the interstellar or intergalactic medium.

  12. A simple autocorrelation algorithm for determining grain size from digital images of sediment

    USGS Publications Warehouse

    Rubin, D.M.

    2004-01-01

    Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).

  13. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2006-12-14

    The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.

  14. Scaling of seismic memory with earthquake size

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel; Podobnik, Boris; Tamura, Yoshiyasu; Stanley, H. Eugene

    2012-07-01

    It has been observed that discrete earthquake events possess memory, i.e., that events occurring in a particular location are dependent on the history of that location. We conduct an analysis to see whether continuous real-time data also display a similar memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic wave form database recorded by 64 stations in Japan, including the 2011 “Great East Japan Earthquake,” one of the five most powerful earthquakes ever recorded, which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the wave form sign series show power-law anticorrelations while the interval series show power-law correlations. We find size dependence in earthquake autocorrelations: as the earthquake size increases, both of these correlation behaviors strengthen. We also find that the DFA scaling exponent α has no dependence on the earthquake hypocenter depth or epicentral distance.

  15. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  16. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.

    PubMed

    Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun

    2018-05-20

    In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.

  17. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    PubMed

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions

    DOE PAGES

    Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane

    2017-07-12

    The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less

  19. Design of two-dimensional zero reference codes with cross-entropy method.

    PubMed

    Chen, Jung-Chieh; Wen, Chao-Kai

    2010-06-20

    We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.

  20. Scaling analysis and model estimation of solar corona index

    NASA Astrophysics Data System (ADS)

    Ray, Samujjwal; Ray, Rajdeep; Khondekar, Mofazzal Hossain; Ghosh, Koushik

    2018-04-01

    A monthly average solar green coronal index time series for the period from January 1939 to December 2008 collected from NOAA (The National Oceanic and Atmospheric Administration) has been analysed in this paper in perspective of scaling analysis and modelling. Smoothed and de-noising have been done using suitable mother wavelet as a pre-requisite. The Finite Variance Scaling Method (FVSM), Higuchi method, rescaled range (R/S) and a generalized method have been applied to calculate the scaling exponents and fractal dimensions of the time series. Autocorrelation function (ACF) is used to find autoregressive (AR) process and Partial autocorrelation function (PACF) has been used to get the order of AR model. Finally a best fit model has been proposed using Yule-Walker Method with supporting results of goodness of fit and wavelet spectrum. The results reveal an anti-persistent, Short Range Dependent (SRD), self-similar property with signatures of non-causality, non-stationarity and nonlinearity in the data series. The model shows the best fit to the data under observation.

  1. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J.

    2017-01-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer–Lambert Law. Thus, iNIRS is a promising approach for quantitative and non-invasive monitoring of perfusion and optical properties in vivo. PMID:28146535

  2. Statistical assessment of optical phase fluctuations through turbulent mixing layers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.

    1995-09-01

    A lateral shearing interferometer is used to measure the slope of perturbed wavefronts after propagating through turbulent shear flows. This provides a two-dimensional flow visualization technique which is nonintrusive. The slope measurements are used to reconstruct the phase of the turbulence-corrupted wave front. Experiments were performed on a plane shear mixing layer of helium and nitrogen gas at fixed velocities, for five locations in the flow development. The two gases, having a density ratio of approximately seven, provide an effective means of simulating compressible shear layers. Statistical autocorrelation functions and structure functions are computed on the reconstructed phase maps. The autocorrelation function results indicate that the turbulence-induced phase fluctuations are not wide-sense stationary. The structure functions exhibit statistical homogeneity, indicating the phase fluctuation are stationary in first increments. However, the turbulence-corrupted phase is not isotropic. A five-thirds power law is shown to fit one-dimensional, orthogonal slices of the structure function, with scaling coefficients related to the location in the flow.

  3. Temporal measurement on and using pulses from laser-like emission obtained from styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya; Bhowmik, Achintya; Ahyi, Ayayi; Thakur, Mrinal

    2000-03-01

    We have recently reported observation of spectral narrowing and high-conversion laser-like emission in a solution of styrylpyridinium cynanine dye (SPCD) at a low threshold energy, pumped with the second-harmonic of a picosecond Nd:YAG laser. Fundamental and second-harmonic pulses from a Nd:YAG laser of 80 ps duration at 10 Hz repetition rate were used to pump 0.1 mol/l concentration of SPCD in methanol in two separate pumping arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of spectrally narrowed emission in both cases was measured by background-free SHG intensity autocorrelation technique. A BBO crystal was used for the autocorrelation measurement. The measured duration of the pulses was 40 ps. These pulses having a spectral linewidth of 10 nm (FWHM) were used as a probe to measure the gain in SPCD solution in a pump-probe set up. The results will be discussed.

  4. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice

    PubMed Central

    Cavanagh, Sean E; Wallis, Joni D; Kennerley, Steven W; Hunt, Laurence T

    2016-01-01

    Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations. DOI: http://dx.doi.org/10.7554/eLife.18937.001 PMID:27705742

  5. Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System

    PubMed Central

    Yang, Che-Chang; Hsu, Yeh-Liang; Shih, Kao-Shang; Lu, Jun-Ming

    2011-01-01

    This paper presents the development of a wearable accelerometry system for real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable motion detector is a single waist-mounted device to measure trunk accelerations during walking. Several gait cycle parameters, including cadence, step regularity, stride regularity and step symmetry can be estimated in real-time by using autocorrelation procedure. For validation purposes, five Parkinson’s disease (PD) patients and five young healthy adults were recruited in an experiment. The gait cycle parameters among the two subject groups of different mobility can be quantified and distinguished by the system. Practical considerations and limitations for implementing the autocorrelation procedure in such a real-time system are also discussed. This study can be extended to the future attempts in real-time detection of disabling gaits, such as festinating or freezing of gait in PD patients. Ambulatory rehabilitation, gait assessment and personal telecare for people with gait disorders are also possible applications. PMID:22164019

  6. Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking.

    PubMed

    Houel, Julien; Doan, Quang T; Cajgfinger, Thomas; Ledoux, Gilles; Amans, David; Aubret, Antoine; Dominjon, Agnès; Ferriol, Sylvain; Barbier, Rémi; Nasilowski, Michel; Lhuillier, Emmanuel; Dubertret, Benoît; Dujardin, Christophe; Kulzer, Florian

    2015-01-27

    We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nanoemitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the microsecond time scale.

  7. Neighborhood Characteristics and the Social Control of Registered Sex Offenders

    ERIC Educational Resources Information Center

    Socia, Kelly M.; Stamatel, Janet P.

    2012-01-01

    This study uses geospatial and regression analyses to examine the relationships among social disorganization, collective efficacy, social control, residence restrictions, spatial autocorrelation, and the neighborhood distribution of registered sex offenders (RSOs) in Chicago. RSOs were concentrated in neighborhoods that had higher levels of social…

  8. Dynamics at Intermediate Time Scales and Management of Ecological Populations

    DTIC Science & Technology

    2017-05-10

    thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for

  9. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    USDA-ARS?s Scientific Manuscript database

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  10. Spatio-temporal wildland arson crime functions

    Treesearch

    David T. Butry; Jeffrey P. Prestemon

    2005-01-01

    Wildland arson creates damages to structures and timber and affects the health and safety of people living in rural and wildland urban interface areas. We develop a model that incorporates temporal autocorrelations and spatial correlations in wildland arson ignitions in Florida. A Poisson autoregressive model of order p, or PAR(p)...

  11. Big assumptions for small samples in crop insurance

    Treesearch

    Ashley Elaine Hungerford; Barry Goodwin

    2014-01-01

    The purpose of this paper is to investigate the effects of crop insurance premiums being determined by small samples of yields that are spatially correlated. If spatial autocorrelation and small sample size are not properly accounted for in premium ratings, the premium rates may inaccurately reflect the risk of a loss.

  12. Update and review of accuracy assessment techniques for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.

    1983-01-01

    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.

  13. Predicting thermal regimes of stream networks across the northeast United States: Natural and anthropogenic influences

    EPA Science Inventory

    We used STARS (Spatial Tools for the Analysis of River Systems), an ArcGIS geoprocessing toolbox, to create spatial stream networks. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance...

  14. The error structure of the SMAP single and dual channel soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the temporal error structure for remotely-sensed surface soil moisture retrievals can improve our ability to exploit them for hydrology and climate studies. This study employs a triple collocation type analysis to investigate both the total variance and temporal auto-correlation of erro...

  15. The potential of 2D Kalman filtering for soil moisture data assimilation

    USDA-ARS?s Scientific Manuscript database

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  16. 9.4 COMPLEX SYSTEM THEORY AND THE TRANSDIAGNOSTIC USE OF EARLY WARNING SIGNALS TO FORESEE THE TYPE OF FUTURE TRANSITIONS IN SYMPTOMS

    PubMed Central

    Wichers, Marieke; Schreuder, Marieke; Hartman, Catharina; Wigman, Hanneke

    2018-01-01

    Abstract Background Recently, we showed that assumptions from complex system theory seem applicable in the field of psychiatry. This means that indicators of critical slowing down in the system signal the risk for a critical transition in the near future. In the current study we wanted to explore whether the principle of critical slowing down may also be informative to anticipate on the type of symptoms that individuals are most likely to develop. This is relevant as it may lead to personalized prediction of risk of whether adolescents with mixed complaints are most likely to develop either depression, anxiety, somatic or psychotic symptoms in the near future. For example, we hypothesized that critical slowing down in feeling ‘suspicious’ more strongly indicates risk for a future transition to psychotic symptoms, while critical slowing down in feeling ‘down’ more strongly indicates risk for a transition to depressive symptoms. Methods We examined this in a population of adolescents (most between 15 and 18 years) as adolescents are an at-risk group for the development of psychopathology. At baseline experience sampling was performed for 6 days, 10 measurements a day. Affect items were used to assess autocorrelation as an indicator of ‘critical slowing down’ of the system. At baseline and follow-up SCL-90 questionnaires were administered. In total, 147 adolescents participated both in baseline and follow-up measures and showed increases in at least one of the defined symptom dimensions. We examined whether autocorrelation was positively associated with the size of symptom transition and whether different type of transitions (in depression, anxiety etc.) were differentially predicted by autocorrelations in specific affect states. Results The analyses were done very recently, and findings have not been presented before. We found both shared and specific indicators of risk in the development for transition to various symptom dimensions. First, autocorrelation in ‘feeling suspicious’ appeared to be the strongest signal for all assessed psychopathology dimensions (SCL-90 depression: std beta: 0.185; p <0.001; SCL-90 anxiety: std beta: 0.093; p=0.006; SCL-90 interpersonal sensitivity: std beta: 0.176, p<0.001). Second, we found that the combination of ‘feeling suspicious’ and the affect with the second-highest autocorrelation together predicted the precise type of symptom transition. Thus, the combination of feeling suspicious (std beta: 0.185; p<0.001) and down (std beta: 0.108; p=0.001) predicted larger increases in depressive symptoms one year later on the SCL-90, while the combination of feeling suspicious (std beta: 0.093; p=0.006) with feeling anxious (std beta: 0.086; p=0.014) predicted larger increases in anxiety symptoms a year later on the SCL-90. Discussion These findings support the hypothesis that indicators of slowing down can not only be used to predict risk for a mean level shift in symptoms, but that they can also be informative for the type of symptom transitions at hand. In a next step these findings could be translated to designs measuring personalized early warnings for future direction of symptom shifts, and if successful to clinical implementation of these techniques.

  17. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  18. A comparison of chronologies from tree rings

    Treesearch

    Kurt H. Riitters

    1990-01-01

    Forty-five-year ring width index chronologies were estimated by five mean-value functions applied to 183 ring width series from four similar sites. The effects of autocorrelation on the comparisons among mean-value functions were explored by fitting box-Jenkins models to individual-tree index services prior to pooling (prewhitening), and to the pooled chronologies...

  19. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  20. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2012-09-30

    the CS2 was contained in a rectangular colorimeter cell with a custom built Teflon cap to alleviate the evaporation of the hazardous chemical...6: A comparison of the image quality between the older colorimeter cell (a) and the new containment cell (b). 2.5 Autocorrelation-Based Pulse Length

  1. The Complexity of Bit Retrieval

    DOE PAGES

    Elser, Veit

    2018-09-20

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  2. The Complexity of Bit Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elser, Veit

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  3. The investigation of time dependent flame structure by ionization probes

    NASA Technical Reports Server (NTRS)

    Ventura, J. M. P.; Suzuki, T.; Yule, A. J.; Ralph, S.; Chigier, N. A.

    1980-01-01

    Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence.

  4. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  5. Forest Stand Canopy Structure Attribute Estimation from High Resolution Digital Airborne Imagery

    Treesearch

    Demetrios Gatziolis

    2006-01-01

    A study of forest stand canopy variable assessment using digital, airborne, multispectral imagery is presented. Variable estimation involves stem density, canopy closure, and mean crown diameter, and it is based on quantification of spatial autocorrelation among pixel digital numbers (DN) using variogram analysis and an alternative, non-parametric approach known as...

  6. Periodicity in spatial data and geostatistical models: autocorrelation between patches

    Treesearch

    Volker C. Radeloff; Todd F. Miller; Hong S. He; David J. Mladenoff

    2000-01-01

    Several recent studies in landscape ecology have found periodicity in correlograms or semi-variograms calculated, for instance, from spatial data of soils, forests, or animal populations. Some of the studies interpreted this as an indication of regular or periodic landscape patterns. This interpretation is in disagreement with other studies that doubt whether such...

  7. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  8. A Search for Quasi-periodic Oscillations in the Blazar 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Pan; Luo, Yu-Hui; Yang, Hai-Yan

    We have searched quasi-periodic oscillations (QPOs) in the 15 GHz light curve of the BL Lac object 1ES 1959+650 monitored by the Owens Valley Radio Observatory 40 m telescope during the period from 2008 January to 2016 February, using the Lomb–Scargle Periodogram, power spectral density (PSD), discrete autocorrelation function, and phase dispersion minimization (PDM) techniques. The red noise background has been established via the PSD method, and no QPO can be derived at the 3 σ confidence level accounting for the impact of the red noise variability. We conclude that the light curve of 1ES 1959+650 can be explained bymore » a stochastic red noise process that contributes greatly to the total observed variability amplitude, dominates the power spectrum, causes spurious bumps and wiggles in the autocorrelation function and can result in the variance of the folded light curve decreasing toward lower temporal frequencies when few-cycle, sinusoid-like patterns are present. Moreover, many early supposed periodicity claims for blazar light curves need to be reevaluated assuming red noise.« less

  9. Spot auto-focusing and spot auto-stigmation methods with high-definition auto-correlation function in high-resolution TEM.

    PubMed

    Isakozawa, Shigeto; Fuse, Taishi; Amano, Junpei; Baba, Norio

    2018-04-01

    As alternatives to the diffractogram-based method in high-resolution transmission electron microscopy, a spot auto-focusing (AF) method and a spot auto-stigmation (AS) method are presented with a unique high-definition auto-correlation function (HD-ACF). The HD-ACF clearly resolves the ACF central peak region in small amorphous-thin-film images, reflecting the phase contrast transfer function. At a 300-k magnification for a 120-kV transmission electron microscope, the smallest areas used are 64 × 64 pixels (~3 nm2) for the AF and 256 × 256 pixels for the AS. A useful advantage of these methods is that the AF function has an allowable accuracy even for a low s/n (~1.0) image. A reference database on the defocus dependency of the HD-ACF by the pre-acquisition of through-focus amorphous-thin-film images must be prepared to use these methods. This can be very beneficial because the specimens are not limited to approximations of weak phase objects but can be extended to objects outside such approximations.

  10. Estimation of neural energy in microelectrode signals

    NASA Astrophysics Data System (ADS)

    Gaumond, R. P.; Clement, R.; Silva, R.; Sander, D.

    2004-09-01

    We considered the problem of determining the neural contribution to the signal recorded by an intracortical electrode. We developed a linear least-squares approach to determine the energy fraction of a signal attributable to an arbitrary number of autocorrelation-defined signals buried in noise. Application of the method requires estimation of autocorrelation functions Rap(tgr) characterizing the action potential (AP) waveforms and Rn(tgr) characterizing background noise. This method was applied to the analysis of chronically implanted microelectrode signals from motor cortex of rat. We found that neural (AP) energy consisted of a large-signal component which grows linearly with the number of threshold-detected neural events and a small-signal component unrelated to the count of threshold-detected AP signals. The addition of pseudorandom noise to electrode signals demonstrated the algorithm's effectiveness for a wide range of noise-to-signal energy ratios (0.08 to 39). We suggest, therefore, that the method could be of use in providing a measure of neural response in situations where clearly identified spike waveforms cannot be isolated, or in providing an additional 'background' measure of microelectrode neural activity to supplement the traditional AP spike count.

  11. Preliminary evidence for the influence of physiography and scale upon the autocorrelation function of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Toll, D. L.; Kennard, R. E.

    1980-01-01

    Previously established results demonstrate that LANDSAT data are autocorrelated and can be described by a univariate linear stochastic process known as auto-regressive-integrated-moving-average model of degree 1, 0, 1 or ARIMA (1, 0, 1). This model has two coefficients of interest for interpretation phi(1) and theta(1). In a comparison of LANDSAT thematic mapper simulator (TMS) data and LANDSAT MSS data several results were established: (1) The form of the relatedness as described by this model is not dependent upon system look angle or pixel size. (2) The phi(1) coefficient increases with decreasing pixel size and increasing topographic complexity. (3) Changes in topography have a greater influence upon phi(1) than changes in land cover class. (4) The theta(1) seems to vary with the amount of atmospheric haze. These patterns of variation in phi(1) and theta(1) are potentially exploitable by the remote sensing community to yield stochastically independent sets of observations, characterize topography, and reduce the number of bytes needed to store remotely sensed data.

  12. Subfemtosecond quantum nuclear dynamics in water isotopomers.

    PubMed

    Rao, B Jayachander; Varandas, A J C

    2015-05-21

    Subfemtosecond quantum dynamics studies of all water isotopomers in the X̃ (2)B1 and à (2)A1 electronic states of the cation formed by Franck-Condon ionization of the neutral ground electronic state are reported. Using the ratio of the autocorrelation functions for the isotopomers as obtained from the solution of the time-dependent Schrödinger equation in a grid representation, high-order harmonic generation signals are calculated as a function of time. The results are found to be in agreement with the available experimental findings and with our earlier study for D2O(+)/H2O(+). Maxima are predicted in the autocorrelation function ratio at various times. Their origin and occurrence is explained by calculating expectation values of the bond lengths and bond angle of the water isotopomers as a function of time. The values so calculated for the (2)B1 and (2)A1 electronic states of the cation show quasiperiodic oscillations that can be associated with the time at which the nuclear wave packet reaches the minima of the potential energy surface, there being responsible for the peaks in the HHG signals.

  13. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas.

    PubMed

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-09-02

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.

  14. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas

    PubMed Central

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-01-01

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186

  15. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update.

    PubMed

    Peakall, Rod; Smouse, Peter E

    2012-10-01

    GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G'(ST), G''(ST), Jost's D(est) and F'(ST) through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. rod.peakall@anu.edu.au.

  16. Holographic Measurements of Fuel Droplet Diffusion in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji

    2005-11-01

    High-speed digital holographic cinematography was used to investigate the diffusion of slightly buoyant fuel droplets in locally isotropic turbulence. High turbulence levels with a weak mean velocity was generated at the center of a tank by four rotating grids. 0.3-1.5mm droplets were injected here and tracked using in-line holography. To obtain all three components of velocity, we simultaneously recorded holograms of the central 37x37x37 mm^3 volume from two perpendicular directions. These were numerically reconstructed to provide focused images of the droplets. An automated code was developed to identify the 3-D droplet trajectories from the two views, and then calculate time series of their velocity. After subtracting the local mean fluid velocity, the time series were used to obtain the 3-D Lagrangian autocorrelation function of droplet velocity. Averaging over many trajectories provided the autocorrelation functions as a function of direction and droplet sizes. As expected, the correlation was higher in the vertical direction due to the effect of gravity. Data analysis is still in progress.

  17. An evaluation of random analysis methods for the determination of panel damping

    NASA Technical Reports Server (NTRS)

    Bhat, W. V.; Wilby, J. F.

    1972-01-01

    An analysis is made of steady-state and non-steady-state methods for the measurement of panel damping. Particular emphasis is placed on the use of random process techniques in conjunction with digital data reduction methods. The steady-state methods considered use the response power spectral density, response autocorrelation, excitation-response crosspower spectral density, or single-sided Fourier transform (SSFT) of the response autocorrelation function. Non-steady-state methods are associated mainly with the use of rapid frequency sweep excitation. Problems associated with the practical application of each method are evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and two methods, the power spectral density and the single-sided Fourier transform methods, are selected as being the most suitable. These two methods are demonstrated experimentally, and it is shown that the power spectral density method is satisfactory under most conditions, provided that appropriate corrections are applied to account for filter bandwidth and background noise errors. Thus, the response power spectral density method is recommended for the measurement of the damping of panels exposed to a moving airflow.

  18. An alternative respiratory sounds classification system utilizing artificial neural networks.

    PubMed

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  19. High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal–oxide–semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we concludemore » that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron–phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.« less

  20. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  1. Where do the Field Plots Belong? A Multiple-Constraint Sampling Design for the BigFoot Project

    NASA Astrophysics Data System (ADS)

    Kennedy, R. E.; Cohen, W. B.; Kirschbaum, A. A.; Gower, S. T.

    2002-12-01

    A key component of a MODIS validation project is effective characterization of biophysical measures on the ground. Fine-grain ecological field measurements must be placed strategically to capture variability at the scale of the MODIS imagery. Here we describe the BigFoot project's revised sampling scheme, designed to simultaneously meet three important goals: capture landscape variability, avoid spatial autocorrelation between field plots, and minimize time and expense of field sampling. A stochastic process places plots in clumped constellations to reduce field sampling costs, while minimizing spatial autocorrelation. This stochastic process is repeated, creating several hundred realizations of plot constellations. Each constellation is scored and ranked according to its ability to match landscape variability in several Landsat-based spectral indices, and its ability to minimize field sampling costs. We show how this approach has recently been used to place sample plots at the BigFoot project's two newest study areas, one in a desert system and one in a tundra system. We also contrast this sampling approach to that already used at the four prior BigFoot project sites.

  2. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.

    PubMed

    Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  3. Setting up a proper power spectral density (PSD) and autocorrelation analysis for material and process characterization

    NASA Astrophysics Data System (ADS)

    Rutigliani, Vito; Lorusso, Gian Francesco; De Simone, Danilo; Lazzarino, Frederic; Rispens, Gijsbert; Papavieros, George; Gogolides, Evangelos; Constantoudis, Vassilios; Mack, Chris A.

    2018-03-01

    Power spectral density (PSD) analysis is playing more and more a critical role in the understanding of line-edge roughness (LER) and linewidth roughness (LWR) in a variety of applications across the industry. It is an essential step to get an unbiased LWR estimate, as well as an extremely useful tool for process and material characterization. However, PSD estimate can be affected by both random to systematic artifacts caused by image acquisition and measurement settings, which could irremediably alter its information content. In this paper, we report on the impact of various setting parameters (smoothing image processing filters, pixel size, and SEM noise levels) on the PSD estimate. We discuss also the use of PSD analysis tool in a variety of cases. Looking beyond the basic roughness estimate, we use PSD and autocorrelation analysis to characterize resist blur[1], as well as low and high frequency roughness contents and we apply this technique to guide the EUV material stack selection. Our results clearly indicate that, if properly used, PSD methodology is a very sensitive tool to investigate material and process variations

  4. Statistical, time series, and fractal analysis of full stretch of river Yamuna (India) for water quality management.

    PubMed

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2015-01-01

    River water is a major resource of drinking water on earth. Management of river water is highly needed for surviving. Yamuna is the main river of India, and monthly variation of water quality of river Yamuna, using statistical methods have been compared at different sites for each water parameters. Regression, correlation coefficient, autoregressive integrated moving average (ARIMA), box-Jenkins, residual autocorrelation function (ACF), residual partial autocorrelation function (PACF), lag, fractal, Hurst exponent, and predictability index have been estimated to analyze trend and prediction of water quality. Predictive model is useful at 95% confidence limits and all water parameters reveal platykurtic curve. Brownian motion (true random walk) behavior exists at different sites for BOD, AMM, and total Kjeldahl nitrogen (TKN). Quality of Yamuna River water at Hathnikund is good, declines at Nizamuddin, Mazawali, Agra D/S, and regains good quality again at Juhikha. For all sites, almost all parameters except potential of hydrogen (pH), water temperature (WT) crosses the prescribed limits of World Health Organization (WHO)/United States Environmental Protection Agency (EPA).

  5. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters.

    PubMed

    Sato, Shin-ichi; You, Jin; Jeon, Jin Yong

    2007-07-01

    Psychoacoustical and autocorrelation function (ACF) parameters were employed to describe the temporal fluctuations of refrigerator noise during starting, transition into/from the stationary phase and termination of operation. The temporal fluctuations of refrigerator noise include a click at start-up, followed by a rapid increase in volume, a change of pitch, and termination of the operation. Subjective evaluations of the noise of 24 different refrigerators were conducted in a real living environment. The relationship between objective measures and perceived noisiness was examined by multiple regression analysis. Sound quality indices were developed based on psychoacoustical and ACF parameters. The psychoacoustical parameters found to be important for evaluating noisiness in the stationary phase were loudness and roughness. The relationship between noisiness and ACF parameters shows that sound energy and its fluctuations are important for evaluating noisiness. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The tolerance level for the starting phase of refrigerator noise was found to be 33 dBA, which is the level where 65% of the participants in the subjective tests were satisfied.

  6. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  7. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  8. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China

    PubMed Central

    Cao, Chunxiang; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972

  9. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  10. First results on quiet and magnetic granulation from SOUP

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-01-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  11. First results on quiet and magnetic granulation from SOUP

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-09-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  12. A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London.

    PubMed

    Rushworth, Alastair; Lee, Duncan; Mitchell, Richard

    2014-07-01

    It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chen, Z.; Valiya Parambathu, A.; Hirasaki, G. J.; Chapman, W. G.

    2018-04-01

    The role of internal motions and molecular geometry on 1H NMR relaxation rates in liquid-state hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for intramolecular and intermolecular 1H-1H dipole-dipole interactions. The effects of molecular geometry and internal motions on the functional form of the autocorrelation functions are studied by comparing symmetric molecules such as neopentane and benzene to corresponding straight-chain alkanes n-pentane and n-hexane, respectively. Comparison of rigid versus flexible molecules shows that internal motions cause the intramolecular and intermolecular correlation-times to get significantly shorter, and the corresponding relaxation rates to get significantly smaller, especially for longer-chain n-alkanes. Site-by-site simulations of 1H's across the chains indicate significant variations in correlation times and relaxation rates across the molecule, and comparison with measurements reveals insights into cross-relaxation effects. Furthermore, the simulations reveal new insights into the relative strength of intramolecular versus intermolecular relaxation as a function of internal motions, as a function of molecular geometry, and on a site-by-site basis across the chain.

  14. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    NASA Astrophysics Data System (ADS)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  15. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  16. First spectra from a new, wide band, hybrid digital correlator spectrometer for the FIRST-HIFI instrument.

    NASA Astrophysics Data System (ADS)

    Cais, P.; Ravera, L.; Lagrange, D.; Giard, M.; Baudry, A.; Mayvial, J. Y.

    1998-11-01

    The authors have designed and built a new, wide band, modulable resolution spectrometer, in view of full astronomical qualifying tests, and to prepare future models for the FIRST satellite's heterodyne instrument. The spectrometer, a hybrid digital autocorrelator, offers flexibility in terms of bandwidth (from 170 MHz to 680 MHz) and resolution (from 700 kHz to 3 MHz). This spectrometer required the development of a dedicated analog filter bank, homemade samplers, and the design of full custom GaAs integrated circuits. Laboratory tests have shown excellent agreement with expected performances and observations performed with the IRAM 30-m radiotelescope have qualified its capabilities. Despite the relatively limited number of channels of the current prototype compared to other spectrometers, the main advantages are its stability (inherent to digital technique), and its spectral versatility. Microelectronics advances and rad-tolerance of the spectrometer components are used to prepare a new, compact, and low power consumption autocorrelator in view of a flight model for HIFI, the heterodyne instrument on the ESA cornerstone mission FIRST.

  17. [Spatial distribution of occupational disease prevalence in Guangzhou and Foshan city by geographic information system].

    PubMed

    Tan, Q; Tu, H W; Gu, C H; Li, X D; Li, R Z; Wang, M; Chen, S G; Cheng, Y J; Liu, Y M

    2017-11-20

    Objective: To explore the occupational disease spatial distribution characteristics in Guangzhou and Foshan city in 2006-2013 with Geographic Information System and to provide evidence for making control strategy. Methods: The data on occupational disease diagnosis in Guangzhou and Foshan city from 2006 through 2013 were collected and linked to the digital map at administrative county level with Arc GIS12.0 software for spatial analysis. Results: The maps of occupational disease and Moran's spatial autocor-relation analysis showed that the spatial aggregation existed in Shunde and Nanhai region with Moran's index 1.727, -0.003. Local Moran's I spatial autocorrelation analysis pointed out the "positive high incidence re-gion" and the "negative high incidence region" during 2006~2013. Trend analysis showed that the diagnosis case increased slightly then declined from west to east, increase obviously from north to south, declined from? southwest to northeast, high in the middle and low on both sides in northwest-southeast direction. Conclusions: The occupational disease is obviously geographical distribution in Guangzhou and Foshan city. The corresponding prevention measures should be made according to the geographical distribution.

  18. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  20. Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less

  1. Autocorrelation Analysis Combined with a Wavelet Transform Method to Detect and Remove Cosmic Rays in a Single Raman Spectrum.

    PubMed

    Maury, Augusto; Revilla, Reynier I

    2015-08-01

    Cosmic rays (CRs) occasionally affect charge-coupled device (CCD) detectors, introducing large spikes with very narrow bandwidth in the spectrum. These CR features can distort the chemical information expressed by the spectra. Consequently, we propose here an algorithm to identify and remove significant spikes in a single Raman spectrum. An autocorrelation analysis is first carried out to accentuate the CRs feature as outliers. Subsequently, with an adequate selection of the threshold, a discrete wavelet transform filter is used to identify CR spikes. Identified data points are then replaced by interpolated values using the weighted-average interpolation technique. This approach only modifies the data in a close vicinity of the CRs. Additionally, robust wavelet transform parameters are proposed (a desirable property for automation) after optimizing them with the application of the method in a great number of spectra. However, this algorithm, as well as all the single-spectrum analysis procedures, is limited to the cases in which CRs have much narrower bandwidth than the Raman bands. This might not be the case when low-resolution Raman instruments are used.

  2. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE PAGES

    Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...

    2015-11-23

    Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  3. The spatial structure of chronic morbidity: evidence from UK census returns.

    PubMed

    Dutey-Magni, Peter F; Moon, Graham

    2016-08-24

    Disease prevalence models have been widely used to estimate health, lifestyle and disability characteristics for small geographical units when other data are not available. Yet, knowledge is often lacking about how to make informed decisions around the specification of such models, especially regarding spatial assumptions placed on their covariance structure. This paper is concerned with understanding processes of spatial dependency in unexplained variation in chronic morbidity. 2011 UK census data on limiting long-term illness (LLTI) is used to look at the spatial structure in chronic morbidity across England and Wales. The variance and spatial clustering of the odds of LLTI across local authority districts (LADs) and middle layer super output areas are measured across 40 demographic cross-classifications. A series of adjacency matrices based on distance, contiguity and migration flows are tested to examine the spatial structure in LLTI. Odds are then modelled using a logistic mixed model to examine the association with district-level covariates and their predictive power. The odds of chronic illness are more dispersed than local age characteristics, mortality, hospitalisation rates and chance alone would suggest. Of all adjacency matrices, the three-nearest neighbour method is identified as the best fitting. Migration flows can also be used to construct spatial weights matrices which uncover non-negligible autocorrelation. Once the most important characteristics observable at the LAD-level are taken into account, substantial spatial autocorrelation remains which can be modelled explicitly to improve disease prevalence predictions. Systematic investigation of spatial structures and dependency is important to develop model-based estimation tools in chronic disease mapping. Spatial structures reflecting migration interactions are easy to develop and capture autocorrelation in LLTI. Patterns of spatial dependency in the geographical distribution of LLTI are not comparable across ethnic groups. Ethnic stratification of local health information is needed and there is potential to further address complexity in prevalence models by improving access to disaggregated data.

  4. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  5. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  6. Improvement of walking speed and gait symmetry in older patients after hip arthroplasty: a prospective cohort study.

    PubMed

    Rapp, Walter; Brauner, Torsten; Weber, Linda; Grau, Stefan; Mündermann, Annegret; Horstmann, Thomas

    2015-10-12

    Retraining walking in patients after hip or knee arthroplasty is an important component of rehabilitation especially in older persons whose social interactions are influenced by their level of mobility. The objective of this study was to test the effect of an intensive inpatient rehabilitation program on walking speed and gait symmetry in patients after hip arthroplasty (THA) using inertial sensor technology. Twenty-nine patients undergoing a 4-week inpatient rehabilitation program following THA and 30 age-matched healthy subjects participated in this study. Walking speed and gait symmetry parameters were measured using inertial sensor device for standardized walking trials (2*20.3 m in a gym) at their self-selected normal and fast walking speeds on postoperative days 15, 21, and 27 in patients and in a single session in control subjects. Walking speed was measured using timing lights. Gait symmetry was determined using autocorrelation calculation of the cranio-caudal (CC) acceleration signals from an inertial sensor placed at the lower spine. Walking speed and gait symmetry improved from postoperative days 15-27 (speed, female: 3.2 and 4.5 m/s; male: 4.2 and 5.2 m/s; autocorrelation, female: 0.77 and 0.81; male: 0.70 and 0.79; P <0.001 for all). After the 4-week rehabilitation program, walking speed and gait symmetry were still lower than those in control subjects (speed, female 4.5 m/s vs. 5.7 m/s; male: 5.2 m/s vs. 5.3 m/s; autocorrelation, female: 0.81 vs. 0.88; male: 0.79 vs. 0.90; P <0.001 for all). While patients with THA improved their walking capacity during a 4-week inpatient rehabilitation program, subsequent intensive gait training is warranted for achieving normal gait symmetry. Inertial sensor technology may be a useful tool for evaluating the rehabilitation process during the post-inpatient period.

  7. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  8. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    PubMed

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines, with some individuals having more associates than observed from group sizes alone.

  9. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  10. Self-rated health: patterns in the journeys of patients with multi-morbidity and frailty.

    PubMed

    Martin, Carmel Mary

    2014-12-01

    Self-rated health (SRH) is a single measure predictor of hospital utilization and health outcomes in epidemiological studies. There have been few studies of SRH in patient journeys in clinical settings. Reduced resilience to stressors, reflected by SRH, exposes older people (complex systems) to the risk of hospitalization. It is proposed that SRH reflects rather than predicts deteriorations and hospital use; with low SRH autocorrelation in time series. The aim was to investigate SRH fluctuations in regular outbound telephone calls (average biweekly) to patients by Care Guides. Descriptive case study using quantitative autoregressive techniques and qualitative case analysis on SRH time series. Fourteen participants were randomly selected from the Patient Journey Record System (PaJR) database. The PaJR database recorded 198 consecutively sampled older multi-morbid patients journeys in three primary care settings. Analysis consisted of triangulation of SRH (0 very poor - 6 excellent) patterns from three analyses: SRH graduations associations with service utilization; time series modelling (autocorrelation, and step ahead forecast); and qualitative categorization of deteriorations. Fourteen patients reported mean SRH 2.84 (poor-fair) in 818 calls over 13 ± 6.4 months of follow-up. In 24% calls, SRH was poor-fair and significantly associated with hospital use. SRH autocorrelation was low in 14 time series (-0.11 to 0.26) with little difference (χ(2)  = 6.46, P = 0.91) among them. Fluctuations between better and worse health were very common and poor health was associated with hospital use. It is not clear why some patients continued on a downward trajectory, whereas others who destabilized appeared to completely recover, and even improved over time. SRH reflects an individual's complex health trajectory, but as a single measure does not predict when and how deteriorations will occur in this study. Individual patients appear to behave as complex adaptive systems. The dynamics of SRH and its influences in destabilizations warrant further research. © 2014 John Wiley & Sons, Ltd.

  11. The geographic distribution patterns of HIV-, HCV- and co-infections among drug users in a national methadone maintenance treatment program in Southwest China.

    PubMed

    Zhou, Yi-Biao; Liang, Song; Wang, Qi-Xing; Gong, Yu-Han; Nie, Shi-Jiao; Nan, Lei; Yang, Ai-Hui; Liao, Qiang; Song, Xiu-Xia; Jiang, Qing-Wu

    2014-03-10

    HIV-, HCV- and HIV/HCV co-infections among drug users have become a rapidly emerging global public health problem. In order to constrain the dual epidemics of HIV/AIDS and drug use, China has adopted a methadone maintenance treatment program (MMTP) since 2004. Studies of the geographic heterogeneity of HIV and HCV infections at a local scale are sparse, which has critical implications for future MMTP implementation and health policies covering both HIV and HCV prevention among drug users in China. This study aimed to characterize geographic patterns of HIV and HCV prevalence at the township level among drug users in a Yi Autonomous Prefecture, Southwest of China. Data on demographic and clinical characteristics of all clients in the 11 MMTP clinics of the Yi Autonomous Prefecture from March 2004 to December 2012 were collected. A GIS-based geographic analysis involving geographic autocorrelation analysis and geographic scan statistics were employed to identify the geographic distribution pattern of HIV-, HCV- and co-infections among drug users. A total of 6690 MMTP clients was analyzed. The prevalence of HIV-, HCV- and co-infections were 25.2%, 30.8%, and 10.9% respectively. There were significant global and local geographic autocorrelations for HIV-, HCV-, and co-infection. The Moran's I was 0.3015, 0.3449, and 0.3155, respectively (P < 0.0001). Both the geographic autocorrelation analysis and the geographic scan statistical analysis showed that HIV-, HCV-, and co-infections in the prefecture exhibited significant geographic clustering at the township level. The geographic distribution pattern of each infection group was different. HIV-, HCV-, and co-infections among drug users in the Yi Autonomous Prefecture all exhibited substantial geographic heterogeneity at the township level. The geographic distribution patterns of the three groups were different. These findings imply that it may be necessary to inform or invent site-specific intervention strategies to better devote currently limited resource to combat these two viruses.

  12. Spatial autocorrelation in uptake of antenatal care and relationship to individual, household and village-level factors: results from a community-based survey of pregnant women in six districts in western Kenya.

    PubMed

    Prudhomme O'Meara, Wendy; Platt, Alyssa; Naanyu, Violet; Cole, Donald; Ndege, Samson

    2013-12-07

    The majority of maternal deaths, stillbirths, and neonatal deaths are concentrated in a few countries, many of which have weak health systems, poor access to health services, and low coverage of key health interventions. Early and consistent antenatal care (ANC) attendance could significantly reduce maternal and neonatal morbidity and mortality. Despite this, most Kenyan mothers initiate ANC care late in pregnancy and attend fewer than the recommended visits. We used survey data from 6,200 pregnant women across six districts in western Kenya to understand demand-side factors related to use of ANC. Bayesian multi-level models were developed to explore the relative importance of individual, household and village-level factors in relation to ANC use. There is significant spatial autocorrelation of ANC attendance in three of the six districts and considerable heterogeneity in factors related to ANC use between districts. Working outside the home limited ANC attendance. Maternal age, the number of small children in the household, and ownership of livestock were important in some districts, but not all. Village proportions of pregnancy in women of child-bearing age was significantly correlated to ANC use in three of the six districts. Geographic distance to health facilities and the type of nearest facility was not correlated with ANC use. After incorporating individual, household and village-level covariates, no residual spatial autocorrelation remained in the outcome. ANC attendance was consistently low across all the districts, but factors related to poor attendance varied. This heterogeneity is expected for an outcome that is highly influenced by socio-cultural values and local context. Interventions to improve use of ANC must be tailored to local context and should include explicit approaches to reach women who work outside the home.

  13. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  14. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation.

    PubMed

    Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San

    2017-08-07

    The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human activity and natural factors.

  15. Strong Clustering of Lyman Break Galaxies around Luminous Quasars at Z ˜ 4

    NASA Astrophysics Data System (ADS)

    García-Vergara, Cristina; Hennawi, Joseph F.; Barrientos, L. Felipe; Rix, Hans-Walter

    2017-10-01

    In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z ˜ 4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z ˜ 4 QSO fields with VLT/FORS, exploiting a novel set of narrow-band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of {{Δ }}z˜ 0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z≳ 4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z ˜ 4, on scales of 0.1≲ R≲ 9 {h}-1 {Mpc} (comoving). Assuming a power-law form for the cross-correlation function ξ ={(r/{r}0{QG})}γ , we measure {r}0{QG}={8.83}-1.51+1.39 {h}-1 {Mpc} for a fixed slope of γ =2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a deterministic bias model. We also measure a strong auto-correlation of LBGs in our QSO fields, finding {r}0{GG}={21.59}-1.69+1.72 {h}-1 {Mpc} for a fixed slope of γ =1.5, which is ˜4 times larger than the LBG auto-correlation length in blank fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive ({M}{halo}> {10}12 {M}⊙ ) dark matter halos at z ˜ 4.

  16. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  17. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.

  18. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    NASA Astrophysics Data System (ADS)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  19. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K

    2018-02-01

    In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.

  20. Using geographical semi-variogram method to quantify the difference between NO2 and PM2.5 spatial distribution characteristics in urban areas.

    PubMed

    Song, Weize; Jia, Haifeng; Li, Zhilin; Tang, Deliang

    2018-08-01

    Urban air pollutant distribution is a concern in environmental and health studies. Particularly, the spatial distribution of NO 2 and PM 2.5 , which represent photochemical smog and haze pollution in urban areas, is of concern. This paper presents a study quantifying the seasonal differences between urban NO 2 and PM 2.5 distributions in Foshan, China. A geographical semi-variogram analysis was conducted to delineate the spatial variation in daily NO 2 and PM 2.5 concentrations. The data were collected from 38 sites in the government-operated monitoring network. The results showed that the total spatial variance of NO 2 is 38.5% higher than that of PM 2.5 . The random spatial variance of NO 2 was 1.6 times than that of PM 2.5 . The nugget effect (i.e., random to total spatial variance ratio) values of NO 2 and PM 2.5 were 29.7 and 20.9%, respectively. This indicates that urban NO 2 distribution was affected by both local and regional influencing factors, while urban PM 2.5 distribution was dominated by regional influencing factors. NO 2 had a larger seasonally averaged spatial autocorrelation distance (48km) than that of PM 2.5 (33km). The spatial range of NO 2 autocorrelation was larger in winter than the other seasons, and PM 2.5 has a smaller range of spatial autocorrelation in winter than the other seasons. Overall, the geographical semi-variogram analysis is a very effective method to enrich the understanding of NO 2 and PM 2.5 distributions. It can provide scientific evidences for the buffering radius selection of spatial predictors for land use regression models. It will also be beneficial for developing the targeted policies and measures to reduce NO 2 and PM 2.5 pollution levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu

    2015-11-01

    In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  2. Role of initial state and final quench temperature on aging properties in phase-ordering kinetics.

    PubMed

    Corberi, Federico; Villavicencio-Sanchez, Rodrigo

    2016-05-01

    We study numerically the two-dimensional Ising model with nonconserved dynamics quenched from an initial equilibrium state at the temperature T_{i}≥T_{c} to a final temperature T_{f} below the critical one. By considering processes initiating both from a disordered state at infinite temperature T_{i}=∞ and from the critical configurations at T_{i}=T_{c} and spanning the range of final temperatures T_{f}∈[0,T_{c}[ we elucidate the role played by T_{i} and T_{f} on the aging properties and, in particular, on the behavior of the autocorrelation C and of the integrated response function χ. Our results show that for any choice of T_{f}, while the autocorrelation function exponent λ_{C} takes a markedly different value for T_{i}=∞ [λ_{C}(T_{i}=∞)≃5/4] or T_{i}=T_{c} [λ_{C}(T_{i}=T_{c})≃1/8] the response function exponents are unchanged. Supported by the outcome of the analytical solution of the solvable spherical model we interpret this fact as due to the different contributions provided to autocorrelation and response by the large-scale properties of the system. As changing T_{f} is considered, although this is expected to play no role in the large-scale and long-time properties of the system, we show important effects on the quantitative behavior of χ. In particular, data for quenches to T_{f}=0 are consistent with a value of the response function exponent λ_{χ}=1/2λ_{C}(T_{i}=∞)=5/8 different from the one [λ_{χ}∈(0.5-0.56)] found in a wealth of previous numerical determinations in quenches to finite final temperatures. This is interpreted as due to important preasymptotic corrections associated to T_{f}>0.

  3. Spatial Distribution of Oak Mistletoe as It Relates to Habits of Oak Woodland Frugivores

    PubMed Central

    Wilson, Ethan A.; Sullivan, Patrick J.; Dickinson, Janis L.

    2014-01-01

    This study addresses the underlying spatial distribution of oak mistletoe, Phoradendron villosum, a hemi-parasitic plant that provides a continuous supply of berries for frugivorous birds overwintering the oak savanna habitat of California's outer coast range. As the winter community of birds consuming oak mistletoe varies from group-living territorial species to birds that roam in flocks, we asked if mistletoe volume was spatially autocorrelated at the scale of persistent territories or whether the patterns predicted by long-term territory use by western bluebirds are overcome by seed dispersal by more mobile bird species. The abundance of mistletoe was mapped on trees within a 700 ha study site in Carmel Valley, California. Spatial autocorrelation of mistletoe volume was analyzed using the variogram method and spatial distribution of oak mistletoe trees was analyzed using Ripley's K and O-ring statistics. On a separate set of 45 trees, mistletoe volume was highly correlated with the volume of female, fruit-bearing plants, indicating that overall mistletoe volume is a good predictor of fruit availability. Variogram analysis showed that mistletoe volume was spatially autocorrelated up to approximately 250 m, a distance consistent with persistent territoriality of western bluebirds and philopatry of sons, which often breed next door to their parents and are more likely to remain home when their parents have abundant mistletoe. Using Ripley's K and O-ring analyses, we showed that mistletoe trees were aggregated for distances up to 558 m, but for distances between 558 to 724 m the O-ring analysis deviated from Ripley's K in showing repulsion rather than aggregation. While trees with mistletoe were aggregated at larger distances, mistletoe was spatially correlated at a smaller distance, consistent with what is expected based on persistent group territoriality of western bluebirds in winter and the extreme philopatry of their sons. PMID:25389971

  4. Dissecting components of population-level variation in seed production and the evolution of masting behavior.

    Treesearch

    W. D. Koenig; D. Kelly; V. L. Sork; R. P. Duncan; J. S. Elkinton; M.S. Peltonen; R. D. Westfall

    2003-01-01

    Mast-fruiting or masting behavior is the cumulative result of the reproductive patterns of individuals within a population and thus involves components of individual variability, between-individual synchrony, and endogenous cycles of temporal autocorrelation. Extending prior work by Herrera, we explore the interrelationships of these components using data on individual...

  5. The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates

    ERIC Educational Resources Information Center

    Sivo, Stephen; Fan, Xitao; Witta, Lea

    2005-01-01

    The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…

  6. Movements vary according to dispersal stage, group size, and rainfall: The case of the African lion

    Treesearch

    Nicholas B. Elliot; Samuel A. Cushman; Andrew J. Loveridge; Godfrey Mtare; David W. Macdonald

    2014-01-01

    Dispersal is one of the most important life-history traits affecting species persistence and evolution and is increasingly relevant for conservation biology as ecosystems become more fragmented. However, movement during different dispersal stages has been difficult to study and remains poorly understood. We analyzed movement metrics and patterns of autocorrelation from...

  7. Landscape patterns from mathematical morphology on maps with contagion

    Treesearch

    Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil

    2009-01-01

    The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...

  8. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Treesearch

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  9. Zero Autocorrelation Waveforms: A Doppler Statistic and Multifunction Problems

    DTIC Science & Technology

    2006-01-01

    by ANSI Std Z39-18 It is natural to refer to A as the ambiguity function of u, since in the usual setting on the real line R, the analogue ambiguity...Doppler statistic |Cu,uek(j)| is excellent and provable for detecting deodorized Doppler frequency shift [11] (see Fig. 2). Also, if one graphs only

  10. The Impact of Baseline Trend Control on Visual Analysis of Single-Case Data

    ERIC Educational Resources Information Center

    Mercer, Sterett H.; Sterling, Heather E.

    2012-01-01

    The impact of baseline trend control on visual analyses of AB intervention graphs was examined with simulated data at various values of baseline trend, autocorrelation, and effect size. Participants included 202 undergraduate students with minimal training in visual analysis and 10 graduate students and faculty with more training and experience in…

  11. Observation of ground-state quantum beats in atomic spontaneous emission.

    PubMed

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J

    2010-09-17

    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.

  12. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Treesearch

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  13. Geographic variation in forest composition and precipitation predict the synchrony of forest insect outbreaks

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin

    2018-01-01

    Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...

  14. A Generalized Least Squares Regression Approach for Computing Effect Sizes in Single-Case Research: Application Examples

    ERIC Educational Resources Information Center

    Maggin, Daniel M.; Swaminathan, Hariharan; Rogers, Helen J.; O'Keeffe, Breda V.; Sugai, George; Horner, Robert H.

    2011-01-01

    A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of…

  15. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis [chapter 7

    Treesearch

    Samuel A. Cushman

    2010-01-01

    In the previous chapter we presented the idea of a multi-layer, multi-scale, spatially referenced data-cube as the foundation for monitoring and for implementing flexible modeling of ecological pattern-process relationships in particulate, in context and to integrate these across large spatial extents at the grain of the strongest linkage between response and driving...

  16. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  17. The lepidoptera as predictable communities of herbivores: a test of niche assembly using the moth communities of Morgan-Monroe State Forest

    Treesearch

    Keith S. Summerville; Michael R. Saunders; Jamie L. Lane

    2013-01-01

    The response of forest insect communities to disturbances such as timber harvest likely will depend on the underlying ecological assembly rules that affect community structure. Two competing hypotheses are niche assembly, which seeks to demonstrate significant species-environment correlations, and dispersal-assembly, which seeks to demonstrate spatial autocorrelation...

  18. Time to burn: Modeling wildland arson as an autoregressive crime function

    Treesearch

    Jeffrey P. Prestemon; David T. Butry

    2005-01-01

    Six Poisson autoregressive models of order p [PAR(p)] of daily wildland arson ignition counts are estimated for five locations in Florida (1994-2001). In addition, a fixed effects time-series Poisson model of annual arson counts is estimated for all Florida counties (1995-2001). PAR(p) model estimates reveal highly significant arson ignition autocorrelation, lasting up...

  19. Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils.

    PubMed

    Torrecilla, José S; García, Julián; García, Silvia; Rodríguez, Francisco

    2011-03-04

    The combination of lag-k autocorrelation coefficients (LCCs) and thermogravimetric analyzer (TGA) equipment is defined here as a tool to detect and quantify adulterations of extra virgin olive oil (EVOO) with refined olive (ROO), refined olive pomace (ROPO), sunflower (SO) or corn (CO) oils, when the adulterating agents concentration are less than 14%. The LCC is calculated from TGA scans of adulterated EVOO samples. Then, the standardized skewness of this coefficient has been applied to classify pure and adulterated samples of EVOO. In addition, this chaotic parameter has also been used to quantify the concentration of adulterant agents, by using successful linear correlation of LCCs and ROO, ROPO, SO or CO in 462 EVOO adulterated samples. In the case of detection, more than 82% of adulterated samples have been correctly classified. In the case of quantification of adulterant concentration, by an external validation process, the LCC/TGA approach estimates the adulterant agents concentration with a mean correlation coefficient (estimated versus real adulterant agent concentration) greater than 0.90 and a mean square error less than 4.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Ming, A. B.; Qin, Z. Y.; Zhang, W.; Chu, F. L.

    2013-12-01

    Bearing failure is one of the most common reasons of machine breakdowns and accidents. Therefore, the fault diagnosis of rolling element bearings is of great significance to the safe and efficient operation of machines owing to its fault indication and accident prevention capability in engineering applications. Based on the orthogonal projection theory, a novel method is proposed to extract the fault characteristic frequency for the incipient fault diagnosis of rolling element bearings in this paper. With the capability of exposing the oscillation frequency of the signal energy, the proposed method is a generalized form of the squared envelope analysis and named as spectral auto-correlation analysis (SACA). Meanwhile, the SACA is a simplified form of the cyclostationary analysis as well and can be iteratively carried out in applications. Simulations and experiments are used to evaluate the efficiency of the proposed method. Comparing the results of SACA, the traditional envelope analysis and the squared envelope analysis, it is found that the result of SACA is more legible due to the more prominent harmonic amplitudes of the fault characteristic frequency and that the SACA with the proper iteration will further enhance the fault features.

Top